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Chromoelectric flux tubes
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The profiles of the chromoelectric field generated by static quark-antiq(m@, and three-quarkQQQ,
sources are calculated in Coulomb gauge. Using a variational ansatz for the ground state, we show that a flux
tube-like structure emerges and combines to the “Y”-shape field profile for three static quarks. The properties
of the chromoelectric field are, however, not expected to be the same as those of the full action density or the
Wilson line and the differences are discussed.
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[. INTRODUCTION which leads to a set of coupled self-consistent Dyson equa-
tions [4,11]. Once the wave functional is determined it is
An intuitive picture of quark-gluon dynamics emerges in possible to calculate the distribution of the chromoelectric
the Coulomb gaugeY -A?=0 [1-3]. In this case QCD is field in the system. This is the main subject of this paper.
represented as a many-body system of strongly interacting In the following we study the chromoelectric field in the
physical quarks, antiquarks and gluons. In particular thepresence of the static quark-antiquark and three-quark sys-
gluon degrees of freedom have only the two transverse pdems, prototypes for a meson and a baryon, respectively. Re-
larizations and in the non-interacting limit reduce to thecent lattice computations indicate that the gluonic field near
physical massless plane wave states. In the interacting theote staticQ—Q state forms flux tubes. There are also indi-
gluonic states, just like any other colored objects, are excations that for theQQQ state the fields arrange in the so
pected to be non-propagating, i.e., confined on the hadronigalled “Y”-shape[12,13, although some work supports the
scale. The non-propagating nature of colored states followsA”-shape [14]. String-like behavior has been observed in
from the infrared enhanced dispersion relations which can bghe chromoelectric field in Ref15] and the “Y”-shape in-

set up in the Coulomb gaugiéO—G]. teraction advocated in Rgf16]. A recent reevaluation of the
In the Coulomb gauge tha&" component of the 4-vector center-vortex model also supports the “Y”-shajie].
potential results in an instantaneous interactipotentia) In the following section we summarize the relevant ele-

between color charges. Unlike QED, where the correspondments of the Coulomb gauge formalism and discuss the ap-
ing potential is a function only of the relative distance be-proximations used. This is followed by numerical results and
tween the electric charges, in QCD it is a functional of theoutlook of future studies. There is a fundamental difference
transverse gluon componentd, [1]. Thus the numerical between lattice gauge flux tubes corresponding to the distri-
value of the potential cannot be obtained without knowingbution for the action density and the chromoelectric field
the correct wave functional of the state and its dependencgrofiles. In the context of the potential energy of the sources,
on the gluon coordinates. So in QCD the chromoelectric fielghis difference was emphasized in Zwanziger, Greensite and
is expected to be non-local and to depend on the global disdlejnik [7,18]. We discuss this in Sec. IV.
tribution of charges, which set up the gluon wave functional.

Even though the exact solution to the general many-body
problem is unavailable it is often possible to obtain good I1I. CHROMOELECTRIC COULOMB FIELD IN THE
approximations if the dominant correlations can be identi- PRESENCE OF STATIC CHARGES
fied. In Coulomb gauge QCMn the Schrdinger field rep-
resentatiop the domain of the transverse gluon fiel,is
bounded and non-flat, and is referred to as the Gribov region. The Yang-Mills Coulomb gauge Hamiltonian in the
It is expected that the strong interaction between statiSchralinger representatioty =H(II,A) is given by
charges originates from the long-range modes near the 1
boundary of the Gribov region, the so called Gribov horizon. _ - aryy . TT2 ary) . Ra 9
For example it has been recently shown that center vortices, H= 2] IO - IR0 + B0 - B () ]+ Ve . (1)
when transformed to the Coulomb gauge, indeed reside on
the Gribov horizor 7]. i o N

The curvature of the Gribov region contributes to matrix 1he gluon field satisfies the Coulomb gauge conditi®n,
elements via the functional measure determined by the deterA%(X)=0, for all color componenta=1...Ng—1. The
minant of the Faddeev-Popov operator. This determinant preconjugate momentall?(x) = —id/dA%(x) obey the can-
vents analytical calculations of functional integrals, howeveonical ~ commutation  relation, [I1"%(x),Al"’(y)]
it has been shown that its effect can be approximated byr —i8apd% (V) 3(x—y), with §}(V)=8;-V,V;/VZ The
imposing appropriate boundary conditions on the gluon waveanonical momenta also correspond to the negative of the
functional[9,10]. This wave functional is in turn constrained transverse component of the chromoelectric fielltf(x)
by minimizing the expectation value of the energy density= —E$(x), V-E§=0. The chromomagnetic field3 con-

A. The Coulomb gauge Hamiltonian
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tains linear and quadratic terms A It will also be conve- earlier in Ref[9], its effect can be approximately accounted
nient to transform to the momentum space components of th&r by imposing specific boundary conditions on the ground
fields by state wave functional.
Since the chromoelectric field depends on the distribution
a a Cikx of the transverse vector potential it is necessary to know the
A (k):f dxA%(x)e ' (20 wave functional of the system. A self-consistent variational
ansatz can be chosen in a Gaussian form,

and similarly forII?(k). The Coulomb potentieﬁlc may be 1
expressed in terms of the longitudinal component of the W[A]=ex __J
chromoelectric field, 2

(2m)? w(p)A*(p)-A%(—=p)|. (8

.1 The parametemw(p)(p=|p|) is determined by minimizing
Ve=5 J dXE*(X)E(x), (3 the expectation value of the energy density of the vacuum
(i.e., without sources The boundary condition referred to
with above corresponds to setting(0)=u to be finite, which
plays the role ofAq¢p, i.e., it controls the position of the
ab Landau pole. Minimizing the energy density of the vacuum
p°(2). (4) leads to a set of coupled self-consistent integral equations:
v,z one forw, one for the expectation value of the inverse of the
FP operatord(p),

X—y g
1-x

E3(x =j dydz———
(x) y amlx—y[?

Here (1—-\) is the Faddeev-PopolFP) operator which in

the configuration-color space is determined by (27)38(p—q) 8,,d(p)
g ab
dp dg = | dxdye PXIV(W||——| |W)/(P|T)
A ab:J ———ePXe Y\ (p.q), (5 f 1—-\ :
[ ]X,y (271_)3 (277)3 ab(p q) ( ) X,y
©

where
and one for the expectation value of the square of the inverse

A%(p—q)-q of the FP operator, which appears in the matrix elements of
Nap(p,d) = igfacha (6) Ve,
(2m)%8(k—q) Sapf(P)d*(p)
f are theSU(N,) structure constants, arglis the bare cou- 21ab
pling. In Eq.(4), p is the color charge density given by EJ' dxdyeip.xeiq~y<q,|[( g ) } /([0

11—\
a — T a b CTIC X,y
PAX) = P () THP(X) + fap AP(X) - TTE(X), (7 (10

g
1-A

]
(12

with _the_two terms representing the qqark and the gluonI'he approximatiorf =1 ignores the dispersion in the expec-
contribution, respectively; the former is replaced by tation value of the inverse of the EP operator
c-number for static quarks. Without light flavors there is no '
other dependence on the quark degrees of freedom. The en- 2 g \?
ergy of the staticQQ or QQQ systems measured with re- < >_’< 1_7\> : 1D
spect to the state with no sources is thus given by the Cou-
lomb term and is determined by the expectation value of thehis approximation has been extensively used, e.g., in Refs.
longitudinal component of the chromoelectric field. [2,19]. The three Dyson equations were analyzed in R&f.

It is the dependence of the chromoelectric field and thevhere it was found that the solution af can be well ap-
Coulomb interaction on the static vector potentidrough  proximated by the simple function(p)=6(u—p)u+ 6(p
\) that produces the differences between QCD and QED. In- ;) p. The renormalization scale, being the only param-
QED the kernel in the bracket in E¢4) reduces td - - - ] eter in the theory, can be constrained by the long range part
— &(y—2) and the Abelian expression for the electric field of the Coulomb kerne|Vc)=fd2. We will discuss this more
emerges. In QCD the chromoelectric field and the Coulomhin the subsection below. The low momentupx « depen-
potential are enhanced due to long-wavelength transversgence of d(p) and of the Coulomb potentiaV(p)
gluon modes on the Gribov horizon where the FP operatok f(p)d(p)? is well approximated by a power law,
vanishes. The combination of two effects on the Gribov ho-
rizon: enhancement of (1\) ! in the longitudinal electric JIARY )i
field and vanishing of the functional norm, which is propor- d(p):d(ﬂ)(a) , f(p)=f(,u)<5
tional to det(1-\), leads to finite, albeit large, expectation
values of the static interaction between color charges. In Equith «~0.5 andB~1. The exponents are bounded by 2
(1) we have omitted the FP measure since, as mentionedt 3<2 and the upper limit corresponds to the linearly rising
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confining potential. At large momentump> u, as expected 1 )
from asymptotic freedom, bottl and f are proportional to  Vc(R)= EJ dx(E*(x,R))
1/log”(p), with y=0(1). Adding static sources does not

modify the parameters of the vacuum gluon distribution, e.g., g / 1) g
w(p). This is because the vacuum energy is an extensive =—Ce(¥| 1| v2)I-x U)W W),
quantity while sources contribute a finite amount to the total Ri2-R/2
energy. Thus we can use the three functiansd andf cal- 5
culated in the absence of the sources to compute the expec- e dp d*(p)f(p) oip R (15)
tation value of the chromoelectric field in the presence of Fl (2m)® p? '
static sources. The ansatz state obtained by applying quark
sources to the variational vacuum of Eg) does not, how- and the net self-energy contribution is
ever optimize the state with sources.
g 1) 9

B. The field lines in the QQ and QQQ systems *R2xRi2

2
For a quark and an antiquark at positiong=R/2 :CFJ’ dp ; d (p)zf(p) (16)
=Rz/2 andxg= —R/2=— Rz/2, respectively, and the gluon (2m) p

field distributed according t#[ A], the expectation value of _ . . .
the square of the magnitude of the chromoelectric field meal" lattice simulations it has been sh(?\[@o] th.a_t the C(?u-
sured at positiox is given by lomb energy and the phenomenological st&iQ potential

obtained from the Wilson loop are different. In particular it
was found that the Coulomb potential string tension is about

(E2(x,R))= Cr thr_ee_ times larger than_ the phenomer!ological st_ring tension.
’ (477)22,ZTR2 2,2 TRI2 This is in agreement with the “no confinement without Cou-
lomb confinement” scenario discussed by Zwanzided]. It
(X—Y1)- (X—Y5) is simple to understand the origin of the difference. Even if
if dy,dy, ———————E(21,Y1:22.Y2), |W[A]) were the true vacuum stateithout sourcesof the
| X—ya[*[x— | Coulomb gauge QCD Hamiltoniafihere we approximate it

(13 by a variational ansatzthe state |QQ,R)=Q(R/2)Q
(— R/2)|\If[A_]) would not be an eigenstate. For examfz!@

acting on|QQ,R) excites any number of gluons and couples
them to the quark sources. The Coulomb energy was defined

as the expectation valu¥, in |Q6, R) minus the vacuum
energy and it is therefore different from the phenomenologi-
cal static potential energy which corresponds to the total en-

where the+(—) sign is for thez;=(#)z, contributions,
and

<qf|[i} [L} |W) ergy (measured with respect to the vacuuof the true
_ - 1=A zytT My, eigenstate of the Hamiltonian with@Q pair. If one defines
E(Zlyy11221y2)= <‘l’|\I’> . [7]

(14)

G(R,T)=(QQ,Rle” " E)T|QQ,R)

The color factors leading t€r can be extracted from the — 12 (Ee—Eq)T
expectation value in Eq14) (the ground state expectation :En‘z {QQ,R,N[QQ,R)|*e™ =n" ol
value of the inverse of two FP operators is an identity in the (17)
adjoint representation In the Abelian limit, E(z;- - -Y5)
—8(y1—21) 6(y,—2,) and Eq.(13) gives the dipole field then the Coulomb potential on the lattice can be calculated
distribution, (E?)oep. One should note that Eq413) con-  from
tains the two self-energies. These self-energies are necessary
to produce the correct asymptotic behavior xatR for d
charge-neutral system@& QED and QCD, i.e., E? has to Vc(R)=lim — ﬁ'OQ(G(R,T)), (18
fall off at least as &* at large distances from the sources. T=0

The infrared,|x|~|R|>1/u enhancement in QCD arises _ .
from the expectation value of the inverse of the FP operato2nd the phenomenological potential from
If (E?(x,R)) is integrated ovex one obtains the expectation

value of the Coulomb energy of tH@Q source. The mutual V(R)= lim — ilog(G(R,T)). (19)
interaction energy is given by 7o dT
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Thus one should be comparing:(R) in Eq. (15 to the  r=[(z,—y;)—(z,—Y,)] coordinate respectively. The Dyson
lattice Coulomb potential and not to the phenomenologicakquation forF, is UV divergent if for p/u>1, andd(p)
potential obtained from the Wilson loop. Finally, one could =|og?(p?). This divergence can be removed by the Cou-
try to optimize the state with sources, e.g., by adding gluonigomb operator renormalization constant. The renormalized
components. In this case terms in the Hamiltonian beyon@quation is obtained from the once-subtracted equation
the Coulomb term would contribute to the energy of the sys+, (I)~F, (I,). For example, if the subtraction is chosen at
tem and one could compare with the tiW€ilson loop static lo| = 1 an?jLO:O the renormalized couplingy(x) can be
energy. In our previous studies, where we extracted ”“mer{ﬂxed from the Cdulomb potential. After integrating HG.3)

cal values for,u. and the critical exponenta, 8,y [cf. Eq._ (over x) one obtainss(y;—Yy,) multiplying E(zy, . . . ¥a).
(12)] we have instead comparé(; to the phenomenologi-  tperefore. it follows from Eq(20) thatV(R) is determined

cal, Wilson potential4]. In what follows we will use the by Fo(l) andFo(l)=Fo(l)=f(1) with f defined in Eq(10).
larger value of the string tension, to be in agreement with In Eq.(21) L is a parameter, i.e., the Dyson equation does

Relf]; E;]'t ¢ d hich determine the inf not involve self-consistency ih. We have just shown that as
e two exponentsr and, which determine the infra- L—0, F(l) has a finite limit: it is given byf. For largeL

reg behhavur)]r Oﬂ(hf’) andf(p) ,Erelspe'ctl(\j/.ely, Sat'Sfy§+B. =|L| (L/u>1), due to asymptotic freedorf, is expected
12 e e Sy n Sl e dhergen 270 0t vamsh ogarinmicabF, (1)< 1ogl) Vi do o
ranngehavior of the effecti\cjé coﬁfining potential gene?ate ttempt here to solve E21), instead we use a simple in-
) . erpolation formula between tHe=0 andL — oo limits,

by self-interactions between the gluons that make up the
Coulomb operator. For the colorle€3Q system the total L
energy which is the sum df . and2, is finite as it should FL(l):f(l)a(ﬂ_|||)9<M_H)
be. For a colored system, e.g., a quark-quark source, the sign
of V¢ changes, there is no cancellation between the infrared
singularities, and in the confined phase the system would be
un-physical with infinite energy. The integral determining the
self-energy also becomes divergent in the UV, sincepfor
— the productd?(p)f(p) only falls off logarithmically.
Modulo these logarithmic corrections this UV divergence is
the same as in the Abelian theory and can be removed U.ﬁ., in the term in the bracket we ignore the short distance
renormalizing the quark charge. logarithmic corrections. It is easy to show that if logarithmic

It follows from translational invariance of the matrix ele- corrections are ignored then the short-range,> . contri-
ment in Eq.(14), thatE depends only on the relative coordi- bution to the energy density is the same as in the Abelian
nates,z;—y; and z,—Yy,. We therefore introduce the mo- case. Since we are mainly interested in the long range behav-

+

L
1_0(M_|||)0<,U«_‘§‘”

p+q

~f T) O(n—p)0(n—a)+[1=6(p)6(a)], (22

mentum space representation, ior of the chromoelectric field, in the following we shall
ignore contributions from the regigm q> u all together. In
E(z1.Y1:22.Y2) the long-range approximations,R>1/u the expectation
value of E? is then given by
dp da i
= W(ZT)BQP'(H y1)—id-(z2—Y») c 2 B
F
(EP(xR))= 7 2 &3¢
xd(p)d(Q)E(p;q), (20 (4m)%if=1
and defineF (I)=E(I+L/2;1-L/2) with I=(p+q)/2 and XJ drf () z—X—r/2 . Zj—x+r/2
L=p—g. The Dyson equation foF can be derived in the |zi—x—r/2| |zj—x+r/2|
rainbow-ladder approximation which, as shown in Refs. X (2,—x—112)d] (2~ x+1]2). 29

[4,5], sums up the dominant infrared and ultra-violet contri-
butions to the expectation value of the inverse of two FP

operators, £1°%=1fori=j and—1 fori#j, z;2=(-)R/2,
ok d —Zf” dpjy(rp)d 24
FL(l):1+NCf(ZT)3 L(N=7| Pdpixrp)d(p), (24)
[(k—L/2)6¢(k+1)(k+L/2)] is the derivative ofd, with respect ta,
2w(k+1) 1
0= 5 | apEHP)iopr) (25)
d(k—L/2) d(k+L/2) L 272/, olPF),

(k—L/2)2 (k+|_/2)2 FL(k). (21

andj,,j; are Bessel's functions. We note that the expression
It follows from Eg. (20) thatL and! are conjugate to the in Eg. (23) is not necessarily positive. In the limi(p)
center of massR=[(z;—y4) +(z,—Y»)]/2 and therelative, =1, the matrix element of the square of the inverse of the FP
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1000 T T T T T T T T T T T T T T T T T T

FIG. 1. R¥E?(x)) in units of

i 2be/7w3(hc)? as a function of the
distancex along theQQ axis. We
employ thef(p)=1 approxima-
tion. The quark and the antiquark
are located atR/2=5 fm and
—R/2=—5 fm, respectively. The
renormalization scale w
=1.1 GeV is calculated from Eq.
(27) using d(n)=3.5 from Ref.
[4]. The dashed line is the contri-
bution from the two self-energies,
the dash-dotted line represents
mutual interactions, and the solid
line is the total.

100

R<E’(x)>

2

10

X [fm]

operator is approximated by the square of matrix elements 2b¢
[cf. Eq. (11)] and(E?) becomes positive. (E*(x,R))= ey
The expression folE?) for the three quark system is
derived by taking the expectation value of the Coulomb op-
erator Ve in a color-singlet state
Eiiji(Zl)Qj(ZZ)Qk(ZS)lq,[AD' which gives

(R/2—x) )
m(l—lo(MR/z_XD)

2

+(X——=X)| . (28)

In Fig. 1 we show the Coulomb energy density as a func-
3 tion of position on theQQ axis, x=xR, for R=|R|
(EX(x,R))= Cr . 2 giQQQ = 10 fm. The small osc.illatiqns come frqm the sharp cutoff
(4m)5=1 Y introduced by the functions in Eq.(22) which produces the
Bessel's functions in Eq28). For a smooth cutoff, e.g., with
xfdrfL(r) a—x"r2  zxtrl2 6(1—p)—exp(-plu) in Eq. (28 one should replace 1
|zi—x—r/2| |zj—x+r/2| —jo(u|R/2—x]) by 1—arctangu|R/2—x|)/u|R/2—x|. The
X (2—x—112)d] (2~ X+ 112), (260) gtljg)rflz L)sogi?gn;is:pin;}ge for the rapid variations near the
We note that for large separations between the qu&tks,
where gi(J?QQzl if i=j and gi?QQ=—1/2 ifi#j. We note >1/u andx<R, the Coulomb energy density behaves as

that the energy density for th@QQ system comes from €xpected from dimensional analysis,
two-body correlations between tiigQ pairs. 3%
C

7T3R2 ’

(E?(Xx,Ru—))— (29

IIl. NUMERICAL RESULTS
which is consistent with linear confinement, i.e., if

We first consider the simple approximation to the exXpec{E2(x,Ru—)) is integrated ovex in the region|x| <R
tation value of the Coulomb kernel of E¢l1) in which  gne optaing/o(R)=R.
f(p)=1. If one wishes to have the confining potential grow At |arge distances>R> 1/u we obtain
linearly at large distances then it is necessary tooesetl,
i.e., d(p)<u/p for p/u<l. In this case, assuming that the 5 2bcR?
long-range behavior of the potential is of the foig(r) (B(|X|/R—©,Ru—))— pcive (30
=bcr, we obtain from Eq(15),

If there were a finite correlation length one would expect
(E?(]x|//R—=,Ru—=)) to fall off exponentially with|x|

[8] and not as a power law. The power-law behavior obtained
in Eqg. (30) is again related to the difference between the
We use the Coulomb string tensitig=0.6 Ge\f. For the |QQ,R) state used here, which is built by adding quark

QQ system the long-range contribution to the electric fieldssources to the vacuum and the true ground state oftQe
is then given by system as discussed in Sec. Il A. In other words the profile of

be=Crd?(u)u?/(8). (27)
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FIG. 2. R¥E?(x)) in units of
2be/7w3(#c)? as a function of the
distancex transverse to th&Q
axis. The units and the setting are
as in Fig. 1.

R <E’(x)>
=

0 | N S N Y N [ | I | N S N N N [ | I I W N [ TN I S | I | S N Y [ |

-10 -5 0 5 10
X [fm]

the chromoelectric field distribution for such a state is notthe three quarks in a corner of an equilateral triangle,i

expected to agree with the profile of the flux tube or action=1, . .. 3

density. To illustrate this difference, in Fig. 2 we plot the

energy density asifunction of the magnitude of the distance ) Ce ) ) )

transverse to th@Q axis,x, =|x,|, R-x=R-x, =0. (E*(x,R)))= 32772[(D1_D2) +(D1=Dy)"+(D2=Dy)”],
Finally, in Fig. 3, we show the contour plot of the energy (31)

density as a function of the position in th& plane with

quark and antiquark on theaxis atR/2 and—R/2, respec- where

tively.

It is clear from Figs. 2 and 3 that a flux-tube-like structure D.— Zj—X+r/2 4 (7 —x—1/2 32
emerges and froLn E@29) that it has the correct scaling as a i |zj —Xx+r/2| L(zi—x=r12). (32
function of theQ Q separation but, as discussed above it does o _ )

The field distribution for theQQQ system in thef (p)  Fig. 4. Even though the field originates from the two-particle
—1 approximation is equal to the sum of three terms eacforrelations the net field seems to form into a “Y”-shape

representing a contribution fromQQ pair. We place each of Structure. This structure has also recently been seen to
emerge in Euclidean lattice simulations.

Finally, to study the effects of (p), in Fig. 5 we show

10 the predictions for theQQ field distribution given by Eq.
(15) where we usal(p) andf(p) in the form given by Eq.
5 ] (12) with @=1/2 andB=1 and normalized such th&(R)
— bR at large distances. Furthermore, to remove the oscilla-
tions introduced by the momentum space cutoff, we now cut
E 8 the smallx region in coordinate space, k) extending the
~ upper limits of integration in Eqg24) and (25) to infinity
and (ii) cutting off the position space functions at short dis-
5] 5 tances,
4.0
D 6.0 , 2 . MZ
o ‘ =?§0 dL(r)—%SIH(WCY/Z)F(Z—Q’)Q(I’M—].)(M—I’)H
-10 -5 0 5 10 (33
x [fm] 1 M3
FIG. 3. R%(E?(x)) as a function of position in thez plane. The fu(r)= ﬁsm(wﬂ/z)r(z B)O(rn=1) (ur)3#
units and the same setting as in Fig. 1. (39
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10
5
E
N D £ o i
6.0 N 6.0
9.0 9.0
. 12.0 12.0
. 150 150
- 180 -5 - 180
_ 21.0 . 210
. 240
. 270
. 300
-10 "
-10 -5 0 5 10
x [fm]
FIG. 5. R¥(EX(x)) for QQ from Eq. (23) with a=1/2 andB
_ =1. The units and the same setting as in Fig. 1, except that the
£ contribution fromf(p) has been included.
N -8.0
ug the chromoelectric field, as expected for the state which does
— not take into account screening of the Coulomb line by the
— 120 transverse gluondlux tube. This also leads to large Van der
— 200 Waals forces, which is bothersome, but it is consistent with
-10 the scenario of “no confinement without Coulomb confine-
-10 5 0 5 10 N . . .
] ment” of Zwanziger. The Coulomb potential leads to a varia-
X [fm

tional (strongey upper bound to the true confining interac-

FIG. 4. R¥(E?(x)) as a function of position in thez plane. The tion.

units and the same setting as in Fig. 1. The upper panel shows the Similar behavior at large distances is also true for the
total field distribution and the lower the distribution from mutual three quark sources, except that here we find the emergence

of the “Y”-shape junction. This is consistent with lattice
simulations, but is remarkable in our case as it arises from
Comparing F|g 3 and F|g 5 we observe a narrowing oftWO'bOdy forces. It will be interesting to examine field dis-
the flux tube. This is to be expected as the actiofi(qf) is  tributions which include transverse field excitations. In that
to introduce additional gluonic correlations. That said, therecase the only lattice results available are for the potential, not

is no major qualitative change in the field distribution. for the field distributions. Finally we note that, since the
mean field calculation provides a variational upper bound,

the long range behavior of the field distribution falls off more
slowly than expected for the Van der Waals force. Certainly
We have calculated the distribution of the longitudinal as the complete string develops this is expected to disappear

chromoelectric field in the presence of sta@€ andQQQ  and it would be interesting to build a string-like model for
sources using a variational model for the ground state wavE€ ansatz ground state to verify this assertion.

functional. Despite this wave functional having no string-like
correlations a flux tube like picture does emerge. In particu-
lar the on-axis energy density of tligQ system behaves as
be /R? for |";Wg$ inter-quark separatioR and the field falls The authors wish to thank J. Greensite, H. Reinhardt, Y.
off like b.R*/x" at large distances from the center of mass ofgimonov, F. Steffen, H. Suganuma, and D. Zwanziger for
the QQ system,x. This is weaker than in the Abelian case helpful feedback. This work was supported in part by the US
(~R?x5 and implies that moments of the average transDepartment of Energy under contract DE-FG0287ER40365.
verse spread of the tube, defined as proportional td’he numerical computations were performed on the AVIDD
{Ix,|"E?(z,x,)), are finite forn<2 only. Thus there is no Linux Clusters at Indiana University funded in part by the
finite correlation length for the longitudinal component of National Science Foundation under grant CDA-9601632.

interaction(no self-energiesonly.

IV. SUMMARY
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