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Lorentz and CPT violation in the Higgs sector

David L. Anderson,* Marc Sher,† and Ismail Turan‡
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Colladay and Kostelecky´ have proposed a framework for studying Lorentz andCPT violation in a natural
extension of the standard model. Although numerous bounds exist on the Lorentz andCPT violating param-
eters in the gauge boson and fermion sectors, there are no published bounds on the parameters in the Higgs
sector. We determine these bounds. The bounds on theCPT-even asymmetric coefficients arise from the
one-loop contributions to the photon propagator, those from theCPT-even symmetric coefficients arise from
the equivalentcmn coefficients in the fermion sector, and those from theCPT-odd coefficient arise from bounds
on the vacuum expectation value of theZ boson.
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I. INTRODUCTION

The scale of the unification of gravity with the other i
teractions is expected to be near the Planck scale
1019 GeV. This is far out of reach of any future accelerato
and thus is not directly experimentally accessible. Howe
the nonlocality of string theory leads to the possibility th
Lorentz andCPT symmetry violations might exist at tha
scale@1#, and hence high-precision studies of these symm
tries might be able to probe Planck-scale physics.

It is difficult to write the most general Lorentz andCPT
violating theory—even the meaning of a Lagrangian b
comes questionable in such a theory. However, with so
reasonable assumptions, one can study Lorentz andCPTvio-
lation. To develop a framework for studying Lorentz a
CPT violation in the standard model, Colladay and Ko
telecký@2# constructed the standard model extension~SME!.
This is a theory based on the standard model but which
cludes additional Lorentz andCPT violating terms. These
terms satisfy the SU(3)3SU(2)3U(1) gauge symmetry o
the standard model, and they also satisfy invariance un
observer Lorentz transformations@2–4#. This means that any
Lorentz indices that the additional term contains must
contracted~i.e., it must be an observer Lorentz scalar!, and
that rotations and boosts of the observer inertial frame do
affect the physics. This ensures that the physics does
depend on the choice of coordinates. In addition, the Lore
violation is assumed independent of position and time,
thus energy and momentum are conserved. The Lore
violating terms considered in the SME violate invariance u
der particle Lorentz transformations, i.e. under rotations
boost of a particle within a fixed observer inertial frame. A
example of two such terms in the pure electron secto
c̄Mc, where M[amgm1bmgmg5. This term is clearly
SU(3)3SU(2)3U(1) invariant, and the coefficients are p
sition independent, butam and bm are constant vectors an
do not transform under a particle Lorentz transformation
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should be noted that this is the ‘‘minimal’’ extension. No
Minkowski spacetimes@5# will lead to spacetime-dependen
coefficients, and some models can lead to nonrenormaliz
terms. Such minimal extensions are beyond the scope of
paper.

In the SME, the additional terms in the Higgs sector a
given by @2#

LCPT even5F1

2
~kff

S 1 ikff
A !mn~DmF!†DnF1H.c.G

2
1

2
kfB

mn F†FBmn2
1

2
kfW

mn F†WmnF, ~1.1!

and

LCPT odd5 ikf
mF†DmF1H.c. ~1.2!

Here, we have broken thekff term up into its real symmet
ric and imaginary antisymmetric parts. Note that thekfB and
kfW coefficients are real antisymmetric, theCPT even coef-
ficients are all dimensionless, and the complex-valuedCPT
odd coefficient has units of mass.

To our knowledge, there are no published limits on t
possible values of these coefficients. The purpose of this
ticle is to explore the current bounds on these terms. In S
II, we consider the bounds on theCPT-even antisymmetric
coefficients,kff

A ,kfB andkfW . In Sec. III, the bounds of the
CPT-even symmetric coefficientskff

S are determined, and
the bounds on theCPT-odd coefficientkf are discussed in
Sec. IV. Section V contains our conclusions and a summ
of the bounds.

II. BOUNDS ON THE CPT-EVEN ANTISYMMETRIC
COEFFICIENTS

Whenever new particles or new interactions are propos
there are two approaches to discovery. One can look for
rect detection of these particles or interactions~as in searches
for supersymmetric particles or for flavor-changing neut
currents!. Alternatively, one can look at the loop effects
the new physics on lower energy processes, such as in
cision electroweak measurements. In studying the above
©2004 The American Physical Society01-1
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efficients, direct detection would necessitate producing la
numbers of Higgs bosons, and the resulting bounds woul
quite weak. However, there are extremely stringent bou
on Lorentz violation at low energies, and thus searching
the effects of these new interactions through loop effects
provide the strongest bounds. The most promising of th
effects will be on the photon propagator.

In this section, we will consider the bounds on theCPT-
even antisymmetric coefficients,kff

A ,kfB and kfW . These
interactions will lead to modified vertices and propagato
and will thus affect the one-loop photon propagator. We fi
look at the most generalCPT-even photon propagator, an
then relate thekff

A coefficients to the Lorentz-violating term
in the photon propagator. Then, the experimental constra
on such terms lead directly to stringent bounds on thekff

A

coefficients. We then consider thekfB andkfW coefficients.
ConsideringCPT-even terms only, the photon Lagrangia

can be written as@2#

Lphoton52
1

4
FmnFmn2

1

4
~kF!klmnFklFmn. ~2.1!

Here kF has the symmetries of the Riemann tensor plu
double-traceless constraint, giving 19 independent par
eters. The equation of motion from this Lagrangian is

MadAd50, ~2.2!

where

Mad~p![gadp22papd22~kF!abgdpbpg . ~2.3!

The propagator is clearly gauge invariant~recall thatkF is
antisymmetric under exchange of the first or last two in
ces!.

To bound the coefficients, we calculate the vacuum po
ization diagrams for the photon propagator, using the
Lagrangian, including Lorentz-violating terms. The res
will be of the form of the above propagator, and one can r
off the value ofkF . Note that while thegmnp22pmpn struc-
ture is mandated by gauge invariance, thekF term is sepa-
rately gauge invariant and may differ order by order in p
turbation theory. For simplicity, we look at the diverge
parts of the one loop diagrams only.1 Consideration of higher
orders and finite parts will give similar, although not nece
sarily identical, results.

In general, due to the large number of Lorentz-violati
terms, this yields a bound in a multidimensional parame
space. However, if we do not consider the possibility of fin
tuning, then we can consider each of the possible terms
dependently. One must keep in mind that some of the par
eters may be related by a symmetry, but absent suc
symmetry, we expect no high-precision cancellations. We
gin by considering the antisymmetric part ofkff , and then
kfB andkfW .

1At extremely high energies, either energy positivity or microca
sality may be lost.@6# However if we cut off the theory at a high
but finite, scale, this will not be an issue.
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To calculate the additional vacuum polarization diagra
for the photon propagator due to a non-zerokff

A term in Eq.
~1.1! ~assuming all other parameters are zero!, we need to
find the vertices and propagators which are dependen
kff

A . For our purpose, vertices involving at least one pho
field are necessary. Two of them, for instance, can be quo
here. TheAmWn

2f1@Am(p)f1f2# coupling is given by
2emW(kff

A )mn@2e(kff
A )mnpn#. Here all momenta are take

toward the vertex, andf6 is the usual charged Goldston
boson. As in the conventional SM, one can choose acc
able gauge-fixing conditions to remove the redundant
grees of freedom from the theory. In the SM, the followin
conditions in theRj gauge can be chosen@7#: f i5]mAi

m

1( igj/2)(F8†t i^F&02^F†&0t iF8), i 51,2,3 for the SU(2)
case andf 5]mBm1( ig8j/2)(F8†^F&02^F†&0F8) for the
U(1) case, whereg(g8) is the SU(2)@U(1)# coupling con-
stant, t i are the Pauli matrices, andF8 and ^F&0 are the
Higgs doublet and vacuum expectation value, respectiv
Then the gauge-fixing term in the Lagrangian isLg f
52(f•f)2/2j2 f 2/2j and this removes the mixing term be
tweenW6 andf7. In the SME, we have additional mixing
proportional tokff

A . A simple generalization of the abov
gauge-fixing conditions, by adding ai (kff

A )mn]mAi
n term to

f i and a similari (kff
A )mn]mBn to the functionf, would re-

move such a Lorentz-violating mixing in our case as we
However, such a generalization also leads to an unwan
mixing between the gauge bosonZm and the derivative of the
Higgs field,]nf1, which is contracted with (kff

A )mn, as well
as substantially complicating the photon propagator. Inst
we use a mixed propagator of the formmW(kff

A )mnqn for
Wm

6(q)f7 fields @that is, we are treating the mixing term a
an interaction, which leads to diagrams like~d!, ~e!, ~g!, and
~h! in Fig. 1#. Here we use the convention that th
4-momentumq of Wm is incoming to the point where the
field turns into a charged Goldstone boson.

Another distinct feature of this model is the presence o
term of the formimW(kff

A )mnWm
1Wn

2 . This term needs to be
considered carefully. It obviously represents a new term
theW propagator. We will discuss how to deal with this ter
in the Rj gauge, although we use the ’t Hooft–Feynm
gauge (j51) in our vacuum polarization calculations. Sinc
this mixing term can be considered an interaction, one
carry out the Dyson summation. If we pick up the quadra
terms in theW boson from the Lagrangian together wi
Lg f , we haveDL W

(2)5Wm
2Kmn(q)Wn

1 , where

iK mn~q![ i @2~q22mW
2 !gmn1~121/j!qmqn

1 imW
2 ~kff

A !mn#[ iK (0)mn~q!2mW
2 ~kff

A !mn.

We know that the inverse ofiK (0)mn(q), sayiD (0)nl(q) ~that
is, K (0)mnD (0)nl5gl

m), is the usual propagator for theW bo-
son. FromKmn(q), one can write the form of the propagato
asDnl(q)[Dnl

(0)(q)1Bnl(kff
A ), where allkff

A dependence
is in the second term. To determineBnl , we can use the fac
that Dnl is the inverse ofKmn. From this equation, one get
Bnl52 imW

2 Dnl8
(0) (kff

A )l8m@Dml
(0)1Bml#. Iterating this equa-

-

1-2
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tion, one obtains a series. However, we know thatkff
A pa-

rameters are small, so it is sufficient to keep the first f
terms. Up to second order, it is straightforward to show t

Bnl52 imW
2 Dna

(0)~kff
A !abDbl

(0)

2mW
4 Dna

(0)~kff
A !aa8Da8b8

(0)
~kff

A !b8bDbl
(0) .

In the ’t Hooft–Feynman gauge the propagator has a sim
form which can be given as

iDnl~j51!5 iDnl
(0)1mW

2
~kff

A !nl

~q22mW
2 !2

1 imW
4

~kff
A !na~kff

A !a
l

~q22mW
2 !3

, ~2.4!

where, for example, the second term is represented as a
in the W propagator in Fig. 1~c!, Fig. 1~f!, and Fig. 1~i!.

We are now ready to calculate the vacuum polarizat
diagrams for the photon propagator. It is useful to class
contributions as the ones having first orderkff

A dependence
and the ones with quadratic inkff

A . The only possible struc
ture in first order is (kff

A )mn wherem(n) is the Lorentz index
of the incoming~outgoing! photon field. If we add all pos-
sible one-loop diagrams, the first order contributions van
This is expected from the gauge invariance requirement.
not difficult to show that getting a gauge invariant transve
structure is only possible with at least twokff

A terms. In Fig.
1, we depict the one-loop diagrams which, when permu
tions are added, give second order Lorentz-violating inc
sions. There are two possible structures in second or
which are either (kff

A )ml(kff
A )l

n or (kff
A )ml(kff

A )l8nplpl8.

FIG. 1. One-loop contributions to the photon vacuum polari
tion involving Lorentz-violating interactions to second order. The
diagrams are for thekff

A case but similar diagrams exist for th
other antisymmetric coefficients. Here the wavy~dashed! line cir-
culating in the loop represents theW boson ~charged Goldstone
boson!. Each blob in vertices,W propagator orW-f mixed propa-
gator represents a single Lorentz-violating coefficient insertion.
rest of the diagrams can be obtained by permutations of the
diagrams.
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Herep is the four-momentum of the external photons. Aga
the first possibility is not gauge invariant and should vani
thus contributions from the third term in Eq.~2.4! should
vanish. We have verified this explicitly. The latter is gau
invariant and gives a non-zero contribution~if we contract
with any of two external momenta of photons,pm or pn, it
vanishes due to the antisymmetry property ofkff

A ).
Calculating the one-loop diagrams, and comparing w

Eq. ~2.3!, we find that the components ofkF can simply be
expressed in terms of kff

A as (kF)mll8n

5 1
3 (kff

A )ml(kff
A )l8n . We now turn to the experimenta

bounds on thekF .
The dimensionless coefficient (kF)klmn has the symme-

tries of the Riemann tensor and a vanishing double tra
resulting in nineteen independent elements. Following K
telecký and Mewes@8#, we can express these elements
terms of four traceless 333 matrices and one coefficient:

~ k̃e1! jk5
1

2
~kDE1kHB! jk,

~ k̃e2! jk5
1

2
~kDE2kHB! jk2

1

3
d i j ~kDE! l l ,

~ k̃o1! jk5
1

2
~kDB1kHE! jk,

~ k̃o2! jk5
1

2
~kDB2kHE! jk,

k̃ tr5
1

3
~kDE! l l , ~2.5!

where

~kDE! jk522~kF!0 j 0k,

~kHB! jk5
1

2
e jpqekrs~kF!pqrs,

~kDB! jk52~kHE!k j5~kF!0 jpqekpq. ~2.6!

There are stringent astrophysical bounds on 10 of the
elements, those given byk̃e1 and byk̃o2 . These astrophysi-
cal bounds have been discussed recently in detail by K
teleckýand Mewes@8#. The observations of radiation propa
gating in free space over astrophysical distances result
bounds on these elements from velocity and birefringe
constraints@3,9–12#. The bound from birefringence con
straints is the strongest, and is given by 3310232. The
bounds on the remaining 9 elements are much weaker~and
in fact can be moved into the fermion sector, as will
discussed below!.

If one of our coefficients is nonzero, say (kff
A )01

52(kff
A )10[x, then the only nonzero components ofkF are

the (kF)1010,(kF)0101,(kF)1001 and (kF)0110 components.
This leads to a nonzerok̃e1 matrix, and thus the stringen
bounds apply. Extending this one can see that for any sin

-
e

e
9

1-3
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or possible combination of non-zero elements of (kff
A )mn it

is impossible for bothk̃e1 and k̃o2 to be null matrices, and
thus the birefringence constraints apply.

One cautionary note should be added. In the above
ample, thekF tensor is not double traceless, since (kF)mn

mn is
proportional tox2. This means that the kinetic energy for th
photon has not been properly normalized. By adding a
subtracting a term proportional to the double trace

L52
1

4
~11§x2!FmnFmn2

1

4
~kF!k8l8m8n8F

k8l8Fm8n8

1
1

4
~§x2!FmnFmn, ~2.7!

where § is a constant and the primed indices are summ
only over the nonzero elements@in the above example, only
over (kF)1010,(kF)0101,(kF)1001,(kF)0110]. A redefinition of
the photon field will give a conventional kinetic term, an
the remaining terms obey the double traceless conditio
one chooses a suitable§ value. This means that, although w
started with only a (kF)0101term~plus permutations!, we also
have (kF)0202,(kF)0303,(kF)1212,(kF)1313 and (kF)2323 terms
~plus permutations!. Nonetheless it will still not be possibl
for the elements ofk̃e1 andk̃o2 to become zero, hence thes
redefinitions do not affect the bounds. From these results
find an upper bound of 3310216 for the kff

A coefficients,
barring, of course, fine-tuned cancellations.

Next, we consider thekfB term by setting all other pa
rameters to zero in Eq.~1.1!. This term has an interestin
new interactionAmf1f1, wheref1 is the standard mode
Higgs boson. There also exists a similar Lorentz-violat
vertex with the neutral Goldstone boson,f2. Therefore, in
addition to the charged Goldstone loop, we have diagra
like Fig. 1~a!, which are second order inkfB with different
vertex factors, where now the particles circulating in the lo
are the Higgs and the would-be Goldstone bosons. The
pling is cosuW(kfB)mnp

n, wherep is the four-momentum of
the photon. Unlike thekff

A case, we obviously do not hav
an additional mixing between theW and charged Goldston
bosons@thus, no diagrams like~d!, ~e!, ~g!, and~h! in Fig. 1#.
But this new term induces a remarkable mixing between
photon and the Higgs scalar, since when the Higgs bo
gets a vacuum expectation value, anAm]nf mixing term
appears. This term cannot be removed by gauge fixing,
represents a mixed propagator. In our one-loop calculatio
the photon propagator, however, the mixing will not contr
ute to the divergent part, and is thus not relevant.2 Therefore,
if we look at the structures in the first and the second orde
kfB , there exist (kfB)mlplpn , (kfB)nlplpm , and
(kfB)ml(kfB)l8nplpl8. Note that only the scalar loop dia
grams with two Lorentz-violating vertices yields the la

2With the use of this mixing, there is another place where

Lorentz-violatingkfB term could contribute, namely in theAmēe

andf1ēe effective vertices. However, the bounds we obtain bel
render any such effects negligible.
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structure~three scalar loop diagrams with charged Goldsto
f6 and Higgs bosonf1, and would-be neutral Goldston
bosonf2). Gauge invariance makes us expect that the fi
two non-invariant structures should vanish and this is ind
the case. So, in this framework, the (kF)mll8n

5(5/12e2)cos2uW(kfB)ml(kfB)l8n equality holds. Numeri-
cally, the bound on the individualkfB is stronger than tha
for kff

A by a factor of (5 cosuW
2 /4e2)1/2;3.2. This gives the

upper bound onkfB of 0.9310216.
The kfW term has very similar features to thekff

A case
except for the photon–Higgs-boson mixing. It additiona
allows the Lorentz-violatingAm(p)f1f1 vertex, which is
equal to 2sinuWkmnp

n @leading to diagrams like Fig. 1~a!
with f1 second order inkfW]. Adapting the same gauge
fixing conditions ofkff

A , one can show that theW propaga-
tor with one kfW inclusion becomes 2imW

2 (kfW)mn /g(q2

2mW
2 )2. Computation of diagrams@Figs. 1~a!–1~i! plus their

permutations# shows us the (kfW)mn ,(kfW)mlplpn , and
(kfW)lnplpm structures in the first order an
(kfW)ml(kfW)l

n and (kfW)ml(kfW)l8nplpl8 in the second
order. The only surviving term is the last one which is gau
invariant. Consequently, as in thekfB case, a very similar
relation between kF and kfW , (kF)mll8n

52(5/12e2)sin2uW(kfW)ml(kfW)l8n , yields an upper bound
of 1.7310216. It is seen that the current bound on all thr
Lorentz-violating coefficients is of the order of 10216.

III. COORDINATE AND FIELD REDEFINITIONS
AND THE SYMMETRIC COEFFICIENTS

In this section, we consider bounds on thekff
S coeffi-

cients. In this case, the strongest bounds come from rela
through field redefinitions, these coefficients to other Lore
violating coefficients in the fermion sector, and then usi
previously determined bounds on those coefficients.

Once one extends a model by relaxing one or more s
metry properties of the original model, the extended mo
should involve all possible otherwise invariant structur
However, if the modification is carried out under the assum
tion that the fields are transformed under this otherwise b
ken symmetry group in the usual way, not all of the ne
parameters representing apparent violation of this symm
may be physical~i.e. the model has some redundant para
eters!. Therefore an extension should be carefully analyz
to check for redundant parameters. This analysis may y
several Lagrangians which are equivalent to each other
some coordinate and field redefinitions and rescalings@2,13–
15#. The same situation applies to the SME case. A sim
example is provided by Colladay and Kostelecky´ @2#. Con-
sider the electron in QED, with the kinetic termc̄gmDmc.
Suppose one transforms the electron field asc
→exp(2 iamxm)c, wherea is a constant vector. This is not
gauge transformation, sinceAm is not changed. Plugging into
the kinetic term, one finds a termamc̄gmc. But this is one of
the Lorentz-violating terms mentioned in the first sectio
and thus this term can have no physical effect. Other fi
redefinitions can eliminate~or, more precisely, make redun
dant! other possible terms. Recently, the spinor part of

e

1-4



d
if

n
a

ym
th

tz

t

-

a-

s

tz

es
th
-

a

f

ex
o
th
g

e
r
a

g
ed

ap-

an

l-
ve

n
e
onal

f
E
er.

y of
pa-
it

-

io-
nts
of

c
,

f-
ns,
An-
are

-

that

o-

mi-
i

he
here
ned

e
nsi-

.

LORENTZ AND CPT VIOLATION IN THE HIGGS SECTOR PHYSICAL REVIEW D70, 016001 ~2004!
extended QED has been extensively discussed by Colla
and McDonald@13#. The am term need not be redundant
gravity is included. This has been explored@5# by studying
the SME with gravity in the context of Riemann-Carta
spacetimes, and thus new Lorentz-violating coefficients
pear in such a framework.

In the Higgs sector, one can also make some of the s
metric coefficients redundant. Here we just consider
U(1) part but the generalization to SU(2)3U(1) is straight-
forward. A toy model discussed in@8,15# is relevant to our
purpose. Consider first a model involving only two Loren
violating parameterskff and kF in the scalar and photon
sectors, respectively. The Lagrangian is

L5@gmn1~kff!mn#~DmF!†DnF2m2F†F2 1
4 FmnFmn

2 1
4 ~kF!mll8nFmlFl8n,

whereDm5]m1 iqAm andkff is real and symmetric. Firs
let us assume that only one component ofkff , (kff)00
[k221, is nonzero@8,15# and thatkF is taken as zero. By
making the coordinate transformationst→kt, x→x and the
field redefinitionsA0→A0 , A→kA with rescaling of the
electric chargeq→q/k, one gets the LagrangianLphoton
5(DmF)†DmF2m2F†F1 1

2 (E22k2B2), where E(B) is
the electric~magnetic! field. So we start with a system hav
ing a Lorentz violation in the scalar sector (kF50) and end
up with an equivalent Lagrangian involving Lorentz viol
tion in photon sector~some components ofkF are nonzero!.
Second we can further show that by choosing3 only
(kff)115(kff)225(kff)335k221 nonzero it is still pos-
sible to get an equivalent Lagrangian asLphoton
5(DmF)†DmF2m2F†F1 1

2 (E22B2/k2) under the trans-
formationst→t, x→kx and the redefinitionsA0→kA0 , A
→A with the same charge rescalingq→q/k. However, for
the other components ofkff , there are no such obviou
transformations.

Another analysis of the physical effects of the Loren
violating coefficientskff

S can be found by looking at the
effects of field redefinitions over those parameters. Th
effects in the fermion sector were discussed in detail in
context of extended QED@13#. There it was shown that un
der the fermion field redefinitionc(x)5(11cmnxm]n)x(x)
it is possible to generate a would-be Lorentz-violating L
grangian in the free fermion context andcmn represents the
Lorentz violation. Herecmn is a real symmetric coefficient o
the Lorentz violatingcmnc̄gmDnc term in the fermion sec-
tor. However, this transformed Lagrangian can further be
pressed in terms of a new coordinate system having a n
diagonal metric, i.e. a skewed coordinate system, and in
way it is possible to restore the form of the original Lagran
ian. In this framework, this shows thatcmn is not physical.
The redundancy ofcmn , however, disappears when th
fermion-photon interaction is involved. A very simila
analysis for the scalar sector of a toy model, involving

3This choice was made in Ref.@16#, where it was shown that the
contribution to Higgs boson decays from this term is negligible
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conventional fermion sector with a scalar fieldf, gives
us L(c,F)5L 0

f (c)1L 0
H(w)1@1/2 (kff

S )mn(]mw†)]nw
1H.c.#, where the scalar field redefinitionF(x)
5@11 1

2 (kff
S )mnxm]n#w(x) is assumed. Again expressin

the fields in terms of skewed coordinates with a modifi
metric hmn5gmn1(kff

S )mn the apparent Lorentz-violating
(kff

S ) term can be absorbed in the scalar sector but it re
pears in the fermion sector as ac term. If we further extend
our model by including fermion-photon interactions one c
show that there is a mixing amongkff

S ,cmn , and nine un-
boundedkF coefficients@17#. Consequently, the observabi
ity of kff

S is nothing but a matter of convention. The abo
analysis enables us to move a non-zerokff

S term into either
a cmn term or akF term. In this article we concentrate o
only the Lorentz andCPTviolation in the scalar sector of th
SME; hence we assume that the theory has a conventi
fermion sector, which means that bounds oncmn will lead to
effective bounds onkff

S . A full and systematic analysis o
all of the field redefinitions and redundancies in the SM
would be valuable, but is beyond the scope of this pap
With our normalizations, a bound oncmn will translate di-
rectly into an equivalent bound on (kff

S )mn .
We thus need the current bounds on thecmn coefficients.

Although numerous bounds appear in the literature, man
them should be taken with a grain of salt. Consider the s
tial parts ofcmn . The strongest bounds give an upper lim
on the diagonal spatial elements of 10227 @18,20,21# and on
the off-diagonal elementscXZ and cYZ of 10225 @22,20,21#,
andcXY of 10227 @18,20,21#. There are several caveats, how
ever. First, these are bounds forcmn of the neutron. It is
conceivable that the mechanism that results in Lorentz v
lation is proportional to the charge, and these experime
would miss the effect. It is also conceivable that a version
Schiff’s theorem~which shows that in the nonrelativisti
limit, the electric dipole moment of an atom will vanish
even if it does not vanish for constituents! will cause a
screening of thecmn coefficients of the quarks. The first e
fect can be eliminated by considering protons or electro
the second can be eliminated by considering electrons.
other caveat is that the bounds on the diagonal elements
actually bounds oncXX2cYY andcXX1cYY22cZZ , and thus
if the Lorentz violation is isotropic, the bounds will not ap
ply. In this case, the vanishing trace condition will~as in the
case of the double-traceless condition onkF) yield, when the
fermion field is properly normalized, a nonzerocTT , and
thus the bounds on the diagonal spatial elements will be
of the bound oncTT .

The bound oncTT can be obtained by comparing antipr
ton cyclotron frequencies with those of a hydrogen ion@23#
and a very weak bound of 4310213 is extracted. An inter-
esting connection between the dispersion relation for fer
ons and thecTT coefficient has been noted by Bertolam
et al. @19#, and astrophysical experiments to improve t
bound are proposed. For the time-space components, t
are various studies based on the sensitivities of some plan
experiments@20,24–26#; most of the bounds are from th
neutrino sector of the SME and the highest proposed se
tivity is around 10225 @24#.
1-5
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TABLE I. Estimated upper bounds for the Lorentz andCPT violating coefficients in the Higgs sector o
the SME.

Parameters Sources Comments

k̃e1,k̃o2 cmn bm ~GeV!

(kff
A )mn 3310216 — — —

(kfB)mn 0.9310216 — — —
(kfW)mn 1.7310216 — — —
(kff

S ) II — 10227 — a

(kff
S )TT — 4310213 — b

(kff
S )TI — 10225 — c

(kff
S )XZ ,(kff

S )YZ — 10225 — d

(kff
S )XY — 10227 — d

(kf)X ,(kf)Y — — 10231 e

(kf)Z ,(kf)T — — 2.8310227 f

aObtained fromcmn
neutronwith the assumption that Lorentz violation is not isotropic. If it is isotropic, the bou

on (kff
S )TT applies.

bObtained from the comparison of the anti-proton’s frequency with the hydrogen ion’s frequency.
cEstimated value based on the sensitivity calculations of some planned space experiments.
dObtained from the neutron.
eFrom bm

neutronwith the use of a two-species noble-gas maser. Frombm
electron, a weaker but cleaner bound o

1.2310225 can be obtained.
fThis bound is from the spatial isotropy test of polarized electrons.
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IV. BOUNDS ON THE CPT-ODD COEFFICIENT

The remaining part of the Higgs sector Lagrangian h
one term that violates both Lorentz andCPT symmetries,
represented by the complex constant coefficient (kf)m. One
interesting effect of this term is the modification of the co
ventional electroweak SU(2)3U(1) symmetry breaking.
Minimization of the static potential yields a nonzero expe
tation value for Zm boson field of the form ^Zm&0

5@(sin 2uW)/q#Re(kf)m . Here we have assumed all the oth
Lorentz-violating coefficients zero. The nonzero expectat
value for theZ will, when plugged into the conventiona

fermion-fermion-Z interaction, yield abmc̄gmg5c term. Al-
ternatively, one can look at the one-loop effects on the p
ton propagator; however this will yield much weaker boun
By assuming thatkf is the only Lorentz-violating term in the
Higgs sector, one finds that the effectivebm5 1

4 Re(kf)m . If
we look at the best current bounds onbm , from testing of
cosmic spatial isotropy for polarized electrons@27#, bX,Y

e

<3.1310229 GeV and bZ
e<7.1310228 GeV in the Sun-

centered frame. The best bound comes from the neutron
the use of a two-species noble-gas maser@28# and it is of the
order of bX,Y

n <10232 GeV. Note that in order to get thi
bound there are some assumption about the nuclear con
rations, which make the bound uncertain accuracy to wit
one or two orders of magnitude. The bound on the ti
component ofbm is aroundbT

n<10227 GeV @29#. Therefore,
the best bounds for the real part of (kf)m are 10231 GeV and
10227 GeV for theX,Y and for theZ,T components, respec
tively. The imaginary part ofkf is unphysical, since this term
in the Lagrangian is a total divergence.
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V. CONCLUSION

In this work we have studied the bounds on the Lore
and/orCPT violating coefficients in the Higgs sector of th
SME. It is shown that all antisymmetricCPT-even Lorentz-
violating coefficients give second-order contributions to t
photon vacuum polarization at one loop. By comparing w
the kF term and assuming one of them nonzero in each c
~without high-precision cancellation!, we find
(kff

A )mn ,(kfB)mn ,(kfW)mn&10216. For the symmetric part
of kff , after discussing the close connections with t
Lorentz-violating coefficientscmn in the fermion sector by
means of coordinate and field redefinitions, we conclude
the bounds could be determined directly from thecmn term.
In a very similar way we obtain the bound on theCPT and
Lorentz-violating coefficient (kf)m by comparing with the
bm term in the fermion sector. The existence of akf term
leads to a nonzero vacuum value forZm which further en-
ables us to relate (kf)m with bm and we find an upper boun
of 10231 (10227) GeV for the X,Y(T,Z) components of
(kf)m . Table I lists all the bounds together with the
sources.

Perhaps the most intriguing bounds are for the antisy
metric coefficients. Recent developments in string theory
dicate that Lorentz-violating non-commutative geome
might be a low-energy probe of Planck scale physics@14,30#,
and this geometry will be antisymmetric. It is interesting th
our upper bounds on the coefficients areO(10216), which is
less than an order of magnitude above the ratio of the e
troweak to Planck scale. An improvement in the birefri
gence bounds of a couple of orders of magnitude~which is
feasible @10,31#! could probe this sensitivity. Should akF
1-6
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term actually be discovered, our analysis shows how one
distinguish Higgs sector Lorentz violation from other se
tors. Specifically, of the ten observablekF coefficients, we
find nonzero values only for the two independent diago
elements ofk̃e1 . Thus, the origin of Lorentz violation migh
be experimentally accessible. It should be noted that in
sion of gravity might lead to new Lorentz-violating terms,
discussed in Ref.@5#.

If the primary effects of an underlying Lorentz andCPT
violation appear in the Higgs sector, what are the most pro
ising experiments? We have seen thatCPT violation will be
manifested through a vacuum expectation value of theZ bo-
son, and the ‘‘b’’ coefficient for a fermion will be propor-
tional to the weak axial coupling of that fermion. Testing th
would requirebf to be measured for at least two fermion
For antisymmetricCPT-even Lorentz violation, there ar
very specific signatures, discussed in the previous paragr
,

e

.

r-

01600
an
-

l

-

-

.

h,

and improvement in the birefringence bounds of a couple
orders of magnitude would be valuable. For symmetricCPT-
even Lorentz violation, there are tight bounds, but with va
ous assumptions and caveats. The relatively weakcTT and
cTI bounds, as noted in Ref.@20#, could be substantially
tightened.
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