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Covariant derivative expansion of fermionic effective action at high temperatures
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We derive the contribution of massless fermions to the 1-loop effective action for staticA4 andAi fields at
high temperatures, for theSU(2) gauge group assuming that gluon fields are slowly varying but allowing for
an arbitrary amplitude ofA4.
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I. INTRODUCTION

Quantum chromodynamics~QCD! at nonzero temperatur
is an intensely studied field. At very high temperatures
coupling constant is small and perturbation theory can
developed. However, due to the chromomagnetic secto
the theory, perturbation theory explodes already at a f
loop level@1–3# and is hence only applicable at academica
high temperatures@4#. The region of intermediate tempera
tures is of much bigger interest. Both the restoration of ch
symmetry and the deconfinement are believed to take p
in this region. In the presence of fermions it is still unclear
there is a confinement-deconfinement phase transition or
a smooth crossover between the two phases. In any
QCD is in the deconfined plasma phase at very high te
peratures.

At finite temperature gluons obey periodic and fermio
obey anti-periodic boundary conditions in imaginary tim
This property leads to the quantized Matsubara frequenc
They are even multiples ofpT for gluons, i.e.vk52kpT,
and odd multiples ofpT for quarks, i.e.vk5(2k11)pT.
So while gluons have a zero mode this is not the case
quarks. This fact has direct and important influence on the
behavior of the two contributions to the effective action.

At the tree level very heavy modes decouple from
theory at high temperatures. This is called dimensional
duction @5# since the heavy modes are simultaneously
time-dependent ones. Neglecting all modes except the
Matsubara frequencies leaves a 3D static theory

2
1

4g2
Fmn

2 1c f
†i¹” c f→2

1

4g2T
@Fi j

2 12~Di
abA4

b!2#, ~1!

which only contains the static gluonic modes with the co
pling constantg3

25g2T. Since the energy can never vani
for fermions they decouple completely.

The long-range forces mediated by the static gluons l
to the IR divergencies, because in strict perturbation the
they are massless. Fermions do not cause any IR probl
since they do not have zero modes even if they are mass
which is the case we consider here. Nevertheless, ferm
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change the effective action in a drastic way as compare
the pure glue case, since their presence changes the sym
try of the action with respect to the center-of-group gau
transformations.

The tree-level action~1! has certainly insufficient accu
racy to study field fluctuations at high but not infinitely hig
temperatures. Once one includes quantum corrections
the fermions and all the nonzero Matsubara modes of
gluons show up in the loops.

Effective theories resulting from quantum corrections
different energy scales,T, gT andg2T have been constructe
in @6,7#. The parameters in the effective theories are obtai
by matching the correlation functions between the effect
and the actual theory as functions of the parameters of
original theory. The question of color-conductivity and tran
port properties of the plasma has been addressed in@8#. A
heat kernel approach for Yang-Mills theories has been u
in @9#, a constraint effective potential for the Polyakov loo
has been studied in@10# and spatial variations of the Polya
kov loop have been investigated in@11#.

In the pure Yang-Mills theory the center symmetry plays
crucial part in the description of the confinemen
deconfinement phase transition@1,12–14#. The latter is usu-
ally characterized by an order parameter which is the aver
of the trace of the so-called Polyakov line:

P~x!5P expS i E
0

1/T

dx4A4D .

The order parameter̂Tr P& is zero in the confined phas
below the critical temperature and assumes a nonzero v
in the deconfined phase above the critical temperature.
Polyakov line is not invariant under gauge transformatio
belonging to the gauge group center. One hence conclu
that if ^Tr P&50 then theZ(Nc) symmetry is manifest. This
situation describes confinement. If for any reason^Tr P&
Þ0 then the symmetry must have been broken. This co
sponds to the deconfined phase.

The 1-loop@3,15,16# and 2-loop@17# potential energies as
functions ofA4 are known. They are periodic functions o
the eigenvalues ofA4 in the adjoint representation with pe
riod 2pT. This reflects the symmetry of theZ(Nc) vacua.
The curvature of the potential at its minima gives the lead
order Debye mass for ‘‘electric’’ gluons. The zero ener
minima of the potential correspond to quantized values ofA4
or center group values for the Polyakov line, where TrP
©2004 The American Physical Society06-1
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Þ0. At high temperatures the system oscillates around
of these minima. At lower temperatures, however, the fl
tuations around the minimum increase and eventually
system undergoes a phase transition to^Tr P&50. At the
same time, one expects that near the phase transition p
the fluctuations are long-range. To study those fluctuatio
one needs an effective low-momenta theory which, howe
does not assume that theA4 component is small.

Let us formulate the problem more mathematically. No
zero temperatures explicitly break the 4D Euclidean symm
try of the theory down to the 3D Euclidean symmetry, so t
the spatialAi and timeA4 components of the Yang-Mills
field play different roles and should be treated differen
One can always choose a gauge whereA4 is time-
independent. TakingA4(x) to be static is not a restriction o
any kind on the fields but merely a convenient gauge cho
and we shall imply this gauge throughout the paper.@It is
also a possible gauge choice atT50 but in that limiting case
it is unnatural as one usually wishes to preserve the 4D s
metry.# As to the spatial componentsAi(x,t), they are, gen-
erally speaking, time-dependent, although periodic in
time direction. Putting the componentsAi to zero is a gauge
noninvariant restriction on the fields since any tim
independent gauge transformation will generate a nonz
Ai . Therefore, the spatial derivatives of the Polyakov line
the gauge-invariant effective action can only appear as co
riant derivatives including a nonzeroAi field.

In @18# we calculated the 1-loop kinetic energy for th
eigenvalues of the Polyakov line, integrating over gluon a
ghost fluctuations. See also@19# for a summary. In this work
we are interested in obtaining the effect of quarks on t
kinetic energy as well. We use a background field method
the gluons and evaluate the 1-loop action through a fu
tional determinant formalism. In particular we assume
background fields to vary slowly but theA4 component is
allowed to have an arbitrary amplitude. We integrate out f
varying quantum fluctuations about them by making an
pansion in spatial covariant derivatives. This method w
originally developed in@20# for zero temperature QCD.

This corresponds to summing up all powers ofA4 but
where their momenta are restricted top,T reflecting the
long-range behavior of the plasma phase. As we said,
choose a static gauge forA4(x). This gauge choice does no
preventAi(x) from being time dependent. SinceAi(x4 ,x) is
periodic in time, its time derivative is given by the Matsu
ara frequenciesvk52pkT beingO(T) for any kÞ0. Since
we are interested in low momenta fluctuations,p,T, it is
consistent to restrict oneself to the zero Matsubara freque
of the background field, i.e. to the staticAi(x).

We expect that our results are suitable to study the co
lation functions of the Polyakov line not too far from th
transition point where it experiences fluctuations that
large in amplitude but presumably mainly long ranged. T
results may be of some help for studying quantum weight
semiclassical objects, such as dyons@21,22# or calorons@23#.

The effective action contains a contribution from the g
ons and from the fermions. The former part, namely the p
Yang-Mills effective action, was obtained by the authors
@18#. Although, as discussed above, there is no center s
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metry for the fermions, it is still instructive to see their effe
on the effective action for the Polyakov line. In particular w
work with the gauge group SU~2!. We consider a genera
electric field but restrict ourselves to a magnetic field para
to A4 , Bi

i . The expected result for the effective action, whi
is the sum of the tree-level and 1-loop actions, is hence:

@Seff
F # (2)5E d3x

T F2T3VF~A4
2!1Ei

2F1
(F)~A4

2!

1
~EiA4!2

A4
2

F2
(F)~A4

2!1~Bi
i!2H1

(F)~A4
2!1 . . . G ,

~2!

with the electric and magnetic fields

Ei
a5Di

abA4
b2Ȧi

a5] iA4
a1eacbAi

cA4
b2Ȧi

a , ~3!

Bi
a5

1

2
e i jk~] jAk

a2]kAj
a1eabcAj

bAk
c!. ~4!

The first term is the potential energy and the remaining te
are the kinetic energy contributions in the color-electric a
color-magnetic sector. The objective of this paper is to fi
these functions.

II. THE QCD ACTION AT FINITE TEMPERATURE

The basics about Yang-Mills theory at finite temperatu
were discussed in@18#. The ~Yang-Mills! action of gluons at
finite temperature is given by

SYM5E
0

b

dx4E d3xF2
1

4g2~M !
Fmn

a Fmn
a G , b5

1

T
,

~5!

where the gluon fields obey periodic boundary conditions
the temporal direction, i.e.

Am~0,x!5Am~b,x!. ~6!

Because of the compactified time direction there is a gro
of special gauge transformations which transform the glu
fields in the usual way as

Am→UAmU211 iU ]mU21 ~7!

and which preserve the periodicity condition~6!, but which
are not periodic themselves:

U~0,x!5zkU~b,x!. ~8!

Herezk is an element of the center groupZ(Nc):

zk5e2p ik/Nc kP$0,Nc21%. ~9!

The Yang-Mills action is invariant under this gauge transf
mation, but the Polyakov line is not. It transforms as
6-2
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P~x!5P expS i E
0

1/T

dx4A4D→zk
21P~x!. ~10!

From this property one sees immediately that theZ(Nc)
symmetry implies^Tr P&50 while it must be~spontane-
ously! broken if ^Tr P&Þ0.

IncludingNf quarks with massmf the full QCD action at
finite temperature becomes

S5E
0

b

dx4E d3xF2
1

4g2~M !
Fmn

a Fmn
a

1(
f 51

Nf

c f
†~ i¹” 1 imf !c f G , ~11!

where the Dirac operator is given by

i¹” 5 i ]”1TaAm
a gm. ~12!

Here theTa are the generators ofSU(N) in their fundamen-
tal representation, they are half the Pauli matrices for SU~2!.
The fermions in Eq.~11! obey anti-periodic boundary cond
tions

c f~0,x!52c f~b,x!. ~13!

This property is, however, not preserved by theZ(Nc) gauge
transformation~8!. Specifically the fermions transform as

c f
U~b,x!5U~b,x!c f~b,x!,

c f
U~0,x!5U~0,x!c f~0,x!

5zkU~b,x!c f~0,x!

52zkU~b,x!c f~b,x!

52zkc f
U~b,x!. ~14!

Hence in the presence of fermions theZ(Nc) symmetry gets
explicitly broken and the Polyakov line ceases to serve a
exact order parameter for the theory, since^Tr P&Þ0 for all
temperatures. Nevertheless, even in the presence of mas
fermions the Polyakov line might provide useful informatio
near the critical temperature@24#.

III. ONE LOOP QUANTUM ACTION

The partition function of QCD in its Euclidean invarian
form is given by

Z~A,c f ,c f
†!5E DADc f Dc f

†

3expE d4xF2
1

4g2~M !
Fmn

a Fmn
a

1(
f 51

Nf

c f
†~ i¹” 1 imf !c f G . ~15!
01600
n

less

We use the background field method for the gluon fiel
where we decompose them into background fields and qu
tum fluctuations around them which we assume to be sm

Am5Ām1am . ~16!

In this work we are interested in a 1-loop effective theory
the backgroundĀ fields. This corresponds to an expansion
the action around the background gluon fields to quadr
order in the quantum fluctuationsam . The one loop expan-
sion of the gluon Lagrangian is:

2
1

4g2~M !
Fmn

2 ~A!52
1

4g2~M !
Fmn

2 ~Ā!

2
1

g2~M !
Dm~Ā!Fmn~Ā!an

2
1

2g2~M !
am

a Wmn
aban

b1••• ~17!

where

Wmn
ab52@D2~Ā!#abdmn1@DmDn#ab22 f acbFmn

c ~Ā!,
~18!

and

Dm
ab~Ā!5]mdab1 f acbĀm

c ~19!

is the covariant derivative in the background field in t
adjoint representation. The second term in Eq.~17!, which is
linear in an , is zero if the background field obeys the equ
tion of motion. In the fermionic Lagrangian the quark
couple to the gluon fields in the usual minimal, i.e. line
way. Hence the expansion is just

c f
†i¹” c f5c f

†i¹” ~Ā!c f1c f
†amgmc f1••• ~20!

where ¹” (Ā) is the covariant derivative of the backgroun
field in the fundamental representation. The second term
Eq. ~20! contributes at the 2-loop level which we do n
consider here.

The quadratic formWmn
ab in Eq. ~18! is degenerate: it has

an infinite number of zero modes which are the infinitesim
gauge transformationsam

a 5Dm
abLb. In order to remove this

degeneracy one has to fix the gauge for these fluctuati
We choose the background Lorenz gaugeDm(Ā)am50
@25,28#. The second term in Eq.~18! cancels out but the
Faddeev-Popov ghost determinant arises which again ca
expressed as a Grassmann integral over ghost fields.

The 1-loop partition function thus becomes
6-3
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Z~Ā!5eS̄E DaDx Dx1 Dc f
† Dc f

3expH E d4xF2
1

2g2~M !
~am

b Wmn
bc an

c2x1aDm
2 xa!

1(
f 51

Nf

c f
†iD” c f G J , ~21!

wherex,x1 are ghost fields,

iD” f5 i¹” 1 imf5 i ]”1TaĀm
a gm1 imf ~22!

is the massive Dirac operator in the fundamental represe
tion, and

S̄52
1

4g2~M !
E d4xFmn

a ~Ā!Fmn
a ~Ā! ~23!

is the action of the background gluon fields.
Integrating out the quarks, ghosts and the quantum fl

tuations of the gluons leaves us with the desired effec
theory for the backgroundĀ fields:

Z~Ā!5eS̄~detW!21/2det~2D2!)
f 51

Nf

det~ iD” f !, ~24!

so that the 1-loop action is

S1-loop5 log~detW!21/21 log det~2D2!

1(
f 51

Nf

log det~ iD” f !. ~25!

Since theĀ are the only gluon fields left we will omit the ba
from now on. So far the background field has been k
arbitrary. One has, however, the gauge freedom to choos
A4(x) fields to be static. The spatial gluon components
generally time dependent. SinceAi(x4 ,x) is periodic in time,
its time derivative is given by the Matsubara frequenc
vk52pkT being O(T) for any kÞ0. Since we are inter-
ested in low momenta fluctuations,p,T, we shall restrict
ourselves to the zero Matsubara frequency of the backgro
field, i.e. to the staticAi(x).

The operators in the ghost and gluon functional deter
nants,D2 andW, are matrices in the adjoint representation
the color group, and they are built from covariant derivativ
and the field strength only. We used this fact in@18# to make
an expansion of the 1-loop pure Yang-Mills action in powe
of Di . Since the ~static! electric field is given byEi

a

5Di
abA4

b and the magnetic field by Bk
a5 1

2 e i jkFi j
a

5 1
4 e i jkecad@Di ,D j #

cd we obtained an effective action for th
backgroundA4 fields in terms of electric and magnetic field

In this paper we study the contribution of the fermio
functional determinant to that effective action. We use ag
the technique of the covariant derivative expansion. In ad
tion, we will work in the chiral limit throughout, i.e. we se
mf50. The main difference to the gluon calculation is th
01600
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in the case of fermions we are dealing with operators in
fundamental representation and that we do not expectZ(Nc)
symmetric results.

IV. THE FERMIONIC FUNCTIONAL DETERMINANT

Throughout this paper we will be working with Euclidea
coordinates. A summary of our conventions is given in t
Appendix. In particular we use the following:

$gm,gn%52dmn14 , ~26!

@gm,gn#54ismn, ~27!

where thegn denote the EuclideanDirac matrices, andsmn

are the spin matrices. Since we are working in the ch
limit the Dirac operator is given by Eq.~12! and is by defi-
nition Hermitian:

i¹” 5 i ]”1TaAm
a gm5~ i¹” !†. ~28!

The covariant derivative defines the field strength tenso
the fundamental representation as

@¹m ,¹n#52 iF mn . ~29!

The functional determinant of the fermions can be written

det~ i¹” !5Adet~ i¹” !~ i¹” ! ~30!

which following a method originally introduced b
Schwinger@26# can be further expressed as

det~ i¹” !5expS 2
1

2
SpE

0

`ds

s
e2s( i¹” )( i¹” )D . ~31!

Here Sp is the functional trace. For its contribution to t
effective action we have to properly normalize it, i.e. subtr
the free zero-gluon part:

log det~ i¹” !n52
1

2
SpE

0

`ds

s
~es¹” 2

2es]”2
!. ~32!

The square of¹” can be decomposed further,

¹” 25gmgn¹m¹n5
1

2
~$gm ,gn%¹m¹n1@gm ,gn#¹m¹n!.

Since in the second term on the left-hand side of the co
mutator is antisymmetric we can also antisymmetrize

¹m¹n→
1

2
@¹m ,¹n#.

With Eqs.~26!, ~27!, ~29! one finds

¹” 25¹2141smnFmn . ~33!

Equation~32! hence becomes
6-4
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log det~ i¹” !n52
1

2
SpE

0

`ds

s
$exp@s~¹2141smnFmn!#

2exp@s]214#%. ~34!

The 1-loop action is UV divergent. This comes from the fa
that the running coupling constant is divergent at the t
level. Since QCD is a renormalizable theory, the tree le
divergence has to be canceled by a 1-loop divergence
order to control the divergent behavior of Eq.~34! we regu-
larize the determinants by introducing a Pauli-Villars cut
M in momentum space. This means that we use the so-ca
‘‘quadrupole formula:’’

det~ i¹” !n,r5Adet~2¹” 2!

det~2]” 2!

det~2]” 21M2!

det~2¹” 21M2!

5expH 2
1

2E0

`ds

s
Sp@~12esM2

!~es¹” 2
2es]”2

!#J .

~35!

The functional trace Sp can be taken by inserting any co
plete basis. We choose the plane wave basis:

Spe2sK5TrE d4x lim
y→x

E d4p

~2p!4
e2 ip•ye2sKeip•x, ~36!

where Tr is the remaining matrix trace over color and L
entz indices. One can now drag the latter plane-wave ex
nent though the differential operatorK until it cancels with
the former. This results in the shift of the derivatives insi
the differential operator and in the following representat
of the functional trace@20#:

Spe2sK5TrE d4xE d4p

~2p!4
e2sK(]a→]a1 ipa)1. ~37!

The 1 at the end is meant to emphasize that the shifted
erator acts on unity, so that for example any term that ha
]a in the exponent and is brought all the way to the rig
will vanish. According to Eq.~37! we now have

log det~ i¹” !n,r52
1

2E d3x (
k52`

` E d3p

~2p!3

3E
0

`ds

s
~12e2sM2

!Tr$exp@s~¹41 ivk!
2

3141s~¹i1 ipi !
2141ssmnFmn#

2exp@s~ ivk!
2141s~ ipi !

214#%. ~38!

Let us now define

B[¹41 ivk12, ~39!

then Eq.~38! becomes
01600
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log det~ i¹” !n,r52
1

2E d3x (
k52`

` E d3p

~2p!3E0

`ds

s
Tr e2sp2

3~12e2sM2
!$2e2svk

2
1exp@~sB 21s¹ i

2

12ispi¹i !141ssmnFmn#%. ~40!

This result is independent of the gauge group. In the follo
ing we will work with SU(2). In particular we choose the
backgroundA4 fields to be~a! static and~b! diagonal, i.e.

A4~x!5f~x!
t3

2
, ~41!

then

B52 if~x!
t3

2
1 ivk12. ~42!

Heret3 is the third of the three Pauli matrices:

t15S 0 1

1 0D , t25S 0 2 i

i 0 D , t35S 1 0

0 21D .

~43!

V. COVARIANT DERIVATIVE EXPANSION

A. Zeroth order: The fermionic potential

In this order we set the spatial covariant derivative
zero, i.e.¹i50, but sum over all powers of¹4:

@ log det~ i¹” !n,r #
(0)52

1

2E d3x (
k52`

` E d3p

~2p!3

3E
0

`ds

s
Tr e2sp2

~esB 2142esvk
214!.

~44!

This can be evaluated explicitly. With Eq.~42! it is easy to
check that

Tr esB 21454@e2(1/4)s(f22vk)2
1e2(1/4)s(f12vk)2

#, ~45!

where the factor 4 comes from Tr14 . Since the fermionic
energies are given byvk5(2k11)pT we can rewrite the
terms in Eq.~45! as

e2(1/4)s(2vk6f)2
[e2s[2pTk2f6] 2

, ~46!

where we defined

f65
f

2
6pT. ~47!

The summation overvk and the integrations overs andp can
now be performed along the lines of the bosonic case@18#,
using the formula
6-5
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(
k52`

` E
0

`ds

s
e2s(2pTk2f̃)22sp2

52 logS ch
upW u
T

2cos
f̃

T
D .

~48!

The result is the following:

@ log det~ i¹” !n,r #
(0)5

1

12p2T
E d3x@f1

2 ~2pT2f1!2

1f2
2 ~2pT2f2!222~pT!4#mod 2pT

5
1

96p2T
E d3x$@f22~2pT!2#2

2~2pT!4%mod 4pT . ~49!

This potential is symmetric aroundf50 and is periodic with
period 4pT in contrast to the gluon potential@3,15# which
has period 2pT. The curvature aroundf50 of Eq. ~49!
gives the fermionic contribution to2mD

2 /T. Indeed we find
2(NfT)/6 which is in accordance with the known@3# 1-loop
result for the Debye mass

mD
2 5

1

3
T2S Nc1

Nf

2 D . ~50!

If we add the corresponding result from the gluons~see e.g.
@18#!

1

12p2T
E d3x@f2~2pT2f!2#umod 2pT ~51!

then we get the full result for two colors, namely (
1Nf /2)T/3. Introducing the variablen5f/(2pT) we have
f65pT(n61) and Eq.~49! becomes

@ log det~ i¹” !n,r #
(0)5T3

p2

6 E d3x@~12n2!221#mod 2.

~52!

The potential is then given by the~in the chiral case identi-
cal! contributions of allNf quark flavors:

VF52Nf

~2p!2

24
@~12n2!221#mod 2. ~53!

This result is of course well known and can for example
found in the Appendix D of@3# or in @16#. It can be com-
pared to the pure Yang-Mills potential@3,15#

VYM5
~2p!2

3
n2~12n!2U

mod 1

. ~54!

Both potentials are shown in Fig. 1.
We see clearly that the YM potential hasNc minima,

which are theZ(Nc) symmetric points ofA450. Since there
is no center symmetry for the fermions, we do not find t
same situation. Indeed the fermion potential has a minim
at n50 and a maximum atn51. Its period is doubled rela
01600
e

e
m

tive to the YM potential. This fact comes solely from th
fundamental representation of the fermions.

B. Leading terms in electric sector

For an effective theory we are interested in the lead
terms in the electric sector. We would like to stress that
are keeping all powers of the backgroundA4 field in our
approach, but make an expansion in the spatial covar
derivative. This means that we allow for an arbitrary amp
tude of theA4 fields but we assume that all the backgrou
fields are slowly varying and have momentap,T. For the
leading terms we hence expand to quadratic order in¹i . Just
as for the gluons and ghosts@18# the technique is to expan

Tr exp$s@~B 21¹ i
212ipi¹i !141smnFmn#% ~55!

in powers of¹i using the following two master formulas fo
two noncommuting matricesA andB:

eA1B5eA1E
0

1

daeaABe(12a)A

1E
0

1

daE
0

12a

dbeaABebABe(12a2b)A1•••

~56!

and

@B,eA#5E
0

1

dgegA@B,A#e(12g)A. ~57!

Since in Eq.~56! powers ofB are brought down in the ex
pansion we identifyB with the combinations of covarian
derivatives in Eq.~55! andA is the rest. The electric field is
identified as

@¹i ,B#5@¹i ,¹4#52 iF i452 iEi52 iEi
aTa. ~58!

To the second order in¹i there are three terms contributing

T15s TrE
0

1

da easB 214~¹ i
214!e

(12a)sB 214, ~59!

FIG. 1. The gluon~solid! and fermion~dashed! potentials for
Nf51 and21<n<1.
6-6
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T252
4p2s2

3
TrE

0

1

daE
0

12a

dbeasB 214~¹i14!

3ebsB 214~¹i14!e
(12a2b)sB 214, ~60!

T35s2TrE
0

1

daE
0

12a

dbeasB 214~sabFab!

3ebsB 214~sgdFgd!e(12a2b)sB 214. ~61!

The termsT1 andT2 are of the same structure as in the glu
case and can be shown~see Appendix B of@18#! to yield two
gauge invariant contributions:

I 15s3E
0

1

daH 2
1

2
1a~12a!1

2

9
sp2F12

3

2
a~12a!G J

3Tr e(12a)sB 2
$B,Ei%e

asB 2
$B,Ei%14 , ~62!

I 252s2S 1

2
2

2

9
sp2DTr esB 2

~2Ei
21 i $B,@¹i ,Ei #%!14.

~63!

In contrast to the pure Yang-Mills calculation from@18# the
Lorentz structure yields a factor 4 from Tr14 and since we
are dealing with fermions all matrices are in the fundamen
representation. The second term inI 2 contains an anticom
mutator of B and the covariant divergence of the elect
field, which is zero if the background field obeys the equ
tion of motion. We will discuss it separately in the next se
tion and leave it out for the time being.

What has to be evaluated is

@S1-loop
F #E

(2)52Nf@ log det~ i¹” !n,r #E
(2)

52
Nf

2 E d3x (
k52`

` E d3p

~2p!3E0

`ds

s
e2sp2

3~ I 11I 21T3!

[2NFE d3x~L11L21L3!. ~64!

For the summation over the Matsubara frequencies it tu
out to be necessary to define a region of definition forf. In
particular we shall rescale this field asf52pTn and look at
the interval21<n<1. In different regions off the results
will have different functional forms. We already saw for th
fermion potential that it is symmetric in the interval21
<n<1, and outside this region one has to continue by p
odicity.

We will start with the termT3. From

smn52
i

4
@gm ,gn# ~65!

and

Tr gagbgggd54~dabdgd2dagdbd1daddbg! ~66!
01600
l

-
-

s

i-

it follows that

Tr sabsgdFabFgd52FabFab . ~67!

SinceFabFab contributes to the electric sector as 2EkEk ,
Eq. ~61! is equal to

T354s2TrE
0

1

daE
0

12a

dbeasB 2
Eke

bsB 2
Eke

(12a2b)sB 2
,

52s2TrE
0

1

daeasB 2
Eke

(12a)sB 2
Ek , ~68!

where we used in the last line that the integrand is symme
in a and b, invariant undera→(12a) as well as the cy-
clicity of the trace. After integration overa, p ands we find
the following structure forL3:

L35
1

4p2 F ~~Ei
1!21~Ei

2!2!
p

8
S11~Ei

3!2
p

4
S3G , ~69!

where

S15 (
k52`

` uf12vku2uf22vku
fvk

5
2

pT
~ log 4m! ~70!

S35 (
k52`

` S 1

uf22vku
1

1

uf12vku
D

52
1

4pT
@4~gE2 logm!1F~n!#. ~71!

Here we used thatvk5(2k11)pT and f52pTn. The
function F(n) is given by

F~n!52FcS 11n

2 D1cS 12n

2 D G . ~72!

Herec is the digamma function

c~z!5
]

]z
logG~z!. ~73!

The parameterm is the UV-cutoff in divergent series:

(
k51

`
1

k
→(

k51

m
1

k
[ logm, ~74!

and is related to the Pauli-Villars mass as

m5
M

4pT
egE. ~75!

This subtraction scale for the running coupling constant
been known previously@6# and was also obtained in@18#.

Next we will turn to the invariantI 1. After integration
over a, p ands we find the following structure forL1:
6-7
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L15
1

4p2 F ~~Ei
1!21~Ei

2!2!
p

24
S̃11~Ei

3!2
p

12
S3~n!G ,

~76!

whereS3 is given by Eq.~71! and

S̃15 (
k52`

`
~f214vk

2!

f3vk
H f222fvk14vk

2

uf12vku

2
f212fvk14vk

2

uf22vku
J

5
1

pT
@2~ logm2 log 422gE!2F~n!#.

~77!

Finally we investigateI 2. Again after integration overa, p
ands, L2 is of the form:

L252
1

4p2 F ~~Ei
1!21~Ei

2!21~Ei
3!2!

p

6
S3G , ~78!

with S3 given by Eq.~71!.
Collecting all terms fromL1,2,3 we find the following re-

sults for the kinetic energy in the electric sector

@S1-loop
F #E

(2)5E d3x

T
@~~Ei

1!21~Ei
2!2! f 1

(F)~n!

1~Ei
3!2f 3

(F)~n!#

5E d3x

T FEi
aEi

af 1
(F)~n!

1
~Ei

aA4
a!2

A4
bA4

b
f 2

(F)~n!G , ~79!

where f 2
(F)(n)[ f 3

(F)(n)2 f 1
(F)(n). In the second line of Eq

~79! we used

~Ei
3!25

~Ei
aA4

a!2

A4
bA4

b
, ~80!

which follows from Eq.~41!. The functions are given by

f 1
(F)~n!52

Nf

24p2
log 4m, ~81!

f 3
(F)~n!5

Nf

96p2
@4~gE2 logm!1F~n!#, ~82!

f 2
(F)~n!5

Nf

96p2
@4~gE1 log 4!1F~n!#. ~83!

We would like to stress once more that these functions
the results for the interval21<n<1. They are plotted in
01600
re

Fig. 2 and one sees that they are symmetric. To get out
the interval21<n<1 one has to continue by periodicity
and the functional form of thef i

(F) changes.
We notice that the functionf 1

(F) is constant, i.e. indepen
dent ofA4. However, it contains the UV divergent logm that
is necessary to renormalize the running coupling cons
from the tree level action:

2
Fmn

2

4g2~M !
52

Fmn
2

8p2
log

M

L S 11

12
Nc2

1

6
Nf D . ~84!

HereNc denotes the number of colors andNf the number of
flavors. We correctly obtained the gluonic contribution to t
charge renormalization in@18#. For the fermions the tree
level divergence in the electric sector is

EkEk

2g2~M !
5EkEk

Nf

24p2
log

M

L
. ~85!

From our result Eq.~81! we find the correct UV divergen
contribution

2
EkEk

24p2
logm52EkEk

Nf

24p2
logS M

4pT
egED . ~86!

If we add the tree-level and the 1-loop action then the re
should be UV finite. This is obtained by choosing the sc
M in Eq. ~86! to be equal to the Pauli-Villars mass, whic
corresponds to the evaluation of the running coupling c
stant at the scale 4pT/exp(gE). In the effective action we
then have to replace the Pauli-Villars cutoffM by L and find

F1
(F)~n!52

Nf

24p2
log

L

4pT
egE, ~87!

F3
(F)~n!5

Nf

96p2 F24 log
L

4pT
1F~n!G , ~88!

FIG. 2. The functionsf 1
(F) ~solid!, f 2

(F) ~dotted! and f 3
(F) ~dashed!

without the UV divergent term.
6-8
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F2
(F)~n!5

Nf

96p2
@4~gE1 log 4!1F~n!# ~89!

with F(n) given by Eq.~72!.

C. The ‘‘equation of motion’’ term

In the previous section we left away the contribution
the second term in Eq.~63!. Its contribution to the effective
action is

SEM5
Nf

2 E d3x (
k52`

` E d3p

~2p!3E0

`ds

s
e2sp2

4s2

3S 1

2
2

2

9
sp2DTr esB 2

~ i $B,@¹i ,Ei #%!. ~90!

After integration and summation this becomes

SEM52
Nf

12pE d3x
Tr~@¹i ,Ei #A4!

pT

52
Nf

12pE d3x
~DiEi !

aA4
a

2pT
. ~91!

Here we wrote the result once in terms of a covariant der
tive in the fundamental representation and once throug
covariant derivative in the adjoint representation

Di
ab5] id

ab1 f acbAi
c and ~DiEi !

a5Di
aeEi

e , ~92!

in order to compare to the gluon results@18#. In @18# we
obtained two terms: one comes solely from the nonzero M
subara modes, while the other is the contribution of the z
mode alone. Our result here, Eq.~91!, is equal to2Nf /2
times the first term of the gluon results.

Equation~91! is zero if the background field obeys th
equation of motion,DiEi50. Otherwise it depends on th
behavior ofA4 and Ei at spatial infinity. One can integrat
Eq. ~91! by parts and gets

SEM5
Nf

24p2T
E d3x$Ei

aEi
a2] i~Ei

aA4
a!%. ~93!

It yields a contribution to the function Eq.~87! plus a full
derivative term. There are certain background fields, B
dyons @22# being an example, whereA4→const andEi
;1/r 2 at spatial infinity. Therefore the full derivative term i
Eq. ~93! is nonzero. However, in the particular case of t
dyon, it satisfies the equation of motion and the two terms
Eq. ~93! cancel out.

D. Comparison to previous work

In a related publication by Wirstam@27# an effective
theory for QCD at high temperatures was derived by cal
lating gluon by gluon scattering at low momenta in terms
Feynman diagrams. In order to compare to the results of@27#
01600
f

-
a

t-
ro

S

n

-
f

we have to expand our functions~87!, ~89! to quadratic order
in n. For Eq.~87! this gives naturally zero, and the remai
ing contribution is

2E d3x
7z~3!Nf

384p4T3
A4

aA4
aEi

bEi
b , ~94!

which agrees with the result found in@27# if the gauge group
is chosen to be SU~2!.

E. Leading terms in magnetic sector

For an effective action in terms of magnetic fields w
have to expand Eq.~40! to quartic order in¹i . The basic idea
of the calculation is, again, to use master equations~56!–~58!
to drag covariant derivatives¹i to the right. One has for the
commutators

¹ie
sB 2

5esB 2
¹i2 isE

0

1

ddedsB 2
$B,Ei%e

(12d)sB 2
,

¹i¹je
sB 2

5esB 2
¹i¹j2 isE

0

1

ddedsB 2
@¹i¹j ,B 2#e(12d)sB 2

,

where

@¹i¹j ,B 2#52 i¹i$B,Ej%2 i $B,Ei%¹j .

In this way one ultimately obtains gauge-invariant combin
tions of the electric field in the fourth power, mixed term
containing both electric and magnetic fields, derivatives
the electric field and, finally, magnetic field squared. In th
paper we restrict ourselves to the latter terms quadratic in
magnetic fieldBi defined as

Bi5
1

2
e i jkF jk5Bi

aTa, ~95!

whereF jk5 i @¹j ,¹k# in the fundamental representation. F
that reason we shall disregard the commutators@¹i ,A4# as
they introduce powers ofEi . In addition, we restrict our-
selves to the magnetic field parallel toA4, i.e. Bi5Bi

3T3. It
means that we set the commutator@Fi j ,A4#5 i (@¹i ,Ej #
2@¹j ,Ei #) to zero. In practical terms this means that we c
drag all powers of the covariant derivative¹i as well as of
the field strengthsFi j through the exponentials ofA4, as if
they commute. Looking at the argument of the exponen
Eq. ~40! we see that terms which are quadratic inBi either do
not contain the field strength tensorFmn at all or consist only
of powers of the latter. Mixing terms vanish upon integrati
over momentum. Hence similar to the gluon case~see Ap-
pendix C of@18#! we have to evaluate the following:
6-9
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@S1-loop
F #M

(2)52Nf@ log det~ i¹” !n,r #M
(2)

52
Nf

2 E d3x (
k52`

` E d3p

~2p!3E0

`ds

s
e2sp2

3Tr@~V11V2!14#,

[2NfE d3x@N12N2#, ~96!

whereV1 only contains powers of the derivatives

V15esB 2S s2

2
¹2¹21

~2is!4

4!
pipj pkpl¹i¹j¹k¹l

1
~2is!2s

3!
pipj@¹2¹i¹j1¹i¹

2¹j1¹i¹j¹
2# D , ~97!

andV2 comes from the field strength tensor alone:

V25s2TrE
0

1

daE
0

12a

dbeasB 2
s i j Fi j e

bsB 2
skm

3Fkme(12a2b)sB 2
. ~98!

We start with the evaluation ofV1. For the momentum inte
gration we use

E d3p

~2p!3
e2sp2

5
1

~4ps!3/2
, ~99!

E d3p

~2p!3
pipje

2sp2
5

1

2s

1

~4ps!3/2
d i j , ~100!

E d3p

~2p!3
pipj pkpme2sp2

5
1

~2s!2

1

~4ps!3/2
@d i j dkm1d ikd jm1d imd jk#,

~101!

and obtain the following contribution to Eq.~96!:

N15
1

4p3/2 (
k52`

` E
0

` ds

As
Tr esB 2 1

12
@¹i ,¹j #@¹i ,¹j #.

~102!

Since@¹i ,¹j #
252Fi j Fi j 522BkBk , whereBk5Bk

3T3, this
is equal to

N152
1

24p3/2 (
k52`

` E
0

` ds

As
Tr~es2BBkBk!, ~103!

and after integration overs and the summation over the Ma
subara frequencies it becomes
01600
N152
1

24p3/2
~Bi

3!2
Ap

2
S3 , ~104!

whereS3 is again given by Eq.~71!. For V2 we find, using
Eqs.~66!, ~67!:

V252s2TrE
0

1

daE
0

12a

dbeasB 2
Fi j e

bsB 2
Fi j e

(12a2b)sB 2
.

~105!

Since the contribution to the magnetic sector ofFi j Fi j is
2BkBk this is equal to

V254s2TrE
0

1

daE
0

12a

dbeasB 2
Bke

bsB 2
Bke

(12a2b)sB 2

52s2Tr~esB 2
BkBk!, ~106!

where we used the fact that the integrand is symmetric ina
and b, the cyclic property of the trace and eventua
dragged the magnetic field to the right. One hence sees
V2 is of the same structure asV1. Explicitly we find after the
integrations overp,s and the summation overvk that

N25
1

16p
~Bi

3!2S3 , ~107!

whereS3 is given by Eq.~71!. Adding Eqs.~104!, ~107! we
find the following result for the kinetic energy in the ma
netic sector:

@S12 loop
F #M

(2)E d3x

T
~Bi

3!2h1
(F)~n!, ~108!

where the coefficient is given by

h1
(F)~n!5

Nf

96p2
@4~gE2 logm!1F~n!#, ~109!

with F(n) as in Eq.~72!.
The functionh1

(F) above is the result for21<n<1 and it
is symmetric in this interval. It also contains the necess
UV divergent contribution to cancel the tree-level divergen
of the running coupling constant, Eq.~84!:

2
BkBk

24p2
logm52

BkBk

24p2
logS M

4pT
egED . ~110!

Adding up the tree-level and 1-loop terms is obtained
replacingm in Eq. ~109! by L/(4pT)exp(gE), which corre-
sponds to an evaluation of the running coupling constan
the scale 4pT/exp(gE). The final result is then:

H1
(F)~n!5

Nf

96p2T
F24 log

L

4pT
1F~n!G . ~111!

VI. CONCLUSIONS

We have calculated the 1-loop contribution of massl
quarks to the effective action at high temperatures for a
value ofA4 and hence of the Polyakov line. While we have
general result in the color-electric sector, we restrict o
6-10
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selves to a magnetic field parallel toA4. The covariant de-
rivative expansion of this action has the form:

@Seff
F # (2)5E d3x

T F2T3VF~n!1Ei
2F1

(F)~n!
~EiA4!2

A4
2 F2

~F !~n!

1~Bi
i!2H1

(F)~n!1 . . . G , ~112!

wheren5AA4
aA4

a/2pT andBi
i is the magnetic field paralle

in color space toA4. Because of the Bianchi identity
@Fi j ,A4#5 i (@¹i ,Ej #2@¹j ,Ei #), in the case where the mag
netic field is not parallel toA4 one also has to include term
with electric field and its derivatives into the effective actio
otherwise it will not be complete.

The potentialVF has double the period as compared to
gluon induced potential, is symmetric inn between21 and
1 and has been known before. It has its minimum atuA4u
50 and a maximum atuA4u562pT. The functionsF1,2

(F) and
H1

(F) given by Eqs.~87!, ~89! and Eq.~111! are new. All
functions, both in the electric and in the magnetic sector,
symmetric inn between21 and 1, which reflects the fac
that fermions are in the fundamental representation of
color group. Our results can be used for studies of QCD
high but not infinite temperatures, where the Polyakov l
experiences fluctuations which are large in amplitude
long ranged and where the dimensional reduction appro
is too crude.

Note added in proof. After the submission, the paper b
Megias, Ruiz Arriola and Salcedo@29# appeared on the ne
ni

.E

,

ett
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in which the authors compute the coefficients in the para
electric and magnetic sector. Apart from a constant our fu
tions h1

(F) and f 3
(F) agree with their results.
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APPENDIX: EUCLIDEAN COORDINATES

In finite temperature QCD one needs the Euclidean f
mulation of path integrals in order to give the partition fun
tion the statistical-mechanics interpretation. SuperscriptsM
will denote Minkowski coordinates, while superscriptsE will
refer to Euclidean coordinates. Note that throughout the
per we have used Euclidean coordinates without any exp
superscripts.

For space-time coordinates we have

x4
E5 ix0

M xi
E5xi

M . ~A1!

For the gluon and fermion fields we have

A4
E52 iA0

M Ai
E5Ai

M ~A2!

c f
E5c f

M c f
†E5 ic f̄

M. ~A3!

The Dirac gamma matrices are related as:

g4
E5g0

M g i
E52 ig i

M g5
E5g5

M . ~A4!

The Euclidean gamma matrices are Hermitian.
.
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