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Covariant derivative expansion of fermionic effective action at high temperatures
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We derive the contribution of massless fermions to the 1-loop effective action for Ajadind A; fields at
high temperatures, for th8U(2) gauge group assuming that gluon fields are slowly varying but allowing for
an arbitrary amplitude of\,.
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[. INTRODUCTION change the effective action in a drastic way as compared to
the pure glue case, since their presence changes the symme-
Quantum chromodynami¢®QCD) at nonzero temperature try of the action with respect to the center-of-group gauge
is an intensely studied field. At very high temperatures thdéransformations.
coupling constant is small and perturbation theory can be The tree-level actior{l) has certainly insufficient accu-
developed. However, due to the chromomagnetic sector afcy to study field fluctuations at high but not infinitely high
the theory, perturbation theory explodes already at a fewtemperatures. Once one includes quantum corrections both
loop level[1-3] and is hence only applicable at academicallythe fermions and all the nonzero Matsubara modes of the
high temperaturef4]. The region of intermediate tempera- gluons show up in the loops.
tures is of much bigger interest. Both the restoration of chiral Effective theories resulting from quantum corrections for
symmetry and the deconfinement are believed to take pladdifferent energy scale3, g T andg®T have been constructed
in this region. In the presence of fermions it is still unclear ifin [6,7]. The parameters in the effective theories are obtained
there is a confinement-deconfinement phase transition or jubly matching the correlation functions between the effective
a smooth crossover between the two phases. In any cased the actual theory as functions of the parameters of the
QCD is in the deconfined plasma phase at very high temeriginal theory. The question of color-conductivity and trans-
peratures. port properties of the plasma has been addressg8]inA
At finite temperature gluons obey periodic and fermionsheat kernel approach for Yang-Mills theories has been used
obey anti-periodic boundary conditions in imaginary time.in [9], a constraint effective potential for the Polyakov loop
This property leads to the quantized Matsubara frequenciefias been studied ifi10] and spatial variations of the Polya-
They are even multiples ofT for gluons, i.e.w,=2k=T, kov loop have been investigated [ibl].
and odd multiples ofrT for quarks, i.e.w,=(2k+21)=T. In the pure Yang-Mills theory the center symmetry plays a
So while gluons have a zero mode this is not the case foerucial part in the description of the confinement-
quarks. This fact has direct and important influence on the IRleconfinement phase transitifh 12—14. The latter is usu-
behavior of the two contributions to the effective action.  ally characterized by an order parameter which is the average
At the tree level very heavy modes decouple from aof the trace of the so-called Polyakov line:
theory at high temperatures. This is called dimensional re-
duction [5] since the heavy modes are simultaneously the P(x)=P ex idex A
time-dependent ones. Neglecting all modes except the zero ana
Matsubara frequencies leaves a 3D static theory
The order parametef{Tr P) is zero in the confined phase
1 1 below the critical temperature and assumes a nonzero value
——F2, +yliVy—— ——[F+2(Df°A?], (1) in the deconfined phase above the critical temperature. The
49 49°T Polyakov line is not invariant under gauge transformations
belonging to the gauge group center. One hence concludes
which only contains the static gluonic modes with the cou-that if (Tr P)=0 then theZ(N.) symmetry is manifest. This
pling constantg3=g?T. Since the energy can never vanish situation describes confinement. If for any reagdmP)
for fermions they decouple completely. #0 then the symmetry must have been broken. This corre-
The long-range forces mediated by the static gluons leadponds to the deconfined phase.
to the IR divergencies, because in strict perturbation theory The 1-loop[3,15,16 and 2-loop[17] potential energies as
they are massless. Fermions do not cause any IR problentfsinctions of A, are known. They are periodic functions of
since they do not have zero modes even if they are massledbe eigenvalues of\, in the adjoint representation with pe-
which is the case we consider here. Nevertheless, fermionsod 27 T. This reflects the symmetry of th&(N.) vacua.
The curvature of the potential at its minima gives the leading
order Debye mass for “electric” gluons. The zero energy
*Electronic address: diakonov@nordita.dk minima of the potential correspond to quantized valueA of
"Electronic address: oswald@alf.nbi.dk or center group values for the Polyakov line, wherePTr
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#0. At high temperatures the system oscillates around onmetry for the fermions, it is still instructive to see their effect
of these minima. At lower temperatures, however, the fluc-on the effective action for the Polyakov line. In particular we
tuations around the minimum increase and eventually thavork with the gauge group SQ). We consider a general
system undergoes a phase transition{ToP)=0. At the electric field but restrict ourselves to a magnetic field parallel
same time, one expects that near the phase transition poitdA,, B‘i|. The expected result for the effective action, which
the fluctuations are long-range. To study those fluctuationds the sum of the tree-level and 1-loop actions, is hence:
one needs an effective low-momenta theory which, however,
does not assume that tldg component is small. d3x
Let us formulate the problem more mathematically. Non- [ S¢l¥= f — | —TVRAD +EFFP(A)

zero temperatures explicitly break the 4D Euclidean symme-
try of the theory down to the 3D Euclidean symmetry, so that (EiA,)?
the spatialA; and timeA, components of the Yang-Mills — = FPAY)+BHHP A+ .. |,
field play different roles and should be treated differently. 4
One can always choose a gauge whekg is time- )
independent. Taking\,(x) to be static is not a restriction of
any kind on the fields but merely a convenient gauge choiceyith the electric and magnetic fields
and we shall imply this gauge throughout the papkris
also a possible gauge choiceTat 0 but in that limiting case E3=D2PAR— A= 9, A2+ €2°PACAD - AZ, 3
it is unnatural as one usually wishes to preserve the 4D sym-
metry] As to the spatial componengg(x,t), they are, gen- 1
erally speaking, time-dependent, although periodic in the Bf‘:quk(ajAﬁ‘—akAf‘nL eabCAijﬁ). (4)
time direction. Putting the componems to zero is a gauge
{L%r:g\éigzm grzﬁgg:tl[(r)gns?:rnfgteiorjli\llﬂf gzw:;teagyngrr?zir-rhe first term is the potential energy and the remaining terms
A; . Therefore, the spatial derivatives of the Polyakov line ingre the kineti_c energy contribqtions in the_color-ele_ctric a_nd

I S . ) color-magnetic sector. The objective of this paper is to find
the gauge-invariant effective action can only appear as COVaRase functions
riant derivatives including a nonze#y field. '

In [18] we calculated the 1-loop kinetic energy for the

eigenvalues of the Polyakov line, integrating over gluon and  !l- THE QCD ACTION AT FINITE TEMPERATURE

ghost fluctuations. See al§9] for a summary. In this work The basics about Yang-Mills theory at finite temperature

we are interested in obtaining the effect of quarks on thatyere discussed ifL8]. The (Yang-Mills) action of gluons at
kinetic energy as well. We use a background field method fof;jie temperature is given by

the gluons and evaluate the 1-loop action through a func-
tional determinant formalism. In particular we assume the B 1
background fields to vary slowly but th&, component is sYsz dx4f d3x FivFiyl, B==,
allowed to have an arbitrary amplitude. We integrate out fast 0 4% (M) T
varying quantum fluctuations about them by making an ex- ()
pansion in spatial covariant derivatives. This method was . - " .
originally developed irf20] for zero temperature QCD. where the gluqn ﬂe_lds (_)bey periodic boundary conditions in
This corresponds to summing up all powers Af but the temporal direction, i.e.
where their momenta are restricted pe<T reflecting the
long-range behavior of the plasma phase. As we said, we
choose a static gauge féy(x). This gauge choice does not
preventA;(x) from being time dependent. Sinég(x,,x) is
periodic in time, its time derivative is given by the Matsub-
ara frequencies,=27kT beingO(T) for anyk#0. Since

AL(0X)=A,(B.X). 6

Because of the compactified time direction there is a group
of special gauge transformations which transform the gluon
fields in the usual way as

we are interested in low momenta fluctuatiops; T, it is A —UA U l+iug u-t @
consistent to restrict oneself to the zero Matsubara frequency K’ ’ ”
of the background field, i.e. to the stafi¢(x). and which preserve the periodicity conditié®), but which

We expect that our results are suitable to study the corregre not periodic themselves:
lation functions of the Polyakov line not too far from the
transition point where it experiences fluctuations that are U(0x)=zU(B,X). (8)
large in amplitude but presumably mainly long ranged. The
results may be of some help for studying quantum weights oHere z, is an element of the center gro@igN,):
semiclassical objects, such as dypas,22 or calorong23].

The effective action contains a contribution from the glu- z =2 Ne ke {ON,—1}. 9
ons and from the fermions. The former part, namely the pure
Yang-Mills effective action, was obtained by the authors inThe Yang-Mills action is invariant under this gauge transfor-
[18]. Although, as discussed above, there is no center synmation, but the Polyakov line is not. It transforms as
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1T
P(x):Pexp(if dx,As | — 2 1P(X). (10)
0

From this property one sees immediately that #EN;)
symmetry implies(Tr P)=0 while it must be(spontane-
ously) broken if (Tr P)#0.
Including N; quarks with massn; the full QCD action at
finite temperature becomes
B
S= fo dx4f d3x a pa

F 14 14
4g%(M) * K

Ny
+§l YV +ime) iy, (12)
where the Dirac operator is given by
iV=id+T2A7 y~. (12

Here theT? are the generators &U(N) in their fundamen-
tal representation, they are half the Pauli matrices fot25U

The fermions in Eq(11) obey anti-periodic boundary condi-

tions
i(0X)= — (B, X). (13

This property is, however, not preserved by #{(&.) gauge
transformation8). Specifically the fermions transform as

$7 (B,X)=U(B,X)¢(B,X),
' (0x) =U(0X) ;(0x)
=zU(B,X) #1(0x)

=—zU(B,X) ¥ (B,X)
= =77 (B.X).

Hence in the presence of fermions thEN;) symmetry gets

(14
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We use the background field method for the gluon fields,
where we decompose them into background fields and quan-
tum fluctuations around them which we assume to be small:

(16)

In this work we are interested in a 1-loop effective theory for

the background fields. This corresponds to an expansion of
the action around the background gluon fields to quadratic
order in the quantum fluctuatiorss, . The one loop expan-
sion of the gluon Lagrangian is:

L (A)= L (A)
ag’ (M) *7 agi(m) **
' ) (A)F ,(A)
YN v aV
g2(m) A
_ aaWaba 4+ ... 1
2g3(M) HHEY a0
where
W2 =—[D?(A)]?s,,+[D,D,]3"— 2f3°PFS (A),
(18)
and
b/ AN b baC
D2(A)=9,,6%°+ f2°PAT, (19

is the covariant derivative in the background field in the
adjoint representation. The second term in &), which is

linear ina,, is zero if the background field obeys the equa-
tion of motion. In the fermionic Lagrangian the quarks

explicitly broken and the Polyakov line ceases to serve as agouple to the gluon fields in the usual minimal, i.e. linear

exact order parameter for the theory, siid@eP)+ 0 for all

way. Hence the expansion is just

temperatures. Nevertheless, even in the presence of massless

fermions the Polyakov line might provide useful information

near the critical temperatuf@4].

IIl. ONE LOOP QUANTUM ACTION

The patrtition function of QCD in its Euclidean invariant

form is given by
Z(A, ¥ ,wI>=f DADy; Dyf

a a

F VF v
492(M) My

X expf d*x

N¢

+f§l IV +ime) g . (15)

PV = yliV(A) g+ dla, v+ (20

where Y(A) is the covariant derivative of the background
field in the fundamental representation. The second term in
Eq. (20) contributes at the 2-loop level which we do not
consider here.

The quadratic forMNfL'i in Eq. (18) is degenerate: it has
an infinite number of zero modes which are the infinitesimal
gauge transformationsfl: D2PAP. In order to remove this

M
degeneracy one has to fix the gauge for these fluctuations.

We choose the background Lorenz gauDe(A)a,=0
[25,28. The second term in E(.18) cancels out but the
Faddeev-Popov ghost determinant arises which again can be
expressed as a Grassmann integral over ghost fields.

The 1-loop partition function thus becomes
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— 3 . . in the case of fermions we are dealing with operators in the
Z(A)=e f DaDxy Dx™ Dy Dy fundamental representation and that we do not expest)
(abWbcac_X+aDiXa)

symmetric results.
X ex f d*x “a’

N Throughout this paper we will be working with Euclidean
+ > YliDy (21)  coordinates. A summary of our conventions is given in the
f=1 Appendix. In particular we use the following:

IV. THE FERMIONIC FUNCTIONAL DETERMINANT

wherey,x" are ghost fields, {y*, ¥y} =26""14, (26)

is the massive Dirac operator in the fundamental represent

; Jihere they, denote the Euclideabirac matrices, andr*”
tion, and

are the spin matrices. Since we are working in the chiral
1 limit the Dirac operator is given by E@12) and is by defi-

S=— fd“xFa N =N 23 nition Hermitian:
P 2 (A)F2,(A) (23
ivziﬂ-i-TaAi)/’“:(iW)T. (28

is the action of the background gluon fields.
Integrating out the quarks, ghosts and the quantum flucThe covariant derivative defines the field strength tensor in
tuations of the gluons leaves us with the desired effectivehe fundamental representation as

theory for the backgrounA fields:

[V..V,]=—iF,,. (29
Ny

Z(K)Ieg(detw)fllzde(— Dz)fﬂl de(iDs), (24  The functional determinant of the fermions can be written as

so that the 1-loop action is detiV)=vde(iV)(iV) (30)
sl_loop:|og(detv\/)—1/2+ log det —D?) which following a method originally introduced by

N Schwinger[26] can be further expressed as
f

+f21 log deti D). (25 ©ds

de(iW)=exp(—ESp —e‘s(“”(‘v)). (31)

2 o S
Since theA are the only gluon fields left we will omit the bar
from now on. So far the background field has been keptere Sp is the functional trace. For its contribution to the
arbitrary. One has, however, the gauge freedom to choose tigéfective action we have to properly normalize it, i.e. subtract
A,(x) fields to be static. The spatial gluon components aréhe free zero-gluon part:
generally time dependent. Sing(X,,X) is periodic in time,
its time derivative is given by the Matsubara frequencies
w,=27KT being O(T) for any k#0. Since we are inter-
ested in low momenta fluctuationp<T, we shall restrict
ourselves to the zero Matsubara frequency of the backgrourThe square o¥ can be decomposed further,
field, i.e. to the stati®\;(x).

The operators in the ghost and gluon functional determi- ) 1
nants,D? andW, are matrices in the adjoint representation of V=7V V= 5({% YtV Vot 17,71V, W).
the color group, and they are built from covariant derivatives
and the field strength only. We used this fac{18] to make  Since in the second term on the left-hand side of the com-
an expansion of the 1-loop pure Yang-Mills action in powersmutator is antisymmetric we can also antisymmetrize
of D;. Since the(statio electric field is given byE?
=D?A? and the magnetic field byB2= Pt 1
=7 €@ D;,D;]° we obtained an effective action for the V.V, — Q[V;L Vil
backgroundd, fields in terms of electric and magnetic fields.

In this paper we study the contribution of the fermion with Egs.(26), (27), (29) one finds
functional determinant to that effective action. We use again
the technique of the covariant derivative expansion. In addi- V2=V21,+0,,F,,. (33
tion, we will work in the chiral limit throughout, i.e. we set
m;=0. The main difference to the gluon calculation is thatEquation(32) hence becomes

1 =ds
Iogde(iW)n:—ESpfO ?(esvz—es"z). (32)
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log deti¥),= - ~sp| %2 V2t 0,,F : LMo S Fp_ [=ds o
ogdetiV),=—5 Pl g 1exds(Vlto,,F,,)] log detiV)n, =~ dxk;w PRE O?Tre

_ 2

ex so"1a]}- (34) X (1—e M) [ — e~0k+ expf (sB2+ SV
The 1-loop action is UV divergent. This comes from the fact +2ispVi) 14 +s0,,F ., 1} (40)
that the running coupling constant is divergent at the tree rreH

level. Since QCD is a renormalizable theory, the tree levefrhis result is independent of the gauge group. In the follow-
divergence has to be canceled by a 1-loop divergence. Ijhg we will work with SU(2). In particular we choose the

order to control the divergent behavior of H§4) we regu-  packgroundA, fields to be(a) static and(b) diagonal, i.e.
larize the determinants by introducing a Pauli-Villars cutoff

M in momentum space. This means that we use the so-called

,
“quadrupole formula:” Ay(X) = p(x) 33 (41)
de( —Y?) det — #*+M? th
deti V), = \/ =Y det ) o
’ det—4?) de(—V?+M?)

. 73 .
- B=—i¢(X) = +iwl,. (42
:exq'_%f d—SSF[(l—eSMZ)(QSVZ_eS’;‘Z)]]_ 2
o S

Here 75 is the third of the three Pauli matrices:

(35
0 1 0 —i 1 0
The functional trace Sp can be taken by inserting any com- Tl:< ) 7-2:( ) ) T3= )
plete basis. We choose the plane wave basis: 10 0 0 -1 43
4
Spe_SK:TfJ d4X|imf (Zw)4e_ip'ye_5Keip'X, (36) V. COVARIANT DERIVATIVE EXPANSION
y—X

A. Zeroth order: The fermionic potential
where Tr is the remaining matrix trace over color and Lor- | this order we set the spatial covariant derivative to
entz indices. One can now drag the latter plane-wave expGsgrq i.e.V,=0, but sum over all powers 0%,
nent though the differential operat#r until it cancels with

the former. This results in the shift of the derivatives inside 1 d3p
the differential operator and in the following representation [logdeti¥), 1= — EJ' d3x >, 5
of the functional tracé20]: k== ] (2m)

=ds 2 5
4 X _ *sz SBly_ ASw, 1y
Spe SK=Tr | d*x ' eSO datiP) 1, (37) fo g re (e ek,
(2m)*

(44)

erator acts on unity, so that for example any term that has his can be evaluated explicitly. With EG12) it is easy to

d, in the exponent and is brought all the way to the right,C eck that
will vanish. According to Eq(37) we now have

The 1 at the end is meant to emphasize that the shifted op%‘

TresB =4[ e~ (WAS(6-200° 4 o= (UA(+209%] - (45)

* 3
log detiV), = — EJ d3x > d p3 where the factor 4 comes from TIy. Since the fermionic
2 k== (2m) energies are given by,=(2k+1)7T we can rewrite the
terms in Eq.(45) as

Xde—s‘(l—e‘SMz)Tr{exr[s(V Fiw)?
0 S 4T 10k e—(1/4)s(2wkt¢)25e—s[zﬂk—¢i]2, (46)

H 2
X1t s(Vi+ipi)“1at S0, F 4] where we defined

—exp] s(i w) *14+5(ip;) *14]} (38 é
=—+
Let us now define Pe=g=mT. “7
B=V,+iwd,, (399  The summation ove®, and the integrations overandp can
now be performed along the lines of the bosonic dds3,
then Eq.(38) becomes using the formula
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o

=ds ~

p| &)
ch? — cosT .
(48)

The result is the following:

1
1272T

+ 2 (27T— ¢ )2=2(7T)*Imod 207

[log deti¥ ), 1= [ (g2 (27T .

_ 3 2_ 212
o[ exre-2am

- (27TT)4}mod 47T

This potential is symmetric arounpl=0 and is periodic with
period 47T in contrast to the gluon potentifB,15] which
has period ZT. The curvature around=0 of Eqg. (49
gives the fermionic contribution te- m3/T. Indeed we find
—(N¢T)/6 which is in accordance with the knoWa&] 1-loop
result for the Debye mass

N

7 .

If we add the corresponding result from the gludsse e.g.

[18])

(49

2 1 2

f d3X[¢2(27TT_¢)2]|mod 2nT (52)

127°T

then we get the full result for two colors, namely (2
+N¢/2)T/3. Introducing the variable= ¢/(27T) we have
¢.=nT(vx1l) and Eq.(49) becomes

2
[10g 0eti¥ ), 10 =T° - [ €[ (1= 177~ 1]

(52

The potential is then given by th@ the chiral case identi-
cal) contributions of allN; quark flavors:

(2m)?
24

VF:_Nf [(1_V2)2_1]m0d2- (53

This result is of course well known and can for example be

found in the Appendix D of3] or in [16]. It can be com-
pared to the pure Yang-Mills potentigs,15]

(2m)?

YM _
v 3

v2(1—v)? (54)

mod 1

Both potentials are shown in Fig. 1.
We see clearly that the YM potential h&& minima,

PHYSICAL REVIEW D 70, 016006 (2004

-1 1

FIG. 1. The gluon(solid) and fermion(dashed potentials for
Ni=1 and—1<vp=<1.

tive to the YM potential. This fact comes solely from the
fundamental representation of the fermions.

B. Leading terms in electric sector

For an effective theory we are interested in the leading
terms in the electric sector. We would like to stress that we
are keeping all powers of the backgrouAd field in our
approach, but make an expansion in the spatial covariant
derivative. This means that we allow for an arbitrary ampli-
tude of theA, fields but we assume that all the background
fields are slowly varying and have momemgtec T. For the
leading terms we hence expand to quadratic ord&f inJust
as for the gluons and ghodt8] the technique is to expand

Trexp{s[(B2+VZ+2ip;V)1,+0,,F,1} (55
in powers ofV; using the following two master formulas for
two noncommuting matrice& andB:

1
eAtB— Ay J' dae®Bell-®A
0

1 1-a
+f daf dpe* BefABell e AAL ...
0 0

(56)

and

[B,e]= fold ye ™ [B,Ale(t™ A, (57)

Since in Eq.(56) powers ofB are brought down in the ex-
pansion we identifyB with the combinations of covariant
derivatives in Eq(55) andA is the rest. The electric field is
identified as

[Vi.B]I=[V; ,V4]=—iF ;= —iE;=—iE{T® (598

which are thez(N,) symmetric points oA,=0. Since there To the second order iF; there are three terms contributing:
is no center symmetry for the fermions, we do not find the L
same situation. Ingleed the fermion pof[ent?al has a minimum lesTrf da ea83214(vi214)e(17a)s,6214, (59)
at v=0 and a maximum at=1. Its period is doubled rela- 0
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4p®s? 1 1-a 5 it follows that
To=——3 Trf daJ dpe™sf 4V 1,)
0 0 TI‘ O-LX,BU’)/(SFD(BF’)/(SZZFLY,BF&,B . (67)
521, 1-a—B)sB21,
X eFB (V1) el m e At 60 sinceF,4F,; contributes to the electric sector afE,,

) . Eqg. (61) is equal to
T3=52TI’J daj dﬂea53214(o-aﬁlzaﬁ) 1 1-«a
2 2 2
0 0 T3:4SZTrJ'0 da’fo dBeaSB EkeBSB Eke(lfafﬁ)SB ,
X &P (g oF s el e A, (61)

1
The termsT, andT, are of the same structure as in the gluon = 252TrJ daeaslﬁzEke(lfa)sBzEk, (68)
case and can be showsee Appendix B of18]) to yield two 0
gauge invariant contributions:

in @ and B, invariant undera—(1—«a) as well as the cy-
clicity of the trace. After integration over, p ands we find
the following structure folL 5:

1 3 1
Ea( )

1 1 2
|1=53f dai — =+ a(l—a)+ =sp?
0 2 9

X Trel-asB B EreasB B EA,, (62)

12, m2 2 32T
1 2 ) L3=4—772 (ED"H(ED)gSH(E) 7S, (69
l,= —52(5— §sp2)Tr e (2E2+i{B,[V, ,Ei]}) 1,
(63) where
In contrast to the pure Yang-Mills calculation froih8] the 3 i |p+2w| —[p—20 2
Lorentz structure yields a factor 4 from Iy and since we Sl_k:_m by - ﬁ(log 4u) (70

are dealing with fermions all matrices are in the fundamental
representation. The second termlincontains an anticom-

mutator of B and the covariant divergence of the electric S;= > ! + !
field, which is zero if the background field obeys the equa- Ko =20y [p+20y
tion of motion. We will discuss it separately in the next sec-
tion and leave it out for the time being. 1
What has to be evaluated is =~ g 7l4(velogu) + & (v)]. (71)
[SLioopl&’= —N¢[log deti V), J& Here we used thatw,=(2k+1)7T and ¢=27Tv. The
o function ® is given b
NeT P#p (=ds . uncti (v) is giv y
=——| d®% > —| —e’®
2 K=o (2m)%Jo s 1+v 1-v
d(v)=2 sz +¢T . (72
X(11+15,+Ts3)
Here ¢ is the digamma function
E—NFJ d3x(Ly+Ly+Ls). (64)
J
z)=—logI'(z). 73
For the summation over the Matsubara frequencies it turns W) 0z 9(z) (
out to be necessary to define a region of definitiongorn . o .
particular we shall rescale this field @s=27Tv and look at ~ 1he parametey. is the UV-cutoff in divergent series:
the interval—1<v=<1. In different regions of) the results - u
will have different functional forms. We already saw for the D 1 D L (74)
fermion potential that it is symmetric in the intervall 1k &1k 9k
<p=<1, and outside this region one has to continue by peri-
odicity. and is related to the Pauli-Villars mass as
We will start with the terml;. From
i =7 TeyE. (75)
Ouv=" Z[ Yu 171/] (65) .
This subtraction scale for the running coupling constant has
and been known previousl{6] and was also obtained [i.8].

Next we will turn to the invariant ;. After integration
TrYaYpYyYs=4(0apdys™ OayOpst 8usdpy)  (66)  overa, p andswe find the following structure fok
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i I
1 H i
= 12 2)2 3)2 i i
Ly 4772{((5) +(E2)2)581+ (B2 15850 |, ! !
(76) \ 1}
whereS; is given by Eq.(71) and "-.I‘\ I',-"'
< _ z“’: (¢2+4w§)[¢2—2¢wk+4w§ \* /"‘j'
e Plwy |p+ 2wy \‘\‘ \ / ,/'
NoOoN s/
PP+ 2wt bol \\ S -7
|p— 2wy ~ = = .
1 -1 — 1
= —l2(logu—log4—2yg)— @ (v)].
(77) FIG. 2. The functiong{? (solid), f{" (dotted andf{” (dashed

without the UV divergent term.

Finally we investigatd ,. Again after integration oves, p
ands, L, is of the form: Fig. 2 and one sees that they are symmetric. To get outside
the interval —1<v=<1 one has to continue by periodicity,
and the functional form of théP changes.

We notice that the functio{” is constant, i.e. indepen-
dent ofA,. However, it contains the UV divergent lagthat
with S; given by Eq.(71). is necessary to renormalize the running coupling constant

Collecting all terms fror; , 3 we find the following re-  from the tree level action:
sults for the kinetic energy in the electric sector

L2: -

| (B2 @D+ (EIZS,|, (79

a3x F2, Ffw M(ll 1N) 84
[ST 00 EZ’—J7[<<E%>2+<E?>2>f§”<v> 22 M) B 9N 12N N )
+(E))2 ()] HereN, denotes the number of colors aNg the number of

flavors. We correctly obtained the gluonic contribution to the

d3x arag(F) charge renormalization if18]. For the fermions the tree
= f - | BEET(v) level divergence in the electric sector is
(EiaAi)z EEx \P M
S £(F) — =E,E,——log—. (85
A | " 2°(M) " “2am? A
where fP ()=t (») - f{P(»). In the second line of Eq. From our result Eq(81) we find the correct UV divergent
(79 we used contribution
apa\2
(Ei3)2:(EibA‘4) ’ (80) E E —E E N Iog( M e7E) (86)
Ashg 2472 K 24m? '

which follows from Eq.(41). The functions are given by .
If we add the tree-level and the 1-loop action then the result

should be UV finite. This is obtained by choosing the scale

()= (81) M in Eq. (86) to be equal to the Pauli-Villars mass, which
corresponds to the evaluation of the running coupling con-
stant at the scale #T/exp(yg). In the effective action we
then have to replace the Pauli-Villars cutdffby A and find

1) = Ll4(ve—logu) + (1)), (82) P Y

A
N FO ()= e, 87
f(v)= 83
Din)= (83)
We would like to stress once more that these functions are FO(v)= —4 Iog A +q)(v) (88)

the results for the interval-1<v<1. They are plotted in

016006-8
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we have to expand our functiof®7), (89) to quadratic order

N
FP ()= f2[4( Yet+log4)+d(v)] (890  inv. For Eq.(87) this gives naturally zero, and the remain-
96w ing contribution is
with @ (v) given by Eq.(72). G TNy o o
") Papapars e o

C. The “equation of motion” term

In the previous section we left away the contribution of . )
the second term in Eq63). Its contribution to the effective Which agrees with the result found [27] if the gauge group
action is is chosen to be S@).

N - dp [=ds
SEM:%J d3x 2 f ps ?e—5P2432 E. Leading terms in magnetic sector
k=—oo 2 0 . . . -
(2m) For an effective action in terms of magnetic fields we
1 2 52 - have to expand Eq40) to quartic order ir¥V, . The basic idea
X|5- §sp2 Tres® (i{B,[V; ,Ei1}). (90)  of the calculation is, again, to use master equatis6s—(58)
to drag covariant derivative§ to the right. One has for the
After integration and summation this becomes commutators
1
o & d3XTr([Vi JEilAs) Vie552=eSBZVi—isf dgeﬁsBZ{B'Ei}e(l—ﬁ)sszy
EMT 127 T 0

Ni e (D{E)°A;

" 1on) T (1)

1
ViVjGSBZZGSBZViVj—iSJ d5e5552[ViV,- ,BZ]e(l—ﬁ)sBz,
0

Here we wrote the result once in terms of a covariant deriva-
tive in the fundamental representation and once through a

. R T - Wwhere
covariant derivative in the adjoint representation

Diab: O"iﬁab+faCbAi(; and (DiEi)a: DlaeE?, (92) [VIV] ,82]: _|V|{B,E]}_|{B,E|}VJ )

in order to compare to the gluon resu[ts8]. In [18] we

obtained two terms: one comes solely from the nonzero Matn this way one ultimately obtains gauge-invariant combina-

subara modes, while the other is the contribution of the zergions of the electric field in the fourth power, mixed terms

mode alone. Our result here, E@Q1), is equal to—N¢/2  containing both electric and magnetic fields, derivatives of

times the first term of the gluon results. the electric field and, finally, magnetic field squared. In this
Equation(91) is zero if the background field obeys the paper we restrict ourselves to the latter terms quadratic in the

equation of motionD;E;=0. Otherwise it depends on the magnetic fieldB; defined as

behavior ofA, and E; at spatial infinity. One can integrate

Eqg. (92) by parts and gets

1
Bi=5 €jFjx=B{T%, (95

N 2

247°T

EM= fd3X{EiaEia_ Gi(EFAD]}. (93
whereF;, =i[V;,Vi] in the fundamental representation. For
hat reason we shall disregard the commutafdisA,] as
hey introduce powers oE;. In addition, we restrict our-

It yields a contribution to the function Eq87) plus a full

derivative term. There are certain background fields, BP
dyons [22] being an example, wherd,— const andE; o i 33
~1/r? at spatial infinity. Therefore the full derivative term in selves tohthe magnetlchfleld parallel A, "Z‘ B‘__. B‘VT I'Elt
Eq. (93) is nonzero. However, in the particular case of the™M&ans that we set the commutatf;; ,A,]=i([Vi E;]

dyon, it satisfies the equation of motion and the two terms in_[v' .Ei]) to zero. In practlca] terms _thls_means that we can
Eq. (93) cancel out. drag all powers of the covariant derivati% as well as of

the field strength$-;; through the exponentials &,, as if
they commute. Looking at the argument of the exponent in
Eq. (40) we see that terms which are quadrati®ireither do

In a related publication by Wirstari27] an effective  not contain the field strength tendey,, at all or consist only
theory for QCD at high temperatures was derived by calcuof powers of the latter. Mixing terms vanish upon integration
lating gluon by gluon scattering at low momenta in terms ofover momentum. Hence similar to the gluon césee Ap-
Feynman diagrams. In order to compare to the resuli@df  pendix C of[18]) we have to evaluate the following:

D. Comparison to previous work

016006-9
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[Si00pl$a’=—N;[log deti¥), 1

NfJ' - d®p [=ds
=——| g3 f f _-
2 Xk;m (2m)3Jo Se

XTI (V1+V3)1,],

—sp®

E—fo d®x[N;—N,], (96)

whereV; only contains powers of the derivatives

2 .
o[ S (2is )
Vy=e¥| S VAV — = pipi P ViV VY
(2|s)2 , ) )
+ 57— Pip[ ViV + ViV + ViVivel |, (97)
andV, comes from the field strength tensor alone:
1- a
V,=s 2TrJ daf eS8 a, Fijef5 oy
X F et a AsB?, (99)

We start with the evaluation of,. For the momentum inte-
gration we use

d’p 1
f(zwﬁe p2:(4775)3’2’ 9
& —sP ! s 100
f (2m )3pp, 23(477—5)3,2 ij (100

d3p
f PP PePme "

1

:@ (477—3)3/2[5” SkmT 5Ik5 + 6 5jk]

(107

and obtain the following contribution to E¢Q6):

o)

1 =ds
PR _T S)
477372 k;oc fo \/5 re

B 1 V. VIV .V
12 i ]][ i j]
(102

Nl:

Since[V;, ,] =—
is equal to

FijFij= — 2ByBy, whereB,=B}T?, this

o

1 © ds
— > f TST«eSZBBkBk),

Ny=—
Y 24n%2 s o

(103

and after integration overand the summation over the Mat-

subara frequencies it becomes

PHYSICAL REVIEW D 70, 016006 (2004

<B?>2§ss,

N S

(109

whereS; is again given by Eq(71). For V, we find, using
Eqgs.(66), (67):
1 l-a 2 2 )
V2=232Trf daf d,Be“SB FijeBSB Fije(lfafﬂ)SB )
0 0
(109

Since the contribution to the magnetic sectorFofF;; is
2B,By this is equal to

1 1-a 2 P 2
V,=4s%Tr f da J dpBe*s8 B, el B et~ «~A)sB
0 0

“BiBy), (106

where we used the fact that the integrand is symmetrie in
and B, the cyclic property of the trace and eventually
dragged the magnetic field to the right. One hence sees that
V, is of the same structure &5. Explicitly we find after the
integrations ovep,s and the summation oves, that

=25°Tr(e%?

B, (107
167 ' ’

whereS; is given by Eq.(71). Adding Egs.(104), (107) we

find the following result for the kinetic energy in the mag-

netic sector:

F (2) dax 3\2|[(F)
[S1-100pli T(Bi) hi”(v), (108
where the coefficient is given by
(F) N
h3 (v)=9 5 —logu)+®(v)], (109

with ®(v) as in Eq.(72).

The functionh{” above is the result for 1<v<1 and it
is symmetric in this interval. It also contains the necessary
UV divergent contribution to cancel the tree-level divergence
of the running coupling constant, E(R4):

BBkl Mo
20m? N\ 47T

Adding up the tree-level and 1-loop terms is obtained by
replacingu in Eq. (109 by A/(4#T)exp(yg), which corre-
sponds to an evaluation of the running coupling constant at
the scale 4rT/exp(yg). The final result is then:

BBy
2472

ogu=-— (110

HP(v) = 5 N (110)

6m°T

A
[ 4 |Ogﬁ+q)(v)

VI. CONCLUSIONS

We have calculated the 1-loop contribution of massless
quarks to the effective action at high temperatures for any
value of A, and hence of the Polyakov line. While we have a
general result in the color-electric sector, we restrict our-
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selves to a magnetic field parallel &y. The covariant de- in which the authors compute the coefficients in the parallel
rivative expansion of this action has the form: electric and magnetic sector. Apart from a constant our func-
tions h{?) and f{" agree with their results.

d®x (EiA,)?
Fl2= | 2| —T3VF 2E(F) ) A E(F)
[Ser] f TV I+ BRI = ) ACKNOWLEDGMENT
- We are grateful to Chris Korthals-Altes for a critical read-
+(BD2HP )+ ... |, (112 ing of the manuscript and for helpful comments.

where v=/AJAY27=T and B‘i‘ is the magnetic field parallel APPENDIX: EUCLIDEAN COORDINATES

in color space toA,. Because of the Bianchi identity, In finite temperature QCD one needs the Euclidean for-
[Fij \Asl=i(LVi,E;]—[V},Ei]), in the case where the mag- mulation of path integrals in order to give the partition func-
netic field is not parallel té\, one also has to include terms tion the statistical-mechanics interpretation. Supersciipts
with electric field and its derivatives into the effective action, will denote Minkowski coordinates, while superscrigsvill
otherwise it will not be complete. refer to Euclidean coordinates. Note that throughout the pa-

The potentiaM™ has double the period as compared to theper we have used Euclidean coordinates without any explicit
gluon induced potential, is symmetric inbetween—1 and  superscripts.

1 and has been known before. It has its minimur/Aay For space-time coordinates we have
=0 and a maximum g#\,| = = 2« T. The functions{?} and EoM O E
H{? given by Egs.(87), (89) and Eq.(111) are new. All Xg=Xo X=X (A1)

functions, both in the electric and in the magnetic sector, argoy the gluon and fermion fields we have
symmetric inv between—1 and 1, which reflects the fact

that fermions are in the fundamental representation of the Af=—iAY AF=AY (A2)
color group. Our results can be used for studies of QCD at
high but not infinite temperatures, where the Polyakov line yE=yt  YlE=iyM, (A3)

experiences fluctuations which are large in amplitude but _ . _

long ranged and where the dimensional reduction approach® Dirac gamma matrices are related as:

is too crude. E_ .M E__: M E__M

= Ee iyl =M A4

Note added in proofAfter the submission, the paper by YaTY i YsTYs (A4)
Megias, Ruiz Arriola and Salced@9] appeared on the net, The Euclidean gamma matrices are Hermitian.
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