PHYSICAL REVIEW D 70, 016001 (2004

Lorentz and CPT violation in the Higgs sector
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Colladay and Kosteleckitave proposed a framework for studying Lorentz &®iT violation in a natural
extension of the standard model. Although numerous bounds exist on the Loren&fandolating param-
eters in the gauge boson and fermion sectors, there are no published bounds on the parameters in the Higgs
sector. We determine these bounds. The bounds orC®iEeven asymmetric coefficients arise from the
one-loop contributions to the photon propagator, those fromCf&even symmetric coefficients arise from
the equivalent,,, coefficients in the fermion sector, and those from@#T-odd coefficient arise from bounds
on the vacuum expectation value of tAdoson.
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[. INTRODUCTION should be noted that this is the “minimal” extension. Non-
Minkowski spacetime$5] will lead to spacetime-dependent

The scale of the unification of gravity with the other in- coefficients, and some models can lead to nonrenormalizable
teractions is expected to be near the Planck scale dBrms. Such minimal extensions are beyond the scope of this
10 GeV. This is far out of reach of any future acceleratorsPaper.
and thus is not directly experimentally accessible. However, In the SME, the additional terms in the Higgs sector are
the nonlocality of string theory leads to the possibility that9iven by[2]
Lorentz andCPT symmetry violations might exist at that 1
scale[1], and hence high-precision studies of these symme- — | Z(KkS LiKkA wdp\ DY
tries might be able to probe Planck-scale physics. Lept ever=| 7 (Kig T 1kgy)u(DHE) DT+ Hoe.

It is difficult to write the most general Lorentz a@PT 1 1

violating theory—even the meaning of a Lagrangian be- zkgECDT(I)BM— zkgc\,CDTWWCD, (1.1
comes questionable in such a theory. However, with some

reasonable assumptions, one can study LorentZ&dvio- nd

lation. To develop a framework for studying Lorentz and

CPT violation in the standard model, Colladay and Kos- Lopr odd:ik/(;;q)TD,u,(I)"—H-C- 1.2

telecky[2] constructed the standard model exteng®NE).

This is a theory based on the standard model but which i”Here we have broken the, , term up into its real symmet-
cludes agditional Lorentz an@PT violating terms. These ic and imaginary antisymmetric parts. Note that kg and
terms satisfy the SU(3J SU(2)xU(1) gauge symmetry of g . coefficients are real antisymmetric, ti®T even coef-

the standard model, and they also satisfy invariance undefcients are all dimensionless, and the complex-valG&T
observer Lorentz transformatiof3—4]. This means that any odd coefficient has units of mass.

Lorentz indices that the additional term contains must be To our know|edge’ there are no pub“shed limits on the
contracted(i.e., it must be an observer Lorentz scaland  possible values of these coefficients. The purpose of this ar-
that rotations and boosts of the observer inertial frame do najicle is to explore the current bounds on these terms. In Sec.
affect the physics. This ensures that the physics does nef we consider the bounds on tf@PT-even antisymmetric
depend on the choice of coordinates. In addition, the Lorentéoefﬁcientskgd) kg andk . In Sec. 1ll, the bounds of the
violation is assumed independent of position and time, an¢-pT.eyven symmetric coefficientts2¢ are determined, and

thus energy and m_omentl_Jm are cons.,ervedl. Th? Lorent%he bounds on th€PT-odd coefficientk,, are discussed in
violating terms considered in the SME violate invariance un- ec. IV. Section V contains our conclusions and a summary
der particle Lorentz transformations, i.e. under rotations an h tﬁe Bounds

boost of a particle within a fixed observer inertial frame. An
example of two such terms in the pure electron sector is
yMy, where M=a,y*+Db,y"ys. This term is clearly
SU(3)X SU(2)x U(1) invariant, and the coefficients are po-
sition independent, bu, andb, are constant vectors and  Whenever new particles or new interactions are proposed,
do not transform under a particle Lorentz transformation. Ithere are two approaches to discovery. One can look for di-
rect detection of these particles or interacti¢as in searches
for supersymmetric particles or for flavor-changing neutral

II. BOUNDS ON THE CPT-EVEN ANTISYMMETRIC
COEFFICIENTS

*Electronic address: dlande@wm.edu currents. Alternatively, one can look at the loop effects of
"Electronic address: sher@physics.wm.edu the new physics on lower energy processes, such as in pre-
*Electronic address: ituran@newton.physics.metu.edu.tr cision electroweak measurements. In studying the above co-
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efficients, direct detection would necessitate producing large To calculate the additional vacuum polarization diagrams
numbers of Higgs bosons, and the resulting bounds would bfar the photon propagator due to a non—zéﬁ% term in Eq.
quite weak. However, there are extremely stringent boundgl.1) (assuming all other parameters are zeme need to
on Lorentz violation at low energies, and thus searching fofind the vertices and propagators which are dependent on
the effects of these new interactions through loop effects Wi|k2¢_ For our purpose, vertices involving at least one photon
provide the strongest bounds. The most promising of thesgeld are necessary. Two of them, for instance, can be quoted
effects will be on the photon propagator. here. TheA,W, ¢*[A,(p)¢* ¢~ ] coupling is given by

In thls_secuon, we will _cc_)nS|d§r the bounds on BET- —emN(k%),w[—e(k@qa)wp"]- Here all momenta are taken
even antisymmetric coefficients,kys andkyw. These  ioward the vertex, and= is the usual charged Goldstone
interactions will lead to modified vertices and propagatorsygson. As in the conventional SM, one can choose accept-
and will thus affect the one-loop photon propagator. We firsiyple gauge-fixing conditions to remove the redundant de-
look at the moAst generdPT-even photon propagator, and grees of freedom from the theory. In the SM, the following
_then relate thé,, coefficients to the Lorent_z-wolatlng term; conditions in theR, gauge can be chosdi]: f,=a,A%
v e arecty o e e g GEZ)E ()0~ (1)), 1123 o he SUL2)

y ¢ F  case andf=a,B*+(ig’ &2)(® {d)o—(PT)od') for the

coefficients. We then consider thgg andk, coefficients. 2 .
ConsideringCPT-even terms only, the photon Lagrangian U(1) case, wherg(g ) IS th.e SU(ZEU,(l)] coupling con-
stant, r; are the Pauli matrices, anfl’ and (®), are the

can be written a$2] ; . ;
Higgs doublet and vacuum expectation value, respectively.
1 1 Then the gauge-fixing term in the Lagrangian i
Lpnotor=~ 7 FunF ™ = Z(kF)Io\WFK)‘F“V- (2.)  =—(f-f)%2&—f2/2¢ and this removes the mixing term be-
tweenW= and¢ ™. In the SME, we have additional mixing
Here ke has the symmetries of the Riemann tensor plus groportional tok’;d,. A simple generalization of the above
double-traceless constraint, giving 19 independent parangauge-fixing conditions, by addingiék’;(b)w&“Ai” term to

eters. The equation of motion from this Lagrangian is f; and a similari(kg(b)wa“BV to the functionf, would re-
ws move such a Lorentz-violating mixing in our case as well.
M#°A;=0, (2.2 However, such a generalization also leads to an unwanted
where mixing between the gauge bosdp and the derivative of the

Higgs field,d, 1, which is contracted withk(},,)“", as well
M*%(p)=g*°p?—p*p’— 2(k,:)“575pﬁp7_ (2.3 as substantially complicating the photon propagator. Instead

we use a mixed propagator of the fomm,\,(kgd))wq” for
The propagator is clearly gauge invarignécall thatkg is Wi(q)gﬁi fields[that is, we are treating the mixing term as
antisymmetric under exchange of the first or last two indi-an interaction, which leads to diagrams lil, (e), (g), and
ces. (h) in Fig. 1. Here we use the convention that the

To bound the coefficients, we calculate the vacuum polar4g-momentumq of W, is incoming to the point where the

ization diagrams for the photon propagator, using the fullield turns into a charged Goldstone boson.
Lagrangian, including Lorentz-violating terms. The result  Another distinct feature of this model is the presence of a
will be of the form of the above propagator, and one can reagerm of the formi mW(kg(b)“”W;W; _This term needs to be
off the value ofke . Note that while they*’p®—p“p” struc-  considered carefully. It obviously represents a new term in
ture is mandated by gauge invariance, Kpeterm is sepa-  the W propagator. We will discuss how to deal with this term
rately gauge invariant and may differ order by order in pern the R, gauge, although we use the 't Hooft—Feynman
turbation theory. For simplicity, we look at the divergent gauge ¢=1) in our vacuum polarization calculations. Since
parts of the one loop diagrams orlionsideration of higher  this mixing term can be considered an interaction, one can

sarily identical, results. ~ terms in theW boson from the Lagrangian together with
In general, due to the large number of Lorentz-wolatmgﬁgf' we haveAﬁ\(,\z,):W;K#V(q)Wj, where

terms, this yields a bound in a multidimensional parameter
space. However, if we do not consider the possibility of fine- . . .. > 5, _ Y
tuning, then we can consider each of the possible terms in- IK#(@)=i[~ (9= my)g""+(1-1/£)a"q
dependently. One must keep in mind that some of the param- +im\2,\,(kA )W]EiK(O)w(q)_m\zN(kA 23
eters may be related by a symmetry, but absent such a oé oé
symmetry, we expect no high-precision cancellations. We be- . e (0)uv .
gin by considering the antisymmetric partlof,,, and then %NGKI((QSLVXAthat trle 'B ve-rs?hoK " I(q), sayl?(o)fyx(?&étgat
Kyg andKy. is, ©Om=0y), is the usual propagator for o-

¢ son. FromK#”(q), one can write the form of the propagator

asA,\(q)=A(a)+B,,(Kj,), where allk}, dependence

1At extremely high energies, either energy positivity or microcau-'S in the second term. To (ilieytermiBg)\ , we can use the fact
sality may be lost[6] However if we cut off the theory at a high, thatA,, is theo'nverse PK . From this equation, one gets
but finite, scale, this will not be an issue. B,,= —im\z,vA(V)\),(kg(b))‘ “[A+B,,]. Iterating this equa-
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Herep is the four-momentum of the external photons. Again
PN % % the first possibility is not gauge invariant and should vanish;
thus contributions from the third term in E¢2.4) should

o o vanish. We have verified this explicitly. The latter is gauge

invariant and gives a non-zero contributiGh we contract

with any of two external momenta of photon®! or p”, it
vanishes due to the antisymmetry property&@fz,).
Calculating the one-loop diagrams, and comparing with

- Eq. (2.3, we find that the components &f can simply be

) ) ® expressed in terms  of k@(b as  Ke)uarw

=3(K3 ) i (Kyg)rr,- We now turn to the experimental

var,\/. bounds on the .
] ) The dimensionless coefficienkg),, ,, has the symme-
tries of the Riemann tensor and a vanishing double trace,
() 0]

® resulting in nineteen independent elements. Following Kos-
telecky and Mewes[8], we can express these elements in

FIG. 1. One-loop contributions to the photon vacuum polariza-terms of four traceless 83 matrices and one coefficient:
tion involving Lorentz-violating interactions to second order. These

diagrams are for thdxgd, case but similar diagrams exist for the ~ ik 1 ”

other antisymmetric coefficients. Here the wadashed line cir- (ke )= E(KDE—'— Kkpp)',

culating in the loop represents th& boson (charged Goldstone

boson. Each blob in vertices\ propagator oiW-¢ mixed propa- 1 1

gator represents a single Lorentz-violating coefficient insertion. The (ko )= Z(kpe— kpp)*— =8 (kpp)",
rest of the diagrams can be obtained by permutations of these 9 2 3

diagrams.

~ .1 .

k= — jk

. . . K = =(kpgt+ K ,
tion, one obtains a series. However, we know tkg pa- (ko) = 5(Kop* Kue)

rameters are small, so it is sufficient to keep the first few
terms. Up to second order, it is straightforward to show that ~ ik 1 ik
(Ko-) :E(KDB_KHE) )
B, =—imgA(KS ) “PAl)

~ 1

—miAQKE ) A0, (K )P D). k=3 (xo)", (2.9

LY/B/
In the 't Hooft—Feynman gauge the propagator has a simplsvh ;
form which can be given as ere

(KDE)jk: - Z(kF)OJOK:

. . (Kb
IAm(fE:l):lA(V(i)ﬂLm\Z/vmzf#)z 1
o ()= 5 €PIe (k) PO,
(Kgp) valKgp) “\
.4 Rgg)valKgy
My 2_m2y3 7 24 k= _ kj— (k)0iPackpa 2
(9°—my,) (kpB) (kpe) = (k) PAePA, (2.6

where, for example, the second term is represented as a blob There are stringent astrophysical bounds on 10 of the 19
in the W propagator in Fig. (), Fig. 1f), and Fig. 1i). elements, those given by, and byx,_ . These astrophysi-
We are now ready to calculate the vacuum polarizatiortal bounds have been discussed recently in detail by Kos-
diagrams for the photon propagator. It is useful to classifyteleckyand Meweg8]. The observations of radiation propa-
contributions as the ones having first orttk@r(ZS dependence gating in free space over astrophysical distances results in
and the ones with quadratic kﬁd). The only possible struc- bounds on these elements from velocity and birefringence
ture in first order is I@QS)W whereu(v) is the Lorentz index constraints[3,9—-13. The bound from birefringence con-
of the incomingoutgoing photon field. If we add all pos- straints is the strongest, and is given by B0 %2 The
sible one-loop diagrams, the first order contributions vanishbounds on the remaining 9 elements are much weéikmat
This is expected from the gauge invariance requirement. It ig1 fact can be moved into the fermion sector, as will be
not difficult to show that getting a gauge invariant transversaliscussed below
structure is only possible with at least t\kﬁd) terms. In Fig. If one of our coefficients is nonzero, saW%)m
1, we depict the one-loop diagrams which, when permuta= —(k2¢)1ozx, then the only nonzero componentskafare
tions are added, give second order Lorentz-violating incluthe (Kg)1010,(Ke)o101: (Ke)1001 @nd  Kg)o110 COMponents.
sions. There areAtwo DCLSSING strlictures In second ordefhjs leads to a nonzerg,, matrix, and thus the stringent
which are e|therl(¢¢)m\(k¢¢)”v or (kw)m\(kw)va*p}‘ . bounds apply. Extending this one can see that for any single
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or possible combination of non-zero elements Io%)w it structure(three scalar loop diagrams with charged Goldstone

is impossible for botfk., andx,_ to be null matrices, and ¢~ and Higgs bosonp,, and would-be neutral Goldstone
thus the birefringence constraints apply. boson¢2). Gauge invariance makes us expect that. the first
One cautionary note should be added. In the above exWO non-invariant structures should vanish and this is indeed
ample, thekg tensor is not double traceless, sindg)(, is the case. So, in this framework, thekefuny,
proportional tox2. This means that the kinetic energy for the = (5/12 )Coszev\/(kqu)m(@B).w.v equality holds. Numeri-
photon has not been properly normalized. By adding an@@lly, the bound on the individu&,g is stronger than that

subtracting a term proportional to the double trace for k%, by a factor of (5 cogf/4e?)"*~3.2. This gives the
upper bound ork g of 0.9x 10 1°.

) , 1 N The kyy term has very similar features to tHx@ case
L=— Z(1+9X )FuFH = Z(kF)K’x’u’v’F Fe except for the photon—Higgs-boson mixing. It additionally
allows the Lorentz-violatingA ,(p) ¢1¢1 vertex, which is
equal to—sin&k,,p” [leading to diagrams like Fig.(a)
with ¢, second order irk,]. Adapting the same gauge-
fixing conditions ofk%, one can show that thé/ propaga-
wheres is a constant and the primed indices are summedor with one k4 inclusion becomes im\z,\,(k(,,\,\,)lw/g(q2
only over the nonzero elemerfis the above exa_mple, only _m\ZN)Z_ Computation of diagranigigs. 1@)—1(i) plus their
over (Kg)1010 (Kr) o101, (Kg) 1001, (KF) o12d - A redefinition of  permutationy shows us the Kow) uv s (Kgw) ,aP*p,, and
tﬂe photqn_ﬁeld will gl\t/)e a r(ion(;/englonal k|n|et|c tern:j,_ gnd_ kq}w))\yp%pﬂ structures in the first order and
the remaining terms obey the double traceless condition if, W (Kan) ™, and Ko) (Ko yr,pp" i the second
one chooses a suitablevalue. This means that, although we oraber.MThe(bonIy survivir%bg term s the last one which is gauge
started with only ae)oy0, term (plus permutationswe also i ariant Consequently, as in the,s case, a very similar
have Q(F)0202r(|_(F)03031(kF)12121(kl_:)13_13 and Kr) 2323 terms  ajation between kg and  Kgw, (KD oanr v
(plus permutatlorﬁf Nonetrleless it will still not be possible _ —(5/1292)Sinzﬁ\/\/(kqsw)m(k(ﬁw)w, yields an upper bound
for the elements ok, and«x,_ to become zero, hence these of 1.7x 10716, It is seen that the current bound on all three
redefinitions do not affect the bounds. From these results, Wegrentz-violating coefficients is of the order of 1%.
find an upper bound of 8107 for the k/},, coefficients,
barring, of course, fine-tuned cancellations.

Next, we consider thé,g term by setting all other pa-
rameters to zero in Eq1.1). This term has an interesting
new interactionA, ¢, ¢;, where ¢, is the standard model In this section, we consider bounds on 'rk%qS coeffi-
Higgs boson. There also exists a similar Lorentz-violatingcients. In this case, the strongest bounds come from relating,
vertex with the neutral Goldstone bosap,. Therefore, in  through field redefinitions, these coefficients to other Lorentz
addition to the charged Goldstone loop, we have diagramsiolating coefficients in the fermion sector, and then using
like Fig. 1(a), which are second order i,g with different  previously determined bounds on those coefficients.
vertex factors, where now the particles circulating in the loop  Once one extends a model by relaxing one or more sym-
are the Higgs and the would-be Goldstone bosons. The counetry properties of the original model, the extended model
pling is cos(Kyg).,P", wherep is the four-momentum of should involve all possible otherwise invariant structures.
the photon. Unlike thek@q5 case, we obviously do not have However, if the modification is carried out under the assump-
an additional mixing between th& and charged Goldstone tion that the fields are transformed under this otherwise bro-
bosondthus, no diagrams lik&d), (e), (g), and(h) in Fig. 1]. ken symmetry group in the usual way, not all of the new
But this new term induces a remarkable mixing between thg@arameters representing apparent violation of this symmetry
photon and the Higgs scalar, since when the Higgs bosomay be physicali.e. the model has some redundant param-
gets a vacuum expectation value, Apd,¢ mixing term  eters. Therefore an extension should be carefully analyzed
appears. This term cannot be removed by gauge fixing, anw check for redundant parameters. This analysis may yield
represents a mixed propagator. In our one-loop calculation cfeveral Lagrangians which are equivalent to each other by
the photon propagator, however, the mixing will not contrib-some coordinate and field redefinitions and rescali@gk3—
ute to the divergent part, and is thus not relevahherefore, 15]. The same situation applies to the SME case. A simple
if we look at the structures in the first and the second order irexample is provided by Colladay and KosteledRy. Con-
kys, there exist Kgg),aP'P,, (Kgg)P'P.. and sider the electron in QED, with the kinetic tergyD , .
(kd,B)M(k(bB)w,,p)‘p”'. Note that only the scalar loop dia- Suppose one transforms the electron field as
grams with two Lorentz-violating vertices yields the last —exp(—ia*“x,)#, whereais a constant vector. This is not a

gauge transformation, singe, is not changed. Plugging into
, the kinetic term, one finds a tera),sy*¢. But this is one of

With the use of this mixing, there is another place where thethe Lorentz-violating terms mentioned in the first section,
Lorentz-violatingk 45 term could contribute, namely in the ee and thus this term can have no physical effect. Other field
and ¢, ee effective vertices. However, the bounds we obtain belowredefinitions can eliminatéor, more precisely, make redun-
render any such effects negligible. dand other possible terms. Recently, the spinor part of the

1 2
+Z(§X )FM,,FMV, (2.7)

IIl. COORDINATE AND FIELD REDEFINITIONS
AND THE SYMMETRIC COEFFICIENTS
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extended QED has been extensively discussed by Colladagonventional fermion sector with a scalar fielbl gives
and McDonald(13]. Thea,, term need not be redundant if us  £(y,®)=L{()+ L (@) +[1/2 (K3 4) (3 0"
gravity is included. This has been explori by studying  +H.c], where the scalar field redefinitiond(x)

the SME with gravity in the context of_ R|eman_nTCartan =[1+%(k3¢)wx"&”]¢(x) is assumed. Again expressing
spacetimes, and thus new Lorentz-violating coefficients apme fie|ds in terms of skewed coordinates with a modified

pear in such a framework. ; _ s At
. =0t -
In the Higgs sector, one can also make some of the Symmetnc 7uv=9urt (Kgg), the apparent Lorentz-violating

S . .
metric coefficients redundant. Here we just consider thdKs,) term can be absorbed in the scalar sector but it reap-

U(1) part but the generalization to SU(R)J(1) is straight- pears in the f?‘””ion_ sector z_asz:aerm. It we further extend
forward. A toy model discussed ii8,15] is relevant to our our model by including fermion-photon interactions one can

purpose. Consider first a model involving only two Lorentz-Show that there is a mixing amorig, ., and nine un-

violating parameters, and ke in the scalar and photon boundedkg coefficients[17]. Consequently, the observabil-

sectors, respectively. The Lagrangian is ity of k2¢ is nothing but a matter of convention. The above
analysis enables us to move a non-zleig) term into either
Lz[gMVJr(k¢¢)MV](D“d>)TD”d>—mZCDT@—%FWFW ac,, term or akg term. In this article we concentrate on
) only the Lorentz andCPT violation in the scalar sector of the
— 1 (Kg) s FHAFN SME; hence we assume that the theory has a conventional

. _ o fermion sector, which means that boundsogn will lead to
whereD ,=d,+iqA, andk,, is real and symmetric. First effective bounds orkj,,. A full and systematic analysis of
let us assume that only one componentkofs, (Kgg)oo  all of the field redefinitions and redundancies in the SME

Ekz_— 1, is nonzerd8,15] and thatkg is taken as zero. By would be valuable, but is beyond the scope of this paper.
making the coordinate transformations-kt, x—x and the  \jith our normalizations, a bound ary,, will translate di-

electric cfrhargeq—>2q/ K, one gets 2th2e Lagrangialpoton We thus need the current bounds on the coefficients.
=(D,®)' D#*®—m _‘DT_CDJFE(E —k*B%), where E(B) is  Although numerous bounds appear in the literature, many of
the electric(magneti¢ field. So we start with a system hav- them should be taken with a grain of salt. Consider the spa-
ing a Lorentz violation in the scalar sectd(=0) and end g parts ofc,,. The strongest bounds give an upper limit
up with an equivalent Lagrangian involving Lorentz viola- 5, the diagoﬁal spatial elements of £6[18,20,2] and on
tion in photon sectofsome components d&f- are nonzer)) the off-diagonal elements,, and ¢y, of 10725 [22,20,21,
Second we can further 52h°W that by _choo§_|r\m|y andcyy of 10727[18,20,2]. There are several caveats, how-
(Kgp)11= (Kpp) 22= (Kpg)3s=k®—1 nonzero it is still pos-  gyer First, these are bounds fo,, of the neutron. It is
sible to get an Tequn{aleznt Lagrangian @photon  conceivable that the mechanism that results in Lorentz vio-
=(D,®) D¥®—m D ®+3(E°—B7k?) under the trans- |ation is proportional to the charge, and these experiments
formationst—t, x—kx and the redefinition®\,—kAg, A \ould miss the effect. It is also conceivable that a version of
—A with the same charge rescaling-q/k. However, for  gchiff's theorem(which shows that in the nonrelativistic
the other components df,,, there are no such obvious |imit, the electric dipole moment of an atom will vanish,
transformations. . even if it does not vanish for constituentwill cause a
Another analysis of the physical effects of the Lorentz-screening of the,, coefficients of the quarks. The first ef-
violating coefficientsk, can be found by looking at the fect can be eliminated by considering protons or electrons,
effects of field redefinitions over those parameters. Thesghe second can be eliminated by considering electrons. An-
effects in the fermion sector were discussed in detail in thejther caveat is that the bounds on the diagonal elements are
context of extended QEDL3]. There it was shown that un- actually bounds 0By y— Cyy andcyy+ Cyy—2¢,», and thus
der the fermion field redefinitiog(x) =(1+c,,x*d")x(X)  if the Lorentz violation is isotropic, the bounds will not ap-
it is possible to generate a would-be Lorentz-violating La-ply. In this case, the vanishing trace condition Wk in the
grangian in the free fermion context ang, represents the case of the double-traceless conditionkgj yield, when the
Lorentz violation. Here:;ﬂis a real symmetric coefficient of fermion field is properly normalized, a nonzecg;, and
the Lorentz violatingc,,¢y*D "¢ term in the fermion sec- thus the bounds on the diagonal spatial elements will be that
tor. However, this transformed Lagrangian can further be exef the bound orcry.
pressed in terms of a new coordinate system having a non- The bound orcy; can be obtained by comparing antipro-
diagonal metric, i.e. a skewed coordinate system, and in thion cyclotron frequencies with those of a hydrogen [i28]
way it is possible to restore the form of the original Lagrang-and a very weak bound of>410 3 is extracted. An inter-
ian. In this framework, this shows thaf,, is not physical. esting connection between the dispersion relation for fermi-
The redundancy ofc,,, however, disappears when the ons and thecyy coefficient has been noted by Bertolami
fermion-photon interaction is involved. A very similar etal. [19], and astrophysical experiments to improve the
analysis for the scalar sector of a toy model, involving abound are proposed. For the time-space components, there
are various studies based on the sensitivities of some planned
experimenty 20,24—-26; most of the bounds are from the
3This choice was made in R€fL6], where it was shown that the neutrino sector of the SME and the highest proposed sensi-
contribution to Higgs boson decays from this term is negligible. tivity is around 10 2° [24].
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TABLE |. Estimated upper bounds for the Lorentz &DBT violating coefficients in the Higgs sector of

the SME.

Parameters Sources Comments
ot Fo Cpuv b, (GeV)

(K3 ) 3x10°6 — — —

(KgB) v 0.9x10 6 — — —

(Kgw) uo 1.7x10° 16 — — —

(K — 10?7 — :

—13

(kg’(ﬁ)TT — 4X 1_025 — .

(Kgp)Ti — 10 —

(kfw)xz : (kid,)vz — 107% — :

(k§>¢)XY — 10 % —

(Kp)x s (Kg)v — — 103 ¢

(kp)z:(Kg)t — — 2.8x10°% f

®Obtained fromc;,,""*"with the assumption that Lorentz violation is not isotropic. If it is isotropic, the bound
on (k$,)rr applies.

PObtained from the comparison of the anti-proton’s frequency with the hydrogen ion’s frequency.
‘Estimated value based on the sensitivity calculations of some planned space experiments.

dObtained from the neutron.

*From bj,*""with the use of a two-species noble-gas maser. Fh)@'Fﬁ‘m”, a weaker but cleaner bound of
1.2x10 2% can be obtained.

This bound is from the spatial isotropy test of polarized electrons.

IV. BOUNDS ON THE CPT-ODD COEFFICIENT V. CONCLUSION

. . . In this work we have studied the bounds on the Lorentz
The remaining part of the Higgs sector Lagrangian haSand/orCPT violating coefficients in the Higgs sector of the
one term that violates both Lorentz a@PT symmetries, 9 99

- SME. It is shown that all antisymmetricPT-even Lorentz-
represented by the complex constant coefficidgy){. One L - . -~
: : . ; e violating coefficients give second-order contributions to the
interesting effect of this term is the modification of the con-

ventional electroweak SU(2)U(1) symmetry breaking photon vacuum polarization at one loop. By comparing with

LT . o " _thekg term and assuming one of them nonzero in each case
Minimization of the static potential yields a nonzero expec—(Without high-precision cancellation we  find
tation value for Z, boson field of the form(Z,), (KA ). (k )g F()k ). =101 For the symmetric part
=[(sin 26y)/q]Re(k,) , . Here we have assumed all the other f¢lﬁ uvs f‘t/’B /‘(”j.’ PW. 'MNth .I y i f;] h
Lorentz-violating coefficients zero. The nonzero expectatio Pl Kog gler_ |scusfsf_|n_g € C.Osi c?nne_c lons wi b €
value for theZ will, when plugged into the conventional orentz-vio atmg coe 'C'er_“% n t € fermion sector by
fermion-fermionz int i old E by t Al means of coordinate and field redefinitions, we conclude that
ermion-fermionZ interaction, yie LY ysiy term. Al-

8 the bounds could be determined directly from term.
ternatively, one can look at the one-loop effects on the pho y e

In a very similar way we obtain the bound on t8&T and
ton propagator; however this will yield much weaker bounds y y

- . T ) Lorentz-violating coefficient K,),, by comparing with the
By assuming thak, is the only Lorentz-violating term in the b, term in the fermion sector. The existence ok a term
Higgs sector, one finds that the effectibg= %Re(k(ﬁ)#. If ¢

look he b bounds bo. f i ¢ leads to a nonzero vacuum value %y, which further en-
we look at the best current bounds bp, from testing of - 564 s 1o relatek(,) , with b, and we find an upper bound

cosmic spatial isotropy for polarized electrofi7], bf(,Y of 1073 (10°2) GeV for the X,Y(T,Z) components of

— 29 — 28 i
<3.1X10 " GeV and b;<7.1X10"* GeV in the Sun- ky),. Table | lists all the bounds together with their
centered frame. The best bound comes from the neutron witggrces.

the use of a two-species noble-gas m4g&8f and it is of the Perhaps the most intriguing bounds are for the antisym-
order of b} y<10"%* GeV. Note that in order to get this metric coefficients. Recent developments in string theory in-
bound there are some assumption about the nuclear configdicate that Lorentz-violating non-commutative geometry
rations, which make the bound uncertain accuracy to withicmight be a low-energy probe of Planck scale phygleg30,

one or two orders of magnitude. The bound on the timeand this geometry will be antisymmetric. It is interesting that
component ob,, is aroundb}< 10 2" GeV[29]. Therefore, our upper bounds on the coefficients &€10~ %), which is

the best bounds for the real part &y, are 103 GeV and less than an order of magnitude above the ratio of the elec-
1027 GeV for theX,Y and for theZ, T components, respec- troweak to Planck scale. An improvement in the birefrin-
tively. The imaginary part ok, is unphysical, since this term gence bounds of a couple of orders of magnitGahich is

in the Lagrangian is a total divergence. feasible[10,31)) could probe this sensitivity. Should lg-
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term actually be discovered, our analysis shows how one caand improvement in the birefringence bounds of a couple of
distinguish Higgs sector Lorentz violation from other sec-orders of magnitude would be valuable. For symmeiRT-

tors. Specifically, of the ten observalite coefficients, we

even Lorentz violation, there are tight bounds, but with vari-

find nonzero values only for the two independent diagonabus assumptions and caveats. The relatively wegkand

elements ok, . Thus, the origin of Lorentz violation might

cr; bounds, as noted in Ref20], could be substantially

be experimentally accessible. It should be noted that inclutightened.

sion of gravity might lead to new Lorentz-violating terms, as

discussed in Ref5].
If the primary effects of an underlying Lorentz a@PT
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