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Chromoelectric flux tubes

Patrick O. Bowman and Adam P. Szczepaniak
Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405, USA

~Received 15 March 2004; published 20 July 2004!

The profiles of the chromoelectric field generated by static quark-antiquark,QQ̄, and three-quark,QQQ,
sources are calculated in Coulomb gauge. Using a variational ansatz for the ground state, we show that a flux
tube-like structure emerges and combines to the ‘‘Y’’-shape field profile for three static quarks. The properties
of the chromoelectric field are, however, not expected to be the same as those of the full action density or the
Wilson line and the differences are discussed.
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I. INTRODUCTION

An intuitive picture of quark-gluon dynamics emerges
the Coulomb gauge,“•Aa50 @1–3#. In this case QCD is
represented as a many-body system of strongly interac
physical quarks, antiquarks and gluons. In particular
gluon degrees of freedom have only the two transverse
larizations and in the non-interacting limit reduce to t
physical massless plane wave states. In the interacting th
gluonic states, just like any other colored objects, are
pected to be non-propagating, i.e., confined on the hadr
scale. The non-propagating nature of colored states foll
from the infrared enhanced dispersion relations which can
set up in the Coulomb gauge@3–6#.

In the Coulomb gauge theA0 component of the 4-vecto
potential results in an instantaneous interaction~potential!
between color charges. Unlike QED, where the correspo
ing potential is a function only of the relative distance b
tween the electric charges, in QCD it is a functional of t
transverse gluon components,A @1#. Thus the numerica
value of the potential cannot be obtained without know
the correct wave functional of the state and its depende
on the gluon coordinates. So in QCD the chromoelectric fi
is expected to be non-local and to depend on the global
tribution of charges, which set up the gluon wave function

Even though the exact solution to the general many-b
problem is unavailable it is often possible to obtain go
approximations if the dominant correlations can be ide
fied. In Coulomb gauge QCD~in the Schro¨dinger field rep-
resentation! the domain of the transverse gluon field,A is
bounded and non-flat, and is referred to as the Gribov reg
It is expected that the strong interaction between st
charges originates from the long-range modes near
boundary of the Gribov region, the so called Gribov horizo
For example it has been recently shown that center vorti
when transformed to the Coulomb gauge, indeed reside
the Gribov horizon@7#.

The curvature of the Gribov region contributes to mat
elements via the functional measure determined by the de
minant of the Faddeev-Popov operator. This determinant
vents analytical calculations of functional integrals, howe
it has been shown that its effect can be approximated
imposing appropriate boundary conditions on the gluon w
functional@9,10#. This wave functional is in turn constraine
by minimizing the expectation value of the energy dens
0556-2821/2004/70~1!/016002~8!/$22.50 70 0160
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which leads to a set of coupled self-consistent Dyson eq
tions @4,11#. Once the wave functional is determined it
possible to calculate the distribution of the chromoelec
field in the system. This is the main subject of this paper

In the following we study the chromoelectric field in th
presence of the static quark-antiquark and three-quark
tems, prototypes for a meson and a baryon, respectively.
cent lattice computations indicate that the gluonic field n
the staticQ2Q̄ state forms flux tubes. There are also ind
cations that for theQQQ state the fields arrange in the s
called ‘‘Y’’-shape @12,13#, although some work supports th
‘‘ D ’’-shape @14#. String-like behavior has been observed
the chromoelectric field in Ref.@15# and the ‘‘Y’’-shape in-
teraction advocated in Ref.@16#. A recent reevaluation of the
center-vortex model also supports the ‘‘Y’’-shape@17#.

In the following section we summarize the relevant e
ments of the Coulomb gauge formalism and discuss the
proximations used. This is followed by numerical results a
outlook of future studies. There is a fundamental differen
between lattice gauge flux tubes corresponding to the di
bution for the action density and the chromoelectric fie
profiles. In the context of the potential energy of the sourc
this difference was emphasized in Zwanziger, Greensite
Olejnik @7,18#. We discuss this in Sec. IV.

II. CHROMOELECTRIC COULOMB FIELD IN THE
PRESENCE OF STATIC CHARGES

A. The Coulomb gauge Hamiltonian

The Yang-Mills Coulomb gauge Hamiltonian in th
Schrödinger representation,H5H(P,A) is given by

H5
1

2E dx@Pa~x!•Pa~x!1Ba~x!•Ba~x!#1V̂C . ~1!

The gluon field satisfies the Coulomb gauge condition,“

•Aa(x)50, for all color componentsa51 . . .Nc
221. The

conjugate momenta,Pa(x)52 i ]/]Aa(x) obey the can-
onical commutation relation, @P i ,a(x),Aj ,b(y)#
52 idabdT

i j (“x)d(x2y), with dT
i j (“)5d i j 2¹i¹i /“2. The

canonical momenta also correspond to the negative of
transverse component of the chromoelectric field,Pa(x)
52ET

a(x), “•ET
a50. The chromomagnetic field,B con-
©2004 The American Physical Society02-1
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tains linear and quadratic terms inA. It will also be conve-
nient to transform to the momentum space components o
fields by

Aa~k!5E dxAa~x!e2 ik•x, ~2!

and similarly forPa(k). The Coulomb potentialV̂C may be
expressed in terms of the longitudinal component of
chromoelectric field,

V̂C5
1

2E dxEa~x!Ea~x!, ~3!

with

Ea~x!5E dydz
x2y

4pux2yu3F g

12lG
y,z

ab

rb~z!. ~4!

Here (12l) is the Faddeev-Popov~FP! operator which in
the configuration-color space is determined by

@l#x,y
ab5E dp

~2p!3

dq

~2p!3
eip•xe2 iq•ylab~p,q!, ~5!

where

lab~p,q!5 ig f acb

Ac~p2q!•q

q2
, ~6!

f are theSU(Nc) structure constants, andg is the bare cou-
pling. In Eq. ~4!, r is the color charge density given by

ra~x!5c†~x!Tac~x!1 f abcA
b~x!•Pc~x!, ~7!

with the two terms representing the quark and the glu
contribution, respectively; the former is replaced by
c-number for static quarks. Without light flavors there is
other dependence on the quark degrees of freedom. The
ergy of the staticQQ̄ or QQQ systems measured with re
spect to the state with no sources is thus given by the C
lomb term and is determined by the expectation value of
longitudinal component of the chromoelectric field.

It is the dependence of the chromoelectric field and
Coulomb interaction on the static vector potential~through
l) that produces the differences between QCD and QED
QED the kernel in the bracket in Eq.~4! reduces to@•••#
→d(y2z) and the Abelian expression for the electric fie
emerges. In QCD the chromoelectric field and the Coulo
potential are enhanced due to long-wavelength transv
gluon modes on the Gribov horizon where the FP opera
vanishes. The combination of two effects on the Gribov h
rizon: enhancement of (12l)21 in the longitudinal electric
field and vanishing of the functional norm, which is propo
tional to det(12l), leads to finite, albeit large, expectatio
values of the static interaction between color charges. In
~1! we have omitted the FP measure since, as mentio
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earlier in Ref.@9#, its effect can be approximately accounte
for by imposing specific boundary conditions on the grou
state wave functional.

Since the chromoelectric field depends on the distribut
of the transverse vector potential it is necessary to know
wave functional of the system. A self-consistent variation
ansatz can be chosen in a Gaussian form,

C@A#5expS 2
1

2E dp

~2p!3
v~p!Aa~p!•Aa~2p!D . ~8!

The parameterv(p)(p[upu) is determined by minimizing
the expectation value of the energy density of the vacu
~i.e., without sources!. The boundary condition referred t
above corresponds to settingv(0)[m to be finite, which
plays the role ofLQCD , i.e., it controls the position of the
Landau pole. Minimizing the energy density of the vacuu
leads to a set of coupled self-consistent integral equatio
one forv, one for the expectation value of the inverse of t
FP operator,d(p),

~2p!3d~p2q!dabd~p!

[E dxdye2 ip•xeiq•y^CuF g

12lG
x,y

ab

uC&/^CuC&,

~9!

and one for the expectation value of the square of the inve
of the FP operator, which appears in the matrix elements
VC ,

~2p!3d~k2q!dabf ~p!d2~p!

[E dxdye2 ip•xeiq•y^CuF S g

12l D 2G
x,y

ab

uC&/^CuC&.

~10!

The approximationf 51 ignores the dispersion in the expe
tation value of the inverse of the FP operator,

K F g

12lG2L→ K g

12l L 2

. ~11!

This approximation has been extensively used, e.g., in R
@2,19#. The three Dyson equations were analyzed in Ref.@4#
where it was found that the solution ofv can be well ap-
proximated by the simple functionv(p)5u(m2p)m1u(p
2m)p. The renormalization scalem, being the only param-
eter in the theory, can be constrained by the long range
of the Coulomb kernel̂VC&} f d2. We will discuss this more
in the subsection below. The low momentum,p,m depen-
dence of d(p) and of the Coulomb potentialVC(p)
5 f (p)d(p)2 is well approximated by a power law,

d~p!5d~m!S m

p D a

, f ~p!5 f ~m!S m

p D b

~12!

with a;0.5 andb;1. The exponents are bounded by 2a
1b<2 and the upper limit corresponds to the linearly risi
2-2
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confining potential. At large momentum,p@m, as expected
from asymptotic freedom, bothd and f are proportional to
1/logg(p), with g5O(1). Adding static sources does no
modify the parameters of the vacuum gluon distribution, e
v(p). This is because the vacuum energy is an exten
quantity while sources contribute a finite amount to the to
energy. Thus we can use the three functionsv, d and f cal-
culated in the absence of the sources to compute the ex
tation value of the chromoelectric field in the presence
static sources. The ansatz state obtained by applying q
sources to the variational vacuum of Eq.~8! does not, how-
ever optimize the state with sources.

B. The field lines in theQQ̄ and QQQ systems

For a quark and an antiquark at positionsxq[R/2

5Rẑ/2 andxq̄52R/252Rẑ/2, respectively, and the gluo
field distributed according toC@A#, the expectation value o
the square of the magnitude of the chromoelectric field m
sured at positionx is given by

^E2~x,R!&5
CF

~4p!2 (
z156R/2

(
z256R/2

6E dy1dy2

~x2y1!•~x2y2!

ux2y1u3ux2y2u3
E~z1 ,y1 ;z2 ,y2!,

~13!

where the1(2) sign is for thez15(Þ)z2 contributions,
and

E~z1 ,y1 ;z2 ,y2![

^CuF g

12lG
z1 ,y1

F g

12lG
y2 ,z2

uC&

^CuC&
.

~14!

The color factors leading toCF can be extracted from th
expectation value in Eq.~14! ~the ground state expectatio
value of the inverse of two FP operators is an identity in
adjoint representation!. In the Abelian limit, E(z1•••y2)
→d(y12z1)d(y22z2) and Eq. ~13! gives the dipole field
distribution, ^E2&QED . One should note that Eq.~13! con-
tains the two self-energies. These self-energies are nece
to produce the correct asymptotic behavior atx@R for
charge-neutral systems~in QED and QCD!, i.e., E2 has to
fall off at least as 1/x4 at large distances from the sources

The infrared,uxu;uRu@1/m enhancement in QCD arise
from the expectation value of the inverse of the FP opera
If ^E2(x,R)& is integrated overx one obtains the expectatio
value of the Coulomb energy of theQQ̄ source. The mutua
interaction energy is given by
01600
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VC~R!5
1

2E dx^E2~x,R!&

52CF^CuF g

12lS 2
1

“

2D g

12lG
R/2,2R/2

uC&/^CuC&,

52CFE dp

~2p!3

d2~p! f ~p!

p2 eip•R, ~15!

and the net self-energy contribution is

S5CF^CuF g

12l S 2
1

“

2D g

12lG
6R/2,6R/2

uC&/^CuC&,

5CFE dp

~2p!3

d2~p! f ~p!

p2 . ~16!

In lattice simulations it has been shown@20# that the Cou-
lomb energy and the phenomenological staticQQ̄ potential
obtained from the Wilson loop are different. In particular
was found that the Coulomb potential string tension is ab
three times larger than the phenomenological string tens
This is in agreement with the ‘‘no confinement without Co
lomb confinement’’ scenario discussed by Zwanziger@18#. It
is simple to understand the origin of the difference. Even
uC@A#& were the true vacuum state~without sources! of the
Coulomb gauge QCD Hamiltonian~here we approximate i
by a variational ansatz! the state uQQ̄,R&[Q(R/2)Q̄
(2R/2)uC@A#& would not be an eigenstate. For exampleV̂C

acting onuQQ̄,R& excites any number of gluons and coupl
them to the quark sources. The Coulomb energy was defi
as the expectation value,VC in uQQ̄,R& minus the vacuum
energy and it is therefore different from the phenomenolo
cal static potential energy which corresponds to the total
ergy ~measured with respect to the vacuum! of the true
eigenstate of the Hamiltonian with aQQ̄ pair. If one defines
@7#

G~R,T![^QQ̄,Rue2(H2E0)TuQQ̄,R&

5(
n

u^QQ̄,R,nuQQ̄,R&u2e2(En2E0)T,

~17!

then the Coulomb potential on the lattice can be calcula
from

VC~R!5 lim
T50

2
d

dT
log„G~R,T!…, ~18!

and the phenomenological potential from

V~R!5 lim
T5`

2
d

dT
log„G~R,T!…. ~19!
2-3
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Thus one should be comparingVC(R) in Eq. ~15! to the
lattice Coulomb potential and not to the phenomenolog
potential obtained from the Wilson loop. Finally, one cou
try to optimize the state with sources, e.g., by adding gluo
components. In this case terms in the Hamiltonian bey
the Coulomb term would contribute to the energy of the s
tem and one could compare with the true~Wilson loop! static
energy. In our previous studies, where we extracted num
cal values form and the critical exponentsa,b,g @cf. Eq.
~12!# we have instead comparedVC to the phenomenologi
cal, Wilson potential@4#. In what follows we will use the
larger value of the string tension, to be in agreement w
Ref. @7#.

If the two exponentsa andb, which determine the infra-
red behavior ofd(p) and f (p), respectively, satisfy 2a1b
.2, then the self energy in Eq.~16! is divergent and so is
the right-hand side~RHS! of Eq. ~15!. This reflects the long-
range behavior of the effective confining potential genera
by self-interactions between the gluons that make up
Coulomb operator. For the colorlessQQ̄ system the total
energy which is the sum ofVC andS, is finite as it should
be. For a colored system, e.g., a quark-quark source, the
of VC changes, there is no cancellation between the infra
singularities, and in the confined phase the system would
un-physical with infinite energy. The integral determining t
self-energy also becomes divergent in the UV, since fop
→` the productd2(p) f (p) only falls off logarithmically.
Modulo these logarithmic corrections this UV divergence
the same as in the Abelian theory and can be removed
renormalizing the quark charge.

It follows from translational invariance of the matrix ele
ment in Eq.~14!, thatE depends only on the relative coord
nates,z12y1 and z22y2. We therefore introduce the mo
mentum space representation,

E~z1 ,y1 ;z2 ,y2!

5E dp

~2p!3

dq

~2p!3 eip•(z12y1)2 iq•(z22y2)

3d~p!d~q!E~p;q!, ~20!

and defineFL( l)[E( l1L /2;l2L /2) with l[(p1q)/2 and
L[p2q. The Dyson equation forF can be derived in the
rainbow-ladder approximation which, as shown in Re
@4,5#, sums up the dominant infrared and ultra-violet con
butions to the expectation value of the inverse of two
operators,

FL~ l!511NcE dk

~2p!3

3
@~k2L /2!dT~k1 l!~k1L /2!#

2v~k1 l!

3
d~k2L /2!

~k2L /2!2

d~k1L /2!

~k1L /2!2 FL~k!. ~21!

It follows from Eq. ~20! that L and l are conjugate to the
center of mass, R[@(z12y1)1(z22y2)#/2 and therelative,
01600
l

ic
d
-

ri-

h

d
e

ign
d

be

by

.
-
P

r[@(z12y1)2(z22y2)# coordinate respectively. The Dyso
equation forFL is UV divergent if for p/m@1, andd(p)
> log1/2(p2). This divergence can be removed by the Co
lomb operator renormalization constant. The renormaliz
equation is obtained from the once-subtracted equa
FL( l)2FL0

( l0). For example, if the subtraction is chosen

u l0u5m andL050, the renormalized couplingF0(m) can be
fixed from the Coulomb potential. After integrating Eq.~13!
~over x) one obtainsd(y12y2) multiplying E(z1 , . . . ,y2).
Therefore, it follows from Eq.~20! thatVC(R) is determined
by F0( l) andF0( l)5F0( l )5 f ( l ) with f defined in Eq.~10!.

In Eq. ~21! L is a parameter, i.e., the Dyson equation do
not involve self-consistency inL . We have just shown that a
L→0, FL( l) has a finite limit: it is given byf. For largeL
5uL u (L/m@1), due to asymptotic freedom,FL is expected
to vanish logarithmically,FL→d2(L)}1/log(L2). We do not
attempt here to solve Eq.~21!, instead we use a simple in
terpolation formula between theL50 andL→` limits,

FL~ l!5 f ~ l!u~m2u lu!uS m2UL2U D
1F12u~m2u lu!uS m2UL2U D G

; f S p1q

2 D u~m2p!u~m2q!1@12u~p!u~q!#, ~22!

i.e., in the term in the bracket we ignore the short distan
logarithmic corrections. It is easy to show that if logarithm
corrections are ignored then the short-range,p,q.m contri-
bution to the energy density is the same as in the Abe
case. Since we are mainly interested in the long range be
ior of the chromoelectric field, in the following we sha
ignore contributions from the regionp,q.m all together. In
the long-range approximation,x,R@1/m the expectation
value ofE2 is then given by

^E2~x,R!&5
CF

~4p!2 (
i j 51

2

j i j
QQ̄

3E dr f L~r !
zi2x2r /2

uzi2x2r /2u
•

zj2x1r /2

uzj2x1r /2u

3dL8~zi2x2r /2!dL8~zj2x1r /2!. ~23!

j i j
QQ̄51 for i 5 j and21 for iÞ j , z1,(2)5(2)R/2,

dL8~r ![
2

pE0

m

pdp j1~rp !d~p!, ~24!

is the derivative ofdL with respect tor,

f L~r !5
1

2p2E
0

m

dpp2f ~p! j 0~pr !, ~25!

and j 0 , j 1 are Bessel’s functions. We note that the express
in Eq. ~23! is not necessarily positive. In the limitf (p)
51, the matrix element of the square of the inverse of the
2-4
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FIG. 1. R2^E2(x)& in units of
2bC /p3(\c)2 as a function of the

distancex along theQQ̄ axis. We
employ the f (p)51 approxima-
tion. The quark and the antiquar
are located atR/255 fm and
2R/2525 fm, respectively. The
renormalization scale m
51.1 GeV is calculated from Eq
~27! using d(m)53.5 from Ref.
@4#. The dashed line is the contri
bution from the two self-energies
the dash-dotted line represen
mutual interactions, and the soli
line is the total.
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operator is approximated by the square of matrix eleme
@cf. Eq. ~11!# and ^E2& becomes positive.

The expression for̂ E2& for the three quark system i
derived by taking the expectation value of the Coulomb
erator V̂C in a color-singlet state
e i jkQi(z1)Qj (z2)Qk(z3)uC@A#&, which gives

^E2~x,Ri !&5
CF

~4p!2 (
i j 51

3

j i j
QQQ

3E dr f L~r !
zi2x2r /2

uzi2x2r /2u
•

zj2x1r /2

uzj2x1r /2u

3dL8~zi2x2r /2!dL8~zj2x1r /2!, ~26!

where j i j
QQQ51 if i 5 j and j i j

QQQ521/2 if iÞ j . We note
that the energy density for theQQQ system comes from
two-body correlations between theQQ pairs.

III. NUMERICAL RESULTS

We first consider the simple approximation to the exp
tation value of the Coulomb kernel of Eq.~11! in which
f (p)51. If one wishes to have the confining potential gro
linearly at large distances then it is necessary to seta51,
i.e., d(p)}m/p for p/m,1. In this case, assuming that th
long-range behavior of the potential is of the formVC(r )
5bCr , we obtain from Eq.~15!,

bC5CFd2~m!m2/~8p!. ~27!

We use the Coulomb string tensionbC50.6 GeV2. For the
QQ̄ system the long-range contribution to the electric fie
is then given by
01600
ts
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-

s

^E2~x,R!&5
2bC

p3 F ~R/22x!

uR/22xu2 ~12 j 0~muR/22xu!!

1~x→2x!G2

. ~28!

In Fig. 1 we show the Coulomb energy density as a fu
tion of position on theQQ̄ axis, x5xR̂, for R5uRu
510 fm. The small oscillations come from the sharp cut
introduced by theu functions in Eq.~22! which produces the
Bessel’s functions in Eq.~28!. For a smooth cutoff, e.g., with
u(m2p)→exp(2p/m) in Eq. ~28! one should replace 1
2 j 0(muR/22xu) by 12arctan(muR/22xu)/muR/22xu. The
cutoff is also responsible for the rapid variations near
quark positions,x56R/2.

We note that for large separations between the quarkR
@1/m and x!R, the Coulomb energy density behaves
expected from dimensional analysis,

^E2~x,Rm→`!&→
32bC

p3R2 , ~29!

which is consistent with linear confinement, i.e.,
^E2(x,Rm→`)& is integrated overx in the regionuxu,R
one obtainsVC(R)}R.

At large distancesx@R@1/m we obtain

^E2~ uxu/R→`,Rm→`!&→
2bCR2

p3x4 . ~30!

If there were a finite correlation length one would expe
^E2(uxu/R→`,Rm→`)& to fall off exponentially with uxu
@8# and not as a power law. The power-law behavior obtain
in Eq. ~30! is again related to the difference between t
uQQ̄,R& state used here, which is built by adding qua
sources to the vacuum and the true ground state of theQQ̄
system as discussed in Sec. II A. In other words the profile
2-5
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FIG. 2. R2^E2(x)& in units of
2bC /p3(\c)2 as a function of the

distancex transverse to theQQ̄
axis. The units and the setting ar
as in Fig. 1.
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the chromoelectric field distribution for such a state is n
expected to agree with the profile of the flux tube or act
density. To illustrate this difference, in Fig. 2 we plot th
energy density as a function of the magnitude of the dista
transverse to theQQ̄ axis,x'5ux'u, R•x5R•x'50.

Finally, in Fig. 3, we show the contour plot of the ener
density as a function of the position in thexz plane with
quark and antiquark on thez axis atR/2 and2R/2, respec-
tively.

It is clear from Figs. 2 and 3 that a flux-tube-like structu
emerges and from Eq.~29! that it has the correct scaling as
function of theQQ̄ separation but, as discussed above it d
not have a finite correlation length~largex behavior!.

The field distribution for theQQQ system in thef L(p)
51 approximation is equal to the sum of three terms e
representing a contribution from aQQ pair. We place each o

FIG. 3. R2^E2(x)& as a function of position in thexzplane. The
units and the same setting as in Fig. 1.
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the three quarks in a corner of an equilateral triangle,zi , i
51, . . . ,3

^E2~x,Ri !&5
CF

32p2
@~D12D2!21~D12D3!21~D22D3!2#,

~31!

where

Di5
zj2x1r /2

uzj2x1r /2u
dL8~zi2x2r /2!. ~32!

The contour plot of energy density in this case is shown
Fig. 4. Even though the field originates from the two-partic
correlations the net field seems to form into a ‘‘Y’’-shap
structure. This structure has also recently been seen
emerge in Euclidean lattice simulations.

Finally, to study the effects off L(p), in Fig. 5 we show
the predictions for theQQ̄ field distribution given by Eq.
~15! where we used(p) and f (p) in the form given by Eq.
~12! with a51/2 andb51 and normalized such thatV(R)
→bR at large distances. Furthermore, to remove the osc
tions introduced by the momentum space cutoff, we now
the smallx region in coordinate space, by~i! extending the
upper limits of integration in Eqs.~24! and ~25! to infinity
and ~ii ! cutting off the position space functions at short d
tances,

dL8~r !5
2

pa
sin~pa/2!G~22a!u~rm21!

m2

~mr !22a

~33!

f L~r !5
1

2p2 sin~pb/2!G~22b!u~rm21!
m3

~mr !32b.

~34!
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CHROMOELECTRIC FLUX TUBES PHYSICAL REVIEW D70, 016002 ~2004!
Comparing Fig. 3 and Fig. 5 we observe a narrowing
the flux tube. This is to be expected as the action off (p) is
to introduce additional gluonic correlations. That said, th
is no major qualitative change in the field distribution.

IV. SUMMARY

We have calculated the distribution of the longitudin
chromoelectric field in the presence of staticQQ̄ andQQQ
sources using a variational model for the ground state w
functional. Despite this wave functional having no string-li
correlations a flux tube like picture does emerge. In parti
lar the on-axis energy density of theQQ̄ system behaves a
bc /R2 for large inter-quark separation,R and the field falls
off like bcR

2/x4 at large distances from the center of mass
the QQ̄ system,x. This is weaker than in the Abelian cas
(;R2/x6) and implies that moments of the average tra
verse spread of the tube, defined as proportional
^ux'unE2(z,x')&, are finite forn,2 only. Thus there is no
finite correlation length for the longitudinal component

FIG. 4. R2^E2(x)& as a function of position in thexzplane. The
units and the same setting as in Fig. 1. The upper panel show
total field distribution and the lower the distribution from mutu
interaction~no self-energies! only.
01600
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e
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to

the chromoelectric field, as expected for the state which d
not take into account screening of the Coulomb line by
transverse gluons~flux tube!. This also leads to large Van de
Waals forces, which is bothersome, but it is consistent w
the scenario of ‘‘no confinement without Coulomb confin
ment’’ of Zwanziger. The Coulomb potential leads to a var
tional ~stronger! upper bound to the true confining intera
tion.

Similar behavior at large distances is also true for
three quark sources, except that here we find the emerg
of the ‘‘Y’’-shape junction. This is consistent with lattic
simulations, but is remarkable in our case as it arises fr
two-body forces. It will be interesting to examine field di
tributions which include transverse field excitations. In th
case the only lattice results available are for the potential,
for the field distributions. Finally we note that, since th
mean field calculation provides a variational upper bou
the long range behavior of the field distribution falls off mo
slowly than expected for the Van der Waals force. Certai
as the complete string develops this is expected to disap
and it would be interesting to build a string-like model f
the ansatz ground state to verify this assertion.

ACKNOWLEDGMENTS

The authors wish to thank J. Greensite, H. Reinhardt
Simonov, F. Steffen, H. Suganuma, and D. Zwanziger
helpful feedback. This work was supported in part by the
Department of Energy under contract DE-FG0287ER403
The numerical computations were performed on the AVID
Linux Clusters at Indiana University funded in part by th
National Science Foundation under grant CDA-9601632.

the

FIG. 5. R2^E2(x)& for QQ̄ from Eq. ~23! with a51/2 andb
51. The units and the same setting as in Fig. 1, except that
contribution fromf (p) has been included.
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