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Selection rules forJPC exotic hybrid meson decay in largeNc
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The coupling of a neutral hybrid$1,3,5 . . .%21 exotic particle~or current! to two neutral~hybrid! meson
particles with the sameJPC andJ50 is proved to be sub-leading to the usual large-Nc QCD counting. The
coupling of the same exotic particle to certain two~hybrid! meson currents with the sameJPC andJ50 is also
sub-leading. The decay of a$1,3,5 . . .%21 hybrid particle to hp0,h8p0,h8h,h(1295)p0,
p(1300)0p0, h(1440)p0, a0(980)0s or f 0(980)s is sub-leading, assuming that these final state particles are
~hybrid! mesons in the limit of largeNc .
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I. INTRODUCTION

States of quantum chromodynamics~QCD! can defini-
tively be said not to be conventional mesons when th
states have exoticJPC, which cannot be constructed for con
ventional mesons in the quark model, or equivalently, can
be built from local currents with only a quark and an an
quark field. HereJ denotes the internal angular momentu
P ~parity! the reflection through the origin andC ~charge
conjugation! particle-antiparticle exchange. These are co
served quantum numbers of QCD.

With the experimental discovery of isovectorJPC exotics,
the question of their interpretation has come into focus. Q
with a large number of colorsNc offers a systematic expan
sion in 1/Nc with considerable phenomenological succe
@1,2#, which can address this question. This is becaus
glueball ~built from only gluons! and a ~hybrid! meson
~quark-antiquark with additional gluons! do not mix in large
Nc @1#. Furthermore, four-quark states~two quark-antiquark
pairs! are absent@2#. In large Nc the isovectorJPC exotics
must therefore be hybrid mesons, as glueballs are isosc
Here it is proved for the first time that certain decays
hybrid mesons that are allowed by the conserved quan
numbers of QCD are sub-leading to their usual largeNc
counting, providing a consistency check for the hybrid nat
of the state.

Selection rules forJPC exotic hybrid decayamplitudes,
e.g., the amplitude for JPC5121 hybrid particle
→hp,h8p, were noticed in non-field theoretic analyses@3#.
In QCD it was found that these selection rules are rea
properties of certain three-pointGreen’s functions@4,5#. The
first attempt to obtain hadronic properties from the Gree
functions @4# contained some errors@5#. These properties
were subsequently extracted in finite-Nc QCD, e.g. the
physicalNc53 @5#. The properties were of limited physica
relevance since they pertained to the coupling of current
particles, e.g., a 121 hybrid current tohp. Also, for techni-
cal reasons, the scope of the deductions was limited. As
be seen below, these reasons disappear in largeNc , because
three and more particles do not contribute. The largeNc
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treatment of the results of Ref.@5# is the subject of this paper
The results of this paper can be comprehended by only re
ing Sec. IV, which also explicates the experimental con
quences of this paper. Section II proves two results for
coupling of particles to currents by first proving two prelim
nary results. Section III uses the results of the previous s
tion to prove a result for the coupling of particles to particle

II. COUPLING OF CURRENTS TO PARTICLES

The decay of aJPC5$1,3,5 . . .%21 particle to two iden-
tical J50 particles vanishes by Bose symmetry, because
final state particles are in an odd partial wave. The analog
statement for a Green’s function built from aJPC

5$1,3,5 . . .%21 current and twoJ50 currents is that the
‘‘identical current’’ part, or symmetric part, of the Green
function vanishes@5#. The OZI rule allowed contributions to
the Green’s function only has a symmetric part@5#, so that
they do not contribute to the Green’s function. The expr
sion that does not contain an OZI rule allowed contributi
is

E
2`

`

dteiEtÔpE d3xd3yei (p•x2p•y)^0uB~x,t !C~y,t !Am~0!u0&

5(
n

~2p!4d3~pn!d~En2E!Ôp

3^0u S E d3xeip•xB~x,0! DC~0!un&^nuAm~0!u0&. ~1!

This is proved in Eqs.~2!, ~3! and ~14! of Ref. @5# with no
approximations. The left-hand side~LHS! of the equation
contains the time integral and spatial Fourier transform o
three-point Green’s function which describes the ‘‘decay’’
A into B and C. The expression is in Minkowski~physical!
space withE andp real numbers. The LHS is expanded o
the right-hand side~RHS! by inserting an infinite set of
asymptotic stable statesn with energyEn and momentumpn
in order to extract physical predictions. The delta functio
indicate that the asymptotic states are at rest and have en
E. The gauge-invariant local currentsB, C andAm have the
flavor structure of a neutral~hybrid! meson~linear combina-
tions of ūu,d̄d, . . . quark fields!, and can contain gluon
©2004 The American Physical Society04-1
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fields @6#. The currentsB and C both have the same color
Dirac-derivative-gluon structure for a given flavor, a fini
number of derivatives~when expanded as a power serie!
and J50. Also, the currentsB(0) andC(0) have equalP
andC. The currentAm(0) is assumed to haveP52 and odd
J ~with Lorentz indices denoted bym). Conservation of
charge conjugation then implies that this current isJPC

5$1,3,5 . . .%21 exotic, so that it should contain at least o
gluon field: a hybrid meson current.

Equation~1! would be of limited interest were it not fo
the fact that the action of the operatorÔp ~containing a finite
number of derivatives in powers ofp) allowed the demon-
stration that the LHS contains only OZI rule forbidden co
tributions, and hence isO(1) to leading order in the large-Nc
power counting, as opposed to the usualO(Nc). The remain-
der of this paper exploits this behavior of the LHS and d
duces the consequences for the RHS. The strategy is to
only the leading contributions to the RHS in largeNc , and
then to equate to the LHS. It is shown in the remainder
this section that the leading contribution to the RHS com
from eitherJPC5$1,3,5 . . .%21 one-hybrid-meson states, o
from two- ~hybrid! meson states withJ50 and the sameJPC

@Eq. ~2!#. The RHS contains a product of two matrix el
ments for each of the leading contributions. One of the m
trix elements will be shown to have the usual large-Nc count-
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ing. The other matrix element will be shown to have o
order inNc lower counting than usual@Eqs.~3!,~4!#, in order
that the LHS has an order lower counting than usual,
required.

On the RHS the usual large-Nc counting for
^0uB(x,0)C(0)un& is orderANc, Nc , ANc or 1 for n respec-
tively a one-, two-, three- or four-~hybrid! meson asymptotic
state @1,7#. The counting for^nuAm(0)u0& is respectively
ANc, 1, 1/ANc or 1/Nc @1,7#. The product of the countings o
the two matrix elements isNc , Nc , 1 and 1/Nc respectively.
If the asymptotic states contained glueballs the counting
the product will be lower thanNc . Hence only one-and two
particle ~hybrid! meson states contribute in largeNc , and
they contribute atO(Nc), as they should to equal the usu
counting of the LHS. Also, the one-particle states that c
tribute to ^nuAm(0)u0& at O(ANc) are only neutral hybrid
mesons with the sameJPC as the currentAm(0) @7#. These
states cannot be mesons because they areJPC exotic. The
two-particle states that contribute tô0uB(x,0)C(0)un& at
O(Nc) are only two neutral ~hybrid! mesons@2# with the
sameJPC as the currentsB(0) andC(0). It follows that only
one-hybrid-meson and two-~hybrid! meson states contribut
on the RHS to leading order in largeNc . Using this the RHS
of Eq. ~1! can be simplified to read~Appendix A 1!
2p(
s

d~ms2E!Ôp^0u S E d3xeip•xB~x,0! DC~0!us0&^s0uAm~0!u0&1
1

~2p!2 (
s1s2

S 12
ds1s2

2
DK~E!

3E dVk1
Ôp^0u S E d3xeip•xB~x,0! DC~0!us1k1s2k2&^s1k1s2k2uAm~0! u0&U

k11k25(0,E)

, ~2!
n-

S

a

cle

th
where the first sum is over the one-hybrid-meson states
~implicitly including the different polarizations!; and the sec-
ond over the two-~hybrid! meson statess1 ands2, in such
a way that a particular two-particle state is summed o
only in the permutations1s2 ~and nots2s1) in order to
avoid double counting. Throughout the text the conventio
that non-boldfaced variables starting withk ~andp,q,x,y,z)
indicate four-vectors.

The kinematical variable dependence of the one-part
terms in Eq.~2! is only on E and p. If the hybrid particles
have a discrete spectrum, there would only be contributi
for discrete values ofE whenE5ms . Because of the con
straint k11k25(0,E), the two-particle terms also only de
pend on the kinematical variablesE and p. BecauseK(E)
only has support above the two-particle threshold, the tw
particle terms all vanish below the lowest threshold, and c
tains a~continuous inE) contribution from each two-particle
state above its threshold.

In each of the terms in Eq.~2!, one of the matrix element
has the usual large-Nc counting. For the one-particle term
this is ^s0uAm(0)u0&. The reason is that, barring acciden
r

is

le

s

-
-

l

cancellations, this matrix elementhas to have exactly its
usual large-Nc counting „O(ANc)…, in order not to violate
the counting for two-point Green’s functions~the first pre-
liminary proved in Appendix A 2!. For the two-particle terms
in Eq. ~2!, ^0uB(x,0)C(0)us1k1s2k2& has the usual large-Nc

counting„O(Nc)…. The reason is that, barring accidental ca
cellations, ithasto be exactlyO(Nc), in order not to violate
the counting for four-point Green’s functions~the second
preliminary proved in Appendix A 3!.

Equations~1!,~2! can schematically be written as LH
5RHS5(mambm1(mcmdm , where the sums are overs
for the one-particle terms(mambm and overs1s2Vk1

for

the two-particle terms(mcmdm . ~As shown in Appendix B,
the integral overVk1

can be written as a finite sum due to

partial wave expansion.! The sum overs is finite, since the
one-particle states must have mass equal toE. The sum over
s1s2 is finite because there is a finite number of two-parti
thresholds belowE. If the LHS is subleading in the large-Nc
counting, the RHS is, but this doesnot imply that ambm is
subleading, nor thatcndn is, because it is possible that bo
4-2
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ambm andcmdm have the usual large-Nc counting, and there
is a cancellation between the terms yielding a sublead
RHS. The arguments in Appendix B have the conseque
that ambm and cmdm are eachsubleading, i.e.,O(1). This
follows by evaluating the equation LHS5(mambm
1(mcmdm multiple times for different currents, so that
matrix equation is obtained which is then inverted. This c
only be done if the number of terms on the RHS is finite,
it is here. If three- or more-particle terms contributed on
RHS, as would generally be the case for the physicalNc
53, it is not clear that the number of terms on the RHS
finite, and that the inversion can be done. For this reason
fact that three or more particles are subleading in the la
Nc expansion, is important to make progress in the deri
tion. The remainder of this section is devoted to two resu
which although exhaustively derived in Appendix B, a
mostly evident at this point.

The first preliminary@^s0uAm(0)u0& has to beO(ANc)]
means thatbm is O(ANc). Together withambm is O(1), this
implies thatam is O(1/ANc), which yields most of thefirst
result of the paper that the coupling of currents to a parti

^0uB~x,t !C~y,t !us0&5OS 1

ANc
D , ~3!

where its usual counting isO(ANc). This holds for a neutra
on-shell hybrid meson particles at rest with JPC

5$1,3,5 . . .%21. Also, B andC are neutral gauge-invarian
local ~hybrid! meson currents at space-time positionsx andy
at equal time with flavor structure a linear combination
ūu, d̄d, . . . , the same color-Dirac-derivative-gluon struc
ture for a given flavor, a finite number of derivatives andJ
50. The currentsB(0) andC(0) should have equalP and
C.

The second preliminary@^0uB(x,0)C(0)us1k1s2k2& has
to beO(Nc)] yields most of the fact thatcm is O(Nc). Since
cmdm is O(1), this implies thatdm is O(1/Nc), which yields
most of thesecond resultthat the coupling of particles to
current

^s1k1s2k2uAm~z!u0&5OS 1

Nc
D , ~4!

where its usual counting isO(1). This holds for neutral on-
shell ~hybrid! meson particless1 ands2 with identicalJPC

andJ50, and with arbitrary four-momentak1 andk2. Also,
Am(z) is a neutral gauge-invariant local hybrid mesonJPC

5$1,3,5 . . .%21 current with Lorentz indicesm at space-
time positionz with flavor structure a linear combination o
ūu, d̄d, . . . .

III. COUPLING OF PARTICLES TO PARTICLES

In this section the dependence on the currentAm(z) is
removed from the matrix element in Eq.~4! to obtain a result
@Eq. ~6!# that does not depend on the current, but on
physically relevant T-matrix. Because the matrix elemen
Eq. ~4! has one order inNc lower counting than the usua
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the T-matrix element@Eq. ~6!# will have an order lower
counting than usual. It is shown in Appendix A 4 that

^s1k1s2k2 out uAm~z!u0&2^s1k1s2k2 in uAm~z!u0&

5(
s

F i2p

ANc

^s~k11k2! in uAm~z!u0&d~Am1
21k1

2

1Am2
21k2

22ms!G @ANc^s1k1s2k2uTus~k11k2!&#

~5!

when the restriction to the rest frame,k11k250, applies.
This equation states that when the difference of the coup
of remote future ‘‘out’’ states and remote past ‘‘in’’ states
the current is considered, valuable information about
physically relevant T-matrix is obtained: thethird result that
the coupling of a particle to particles

^s1k1s2k2uTus0&5OS 1

Nc
3/2D , ~6!

where its usual counting isO(1/ANc). This holds for neutral
on-shell~hybrid! meson particless1 ands2 with J50, iden-
tical JPC, and four-momentak1 andk2 in the rest framek1
1k250; and for a neutral on-shell hybrid meson particles
at rest withJPC5$1,3,5 . . .%21.

Even though the third result is proved in Appendix
using techniques analogous to those used to derive the
two results, its plausibility can be verified by using Eq.~6! in
conjunction with the first preliminary@^s0uAm(z)u0& has to
be O(ANc)], to obtain that the RHS of Eq.~5! is O(1/Nc),
consistent with the LHS given by the second result@Eq. ~4!#
asO(1/Nc).

IV. REMARKS

The three results of the paper are Eqs.~3!, ~4! and ~6!,
including the discussion under each equation. These res
are theorems of large-Nc QCD field theory with no approxi-
mations, and are valid within the generic large-Nc frame-
work @1,2,7#.

The first result@Eq. ~3!# implies that certain four-quark
currents are not good interpolators for hybrid meson p
ticles. This may have implications for Euclidean space latt
QCD, even though the result was derived only in Minkows
space. A special case of the second result@Eq. ~4!# was pre-
viously derived@5# for an hp0 asymptotic state for certain
quark masses within a certain kinematical range.

The third result@Eq. ~6!# is of direct experimental rel-
evance. For example, the decay amplitudes~couplings
of a particle to particles! of a $1,3,5 . . .%21 hybrid to
hp0, h8p0 ,h8h, h (1295 )p0, p (1300 )0p0, h (1440)p0,
a0(980)0s or f 0(980)s are O(1/Nc

3/2), while the usual
counting isO(1/ANc), assuming that these final state pa
ticles are~hybrid! mesons in the limit of largeNc . Hence the
widths of these decays are 1/Nc

2 suppressed with respect t
their usual counting. This is the same suppression that la
4-3
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Nc predicts for decays forbidden by the OZI rule@1#, imply-
ing that the suppressions predicted here should be sim
phenomenologically. The selection rule is most useful wh
OZI allowed decay is expected to be important in the
sence of the selection rule. In the example above, this is
for a hybrid composed dominantly ofuū and dd̄. On the
other hand, it can be deduced from Eq.~6! that the coupling
of a 121 hybrid to hch is O(1/Nc

3/2), but this is less usefu
as the OZI allowed coupling@of the cc̄ component of the
hybrid to hc(cc̄) and thecc̄ component of theh] is not
expected to be important. Interestingly, even in the unlik
case where theh8 or s is a pure glueball in the limit of large
Nc , the decay amplitude of$1,3,5 . . .%21 hybrids to
h8p0,h8h, a0(980)0s or f 0(980)s would beO(1/Nc) @1#,
which is still subdominant to the usual counting. In cases is
a meson-meson state in the limit of largeNc , the predictions
mentioned do not apply. Beside the 021 and 011 particles
mentioned, examples can also be given of 012 and 022

exotic particles in the final states. The large-Nc selection
rules, in contrast to the selection rules discussed in Se
also apply when both final state mesons do not have the s
radial excitation, e.g., theh(1295)p0, p(1300)0p0 and
h(1440)p0 final states. Assuming isospin symmetry the
sults can also be extended to charged states by use o
Wigner-Eckart theorem, as will now be done.

Consider the decay of a 121 isovector hybrid with iso-
spin symmetry. Decay tohp, h8p, h(1295)p, h(1440)p
anda0(980)s, which is ordinarily important, is suppresse
The experimentalp1(1600) @8# is a 121 exotic isovector
resonance. It has not been seen inhp. A 121 enhancemen
at 1.6 GeV has prominently been seen inh8p @8#, although
the branching ratio is not dominant if the enhancemen
resonant „B@p1(1600)→ f 1p#/B@p1(1600)→h8p#53.80
60.78 @9#…. If the enhancement is dominantly nonresona
as has been advocated@10#, the branching ratio is very smal
The decayp1(1600)→h(1295)p is found to be small rela-
tive to f 1p in an analysis of thehp1p2p2 final state@9#,
although an earlier report stated thatp1(1600) was seen in
f 1p and h(1295)p at a similar magnitude inK1K̄0p2p2

@11#. If p1(1600) is found to have a large branching ratio
h8p, that would be inconsistent with large-Nc expectations
which are otherwise consistent with its being a hybrid me
@12#. As discussed above, decay toh8p is large-Nc sup-
pressed whenh8 is either a meson or a glueball in the lim
of large Nc , although the suppression is less whenh8 is a
glueball. Hence a sizableh8p branching ratio can arise
through a large glueball component of anh8 meson @3#,
which violates the large-Nc prediction that meson-glueba
mixing is suppressed. The recently discoveredp1(2000) has
not been seen inhp, h8p and h(1295)p @9#, consistent
with its being a hybrid meson.

This research is supported by the Department of Ene
under contract W-7405-ENG-36.

APPENDIX A: DIVERSE RESULTS

1. Derivation of Eq. „2…

For the one-particle states,(n5(s*d3ps /(2p)3, and the
momentumps50 due to the momentumd function, so that
01600
ar
n
-
e

y

I,
me

-
the

is

t,

n

y

Es5Ams
21ps5ms because the particles in an asympto

state are on-shell. For the two-particle states(n5(s1s2
(1

2ds1s2
/2)*d3k1 /(2p)3*d3k2 /(2p)3, where the factor (1

2ds1s2
/2) is 1/2 for the phase space of identical particle

Substituting pn5k11k2 and En5Ak1
21m1

21Ak2
21m2

2 in
the phase space integration

E d3k1

~2p!3E d3k2

~2p!3
~2p!4d3~pn!d~En2E! f ~k1 ,k2!

5
K~E!

~2p!2E dVk1
f ~k1 ,k2!U

k11k25(0,E)

, ~A1!

where

K~E![E
0

`

k1
2duk1ud~Ak1

21m1
21Ak1

21m2
22E!

5
1

8E4
„E42~m11m2!2~m12m2!2

…

3A„E22~m11m2!2
…„E22~m12m2!2

… ~A2!

if E>m11m2; andK(E) vanishes ifE,m11m2.

2. First preliminary

The following two-point function is O(Nc) in the
Feynman-diagrammatic large-Nc counting@7#

^0uAm~x1!An~x2!u0&5(
n

^0uAm~x1!un&^nuAn~x2!u0&,

~A3!

and only one-~hybrid!-mesonsn contribute at leading orde
@7#. Hence there must be a non-empty set of statesn for
which ^0uAm(x1)un&^nuAn(x2)u0& of O(Nc). If A, m, n, x1
andx2 are changed the set of states for which this is true m
change. As these variables are changed, a specific stan
should regularly be part of the set, since there is noth
special about it. Hence for a specific particles with four-
momentumps , it must be possible to chooseA, m5n and
x15x25z such that ^0uAm(x1)un&^nuAn(x2)u0&
5u^spsuAm(z)u0&u2 is O(Nc). This implies that
^spsuAm(z)u0& is O(ANc), as promised.

3. Second preliminary

The following four-point function isO(Nc
2) @2#

^0uB~x1!C~x2!B~x3!C~x4!u0&

5(
n

^0uB~x1!C~x2!un&^nuB~x3!C~x4!u0&,

~A4!

and only two-~hybrid! meson statesn contribute at leading
order@2#. Similar to the argument for the first preliminary,
4-4
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must be possible to chooseB, C, x15x35(x,0), x25x450
and a specific stateus1k1s2k2&, such that

^0uB~x1!C~x2!un&^nuB~x3!C~x4!u0&

5u^0uB~x,0!C~0!us1k1s2k2&u2

is O(Nc
2). Whence the promised result.

4. Derivation of Eq. „5…

All derivations so far left unspecified whether th
asymptotic states were ‘‘in’’ or ‘‘out’’ states. Consider th
specific case of ‘‘out’’ states, and insert a complete set
‘‘in’’ states:

^s1k1s2k2 out uAm~z!u0&

5(
s

E d3q

~2p!3
^s1k1s2k2 out usq in&

3^sq in uAm~z!u0&1 (
s18s28

S 12
ds

18s
28

2
D

3E d3q1

~2p!3E d3q2

~2p!3
^s1k1s2k2 out us18q1s28q2 in&

3^s18q1s28q2 in uAm~z!u0&. ~A5!

Restrict tok11k250 in this subsection. The usual large-Nc

counting for^s1k1s2k2un& is order 1/ANc, 1 ~no scattering!,
or 1/ANc for n respectively a one-, two- or three-~hybrid!
meson state@1,7#. The counting for̂ nuAm(z)u0& is respec-
tively ANc, 1 or 1/ANc @1,7#. The product of the countings o
the two matrix elements is 1, 1 and 1/Nc respectively. If the
asymptotic states contained glueballs the counting of
product will be lower than 1. Hence only one- and tw
~hybrid! meson states contribute in largeNc , as indicated in
Eq. ~A5!. As before, the one-particle states that contribute
only neutral hybrid mesons with the sameJPC as the current
Am(0).

Connection with the S matrix is now made by usi
^m out un in&5^m in uSun in& @13#. In the second part o
Eq. ~A5! write the two-body scattering

^s1k1s2k2 out us18q1s28q2 in&

5^s1k1s2k2 in us18q1s28q2 in&

where it was used that only no-scattering occurs atO(1) @1#.
The latter overlap is simply an overlap between free boso
states in the same basis. It can be evaluated@13# and equals

~2p!6
„d3~k12q1!ds1s

18
d3~k22q2!ds2s

28

1d3~k12q2!ds1s
28
d3~k22q1!ds2s

18
…. ~A6!

In the first part in Eq.~A5! introduce the T matrix, defined a
the transition from an ‘‘in’’ to an ‘‘out’’ state
01600
f

e

e

ic

^s1k1s2k2 out usq in&5 i ~2p!4d4~k11k22q!

3^s1k1s2k2 inuTusq in&,

~A7!

using that no-scattering does not contribute, given that thi
the overlap of a two- with a one-particle state; and empl
ing the definition of the S matrix in terms of the ‘‘reduced’’
matrix @13#. Dropping the ‘‘in’’ label on the RHS of Eq.
~A7!, becausê m in uTun in&5^m out uTun out& @13#, and
substituting Eqs.~A6!,~A7! in Eq. ~A5!, yield Eq. ~5!.

APPENDIX B: WHY EACH TERM IN EQ. „2…
IS SUBLEADING

This appendix starts by proving that the angular integ
tion in Eq. ~2! can be written as a finite sum. The first tw
results of the paper are then derived.@This is done directly,
without first showing thateach of the terms in Eq.~2! is
subleading as discussed in the main text. However, once
first two results are established, it follows that each of
terms is subleading.# The third result is subsequently derive

It will be convenient for the derivation to write the inte
gral over the solid angleVk1

in Eq. ~2! as a finite sum. This
can be done by performing a partial wave expansion of
overlap ^s1k1s2k2uAm(0)u0& by explicitly considering its
Lorentz structure. It is a function ofk1 and k2, or equiva-
lently of k12k2 andk11k2. First consider the Lorentz sca
lars that can be built from these two variables: (k12k2)2,
(k11k2)2 and (k12k2)•(k11k2). It is easily shown that the
on-shell conditionsk1

25m1
2 andk2

25m2
2 imply that the latter

two variables can be expressed in terms of the first varia
Hence the only independent Lorentz scalar is (k12k2)2.
Second consider the case whereAm hasJ51, i.e. is a vector.
The overlap can be written as a linear combination ofk1m
times a Lorentz scalar, andk2m times a Lorentz scalar, sinc
this is the most general structure transforming like a vec
Denote the two Lorentz scalars bŷs1s2uA(0)& i„(k1

2k2)2
…, with i 51,2. Define L m

i (k1 ,k2)5kim . Then the
overlap

^s1k1s2k2uAm~0!u0&

[(
i

L m
i ~k1 ,k2!^s1s2uA~0!& i„~k12k2!2

…. ~B1!

It is evident that the procedure can be performed for arbitr
J, and that appropriateL m

i can always be constructed, wit
the partial wavei ranging over a finite number of integer
Equation~B1! is the promised partial wave expansion of t
overlap for generalJ. The functionsL m

i depend purely on
kinematical variables and all dynamical information is co
tained in the scalar functionŝs1s2uA(0)& i„(k12k2)2

…,
which depend kinematically only on (k12k2)2. When Eq.
~B1! is substituted in the two-particle terms of Eq.~2! the
integral over the solid angleVk1

can be written as a finite

sum overi, as promised, since (k12k2)2 does not depend on
the solid angle.

Rewrite Eqs.~1!,~2! as
4-5
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WBC5 (
s51

NS

MBCsVs1 (
s1s2i 51

NP

M̃BCs1s2i Ṽs1s2i , ~B2!
o

he

s

h
ar

w

r-
on

x
n

01600
where the explicit dependence on the currentsB and C are
indicated. The LHS of Eq.~1! ~divided byNc) is
WBC[
1

Nc
E

2`

`

dteiEtÔpE d3xd3yei (p•x2p•y)^0uB~x,t !C~y,t !Am~0!u0&. ~B3!

The one-particle matrix elements of Eq.~2! ~divided byNc) are given by

MBC s[Nc
a21/22p d~ms2E!Ôp^0u S E d3xeip•xB~x,0! DC~0!us0&, ~B4!

Vs[Nc
2a21/2^s0uAm~0!u0&, ~B5!

wherea is a real number specified below. The two-particle matrix elements of Eq.~2! ~divided byNc) are

M̃BC s1s2i[
1

Nc

1

~2p!2
S 12

ds1s2

2
DK~E!E dVk1

Ôp^0u S E d3xeip•xB~x,0! DC~0!us1k1s2k2&L m
i ~k1 ,k2!U

k11k25(0,E)

,

~B6!

Ṽs1s2i[^s1s2uA~0!& i„~k12k2!2
…uk11k25(0,E) , ~B7!
an

n
-

n-
e

r-

r-
on-
ion,
using Eq.~B1!. As discussed in the main text, each side
Eq. ~B2! depends on the kinematical variablesp andE. For a
specific choice of these variables, there areNS>0 one-
particle statess contributing, andNP>0 two-particle states
and partial wavess1s2i contributing. It will be useful to
think of the group of labelss1s2i as a single label. The
remainder of the discussion is only of interest if it is not t
case thatNS5NP50.

From the second preliminary@^0uB(x,0)C(0)us1k1s2k2&
has to beO(Nc)] it follows that M̃ in Eq. ~B6! is <O(1).
This obtains by noting thatÔp is independent of color, as i
shown at the end of this appendix, and thatL m

i and K are
purely kinematical functions with no color dependence. T
possibility that there are accidental cancellations in the v
ous integrations, which could makeM̃,O(1), is incorpo-
rated by indicating thatM̃<O(1). Thepossibility of cancel-
lations will be taken into account in the derivations belo
By choosinga appropriately,M in Eq. ~B4! is definedto be
exactly O(1). Hence bothM and M̃ are <O(1). Evaluate
Eq. ~B2! for NS1NP different currentsB,C. SinceV andṼ
in Eqs.~B5! and ~B7! are independent of the choice of cu
rentsB andC, this amounts to constructing a matrix equati
W5MV. The NS1NP dimensional column vectorW is
built from the evaluations ofWBC for different values of
B,C; the (NS1NP)3(NS1NP) dimensional matrixM con-
tains MBCs and M̃BCs1s2i ; and theNS1NP dimensional

column vectorV is built from Vs andṼs1s2i . Because both

M andM̃ are<O(1) it follows that each entry of the matri
M is also<O(1). This means that, barring accidental ca
cellations, the determinant ofM, detM, which is a sum of
f

e
i-

.

-

products of the entries ofM, is exactlyO(1), i.e., is non-
zero and finite in the large-Nc limit. Note that even if some
of the entries of the matrixM are,O(1), it is still possible
for detM to be exactlyO(1). If detM,O(1) the derivations
below are invalid. This possibility can be excluded by
appropriate choice of currents. Since detM5O(1) the in-
verse of M exists, and V5M21W. Since M21

5adjM/detM, where adjM is the adjoint matrix ofM,
which is a sum of products of entries ofM, it follows that the
entries ofM21<O(1). Noting from the main text that the
LHS of Eq.~1! is O(1) @strictly speaking, it is<O(1), since
it is only known that OZI allowedO(Nc) contributions are
not present@5#, and that the highest order OZI forbidde
contribution isO(1) @1# if there are no accidental cancella
tions#, so that each entry of the vectorW<O(1/Nc), it fol-
lows from V5M21W that each entry of the vectorV is
<O(1/Nc). This implies thatV and Ṽ are both<O(1/Nc).

It is instructive to study the kinematical variable depe
dence ofṼ in Eq. ~B7!, which can only be relevant to th
discussion ifE is above the two-particle thresholdm11m2,
since the two-particle term in Eq.~2! only has support above
this threshold. This, together with the constraintk11k2
5(0,E) in Eq. ~B7!, and the on-shell character of the pa
ticles, can be shown to imply that (k12k2)252(m1

21m2
2)

2E2P(2`,(m12m2)2#. Using Ṽ<O(1/Nc), and Eqs.
~B1! and ~B7!, it follows that ^s1k1s2k2uAm(0)u0&
<O(1/Nc) with the constraint that (k12k2)2P(2`,(m1
2m2)2#. However, it is possible to show by only conside
ing the on-shell nature of the particles, that the same c
straint holds. Hence the constraint adds no new informat
and is dropped henceforth. Thus
4-6
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^s1k1s2k2uAm~z!u0&5ei (k11k2)•z^s1k1s2k2uAm~0!u0&

<O~1/Nc!, ~B8!

using space-time translational invarianceAm(z)
5eiP•zAm(0)e2 iP•z, with Pn the QCD four-momentum op
erator. It is evident that equality in Eq.~B8! would have been
attained were it not for the possibility of accidental canc
lations. These cancellations can be eliminated by an ap
priate choice of the currents. Whence the result in Eq.~4!.

The observation thatV<O(1/Nc), together with the first
preliminary @^s0uAm(0)u0& has to be O(ANc)], implies
from Eq. ~B5! that a>1. Since M was defined to
be O(1) this implies from Eq. ~B4! that
^0u„*d3xeip•x B(x,0)…C(0)us0& is <O(1/ANc), noting that
ms is O(1) @7#. Inverting the Fourier transform, it follows
that ^0uB(x,0)C(0)us0&<O(1/ANc). Using space-time
translational invariance analogous to Eq.~B8!

^0uB~x,t !C~y,t !us0&5e2 imst^0uB~x2y,0!C~0!us0&

<O~1/ANc!. ~B9!

From the same arguments as those below Eq.~B8!, the result
in Eq. ~3! is deduced.

It remains to prove that Eq.~6! can be deduced from Eq
~5!. The proof is analogous to the proof already given in t
appendix, and the various steps are outlined. The notatio
the vectors and matrices will be the same except that
,

o

lo

c-

01600
-
o-

s
of
e

labelBC will be replaced by the labelA. Call the LHS of Eq.
~5! WA . The first and second terms in long brackets on
RHS of Eq.~5! are calledMAs andVs respectively. Equation
~5! is then of the form of Eq.~B2! with NP50. From the
first preliminary @^s0uAm(z)u0& has to be O(ANc)], it fol-
lows thatMAs is O(1). Evaluate Eq.~B2! for NS different
currentsA. This again gives a matrix equationW5MV. Bar-
ring accidental cancellations, detM5O(1), so that its in-
verse exists. From Eq.~4! W<O(1/Nc), and together with
M21<O(1), the equation V5M21W implies that V
<O(1/Nc). Along the same lines as before this establish
the result in Eq.~6!.

It is lastly outlined whyÔp does not depend on color. Thi
is done by following the derivation ofÔp in the Appendix of
Ref. @5#, employing the notations of that reference. Co
appears when the~anti!commutators are evaluated, e.g.,
dab in $ċj

a(x,t),c̄z
b(y,t)%52dabgW jz•]W xd

3(x2y). The color
and Dirac indices in the commutators are then contrac
with the remaining quark and gluon fields and subsumed
f m(x,y,z). The construction ofÔp only depends on the num
ber of derivatives acting ond3(x2y) and not onf m(x,y,z),
making it independent of color, as promised. Let us give
example of how this observation is used above. Supp
Ôp5]/]p, then in Eqs. ~B4! and ~B6! it occurs as
Ôp*d3x exp(ip•x)g(x)5 ix*d3x exp(ip•x)g(x). It is evi-
dent thatÔp does not affect the large-Nc counting of the
function g.
ett.
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