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Complete analysis of baryon magnetic moments in the/lN. expansion
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We generate a complete basis of magnetic moment operators fidg th® ground-state baryons in theNL/
expansion, and compute and tabulate all associated matrix elements. We then compare to previous results
derived in the literature and predict additional relations among baryon magnetic moments holding to sublead-
ing order in 1N. and flavor SW3) breaking. Finally, we predict all unknown diagonal and transition magnetic
moments to<0.15u) accuracy, and suggest possible experimental measurements to improve the analysis even
further.
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I. INTRODUCTION N> 3 [3]. Of course, folN.= 3 this tower truncates after the
A’s. While the mass of each baryon @;(Ni), mass split-
The generalization of quantum chromodynamics from 3tings between two low-lying states in the towe., | =J
to N.>3 color charges, called lardé. QCD, has opened a =0Q(N?)] is O(1/N.) [4], supporting the notion of a true
path to substantial progress in understanding strong interagtegenerate spin-flavor multiplet. In fact, it is only because
tions at both the formal and phenomenological levels. Forpyr universe is somewhat closer to the chiral limit than the
mal successes spring from the fact that lageQCD exhib-  |arge N, limit that A and its partners in the SB) decuplet

its a well-defined limit, meaning that the renormalization gre unstable under strong decays;=O(m, 4)=O0(N?)
group equations remain finite and nontrivialg—. Fur- <y —m =0O(1/N,). ’

thermore, the counti'ng of epric:!NiC factors organizes Q'CD ~In a complete analysis organized according tc1/the
Feynman diagrams into topological classes of decreasing siggnole set of states in the spin8 and sping 10 [and SU3)
nificance with increasing powers ofN/, which defines the multiplets associated with spif,Z, ... Ng/2, which de-

1/N. expansion. Phenomenological successes build on the%%uple forN.= 3], must be considered together as a single
formal 1N, power-counting results, but add one crucial ex- L - ; ; ’
train redicer?t' Observable%]s calculated to appedd(@iN,) completely symmetric spin-flavor multiplet witN, funda-

9 ) PP c mental representatiofuark indices; we continue to denote

2 ..
or O(t_l"\:c) are ﬁma'r:'ca"y found t%_be a fa"tt‘_’tf 3or |9 Iret_ this multiplet by the old S(b) label 56, although again for
spectively, smaller than corresponding quantiies calculate >3 the dimension of this representation is much greater.

;Ot?eioon(gl\fzc;) tt?]': Qg:;i:?ﬁ;g;{:g fQo::v[\?hvi\thcthﬁ clst;](?)gr?s The instability of spin-3/2 baryons is taken into account sim-
sion is meaningful. We note only that the literature to dateﬂgrsi)(t;?qzﬂt_ammg finite values fom,- and N in the ful
that provides evidence substantiating these statements has\y, hasten to add that magnetic moments for baryons in
become so gxtepsive, that nothing short of a review articlefhe 56 have been considered in theN/expansion in the
[1] can do it justice. . o past—in fact, in papers dating back a decade or more. There
Nevertheless, a multitude of problems utilizing thé&ld/ 56 three papers in particular that have examined these mag-
expansion, even for well-known observables, remamn Unpetic moments in the W, expansion: Jenkins and Manohar
solved. In this paper we focus on one very specific such SeE'JM) [5], Luty, March-Russell, and Whitd MRW) [6], and
the magn_etic moments of thed,s baryons in the groqnd- Dai, Da,shen,, Jenkins, and Manor(zﬁlDJM) [71. EaE:h of
state multiplet. In the case of large , this multiplet consists o560 papers contains a scheme for including a particular set
of a tower of state$2] completely symmetric under com- ¢ qnerators that contribute to magnetic moments, and each
bined spin and flavor transformations, thus providing justifi-i giscyssed in detail below, once we establish a notation to
cation for the group-theoretical aspects of the old three-flavoga o ribe the formalism.
SU(6) classification for baryons. The nonstrange members o In short, however, the essential improvement of the cur-
the multiplets in this tower carry the {J) quantum numbers rent work over previous papers is completeness. Once all
3.3),(3.3), ... ,(Ng/2Ny/2). The first (,J) multiplet rep-  relevant baryon states are assumed to fill a complete spin-
resents nucleons, which reside in an(SUmultiplet that is  flavor multiplet—in this case, th&6—then only a finite
an octet folN.= 3; the second represemsresonances in an number of operators exist with distinct spin-flavor transfor-
SU(3) multiplet that is a decuplet fo.=3. Here we con- mation properties that can generate nonvanishing baryon bi-
tinue to use the S(3) labels8 and 10, despite the fact that linears in a Hamiltonian. This number precisely equals the
the corresponding S3) representations are much larger for number of distinct observables associated with the given
quantum numbers. For example, thé allows precisely 19
linearly independent mass operatorgthose with
*Electronic address: Richard.Lebed@asu.edu AJ=0,AJ°=0,AY=0,A13=0, T even with distinct spin-
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baryons, the terd0 baryons, and the spin-singlB®A mix-  0,1,2 ..., up toN, adjoint representations. In terms of spin-
ing. In the magnetic moment casAJ=1,AJ*=0,AY  flavor SU(Ng), whereNg is the number of light flavors, the
=0,A1%3=0, T odd, one finds 27 linearly independent op- operators comprising the adjoint are defined:

erators, corresponding to the eighibaryons, terl0 baryons, .
the AJ=1 3°A mixing, and eight SI(B)-breakingAJ=1 Ji_E T(i@)l
mixings between states of the sahieandY in the 8 and 10, 4 o

such asA *p. Quite simply, these descriptions represent two

complete bases of a vector space corresponding to a particu- N %

lar class of observable: One basis is organized in such a way Ta:E qa( I® 7) Qo

as to give one basis vector for each observable for a given “

state, and the other basis is organized according to quantum o \2

numbers of the spin-flavor symmetry. In such an analysis, an Gia= E q’;(_(@ _) Uy s (2.1
arbitrary amount of symmetry breaking can be accommo- @ 22

dated. h he ind h ks.o h i
This approach was used to classify all static observable§Nere the index: sums over thél; quarks,o- are the Pauli
spin matrices, and\® are the Gell-Mann flavor matrices.

of the literal SU6) 56 (i.e., using onlyN.=3) in Ref.[8], > . >
with a deeper study of quadrupole moments in Fef. It Thus, each distinct operator_may be written as a monomial in
J, T, andG of total ordern, with 0O=<n=<N;. Such an opera-

has been used in theN{ expansion several times: for the ,
tor is termed am-body operator

masses of th&6 [10], for charge radii and quadrupole mo- ) ,
ments[11—13, for the masses and couplings of the orbitally- A large subset of operators constructed in this way are
redundant or give vanishing matrix elements due to group-

excited baryon multiple70 [14-18, and even for theA h ical ) E | h
— Ny couplings closely related to th&N transition mag- t (iaoret|gai_i£:0knstra|nts. or example, commutators such as
; [J',J]=i€"*J* behave exactly as they do for the underlying
netic momentg$19]. _ e
o and\ matrices. Furthermore, some combinations),of,

This paper is organized as follows: In Sec. Il we explain 4G | X binati ; K
why the operator expansionNy{ truncates at a finite order, &"d G act only on non-symmetric combinations of quarks
nd hence annihilate the ground-state wave functions, while

and how the complete set of operators may be enumeratef!

We compute and tabulate all the matrix elements of all thes¥€t Other combinations are spin-flavor Casimirs and hence

operators in Sec. IlI. In Sec. IV we compare our approach tcg'vi_ the ﬁame_ \(/jglu_e for ﬁvglry fstate gf t_r:je representation,
previous ones in the literatufevith and without perturbative making them indistinguishable from the identity operator.

flavor SU3) breaking, derive new relations, fit to all exist- The operatordreQchc;n r“r'gg'f reRm?VIgg all ZUCh exgadop—
ing data, and use the results of this fit to predict all unmea&ators Wan erived for th in Ref. [20], an _ﬂixfn eh to
sured moments. The casual reader uninterested in calculfle 70 in Refs.[15]. For the present case wite<3, the
tional details is encouraged to skip directly to Sec. IV. Werule states: All operator products in which two flavor indices

summarize and conclude in Sec. V. are contracted using®®, d @, or f2°¢ [28], or two spin
indices onG’s are contracted using’ or €%, can be elimi-

nated.
ll. OPERATOR BASIS None of the preceding reasoning depends specifically

Each baryon state belongs to a representation composé'(ﬁ)on th? 1!“0 expansion. Such B, factors arise f.rom two
sources: First, am-body operator appears in an irreducible

of N, color fundamental representations combined into &jiaaram in whichn quarks are connected by aluons. requir-
color singlet. While it is suggestive to think of each such. g q Y9 » €9

fundamental representation being associated with a singl!ﬁg a ”;'qmun:h()f:_ml] g:i;iluonsnexi(hallin(i;ted; ther tHioﬁfthC?l'r
current quark, such an identification is not necessary; in geH— 9 ncfﬁ c the plies an explicit suppression facto
{Nc . Second, the combinatorics of quarks inside the

eral, each fundamental representation merely represents g . .
interpolating field whose quantum numbers match those of 42YON Permits the matrix element T, or G to be as large
O(N;) whenever the contributions from thé, quarks

single quark in color, spin, and flavor—each of these in theé®S :
fundamental representation of the corresponding group—an%dd coherently. However, if the baryons chosen nevertheless
which together exhaust the whole baryon wave fundii). ~ have spins, isospins, and strangenessOgNc)—as we
In general, such a field consists of not only a current quarkchoose for the spig-8 and spin3 10—then the matrix ele-
but gluons and sea quark-antiquark pair Fock components agents of J+23 7123 and N=3%(1-23T%) are also
well, and indeed may be thought of as a rigorously define(D(Ng).
constituent quark. We continue to denote such an interpolat- The replacement 6f® by N in constructing the operator
ing field by the simple label “quark.” basis presents a trivial example of what, in REef5], is

An arbitrary baryon bilinear, as appearing in the Hamil-called “operator demotion.” Whereas operator reduction
tonian for masses, magnetic moments, etc., thus carries thales identify linear combinations of operators that give pre-
guantum numbers oN; quarks andN; antiquarks. Since cisely zero to all orders in N, when acting upon all states
fundamentaly antifundamentatadjoint® singletfor in a baryon spin-flavor representation, operator demotion
all SU groups(in this case, each of spin, flavor, and spin- identifies linear combinations of operators whose matrix el-
flavor), each operator that can connect the baryon states maments are a higher order in powers diilthan those of the
be decomposed into pieces transforming as products afomponent operators, at least for the observed baryon states.

Ua
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TABLE I. The 27 linearly independent operators contributing to the magnetic moments of thé apih-

spin% ground-state baryons, organized according to the leadjngounting of their matrix elements.
O(Ng) G
1
O(NQ) P G¥ =TGR NG, —{J 6?63
Ne Nc N2
. 1 1 1 1 5
O(NC ) N T3J3 _N9]3 T3G38 _ G38 . {JZ G33} T3)ZG33 —N G33
C Cc
1 3 33 1 iRi313 i8 =3 i3 3
FTNSG , —J'G", 2—{3(3 ,G33, 2 {JG G
C C
-2 Tosg tios 1 sos 1oy 1150 3)2G38 2>38
O(N;9) NZJJ N—NJ NZ(T)J' N—ZTNSJ —{J G, (T G¥, —NG™,
(9 C C C [
1 1. 11 .
_TSNSGBS, —JIGI8J3, _—{JIGIS,GSB}
NG NG NG 2

Such a result can occur since thel, andG matrix elements

demotions occur. Consider the first 6 operators in Table |, the

in general contain both leading and subleading contributionsomplete set up to and includir@(N?). If the leading co-

in Ng.

In summary, a complete accounting of th&llexpansion
thus requires one to take into account the ingredigtsa
complete set of operators under spin-flav@r); operator re-
duction rules to remove linearly dependent operat(iig; a
counting of N, factors arising both from explicit powers of

as on one hand and coherent contributions due to quar

combinatorics on the other; an@/) operator demotions to

dent at O(1/N}) for some n but are independent at
O(LNRTY).
A full analysis of all states in the baryon multiplets fdg

efficient of each of these operators—&¢N?) for G* and at
O(Ng) for the other 5—for each of the 27 observables is
collected into a & 27 matrix, then one finds that this matrix
has rank 6: No linear combination of the operators has ma-
trix elements that are onI§D(NC’1). Similarly, no combina-
tion of the 17 operators up t@®(N.; ') is demoted to

(N2,

identify operators whose matrix elements are linearly depen-

IIl. COMPUTING MATRIX ELEMENTS

We compute the matrix elements of the 27 operators listed
in Table I using only the Wigner-Eckart theorduor its vari-

large and finite, as discussed above, requires the inclusion a@it9 and the total spin-flavor symmetry of tH& baryon
up to N.-body operators. A parallel analysis carried out forstates. While the task of computing matrix elements of
N.=3 states, by the same reasoning, requires only up to-body operators for states containing an arbitrarily large

3-body operators. Once the physidil=3 baryons are iden-
tified as states embedded within the>3 multiplets, one
sees that 4-,5-,. .,

number ;) of constituents may naively seem to require a
large amount of group-theoretical technoldgyg., SU6) 9]

N.-body operators do indeed act upon symbolg, it turns out that all of the necessary matrix ele-

the physical baryons, but give results linearly dependent oments can be reduced to simple @V spin and isospin
those of lower-order operators, and therefore may be dis€lebsch-GordaCG) coefficients, and nothing worse than

carded.

In the case of magnetic moments for @& we have seen
that there are 27 independent parameters wifh=1,AJ3
=0,AY=0,A13=0, T odd forN,=3. The conditionsAJ

an SU2) 6] symbol needs to be computed. All of the nec-
essary tools have been developed in REf2,13, but we
present them here for completeness.

We begin by constructing baryon states in && Since

=1 andAJ®=0 require that each operator has a single unthe wave function is completely symmetric under exchange
summed spin index, which for definiteness we take to be of spin and flavor quantum numbers of any two quarks, it
i=3. T odd, of course, is the behavior of an angular momenfollows that the collection of alN, quarks of any fixed fla-
tum under time reversal; as it turns out, this is accomplishestor g must be completely symmetric under spin exchange.
automatically because all operators containing the structuréhe spin J, carried by them must therefore have its
constantse'X, 3P or dP¢ can be eliminated. The condi- “stretched” value,Nq/2.
tionsAY= 0,AI3—0 require each unsummed flavor index Next, theu quarks andd quarks combine to give a state
to equal 3 or 8. The complete set of 27 such operators, inwith 13=3(N,—Ng)=J,—J4. The total isospirl is deter-
cluding the demotiorT®— N, appears in Table I. For those mined by noting that the exchange symmetry property of the
cases in which different orderings of component operatorstate undeu-d flavor exchange must precisely match that of
would give different values for matrix elemersuch as)>  these quarks’ spins, in order for the total wave function to be
andG*), the operators are written in a symmetric form.  completely symmetric under spin-flavor. It follows thhfy

In fact, a direct calculation shows that no other operator=1, whereJ,;=J,+Jq.

016008-3



R. F. LEBED AND D. R. MARTIN PHYSICAL REVIEW D70, 016008 (2004

In the final step, one simply combines the stateidfotal o 1
spinJ,q=1 and isospin quantum numbdrg® with the sym- JIG®=—=(3?-3J-Jy),
metrized strange quarks carrying total sginto obtain the 2\3
complete state with spin eigenvalued,J®, where 1
J=JygtJs: JIG3= 59 (Ju=Jo), (3.3
I Jgl . L .
3.13 _ which may be simplified by noting that
|JJ !“ (‘]u‘]d‘]s)> J;J3 (Jﬁd ‘]:Si JS)
udvs 1 2 2 2 1 2 2 2
J-Js=—5[(I-J9) = I ]=5(I°+Is—19),
Ju I | 2 2
X 2 NN N 2_ 2
38,33 \Pu YdlYud J-(Iy=Jg) =yt Ig+I9) - (Jy—I9)=3— 5+ Js- (Jy—Jg)-

(3.9

It becomes apparent that only a few nontrivial matrix ele-
ents need be computed. Denoting the matrix element
J.-Jp) as{aB)®, wherea and g are any two quark fla-
ors, the only nontrivial required matrix elements &4g),

X|3WIDIIDIIY, (B

where the parentheses denote CG coefficients. Now, in ord
to compute the matrix elements of any particular operator,
one need only sandwich it between a bra and ket of the forny

3 3
of Eq. (3.1) and use the Wigner-Eckart theorem. (Ja)» (35, <US>((?)' a'_"fj<d_3>(o)_- _

The basic operatof&?, N, J3, andJ?, acting diagonally Even more simplification is possible, because Ejl)
on baryon states, are easy to handle even if they are parts §gPends on the exchangewandd quarks only through the
more complicated operators. On the other hand, second CG coefficient, and the factor obtained through this

exchange is just£1)%*Ja~! Of course, the eigenvalues
J,, which simply count one-half the number of quarks of

G'8= ——(J'-3J)), flavor « in these baryons, remain unchanged from initial to
2\3 final state. The same is true fof=J,—Jy, but the total
isospin may change to a valué. One thus finds for an
1 operatorQO that
G"®=3 (3=, (3.2

('3 O(u—d)|[113)y=(—1)" (1" =13|0]1 = 13). (3.5

are in general not diagonal and must be handled more cardhus the only matrix elements that need be computed are
fully. According to Table |, they appear in the forr@&s®and ~ (J33), (32), and(us)(®). These were computed in R¢fL3]
G*, and as and are reproduced here:

(3= 8359831 3,631,0373,(— 1)37 I S04 (3 (3,4 1) (20,4 1) (21 + 1) (20 + 1) (20 +1)(23+1)
Jg du 1[I 1 )1 ¥ I
X ’ :l ° ’ ’ 3 3/ (36)
11 31 v rflo ¥ -3

I Js J|[/1 J J
3 7 S
<J§>:5J’3J35I’IéJL’JJuéJ(’deéJéJS(_l)l+J It I(Js+ 1)(236+1)(20 +1)(23+ 1)[1 3 ‘]s](o RE _J3>’

(3.7)

(uS)(O= 851385353813, 8313, 8915 (— D)7 793,(3,+ 1) (23, + 1) Is(Is+ 1)(235+ 1)(21 ' + 1) (21 +1)

Jo Ju 1[I I 1
X . .
[1 K Jqu I’ JS} S

Note that, in the interest of exhibiting maximal symmetry, puted using analytic forms appearing in the standard text by
the remaining CG coefficients have been written gs¥@n-  Edmondg21].

bols. Despite the fact that a number of their entries are The matrix elements for all relevant states are presented
O(Né), all the 3 and § symbols of interest may be com- in Tables lI-IX. Tables Il and Il are lifted directly from Ref.
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TABLE II. Matrix elements of the operatons, 4 s [whence(J2)=(aa)@=(N,/2)(N,/2+1)] and the
rank-0 tensorgaB8)(®) with a+ B. Since spin is unchanged by these operators, the matrix elements vanish
for all off-diagonal transitions excepE’A; in that case, the only nonvanishing entries &res)(®

=—(d9(?=— 5N~ 1)(N: +3).

State (Ny) (Ng) (Ng) (ud)(© (us)(©® (ds)©
At 2(N.+3)  3(N.—23) 0 — & (Ng—3)(N.+7) 0 0
AT F(N+1)  3(N.—1) 0 — 15(N2+ 4N —29) 0 0

A° 2(Ne—1)  3(Ng+1) 0 — 3= (N2+4N,—29) 0 0

A~ 2(Ne—3)  3(N.+3) 0 — = (Ng—=3)(Ng+7) 0 0
St I(Ne+1)  3(N.—3) 1 —E(N=3)(N.+5)  +3=(N.+5) —(N.—3)
3*0 2(Ne—1)  3(N.—1) 1 — 3= (N2+2N,—19) +3 +3
3*T 0 3(Ne=3)  3(Ne+1) 1 —f5(Ne=3)(Ne+t5)  —15(Nc=3)  +15(Nc+5)
g*0 3(Ne—1)  3(N.—3) 2 —E(N=3)(Ne+3)  +5(N+3)  —35(N.—3)
B*- 2(N.—3)  3(N.—1) 2 —&(N=3)(N+3) —5(Ne—3)  +75(N.+3)
Q- 3(N.—3)  3(N.—3) 3 — & (Ng—=3)(N+1) 0 0

p 2(Ng+1)  3(N.—1) 0 — & (Ng—1)(N.+5) 0 0

n 2(Ne—1)  3(N.+1) 0 — & (Ng—1)(N+5) 0 0

3t F(Net1)  3(Ne=3) 1 —56(Ne=3)(Ne+5)  —3(Nct+5)  +5(N.—3)
30 i(Ne—1)  3(Ne—1) 1 — 16(NZ+ 2N~ 19) -3 -3

A 1(N.—1)  3(N.—1) 1 — &= (Ng—1)(N+3) 0 0

3 Z(N.—3)  3(N.+1) 1 —&(N—3)(N.+5)  +2(N.—3) —1(N.+5)
= 2(Ne—1)  3(N.—3) 2 —&(Ne—3)(Ne+3)  —2(N.+3) +£(N.—3)
= F(Ne=3)  3(Ne=1) 2 —5(Ne=3)(Ne+3)  +5(Ne=3)  —5(N.+3)

[13] (except for the repair of typos in thE°A matrix ele-  IV—IX and solve for allc; to test this hypothesis. Essentially
ments in Table II). this procedure was carried out for the masses ofS6én
Ref. [10].
IV. RESULTS However, theReview of Particle PhysicE22] gives un-
ambiguous values for only 10 of the observables: magnetic
If data existed for all of the 27 observables associategnoments of 7 of the 8 octet baryonao is unknown, the
with the magnetic moment sector, one would proceed t@)~, and the3°A andA*p transition moments. The last of

form a Hamiltonian these is extracted from th&— N1y helicity amplitudesA;,
and Az, via the standard formula for the M1 amplitude:
H=—pu B, 4.1
. . Aot 3Az
where the operator®; of Table | enter with unknown di- Mp+p=—My——F——, (4.3
mensionless coefficients via 4mak
27 where k=260 MeV is the photon momentum, from which
one findsu,+,=3.51+0.09 wy . In addition, we use a re-
= ¢, 4.2 A*p N ,\
Mz ’“021 O (4.2 cent extractiof23] u,++=6.14+0.51 uy obtained from an

analysis of data that has some model dependence, but that
where u, is the sole scale in the problem, a mean value ofrespects both gauge invariance and the finite” width. We
magnetic moments in the multiplet, which one expects to béherefore include 11 observables in our analysis. There is
someO(1) multiple of the nuclear magnetqny. The 1N,  also a recent experimental determinatip®4] of w,+
expansion provides a reliable effective Hamiltonian if thezz.ii;g (stat)x 1.5 (systy-3 (theor) uy, but due to the
coefficientsc; are not larger tha@(1). Infact, a number of large theoretical uncertainty we do not use this value in our
them may be smaller tha®(1) because certain operators analysis.
may only contribute once SB) flavor symmetry is broken. With only 11 pieces of information to study a system of
They may also be smaller if dynamical effects are presen27 observables, one must resort to using the known quanti-
that suppress them below the level predicted by nailg 1/ ties to fit the coefficients at the lowest orders of th&l 1/
counting. With all 27 observables in hand, one would simplyexpansion, and to use the coefficients so obtained to predict
invert the 27X 27 matrix whose elements are given in Tablesthe remaining observables. One may then proceed either by
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TABLE IIl. Matrix elements of the operatord, J3, andJ3 in the state of maximal®.

State (I (I (33
A** +35(Ne+7) —25(Nc—3) 0
AT +25(Ne+17) — 35 (N.—13) 0
A° — 25(N.—13) + 25(Ne+17) 0
A~ —55(N—3) +35(Ng+7) 0
I +5(Ne+5) ~5(Nc—3) +3
3*0 +3 +3 +3
0 ~5(Nc=3) +5(Nc+5) +3
g*0 +15(Ng+3) —13(N;—3)
B*- —15(N.—3) +75(Ne+3)
Q- 0 0 +3
p +33(Ng+5) —13(Ng—1) 0
n —15(N.—1) +75(Ne+5) 0
3t +25(Ne+5) —1(N.—3) —5
30 +3 +3 -5
A 0 0 +1
30 — 5 V(Ne—1)(N;+3) +75V(N—1)(N.+3) 0
3 —15(N.—3) +45(Ng+5) -5
= —35(Nc+3) +35(N.—3) +5
B- +35(N;—3) —35(Ng+3) +3
1 1
A'p +ﬁ\/(NC—1)(NC+5) —ﬁ\/(Nc—l)(Nf%S) 0
1 1
An +——=V(N.—1)(N.+5) = ——=V(Nc—1)(N.+5) 0
62 62
1 1
S*0A + ——J(N.—1)(N.+3 ——J(N.—1)(N.+3 0
ch )(Ne+3) Gﬁ«c )(Ne+3)
1 1
2*020 + + — _\/_z
3\2 3.2 3
1 1 2
DIRED +——=(N.+5 — ——=(N.—3 -
12@ c+5) 12&( —3) 3
1 1 2
S*T3C ———=(N.—3 + ——=(N.+5 -—=
12&( «—3) 12&( ) 3
o 1 1 V2
:4’*0;:0 +;/§(Nc+3) —E(NC_:” —?
1 1 2
== — ——(N.— + ——=(N.+ -
9ﬁ< —3) 9ﬁ< c+3) 3

(i) separating the observables into isoscalar and isovector, as A. Analysis in the isoscalar, isovector, isotensor basis

well asl =2 and 3 isotensor, combinations, @r one may

employ the electromagnetic nature of magnetic moments to The analysis of Re{5] (JM) separates operators, and the
construct only operators with a flavor dependence in proporcorresponding combinations of magnetic moments, into

tion to the quark charggshe “single-photon ansat2’ Since =0 andl =1 forms. Since the maximal isospin appearing in
both methods have been employed in the literature, we dighe56is 3 (for theA), isotensor combinations with=2 and
cuss them each in turn. | =3 are also present:
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TABLE IV. Matrix elements of the 1-, 2-, and 3-body operators corresponding to magnetic moments.

State (3%) (G%) (G (T32%) (NJ®) (T3G%) (T3G%)
V3 3\3
AT 2 2(N+2) > & 0 a0(Ne+2) 5
3 3
At 2 20(Ne+2) % i 0 a0(Ne+2) 2—_
V3 V3
A ~20(Ne+2) 2 3 0 a(Net2) -5
A~ 3 —56(Ne+2) ? -3 0 76(Ne+2) ——3f
3 3 §(Ne+1) 0 3 5 §(Ne+1) 0
30 3 0 0 0 3 0 0
=3 —a(Net 1) o -3 3 s(Nc+1) 0
=*0 3 LN ,E 2 3 =N fﬁ
2 12'V¢c 4 4 24'Nc 3
Al 3 — LN \/§ _3 3 AN \/§
ol 2 12'Nc - A 4 24'Nc -
4 8
Q- 3 0 _E 0 o 0 0
2
1 1
1 1 1 1
p 3 L(N+2) - 1 0 L (Ng+2) —
2 12 c 4\/§ 4 24 c 8\/§
1 1
1 1 1 1
n i —L(N.+2) - -1 0 L (Ng+2) -
2 12 c 4\/§ 4 24 c 8\/§
1 1
o 1 1 N.+1 1 1 1 N.+1
2 12( c ) 2\/§ 2 2 12( c ) _2\/§
1
30 1 0 — 0 1 0 0
2 2\/§ 2
1
A 1 0 _ 0 1 0 0
2 2\/§ 2
30A 0 —EJN—1)(N;+3) O 0 0 0 0
1 1
5T 3 —15(Ng+1) — -3 3 (Ne+1) -
2 12 c 2\/§ 2 2 2 c 2\/5
=0 1 1 N _ E 1 1 _ 1 N _ E
— 2 36'Yc 4 4 72'Nc 8
= 1 LN ,E _1 1 —£N \/§
- 2 36'Vc 4 4 72'Nc ?
1 1
Atp 0 —(N.—1)(N.+5 0 0 0 ——V(N¢g—1)(N.+5 0
6\/5 ( c )( c ) 12\/5 ( c )( c )
1 1
An 0 ——J(N~1)(Ng+5) O 0 0 — ——/(N;—1)(N.+5) 0
AL 273\ (Nem DN
1
S*O0A 0 —J(N.—1)(N_+3) 0 0 0 0 0
62 (Ne—1)(N
$¥050 0 0 % 0 0 0 0
1 1 1 1
DAAD T 0 — _(N.+1 _ 0 0 — (N.41 —
1 1 1
S*FT3C 0 ——(Ng+1) _ 0 0 — (N.41 _
1 1 1
Z*050 0 1N — 0 0 _~ N il
92 ° V6 182 ° 2\6
E*E- 0 _ 1N 1 0 0 LY 1
92 ¢ V6 182 ° 2\6
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TABLE V. First continuation of Table IV.

State (NG (NG (3238 (N2J%) ((T%)23%)
AT 0 0 45 0 z
A+ 0 0 4 0 g
A° 0 0 4 0 3
A~ 0 0 45 0 z
S** 3(Nc+1) 0 g 3 3
$*0 0 0 45 3 0
o —5(Ne+1) 0 ¥ 2 2
—=%0 1 \/§ 45 6 3
= ENC _7 ?
= _1yn V3 45 6 3
-~ 6'Nc _7 8 8
0" 0 E = z 0
2
p 0 0 5 0 8
0 0 3 0 1
s L(N+1) . 2 : L
2\3
1
30 0 _ 3 1 0
2\/§ 8 2
1
A 0 57 : ! 0
30A — 5 VN~ 1)(N+3) 0 0 0 0
s BN+ 1) - : : 3
23
=0 _ AN V3 3 2 1
- 18'Nc _7 8 8
= LN \/§ 3 2 1
- 18'Nc _7 8 8
Ap 0 0 0 0 0
A%n 0 0 0 0
S*0A i\/(NC—l)(NC+3) 0 0 0 0
62
3030 0 i 0 0 0
J6
1 1
Sy ——(Ng+1 — 0 0 0
1 1
S*TET — ——(N¢+1 — 0 0 0
12\/5( ct1) 7
O V2
=#*050 ?Nc \/g 0 0 0
. V2
E*E — 5 Ne \/g 0 0 0
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TABLE VI. Second continuation of Table IV.

State (T°NF) (%.6%%)) 3(19°.6%%) (19%6%)
153
ATt 0 16(Ne+2) = 2L(N+2)
15y3
. 0 f5(No+2) l—i_ 85(N+2)
153
A 0 —35(Ne+2) 5 —ao(Ne+2)
_ 15\3
A 0 —165(Ne+2) 5 —E6(Ne+2)
3 3 3(Ne+1) 0 §(Ne+1)
3*0 0 0 0 0
3*T -3 ~35(Ne+1) 0 ~3(Ne+1)
2 N 1o AN,
16
o 3 AN 153 N
= 2 16'Nc _W 28N¢
Q- 0 0 153 0
8
p 0 16(Ne+2) g 75(Ne+2)
V3
n 0 ~16(Ne+2) % —as(Ne+2)
V3
3 2 16(Nc+1) 5 12(Ne+1)
3,0 0 0 ‘/_§ 0
8
A 0 0 _‘/?5 0
SOA 0 — & J(Ne—1)(N+3) JO‘ 0
- 3
b -3 —16(Ne+1) 5 —12(Ne+1)
=0 1 N 3\3 _aiyN
[and 2 48'Nc _ﬁ 144"Nc
= . ! 3.3 )
= 2 asNe T iaNe
3 1
A'p 0 ——(N.—1)(N.+5 0 ——(Nc—1)(N+5)
sﬁ(C (Nc+5) 24ﬁ(c><c
3 1
An 0 ——(Ne—1)(N.+5 0 ——J(N,—1)(N+5
8ﬁu)(c) 24ﬁ(c>(c)
3
3*OA 0 —_J(N.—1)(N.+3 0 0
5 (Ne—1)(Ne+3)
0% 0
S*03 0 0 ENE] 0
3 1
DAche e 0 —_(Ne+1 NE —(N+1
16\/5( c ) 4\/: 12\/5( c )
3 1
DI 0 — — (N.+1 3./3 ——— _(N.#+1
16\/5( c ) 4\/; 12\/5( c )
1 1
E*0g0 0 N 3. [3 N
42 ¢ i 36y2 ©
1 1 N
EYET 0 —mNc %\/g 362 °

016008-9



R. F. LEBED AND D. R. MARTIN

PHYSICAL REVIEW D70, 016008 (2004

TABLE VII. Third continuation of Table IV.

State (T%%G%) (N3G%) (NZG™) (T°NG®)
At 9V3 0 0 0
16
3
A* f 0 0 0
16
3
A° f 0 0 0
A™ ﬁ 0 0 0
16
%:; 8 %(NBH) % %(NCO+1)
3*- 0[ —§(Ng+1) 0 §(Nc+1)
_ 3
g*0 16 %Nc 7\/5 112N°
- V3
= _E _%Nc -3 %NC
- 0 _9\3 0
2
1
P - 0 0 0
16\3
n ! 0 0 0
1643
+ 1 1
3 m 12(Nc+1) m i3(Nc+1)
1
30 0 0 — 0
23
1
A 0 0 _ 0
243
SOA 0 — & J(N—1)(N.+3 0 0
- 1 1
3 " —13(Ne+1) °f (N +1)
=1 \/§ 1 1
=0 - — —5N¢ _\/§ —36Ne
16
o V3
= _1_6 %N —\/§ _31_6Nc
A'p 0 0 0 0
A°n 0 0 0 0
1
S*O0A 0 @ (No—1)(N+3) 0 0
1
2*020 0 0 — 0
J6
1 1 1 1
LR — ——(N¢+1 — ——(Ng+1
1 1 1
DI — Ng+1) — ——(Ns+1)
V6 12( ( V6 12J§( ¢
=% 0=0 1 2\/—N 2\/E 1 N
4\6 9 ¢ V3 92 °
g 1 22 2\2 LN
=1 —_ 4\/6 9 c \/§ 9\/5
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TABLE VIII. Fourth continuation of Table IV.

State (TN,G*) ((I'G"¥) 3 ((J'G'®)3%) 3({J'G'8,G%%)
15,3 33
AT 0 Z(NA+2) 5 E(Nc—i-Z)
15y3 V3
A* 0 15(Ne+2) T 35 (Net+2)
15y3 NE]
A° 0 — 5(N+2 = -
16( [ ) 16 32(Nc+2)
_ 153 343
A 0 —2(Ng+2) T _§(N°+Z)
Sx+ 0 B(N+1) 0 0
3%0 0 0 0 0
3 0 —35(Ne+1) 0 0
0 RE %N 153 LI
— 4 16'Vc 16 32\/§ C
3 sy 155 5
- 4 16'Vc 16 32\/§ c
a- 0 0 _158_ﬁ 0
J3 1
P 0 16(Nc+2) & 23 Nt
3 1
0 _ 1 + \/_— -
n 16(Nc 2) 16 32\/§(Nc+2)
1 J3 1
i 1
J— = + = R
Y 2\/§ 16(Nc+1) 8 16\/§(Nc+1)
3,0 0 0 %5 0
A 0 0 _%g 0
SOA 0 — = J(Ne—1)(N+3) 0 0
_ 1 NE) 1
P NG ~16(Nc+1) r —@(Nﬁl)
=0 V3 _ 1N _3\3 Y
- 4 48'Nc 16 32\/5 c
== @ =N 3\3 N N
=2 ) a8iie 16 323 °
A*p 0 0 3N~ D(N,+5)
0
A 0 0 0 AN D(N.F5)
1
S*0A 0 0 0 — ——V(N;—21)(N;+3
1676 (Ne—1)(Ng+3)
3 #0530 0 0 0 0
1 1
S*F3t — 0 0 ——(N+1
1 1
SH-S - = 0 0 — —(N.+1
& 32£( ct1)
E*OEO i 0 0 o 1 Nc
V6 616
1
1 —N
E*E" - 0 0 ¢
G 6
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TABLE IX. Fifth continuation of Table IV.

State 3({J'G'8,G%%) 3({I'G"%,G*}) 3({3'G'3,G%%)
33
AT & 1o+ 2)° 55 (Net2)
V3
AT i 165(Nc+2)? 55 (Net2)
3
A° T 166(Nc+2)? 73—\/;(Nc+2)
) 3V3
A 3 1e5(Ne+2)2 - 55 (Ne+2)
st 0 25(N+1)° 0
2*0 0 0 0
S*- 0 25(N.+1)2 0
5
=%0 15 2 N2
=1 288 - ——=N
32 c 32\/§ c
5
— — 15 LNZ
(= 288 ——=N
32 c 32\/5 c
O~ % 0 0
p > 35(Nc+2)2 L(N +2)
32 96 C 32\/§ [o}
1
n 3 a5(N+2)2 —m(NchZ)
1
3F 8 a5 (N+1)2 @(Nﬁl)
30 % $<N0—1>(Nc+3> 0
A 8 ﬁ(chl)(Nc+3) 0
3O0A 0 0 0
1
i 3 35(Ne+1)? — ——=(N¢+1
8 96 c 16\/5( c )
1
—0 9 LNZ
=1 864 N
32 ‘ 32)3 °
1
— 9 1 2
= 35 s6aN - N
32 4"%¢ 32\/5 c
1
Atp 0 ——(Ng+2)V(Ne—1)(N.+5 0
48\/5( ¢T2)V(Nc=1)(Nc+5)
1
A 0 — ——(N.4+2)V(N.—1)(N.+5 0
48\/5( ¢t 2)V(Nc—1)(Nc+5)
1
S*O0A 0 0 — ——J(N.—1)(N.+3
16\/5( ¢~ 1 (N+3)
1
2*020 0 0
82
1 7 7
DR — ——(Ng+1)2 ——(N+1
82 384\/5( ot ) 32 6( ot
1 7 7
¥ — ——— (N +1)? — ——(N.+1
82 384ﬁ(c ) 32Jg(c )
E*050 b o N2 1 N,
22 1082 126
1
1 1 EE—
A= - ——N? ¢
25 108 ¢ 126
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1=2: (py+=2psotps-), (ma+t+—pma+= a0 1
Q=T=T3+ —T8,
tpa-), (Msse+—2pusxot psx-), NE]

) ) 1
(Hatp=paon), (Byx+x+—2psrog0t prysx-x-), G?=G"+ EG'B- (4.6)
1=3:  (pa++—3pas+3ma0— pas). (4.4) Implicit in this definition of the quark charge matr@@ is

that the quarks assume their ustdl=3 valuesq,= + 3,
gq=Qs=—3. In terms of SW3) flavor hyperchargesyY,

1 2

The JM analysis introduces a leading-order operxtdy ~ =Yq=3, Ys=—3. An alternate choice,q,=(Nc+1)/
which is equivalent to thed(N?) part of G'/N,, and a (2Ng),  0dg=0s=(—Nc+1)/(2No)  (Yy=Y¢=1/N¢, Y
strange quark spin operator =—1+1/N.), has the convenient property that all hadrons

then have the same electric charges and hypercharges for
arbitrary N; as they do forN.=3. Moreover, with this
1o 8 choice the chiral anomalies of the standard mdgeth N,

Js= §(J ~2y3G"). (4.5 colors automatically cancel. However, one is also faced with
the mysterious prospect of electromagnetic charges depen-
dent upon the numbeN. of QCD charges. More signifi-

The JM operator basis then consists of the 6 operdgxé®  cantly, the quantization condition of the Wess-Zumino term
and NX'° (1=1), andJ', J., NJ/Ng, and NgJY/N, (I permits only baryon S(3) representations containing states
=0). Since no combinations of these operators Havé or  With hyperchargeY =N./3 [25]; if such states hav®(N?)
3, the combinations in Eq$4.4) exactly vanish, giving rela- strange quarks, then thé&l.-dependent choice Y(,=Yq

tions 11-16 (JM Table 2. =1/N,) is disallowed. For the remainder of this paper, we
In comparison with our Table I, the choice of JM opera-assume the usudN -independent quark charges.
tors reflects the inclusion of alR) with =1 atO(N}:) and The only operators occurring in the single-photon ansatz

O(N?), and all(4) with 1=0 atO(N?) andO(N_'). Since  With no other SU3) breaking(cf. Table ) are
there are(as one may readily counilO =0 and 111=1
magnetic moment combinations in tB6, it follows that JM 1 11

predict 6 isoscalar relatio(dM Table 3 S1-Sgthat receive 0,=G, OZZN_CQ‘JE’ O3=ﬁ E{‘JZ’G3Q}’

only O(Ngz) corrections, and 9 isovector relatiori§M ¢

Table 3 V1-V7, V8, and V9,) that receive onI}O(Nc’l) 1

corrections. As expected, we confirm these predictions in our O4=FJ‘G‘QJ3. 4.7
basis. c

The JM analysis makes no use of the electromagnetic be- ) o
havior of magnetic moments, nor of perturbative(S\Ula- ForNany value ofN, it turns out that the combinatio®;
vor breaking; its analysis can be said to hold in the presence (O;— O,4) vanishes for all diagonal moments and survives
of arbitrarily large SW3) breaking. Thus, operators are orga- only for transitions. Since the only transition moment mea-
nized solely by the N, power suppression of their matrix sured at present |8, +,,, usingQs rather tharO; provides a
elements. Since 17 operators occur up to and includingnore incisive test of the expansion when fitting to current
O(Ngl) while only 11 moment parameters have been meaeata.
sured, it is not yet possible to improve upon the numerical In addition, one may perturbatively break &YJsymme-
analysis of JM using their same scheme. One must therefortey by including effects due to a finite strange quark mass or
impose a physically natural flavor structure on the magnetigpin. We incorporate such effects by including a parameter
moment operators, a topic to which we next turn. that indicates each instance of breaking of the(3ym-
metry. At first blush, one may suppose that it is proportional
tomg, e=0.3=1/N., but as we see below such a rigid iden-
B. Analysis using the single-photon ansatz tification is not necessary. The list of additional operators
Like all electromagnetic multipole moments, magneticwith matrix elements up t®('N2) reads
moments are defined through a particular coupling of a bi-
linear to an on-shell photon. The lowest-order flavor struc-
ture of the coupling to the photon should therefore be such
that each quark couples proportionally to its electric charge.
In particular, in the limit in which all other sources of @)  These forms are obtained by the simple expedient of insert-
breaking are suppressed, only operators with one unsummaitlg sources of S(B) breaking along the strangeness direc-
flavor indexa may appear, and then only in the linear com-tion into the operators of Eq4.7), and retaining only those
bination (@=3)+(a=8)/\/3=(a=Q). Specifically, these With matrix elements up t®(£NQ). The possible substitu-
are the forms tions are J'—eJ,, Q/N.—eqsNg/N., G'°—eqily, or

& to
e0s=2qeJ3, 306=N—NSG3Q, 807=N—QJ§. (4.9
C C
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TABLE X. Best fit values for the coefficients in the expansion Egl12.

d;=+0.987-0.038 d,=+0.076£0.092 d;=+1.385:0.258 ds=+0.059:0.255
ds=—0.348-0.114 de=—0.140£0.108 d,=+0.126-0.108

multiplication of an operator byNg/N.; each of the last takese=N_*?orN_?, the expansion truncates consistently

three of these replacements also costs a powerN§.1ih  after the 7 operators in Eq&.7),(4.8) or after the 12 opera-

terms of this basis, the analysis of R] (LMRW) uses the  tors including Eqs(4.10. Powers ofs may simply be left in

operatorsQ; [LMRW Eg. (17)], O, [LMRW Egq. (21)], the the coefficients, in which case the size of(SUbreaking for

combination each operator may be judged directly from a fit to data.

Unfortunately, with only 11 measured magnetic moment

parameters, only a fit to the first 7 operators is possible at

, (4.9 present. We therefore perform a least-squares fit to the coef-
ficients in the expansion

3
14—

N 05~ st 07

-

from chiral loop diagramfLMRW Eg. (25)], and the opera-
tors m¢Og, msOg, MO from counterterms to the loop cal-
culation [LMRW Eq. (29)], 5 independent operators in all. Hz= I“Oizl di0;. (4.12
Note the characteristic nonanalytit, behavior in Eq(4.9),
which suggests that the appropriate(Sllexpansion param- e choose the scalg, by reasoning that the best known
eter ¢ might properly scale as=N ¥ rather than=N;*;  value among the moments is,, and that there is only one
we address this issue below. operator,0;, at leading order M%), whose value for the
At the next orderO(s'N; %), one finds the 6 operators proton is (N, +3)/12=1/2 for N.=3. Therefore, a natural
choice that makes the sole leading-order coefficigntof
N, N, e 1 order unity is to sejug=2u, [in alternate choices one may
sogzsqu—J3, £0g=£—Q%P, £010=—; E{J-JS,G3Q}, average over several measured magnetic moments, but this
c Ne Ne merely renormalizes altl; by the sameO(1) multiple].
Since the expansion is truncated by ignoring effects of
e e 1 O(slNc‘l), one must include in addition to the statistical
e0=—JGIQ3, eO01=—; —{JGIQ,J3. (410 uncertainty of each magnetic moment a “theoretical uncer-
Nc Ng 2 tainty” of order uoe/N. . In fact, they?/ DOF obtained from
) ] ] a theoretical uncertainty qip/Nﬁzo.B un, for example, is
Beyond this CO'LelCt'O”' the ne>ft2 operators have matrix elegnly apout 0.13, suggesting that the naive theoretical uncer-
ments ofO(sN; ) andO(e*N, ?), but significantly there tajnty is a gross overestimate. We find empirically that
are none ofO(s?Ng) or O(e°N;?). As a consequence, choosing it to have a value aboptt,/N3=0.1 uy gives a
whether one takes the $8)-breaking parameter=N;"?or  ,2/pOF=1.05, meaning that the fit is as good as one might
:Ngl, the series expansion truncates consistently after theope foreven if all qglNgl) effects are suppressed, and

7

inclusion of either the se®y, ...,e0; (complete to com- yncertainties are effectively only (@°N_ ). This result far
bined orders e'Ny and °N;') or the larger set supersedes that expected from a naive, Expansion.
Oy, ... 0, [complete toO(N; H]. The fit values for the coefficients are given in Table X.
In this notation, the operators used in Ref] (DDIJM)  One immediately notes that no coefficients are larger than
consist offDDJM Eg. (2.9)] O(1); had any othem been so, one would conclude that the
1/N. expansion fails. But in factd,; andd; are of O(1),
04,0,,05,605,604,607,£Og, (4.11) while d, andd, are actually consistent with zero. The QU

breaking coefficientsls s, do indeed have central values

and the operatoézquSngNc with a coefficient fixed rela- about 1/3 or |ESS, but On|§ﬁ5 is S_tatiStica"y diﬁ.erent from
tive to those ofO and O,, 7 independent operators in all, Z&ro. Such a pattern of suppression beyond naiMg déunt--
but a somewhat different set thay, ... ,£O,. Note that INg has in fact been seen before, in the orbitally excited
DDJM does not assign particular powers gf DDIM also baryons[15—17. Moreover, a hint of this e_ffect is visible in
recognizes the presence @(mé&) loop corrections, so that the results of DDJM Table Malthough their operator basis,

tat t dina th inceostill V. and especially their treatment of 8) breaking, is rather
stalements regarding the meaningeostil apply differenf.. We do not understand the source of this suppres-

sion beyond that expected fromNl/ counting, and find it to
be the most intriguing feature of our analysis.

As we have seen, assigning a particular numerical value One may also use the fit values fyrto predict all of the
to the SU3)-breaking parameter can be problematic, ow- remaining 16 magnetic moments to within the theoretical
ing to the existence of contributions nonanalytianig. For-  uncertainty; the results are presented in Table XI. Note that
tunately, we have also seen that regardless of whether orike recentu,+ measurement easily agrees with our predic-

C. A global fit

016008-14



COMPLETE ANALYSIS OF BARYON MAGNETLC.. ..

PHYSICAL REVIEW D 70, 016008 (2004

TABLE XI. Best fit values for the 16 unknown magnetic moments in unitgQf

pa+=+3.04-0.13
pss0=+0.32-0.11
pso=+0.77+0.10
pswess=+2.97+0.11

a0=+0.00=0.10
wss-=—2.70+0.13
waon=+3.51+0.11

pss-s-=—0.19+0.11

ws-=—3.04-0.13
zvo=+0.64+0.11
oy = +2.93+0.11
pzxoz0=+2.96-0.12

pss+=+3.35+0.13
pms-=—2.36+0.14

pswoso=+1.39£0.11

~0.19+0.11

x5 =

tion. An important point that may not be obvious from this £2N_?. A better measurement gfixo,, certainly within

compilation is that, with only 7 operators included, therecurrent experimental means, would decisively test the expan-
remain 20 relations among the magnetic moments. Amongion at this order.

these are vanishing of tHe=2 and 3 combinations in Eq.

(4.4): The leading-order operators in E@.7) contain only
=0 and 1 pieces, while inserting $8) breaking along the
strangeness direction induces orly0 corrections. The
combinations in Eqs(4.4) receive contributions only from
tiny isospin-breaking effects due to eithen(—my) or loop
diagrams containing an additional photp@(«/4)]. Fur-
thermore,u y0 vanishes for all 7 operators whéh,= 3, and
receives contributions only from $B) breaking not solely
in the strangeness directigainceA° contains ncs quarks,
which induces an additionah, 4/mg suppression factor. A

It follows that a measurement of at least two moments
with nonzero strangeness is required to perform a fit to the
12 operators aD(s*N_ 1), and to determine whether the
effects at this order are truly suppressed, as REDOF
suggests. Th&* A, 3*3, andE* E transitions are natural
candidates, since the associated radiative decays are presum-
ably being recordedalthough not yet studigdat Jefferson
Lab, as well as other facilities. To date, the decay®
— A v has been seen in precisely one eV@; the oppor-
tunity to improve on this meager set clearly exists.

Finally, we note in passing that once the unmeasured mo-

similar statement holds for all nonstrange observables: Nongents are included, a number of relations with only

of them receive a contribution from any operators beyoncb(SZNgl) corrections, in addition to Eq$4.4), (4.13, and

Oy, ...,04 indeed, the famous SB) relation w,  4,0=0, remain(7, to be precise A particularly elegant ex-
= —2up/3 for N;=3 receives a contribution only from the ample isuss v =pzs-=-.

anomalously suppressed operafdy.

Predictions of the diagonal moments appearing in LMRW
Table | agree well with the results of Table XI, but ours have
smaller uncertainties due to the larger number of operators
and the treatment of subleading effects as described above. We have developed a basis of operators representing ev-

Since the next order of the expansion contains 12 operselY possible observable pattern of magnetic moments for the
tors while 11 observables are well known, it is tempting toground-state spin-1/2 and spin-3/2 baryon multiplets, and or-
suppose that just one more moment measured—say, an irfianized them according to the counting ol factors. We
provement onu , +—will permit such a fit. However, thé have furthermore computed the group-theoretical parts of all
=3 and|=2 relations among thé’s combined with the ©f these operators, thus producing a complete effective
result u,0=0, as satisfied by all operators in our I[gnd Hamiltonian fqr magnetic moments. Our analysis Of.thIS op-
any others breaking S8) solely in the strangeness direc- €rator expansion examined the_ consequences bqth in the case
tion], predict that theA magnetic moments are exactly pro- Of arbitrarily large SW3) breaking and perturbative $8)
portional to electric charge forlN.=3: u,++=2u,+ Dreaking(in powers of a parameter) beyond that produced
=—24u,-. Moreover, there is precisely one relation satisfiegPy coupling quarks to photons in proportion to their electric

by the first 12 operators among the measured moments: charges. In both cases we have compared to previous results
and showed how this work extends earlier analyses.

In particular, we have found in the case of nonperturbative
SU(3) breaking that the measurement of several additional
magnetic moments is necessary to improve numerically upon
previous analysidi.e., from relative ordemM;? to N_3].
However, in the more physically meaningful case of pertur-
bative SU3) breaking, the series may be truncated consis-
which has a numerical value of 0.2D.14 u, the uncer- tently after 7 operatorgincluding up to orderselNS and
tainty being completely dominated by that @fo, . In fact, SONc—l) or after 12 operatorfup to o(glNc—l)]_ Since 11
Eq. (4.13 was originally derived in heavy baryon chiral per- observables are currently well measured, we presented re-
turbation theory[26], where it was found to have no sults of a fit to 7 operators, and found not only that several of
o(m¥?), O(my), or O(mgnmy corrections—i.e., n@(e)  the effective Hamiltonian coefficients are smaller than ex-
corrections in the current formalism. Converting E4.13  pected, but also that a good fit can be obtained if the terms
into a scale-invariant result by dividing by the average of theneglected are actually M/ smaller than naively expected.
same expression with all negative values turned to positive A number of relations among the magnetic moments sur-
ones [giving an O(Ni) combinatior], one obtains 0.057 vive the expansion to 12 operators. After enumerating a
+0.036, in good agreement with expected magnitudenumber of thenje.g., Eq.(4.13], we suggested that the most

V. CONCLUSIONS

1 3 -
Mn— Z(,U«z++,U~E*)_ oHAT \/§M20A+MEOZO(82NC ol
(4.13
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