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Fermions on an interval: Quark and lepton masses without a Higgs
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We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the
interval that are consistent with the variational principle, and explain which ones arise in various physical
circumstances. We apply these results to Higgsless models of electroweak symmetry breaking, where elec-
troweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions
of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would
give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample
fermion mass spectra for the standard model quarks and leptons as well as their resonances.
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[. INTRODUCTION be generated in Higgsless models where EWSB happens via
BC'’s in extra dimensions.

The most exciting question facing particle physics is how The structure of these Higgsless models is generically of
electroweak symmetry is broken in nature. Since the scattethe following form[6]: we consider the a modification of the
ing of massiveW andZ bosons violate unitarity at the scale Randall-Sundrum modd8] with gauge fields in the bulk
of ~1.8 TeV, we know that some new particles must appeal9,10, where the bulk gauge group is SU(2)SU(2)g
before those scales are reached to unitarize these amplitud&dJ(1)s-L . The addition of the second SUR)n the bulk
or the theory will be strongly interacting. In 4D the only iS necessary11]in order to ensure the presence of a custo-
possibility to unitarize these scattering amplitudesth a  dial SU(2): symmetry in the holographic interpretatifit?].
single particlé is via the exchange of a scalar Higgs particle. On the Planck brane SU(2X U(1)g is broken to Ul),

It has been recently pointed out fitt] that extra dimensions While EWSB happens on the TeV brane where SY(2)
may provide an alternative way for unitarizing the scattering>< SU(2)r—SU(2)p (an' early flat space version .Of th.'s
of the massive gauge bosons via the exchange of a tower odel was presente_d ifL], and re_:cently re-examm_ed In
massive Kaluza-KIeifiKK ) gauge bosongsee alsd2,3)). In 3]). Two important issues regarding the warped Higgsless

. model that were not addressed fully[i®] were the genera-
this case electroweak symmetry would be broken not by th : ) )
. ion of fermion masses without a Higgs boson, and the cor-
expectation value of a scaléor a scalar condensatebut

. ) rections to electroweak precision observables. The issue of
ratherl by the boundary’condltlon(sB'Cs) for the 9aU%€  fermion masses will be discussed in detail in this paper.
fields: As long as the BC's are consistent with the variationpere are several potential sources for corrections to elec-
of a fully gauge invariant action, the symmetry breaking will 5\ eak precision observables in a Higgsless model: the en-
be soft in the sense that the UV properties of the scatteringirged gauge structure, the missing Higgs scalar, and the
amplitudes will be as in the higher dimensional gauge theorynggified fermion sector. Recent[jL3] examined theS pa-
[1]. rameter in the flat space version of this model and found that
A model of Higgsless electroweak symmetry breakinganalogously to technicolor theories there is a large positive
(EWSB) with a realistic gauge structure has been presentedontribution. However, no comprehensive analysis of the
in [6]. However, the Higgs scalar of the standard md&8&)  electroweak observables including all sources of corrections
serves two purposes: besides breaking the electroweak syiisted above has been done to date. We plan to address these
metry it is also necessary for the generation of fermionissues for the case of an AglBulk (as considered if6,7]) in
masses without explicitly breaking gauge invariance. Thea forthcoming publication.
purpose of this paper is to examine how fermion masses can In order to be able to generate a viable spectrum and
coupling for the SM fermions, the fermions have to feel the
effect of EWSB, so they need to be connected with the TeV

*Email address: csaki@mail.Ins.cornell.edu brane. However they cannot be simply put on the TeV brane,
TEmail address: grojean@spht.saclay.cea.fr since in that case they would form multiplets of SU§2)
*Email address: hubisz@mail.Ins.cornell.edu which they do not. Thus the fermions also have to be put into
$Email address: shirman@lanl.gov the bulk, as if14—-20. We assume that the left handed SM
'Email address: terning@lanl.gov fermions will form SU(2) doublets and the right handed
'For other possibilities of utilizing extra dimensions for elec- ones SU(2j doublets(including a right handed neutrifo
troweak symmetry breaking s¢4,5]. Since 5D bulk fermions contain two 4D Weyl spindli&e a
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4D Dirac fermion, one has to first make sure that in every whereM =0,1,2,3,5. Usually, in the second term the differ-
5D bulk fermion there is only a single 4D Weyl spinor zero ential operator is integrated by parts and gives a contribution
mode. These zero modes will be identified with the usual SMdentical to the first term. However when the fifth dimension
fermions. In order to recover the usual gauge coupling strucis a finite interval, boundary terms appear in the process of
ture for the light fermions, the zero modes for the light fer-integrating by parts and using the conventional form of the
mions have to be localized close to the Planck brane. Sincaction would require us to explicitly introduce those bound-
the theory on the TeV brane is vector-like, one can simplyary terms. That this is the convenient starting point can be
add a mass term on the TeV brane that connects the left arsen from the fact that the action is real or equivalently that
right handed fermions. This is however not sufficient, sincethe corresponding Hamiltonian is Hermitian. Writing out the
the gauge group on the TeV brane would force the up-typaction in terms of the two-component spinors contained in
and down-type fermions to be degenerate. The splitting bethe 5D Dirac spinor as
tween these fermions can be achieved by mixing the right

handed fermions with fermions localized on the Planck brane

where SU(2) is broken(which is equivalent to adding dif- V= Ea
ferent Planck-brane induced kinetic terms for the right

handed fermions The detailed models for the fermion and integrating by parts in the 4D coordinates where we do

masses for the warped space Higgsless model will be preequire that the fields vanish at large distances, we obtain the

sented in Sec. V”(Wh"e the analog constructions for the fo”owing Lagrangian for the two-component Spindrfs)r

\s/c;mewhat simpler flat-space toy model can be found in Segpinor and gamma matrices conventions, see Appengix A
Before we discuss fermion mass generation for the Higgs- s

less models in detail, we will discuss the general issues sur- S:f d°x

rounding the often confusing subject of BC's and masses for

fermions in one extra dimension. In Sec. Il we examine the 1 — —

possible BC’s for fermions on an interval that are consistent +5 (Ydsx = xIs) +m(Px+xy) |, 2.3

with the vanishing of the boundary variations of the action.

This is an extension of the general discussiofiigfof BC's  \yhere o= g5 — ds, with the arrows indicating the direction

in an extra dimension to the fermion sector. In Sec. Ill Weof action of the differential operator. Varying the action with

Fhscuss the generaI'KK decomposition for ferm.|ons on .ar}espect toy and ¢ we obtain the standard bulk equations of
interval (with some simple examples worked out in detail in motion which are given by

Appendix B, while in Sec. IV we give the physical interpre-
tation of the various BC’s obtained from the variational prin-
ciple. More important examples for BC’s in the presence of
mixing of bulk fermions on a brane are presented in Appen- , -
dix C. In Sec. V we apply the results of Secs. ll-IV to —10%9,y+ dsx+my=0. (2.4

propose the BC's for the fermion sector of the flat Spaci—{owever one needs to be careful with the variation, since
Higgsless model. In Sec. VI we discuss the general issues . ; . "
one needs to do an integration by parts in the extra dimen-

fermionic BC's in warped space, and then finally present the . : g -

BC’s and mass spectra for the warped space Higgsless modaP Wh'Cth'g glv(ej an ext][ahter_m for tlheRvangt_mn ?]f thi
in Sec. VII. We conclude in Sec. VIIl. Appendix A contains Elcnog on the .our;] aries of the 'r?t?]”’a- .”equmr;]g tdat_t g
notations and spinor conventions. oundary term in the variation vanishes will give the desire

boundary conditions for the fermion fieldsve denote by
[X]g the quantityX; —X|o):

Xa
: (2.2

—i)(—a“é"u)(—id/a'“ﬁﬂg
—i"d,x— dsp+my=0,

Il. FERMION BOUNDARY CONDITIONS
FROM THE VARIATIONAL PRINCIPLE

1 _— —_
2 =—f d*x[ Sxy— Sy — Spx + Sx¥g=0.
We start by considering a theory of 5D fermions on an Spound 2 0

interval of lengthL, with a bulk Dirac massn, and possibly (2.9

also masses for the component fermions on the boundaries. To proceed further we need to specify the boundary con-
For the moment we will assume that the geometry of the P P y

interval is flat and we will come back later to the phenom_dltlons. These have to be such that the boundary variation in

enologically more interesting case of an Ad®terval. In Eqg. (2.5 vanishes. Note, that this is a somewhat unusual

5D, the smallest irreducible representation of the Lorentzboundary variation terniat least compared fo the case of

group is the Dirac spinor, which of course contains two two_scalar and gauge fielsince it mixes the two Weyl spinors.

component spinors from the 4D point of view. The bulk ac-We will first discuss the simplest and most commonly
-omp P . € 2L p j adopted solutions, and then consider the more general cases.
tion for the Dirac spinof¥ is given by the usual form

The most obvious solution to enforce the vanishing of Eq.
(2.5 is by fixing one of the two spinors to zero on the end
S= f d®x

IE(\I_IFMaM\If—aM\I_fFM\If)—m\I_f\P points, for example
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As soon as we imposed this condition, we also have thawhere o y are signs due to some possible integration by
00, =0, and the full boundary variation term vanishes. part of the differential operators containedhandN. Two
This would naively suggest that remains arbitrary at the simple solutions are

end points, however this is not the case, since we still have to

require that the bulk equations of motion are satisfied every- M o’=c8,F forany constantc, (2.10
where, including at the end points of the interval. Since the o
bulk equations mixy and y, when=0 we get a first order Nqp=ico,;d, forany real constant. (2.1

equation for justy, which can be considered as the boundary

condition for they field: Note that for fermions belonging to a complex representation

of the gauge group, gauge invariance requires that either the
B operatorM or its inverse vanishes. Let us discuss in more
(95X +Mx)joL =0 (2.7 etail the solutions of the typeo. = Coyx|oL » for arbitrary
values ofCg, . A better way of expressing this condition is
In the limit of m— 0 this is the BC that is usually employed by saying that some linear combination of the two fermion
when considering orbifold projections. The usual argument isields has to satisfy a Dirichlet boundary condition on both
that if one assigns a definite parity joand ¢ undery— ends. However, these can be different combinations on the
—Yy, then due to the ternkdsx in the bulk,y and have to  two sides:
have opposite parities, so if is chosen to have negative
parity (that is it vanishes on the end pointeen y has to be SoL¥joL T CorLXxjoL=0 (2.12
positive, so its derivative should vanish. This is basically _ _ .
what we see in this simplest solution, except that it is veryWhereSOJ- (Co,) stand for the sinécosing of some(possi-

easy to deal with the bulk mass term. If one were to think oig!y cpmplc:&hanfgl?ds,ao,L ';hat deéermige WhiCh Iinea'r ﬂ?m' It
this interval as the orbifold projection of a circle, then the Ination of the fields on the two boundaries are vanishing.

only way one can fit a bulk mass into the picture is if the Nre are gauge symmetries in the bulk, under which the

bulk mass is assumed to switch signs at the orbifold fixed‘erm'OnS transform., theg and transform in complex con-

points (the mass itself has negative pajjtywhich then Jugate representations, as can be seen from(gq). This

makes figuring out the right BC’s in the presence of the masrg‘eans that it is only possible to mix the two fields on the

term quite hard. We can see that in the interval formulatio oundary V‘,"th nontrivial angles if the fermlon IS a real

one does not have to worry about such subtleties. representation. Thus for real representatisps could in
We have seen above that the simplest possible solutions inciple be a}rp!trary, however for complex rgpresentatlons

the vanishing of the boundary variation leads to the boundar{'€ Only possibilities argy, =0 orsy, =1. We will see later

conditions generically employed when considering orbifold©n that this choice of BC's corresponds to adding a Majorana

constructions. However, one does not need to require th&1ass on the brane.

individual terms in Eq(2.5) to vanish, it is sufficient for the

whole sum to vanish. In fact, requiring the individual varia- II. KALUZA-KLEIN DECOMPOSITION

tions to vanish over-constrains the system, as is clear from a

simple counting of the degree; of frgedom of the theoryKlein decomposition of these fields. In general, when the
There are two constants associated with the solutions of tWEL rmion belongs to a complex representation of the symme-

first order differential equations. One boundary condition attry group, the KK modes can only acquire Dirac masses and
each end of the interval then specifies the system. If NG e KK décomposition is of the form

forces the individual terms in the boundary variation on one
end point to vanish, then there is no freedom of boundary
conditions on the opposite end point. Thus one should ge- X=2 9n(Y)xn(X), (3.1
nerically only impose one BC at each end of the interval. "

Such a BC expresses one of the spinors in terms of the other. o o

With that in mind we can see that the most general solution = fo(Y)hn(X), (3.2
to the vanishing of the boundary variation is when, on the n

boundary, the two fieldgs and y are proportional to each

Now we would like to discuss how to perform the Kaluza-

wherey,, andy,, are 4D two-component spinors which form

other. a Dirac spinor of massy, and satisfy the 4D Dirac equation:
Pajor=(MPxpt Naﬁ;ﬂ)w,L 2.9 —i;"&ﬂxrﬁ— My =0, (3.3
whereM and N are two matrices that may involve some —i 019, i+ Myxn=0. (39

derivatives along the dimensions of the boundary. The action ] ] o )

will then have a vanishing boundary variation provided that”1ugging this expansion into the bulk equations we get the

M andN satisfy the two conditions following set of coupled first order differential equations for
the wave functiond, andg,:

M, P=oyef'M yﬁf(ga and NaB:‘TNNZB (2.9 g,+mg,—m,f,=0, (3.5
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f/—mf,+m,g,=0. (3.6) an additional super-selection rule would have to be added
that would make these different modes orthogonal, signaling
Combining the two equations we get as usual decoupled sethat they belong to a different sector of the Hilbert space,

ond order equations: which practically means that a new quantum number corre-
sponding to the choice of the BC would have to be added.
g"+(m;—m?)g=0, (3.7 But usually this is avoided by simply considering only a
fixed BC.
"+ (m2—m?)f=0. (3.8
Depending on the sign ah?—m? the wave functions,, and IV. PHYSICAL INTERPRETATION OF THE BOUNDARY
f,, will be either sines and cosines or sinhes and cogies CONDITIONS
define ccok,L=coshkL for ki=m?’-mi>0 and We would like to have an intuitive physical picture of the
ccoskyL=coskL for ki=mi—m?>0 and similarly for various fermionic boundary conditions. Unlike a scalar field,
ssinkyL): which in the absence of boundary interactions naturally has a
) flat profile (95¢»=0) on the boundary, the fermions cannot
9n(y) =Anccoskny + Bpssinkyy, (39 have a purely flat wave function. This is a result of the dy-
) namics of 5D fermions, which can be broken up into two
fn(y)=Cpccosk,y + Dssinkyy. two-component spinors. The bulk equations of motion for

310 these spinors imply that, in the absence of a bulk Dirac mass

These wave functions are analogous to the ones obtained f&?s we will assume throughout this sectipif one spinor

bosonic fields. For fermions, the bulk equations are going t r(_)flle has tzerk()) delrjl\_/z_;\tlk\]/letaéa bgundary, ér_l_en the ogpo_sne
teach us something more about the wave functions. Indeegf!NO" Must obey binchiet boundary conaitions, and vice
the first order coupled differential equatiof&5), (3.6) re- versa. However, we haye seenin Sec. Il that there is a variety
late the coefficientd\,,B,,C,,D, to each other. Using the of BC's that one can impose instead of the simplegg,

form (3.9), (3.10 of the wave functions and fan,#0, the . #1=0 condition. The purpose of this sectiéand its con-

two bulk equations are equivalent to one another and imposé'n.uatlon In Append|x (,;'S to unders.tand what physmgl situ-
for K2=m2—m2>0 ations the various BC'ssome of which may seem quite ob-
n n !

scure at first sightcorrespond to.

mC,—k,D,—m,A,=0, (3.11) What we would like is to be able to consider a setup with
arbitrary localized masses or mixings or kinetic terms and
k,C,+mD,—m,B,=0. (3.12 lranslate these into some BC’s similar to the form of Eq.

(2.8). However, it is not easy to arrive at these BC's from the
Whenm?—m?2>0, the sign of the term involving,, in the variational principle if the localized terms are directly added
second equa?ion is flipped. at the boundary. The reason is that due to the first order

The boundary conditions may also allow the presence of #ature of the bulk equations of motion the presence of a
zero mode which can have a nontrivial profile of the form localized term necessarily implies a discontinuity in some of
(3.9), (3.10 with k2=m? for a nonvanishing bulk mass. For the wave functions. If the localized term is added directly at

.9, (3. ‘ .

the case of the zero mode the bulk equatit®s), (3.6) are t_he boundary, one would have to treat fthe values and varia-
decoupled and simply reduce to tions of the flelqls at the boundaries as independent from the
bulk values which makes the procedure very hard to com-
Ao=—B, and Cy=Dp,. (3.13  Pplete. Instead, our general approach to treating the localized
terms will be the following:

Some explicit examples of KK decomposition are given Push the localized terms at a distancaway from the
in Appendix B when BC's of the fornsy+ cy, are imposed  boundary, which implies the presence oddunction in the
at 0" andL~. We also discuss there how to amend the formbulk equations of motion;
of the decompositiofB.1) when the gauge quantum numbers  Impose the simplest BC'é5x|= =0 at the real bound-
of the fermion allow the KK modes to have Majorana aryy=0L;
masses. By combining the jump equation gt= e with the BC's at

Before we close this section, we just remind the readey=0 obtain a relation between the fieldsyat €;
what the status of all of these various boundary conditions Take the limite— 0 and treat the relation among the fields
with respect to each other is: that is can we have the differerdt y=¢ as the BC’s for the theory on an interval with the
modes corresponding tdifferent boundary conditions localized terms added on the boundaries.
present in the theory at the same time? The answer is no. A By construction, the BC’s obtained this way will always
theory is obtained by fixing the BC's for the fieldsicking  satisfy the variational principlgthat is make Eq(2.5) or its
one of the possibilities from the list given abowence and analog in the presence of more fields vaiidbut this way
for all. If we were to include modes corresponding to differ- the physical interpretation of the possible parameters appear-
ent BC’s into the theory, we would lose Hermiticity of the ing in the BC’s will become clear.
Hamiltonian, that is the theory would no longer be unitary. If  In this section we will first show what a possible physical
one were to insist on putting these different modes togetherealization of the usually applied simple Bgx|= =0 is,
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and then consider adding a Majorana mass on the boundachange in the presence of these terms. We will illustrate in
as discussed above. Many more important examples of addetail how to implement the steps outlined at the beginning
ing localized terms will be discussed in Appendix C. of this section for the case when a Majorana mass is added

on the boundary. This example in the context of orbifolds has
A. Physical realization of the simplest Dirichlet-Neumann BC’s ~ been discussed 23] (see alsq24]). Several other physical

. . . I ked out in A dix C.
The easiest way to realize the simplgy|= =0 bound- examples are worked out In Appendix

o . . . . To be able to add a Majorana mass atyhe0 boundary,
ary condition is to give the fermions a mass thatis a funcquNe need of course to consider a fermion that belongs to a real
of an extra dimensional coordinate, where this extra dimen-

ion is infinite i tent. F | fruct representation of the unbroken gauge group. On top of the
sion IS infinite In extent. For example, one can construct g, action(2.1), we then consider the following brane ac-
square well mass term given by

tion (slightly separated from the boundary
m(y)=m_6(—y)+m, 6(y—L) (4.2) 1 o
S =fd4x—L Mxx+M* .. 4.
where# is the usual Heaviside function. Takimg_ andm, 40 2 (Mxx X0)ly=e @D
to be large, yet finite, the solution consists of modes which ) )
tail off exponentially outside of the well. The wave functions NOt€ that the mass has been written\& to give toM a

of y and¢ in region | (y<0) and Il (y=L) are given b mass dimension equal to one.
X v g ¥=0) v=L) g y To find the modified BC's in the presence of this brane

_C—eky _~takly mass term, the first step is to chose the Dirichlet-Neumann
f,=C, e f,=C, e ; .
(1) - ) . (4.2) BC'’s the two two-component spinopg and ¢ would have
gn=A, eV gn=AlexY satisfied at the “real boundaryy=0 in the absence of the

Majorana mass term. Thus as previously we assume that:
wherek2=m?2 —|m2|. As m grows, the exponentials drop
off more and more quickly, and thus the fermions are con- dsxj0=0, #10=0, dsx; =0, ¢, =0. (4.9
fined to a “fat brane” of widthL (which corresponds to the
well). The wave functions ay=0 andy=L are continu-
ously matched with the solution within the “well”

The effect of the brane mass term is to introduce disconti-
nuities in the wave functions gt=e. The bulk equations of
motion are modified to
f,=C,cosm,y+D,sinm — —  — —
(0=y=L) |9n—Ancosmn§//+ aninmn))// 43 _iUM&MX_aSIIHFmWFM*L5(y_E)X:0’ 49
n— n n n nJy-

The existence of a 4D massless mode depends on the ~ 1089, 4+ dsx+ My =0. (4.10

details of the mass profilen(y). For instance, whem,  |nteqgrating the first equation over the delta function term

=m_=m, a quick calculation shows that _this part_icular shows that, whiley remains continuous, the value of tie
mass background does not lead to a normalizable chiral Ze%rofile undergoes a jump:

mode profile. Indeed the “bulk” equations of motion to-
gether with the continuity conditions git=0 andy=L leads [J]ls: M* '-;Ie- (4.11)
to the quantization equation
Becausey undergoes a jump, the second bulk equation of
mytanm,L = m?—mj, (4.4 motion requires that the derivative gf also undergoes a
which obviously does not allow a massless mode. Jamp:
However, if one changes the mass profilemiq=—m_ =igto [l .. )
=m, the quantization equation becomes s =100l ¥ )e (412
In the limit e—0 and from the fixed value@.8) of y and
\/mz—mﬁ tanm,L=—m,, (4.5 aty=0, the jump equations finally give the BC at=0".
This is what we will be interpreting as the BC corresponding
which now supports a massless solution. This is a stepwisg the theory with Majorana masses on the boundes0
analogue of the well known domain wall localization of chi- (the BC aty=L remain of course unaffected by the mass
ral fermions[22]. Whenm— o, the solution within the well  term localized ay=0):
can be equivalently obtained by ignoring the exterior regions
and by imposing the following boundary conditioffer m (95)(‘0+:i0'M(9MZ‘0+_mX|0+, 10+ =MLxo+,
>0)

dsxL.-=0, ¢ -=0. (4.13

The first equation is just the bulk equation of motion evalu-
ated at the boundary, so we conclude that the BC correspond-

. _ _ _ing to the Majorana mass is just
We now consider adding localized terms to the fermion

action, and ask how the simple BC derived above will Yjo+=MLx|o+- (4.19

Isx10=0, #0=0, dsx|L=0, ;. =0. (4.6)

B. BC’s in the presence of a brane localized Majorana mass
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What one should recognize at this point is that E§13 For simplicity we assume for now the absence of a bulk
corresponds precisely to the boundary condition Dirac mass terngwe will later need to introduce such terms
in the warped scenario to build a realistic mgdéh the
(Copt+Sox)jo+=0 (4.15 absence of any brane induced mass terms the fields

with ML= —sy/cq. Thus we have a completely dynamical X”L’Xet,’ Vg and Ver quld contain zero modes, while the
description of one of the boundary conditions mentioned irPther fields would acquire a KK mass of the order of the
Sec. II. One can also reproduce the other types of BC's b§ompactlf|cat|on scale. Thus without the additional boundary

adding different boundary localized operators like a localizedn@sses that we need to add, the boundary conditions would

kinetic term or a mass interaction term with boundary local-P&

ized fermions. An exhaustive list of cases are worked out in
Appendix C. Yo 0L = Pe |oL = XvgloL = XegoL=0. (5.3

V. FERMION MASSES IN THE SU (2), X SUQ)xX U(1)a_, We also assume that, as expl_amc;cﬂilzﬁ], on on: brg_ne theI
FLAT SPACE TOY MODEL SU(2) . XSU(2)r symmetry is broken to the diagona

SU(2)p, while on the other brane SU(RXU(1)g_. is
broken to U(1) . This means that on the SU(® prane the
Ebeory is nonchiral, and a Dirac mass teNt, connecting
the left and right fermions can be added. Assuming that this

As an application of the previous sections, we will con-
sider generating masses for leptons in a Higgsless extra

mensional model in flat space where the bulk gauge grisup Dirac mass term is added on tlye=L brane, the boundary

SU(2). XSU(2)rxU(1)g_. as presented in Refl]. This " X . ) ]
model has large corrections to the electroweak precision o conditions will be the same as in Appendix C 2:
servables, and cannot be viewed as a realistic model for ele(l:p- =0 -0 (5.4)
troweak symmetry breaking. However, most of the large cor-" e./° r Xeglot ™5 '
rections can be eliminated by putting the same model into

warped spac€6], or as pointed out recently i3] by add-  ¥e L-=~MpLte - Xegu-=MpLxe |- (5.9
ing large brane localized gauge kinetic terms in the flat space

case. We find it useful to first present some of the features ofhe KK decomposition is of the forni3.1), leading to an
the construction for the fermion masses in the flat spacelectron mass being solution of the equation:

model, as a preparation for the more complicated warped

case presented at the end of this paper. tan(m,L)=MpL (5.6

which, for Mp<<1/L, is solved bymy~Mp. The lowest

) ] . ) mass state is as expected a Dirac fermion with a mass that is
As always in a left-right symmetric model, the fermlonsj-ust given by the Dirac mass added on the brane.

are in the representations (2:41/2) and (1,2;1/2) of However, the unbroken SU(R)symmetry so far guaran-

SU(2) X SU(2)rXU(1)g for left and right handed lep- tees that the neutrino has the same mass as the electron. The

tons respectively. Since we assume that the fermions live iReytrino mass needs to be suppressed by some sort of a see-

SM fermion is doubledand the right handed neutrino is py coupling the neutrino to a fermion localized on the brane

added similarly. Thus the left handed doublet can be writtenyhere SU(2xXU(1)s_, is broken to U(1}. Let us thus

as introduce an extra right-handed neutrigg, localized on

( J Z )t (5.1) that brane. Being SU(2)XU(1)y neutral, this extra brane
Xop ¥ Xep Ve ) ' fermion can have a Majorana mass as well as a mixing mass
term with Yo via the 4D Lagrangian at=0

A. Lepton sector

where (’(VL'XGL) will eventually correspond to the SM
SU(2), doublet and (va,z/xeL) is its SU(2) antidoublet o L
partner needed to form a complete 5D Dirac spinor. Simi- SAD:f d*%(—i&, 0",&, +MLYAE, ¢, +E, 1)
larly, the content of the right-handed doublet is o

— — (& Euet i) (5.7
(X Yo Xegr Pep)" (5.2 R RR

i The boundary conditions on the SU(2U(1)y brane are
where (wVR,a,beR) would correspond to the “SM” right-  han

handed doublet, i.e., the right electron and the extra right
neutrino, while Q(VR,XER) is its antidoublet partner again ¥ 0+ =0, (5.8
needed to form a complete 5D Dirac spinor.

Xuglor=—MLY%,, (5.9

2With quarks in the bulk there is also a bufU(3)..r gauUge

group. —10% 9, X0+ + FXugor —MZLip, 0+=0. (5.10
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The boundary conditions on the SUE)brane remain Xu Xu
untouched: ot _-
wuL qu §UR ( 9
—=—MplL - 5.1 : = s 5.1
U pLL (5.11) Xa, X |\ 7
Xvgll-=MpLx, L (5.12 Va |\ Vg

where (XUL,XdL) will be identified as the SMU(2), quark
doublet andz//uR and thq,, @S the SM right handed quarks;
(z,buL,(de) and)(LJR and)(dR are their partners needed to form

&= ; Cnén(X), (513 complete 5D spinors and they will get KK masses of order of

the compactification scale. Finall)gL(R,;uR) is a localized

B ) B () 4D Dirac spinor that will couple tay,, on the SU(2),
XVL_En: 9y " (2)€n(x), XVR_En: 9, " (2)€n(X), X U(1)y brane aty=0. We will thus again assume that in

(5.14  the absence of the brane localized mass terms and mixings

the fieldsyy, . xq, . ¥u, andiq, would have zero modes. The

4D brane localized terms gt=0 are:

The KK expansion will be of the form

b =2 (@EN. D=2 1@ EM),
(5.15 Sy-o0= J d4x(—iEuR;#(9ﬂguR_inuRUu(;#;uR

where theé,’'s are 4D Majorana spinors of mags: + (0 ut Mugdug) T MLYAE € i),

—i0 9,6+ M€ =0 and —io#d,&,+mfE,=0. (520
(5.16  while aty=L, we just had an SU(2)invariant Dirac mass

) ] ] term mixing the left and the right quarks:
Together with the bulk equations of motion these BC’s lead
to the following mass spectrum for neutringassuming the 4
eigenmassn,, real Sy=1= | d™XMpL((xuy Yug+ Xugthy +H-C)

f—m + (XdL(//dR-i- Xthde-i- H.c)). (5.2
n 2 . _ 2,2 .
2 el (ML cogm, L —sirPm,L)=(1+M3L?)sin 2m,L.

Since we have not included any mixing termyat O for the
(5.17  down-type quarks their spectrum will just be of the same

form as for the electrons above, determined by the equation
ForfM3L<M? andMpL<1 we get that the lowest mode is

a Majorana fermion with a mass approximately given by tan(myL)=MpL. (5.22
5 The boundary conditions for the up-type quarks are similar
fMp to those obtained in Appendix:
Mo~ ——, (5.18
M Y o+ =0, (5.23
which is of the typical see-saw type since the Dirac mass, Xugo=— MLMSUR, (5.24

Mp, which is of the same order as that of the electron mass,
is suppressed by the large masses of the right handed neutri-
nos localized on the brane. Thus a realistic spectrum is
achievable in this simple toy model for the leptons.

(949, 2 xy o+ —MZLic"d, i, 0+=0, (5.29

o jL-="MpLdhyi-+  Xugt-=MpLxy L
B. Quark sector (526

In order to get a realistic mass spectrum for the quarks] N KK decomposition will be of the usual for(3.1) and
one cannot simply add a single brane localized twoJeads to the following quantization equation similar to the

component fermion as for the neutrinos, since in that case waeULNNO's mass equation:

would induce an anomaly in the effective theory. Instead, we M2 f2

nged to introduce a vector-like brane Iocgllzed color triplet 2 2 (sinzan—MZDchoszan)

with the quantum numbers of the up-type right handed quark MZLm,

and its conjugat€or the down type for a mixing for the 2o

down quarks So the fields that we are considering now are =(1+MpL9)sin2m,L, (5.27
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which again, forf MpL< JiZ+M?2 andMpL<1, has a so- . R o ] _
lution approximated by S= [ d>x 5 —ixo"d x—iatd, g
Mpf 1 - —— c .
Mo~ ——2 (5.28 +5 (Ydsx—xds) +— (Yx+xi) |, (6.4
NGV |

wherec is the bulk Dirac mass in units of the AdS curvature

If M<f, we can suppress the brane Dirac mass using a/R, and againj.=ds— ds With the convention that the dif-
see-saw type mechanism, oMf~f we can get a mass just ferential operators act only on the spinors and not on the
slightly modified compared to the brane Dirac mass. We cametric factors.

use this freedom to generate both the masses of the light first The bulk equations of motion derived from this action are
two generations as well as the masses of the massive third )

generation. We will discuss this much more in the context of — — Ct+2—

the more realistic warped model in the coming section. —lotdux = dsyt T¢:O’ ©.9

) — c—2
VI. FERMIONS IN WARPED SPACE —ia"d, P+ dsx+ TX:O_ (6.6)

A. Bulk equations of motion

We now extend the discussion of the previous section to :Ih‘? KK decomposition tgkes it_s usua] forfthe caseé of a
truncated warped spacetime, which as usual we take to peMajorana KK decomposition will be discussed in detail in

slice of AdS; [8]. The conformally flat metric corresponding Sec. VIB2
to this situation is given by

R12 X=20 0n(Dxn(¥)  and Y= fo(2)dh(x), (6.7)
d§=(;> (7,,dx*dx"—dZ?). (6.1 B
where the 4D spinorg, and ¢, satisfy the usual 4D Dirac

The boundaries of the spacetime areRat 1/Mp; and R’ equation with massn,:

~1 TeV L. Fermions in such a space have been considered .~ - ; -

] . : . : — + = — o™ + =0.

in [14,15,17-19 Here we first briefly review the generic B0t My =0 and =103, ¢n+ Maxn (%8)
features of the fermion wave functions in this space, and then '
repeat our analysis for the acceptable boundary conditionshe bulk equations then become ordinérgupled differen-

for this situation. tial equations of first order for the wave functiohsandg,,:
The fermion action in a curved background is generically
given by ) c+2
fn+mngn—Tfn=O, (6.9
[[— _ _
s=f d5xfg<§(qfeg”yaDM«p—DM«Ifeg”ya«If)—mW , , c_2
gn—mnfn+ Tgn=0. (61@
(6.2

v o . _ _ _ For a zero mode, if the boundary conditions were to allow
wheree; is the generalization of the vierbein to higher di- its presence, these bulk equations are already decoupled and

mensiong“fu nfbein”) satisfying are thus easy to solve, leading to:
z ct2
eV abel = gMN, (6.3 fo=Co<§> , (6.11)
the y*'s are the usual Dirac matrices, abq, is the covari- 7\2-¢
ant derivative including the spin connection term. Note again 9o=Aq _) , (6.12
that the differential operators have not been integrated by R

parts in order to avoid the introduction of any boundary here A dc N lizati tants of
terms that would otherwise be needed to make the actioff' '€/ and Lo are two normaiization constants of mass
real. imension 1/2.

For the Ad$ metric in the conformal coordinates written . FOF thebmasswe rln%des,d the f'rbSt _ordﬁr dlfferentlaldequg-
above, €%=(R/2)&y, and D,W=(d,+y,vs/(42)V, g%ns catn | e un(;_oup.e and we obtain the two second order
D5V =g5W¥, however the spin connection terms involved in erential equations.
the two covariant derivatives of E¢6.2) cancel each other 4 2—c—6
and thus do not contribute in total to the action. Finally, in fr— _fr’]+(mﬁ_ —) f,=0, (6.13
terms of two component spinors, the action is given by z 22
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c?+c—6

" 4 ’ 2
gn_Egn"_ mn_T 9n=0,

V1—2c

° RC\/R’1*ZC_ Rl*ZC
whose solutions are linear combinations of Bessel functions:
e where the first factor in the integral comes from the volume
In(2D)=Z"(Ande+12Mn2) +BnYerdmMez)) (619 5 thez/R factor from the vierbein and the rest is the wave
function itself(squared To figure out where this zero mode
fn(2) =24 CpJo- 1 Mn2) + Dy Y- 174 My2)).. is localized in aqcovariant V\?ay, we can send either brane to
(6.16 infinity and see whether the zero mode remains normaliz-
The bulk equations of motiof6.9), (6.10 further impose able. For- instance, sending the TeV brane to_ mfmfR;’a
that —, the integral6.21) converges only foc>1/2, in which
case the zero mode is localized near the Planck brane. Con-
A,=C, and B,=D,. (6.17  versely, forc<1/2, when the Planck brane is sent to infinity,
R—0, the integral(6.21) remains convergent and the zero
B. Boundary conditions mode is thus chalized near the TeV brane. In the AdS-CFT
] ] N languagd 12] this corresponds to the fact that for1/2 the
To find the consistent boundary conditions, we need tGermions will be elementarysince they are localized on the
again consider the boundary terms in the variation of thejanck brang while for c<1/2 they are to be considered as
action: composite bound states of the CFT modsisice they are
L - peaked on the TeV brajpe
_— This result can also be seen easily when using the proper
5Sb°lmd:§f d*x ;(5)(9[/— Sx— Sx+oxd)| distance coordinate along the extra{jimension. ?n thisp ceF\)se
er 18 the AdS; metric is written as K= 1/R is the AdS curvatune

(6.14 A , (6.2

R’

which agrees with the expression for flat space up to the ds’=e"#n,, dx"dx"~dy*. (6.2
irrelevant factor oR*/z". Thus the boundary conditions that And the actual normalized wave functiofimcluding the
make the boundary variation of the action vanish will generi-,qjume and vierbein factorsare

cally be of the same form as for the flat space case, that is

those given in Eqs(2.8—(2.11). If the fermions are in real e (2= DKy=YR)  for ¢>1/2 (and yroy—>),
representations of the gauge grdupi is allowed to be non- (6.23
vanishing, but if they are in complex representati has
to be ze?o g P P ot e”(1729kUTev ) for ¢<1/2 (and yp— — ).

' (6.29

1. Boundary conditions in absence of extra boundary operators Finally, let us point out that if we were to impose Dirich-

As an example let us consider the simplest case, when wiet BC’s on both ends of the interval for, we would have
make the conventional choice of imposing Dirichlet BC’s onfound a zero mode in thé sector. And this zero mode would
both ends: have been localized on the Planck brane dst—1/2 and

localized on the TeV brane fa> —1/2.
Yr+=0 and Yr=0. (6.19
. . 2. Boundary conditions with a brane Majorana mass term
These BC'’s allow for a chiral zero mode in the sector o ] .
while the profile fory has to be vanishing, so we find foran T familiarize ourselves more with the BC's in warped

arbitrary value of the bulk massthat the zero modes are SPace, we will repeat the flat-case analysis of Sec. IV B and
given by: consider the case when a Majorana mass is added on the

Planck brane for thg field (which would otherwise have a
2-c zero modg? Based on our discussions we expect that the
fo=0 and 902A0(§> : (6.20  poundary condition on the Planck brane would be modified
to
The main impact has on the zero mode is where it is local-
ized, close to the Planck brafaroundz=R) or the TeV
brane(aroundz=R"). This can be seen by considering the \yhere sine=0 corresponds to the case with no Majorana
normalization of the fermion wave functions. To obtain @mass, while cog=0 to the case with a very large Majorana
canonically normalized 4D kinetic term for the zero mode,

(cosay—sinay)g+=0 (6.25

one needs
, R\5 7 2\4-2¢ Swhile this paper was in preparatid20] appeared, which also
fR dz( _) —Aé(—) =1 presents a detailed treatment of a Planck-brane localized Majorana
R z) R F\R mass term.
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mass. To identify the actual relation between the Majorana

: ; , . Jom D —cr 12— cryde-112
mass andx we again consider adding the Majorana mass at ¢ ¢ eriee

z=R+e¢, read off the BC's from the bulk equations, and =+ MRJes 19— cx 1o I e 1/der12)

then sende— 0. In this case the bulk equation of motion

will be modified to (6.39
. Cc+2_ M*R2_ where J,=J,(|m,|R) andJ,=J,(|m,/R’). This equation

8(z—R—¢€)=0 can be approximately solved for the lowest eigenmade

X 6( )=0,
6.2 suming thaimyR’ <1) by expanding the Bessel functions for
(6.26 small arguments as

—iotd,x— dsh+ ——+
o ,LLX 5170 7 lr/, Z

whereM is the Majorana mass added. There will be a dis- \v 1
continuity in the profile fory, it is given by the jump equa- Jv(x)~(—) . (6.36
tion 2] I'(v+1)
B We find that forc>1/2 the lowest eigenmode is approxi-
[#]jr+e=MRX R+ (6.27) mately given by
from which, using #1g=0, we can read off the relevant Mo~ (2c—1)M, (6.37

boundary condition
while for c<1/2 it is
l//|R+: M R)(“:ﬁ, (6.28) 1-2¢
which is indeed of the forni6.25. Mo~ (1-2¢)M| — (6.39

The KK decomposition is of the form

The c=1/2 case has to be treated separately, since in that

_ - - case the expansion has to be in terms of the Bessel and

X ; On(2)én(x) and ¢ ; fn(2)€n(X), Neumann functions. The equation that the eigenvalues have
(6.29  to solve will be given by

where the 4D spinors, satisfy the usual 4D Majorana equa- JoYo—Yodo==MR(JI;Yo—YJp). (6.39
tion with massm,: . .
For the lightest mode we find
—i0",E+ME=0 and —ig#d,&+mké=0. M
(6.30 Moy~ T

Instead of the expansion in the Bessel and Neumann func- Iogﬁ

tions, it turns out that it is more convenient to expand in

terms ofJ, andJ_,. These functions are linearly indepen- The interpretation of these expressions is quite clear. When
dent as long ag is not an integer, that is if# 1/2+ integer.  ¢>1/2, we expect the resulting mass to be proportional to
We will then treat thec=1/2 as a special case later. The the mass added on the Planck brane, since the fields them-
reason why it is more convenient to use these functions i§elves are localized near the Planck brane. ¢01l/2 the

that the expansion for small arguments, needed for an agero mode is localized near the TeV brane, so adding a mass
proximate solution for the lowest modes, will be much sim-on the Planck brane has only a small effect due to the wave

pler if we use this basis. Thus the wave functidgsaandg,  function suppression. For thle=1/2 case the wave function

(6.40

will be of the form is flat, and one expects the usual volume suppression as in
flat backgrounds; that is one expects a suppression by the
9n(2) =2 Andcs 1| Mnl2) + Brd o 1| Mnl2)), proper distance between the branes. The expressions above
(6.32 are in clear correspondence with these expectations.
f(2)=2"ACrde_ 1 |Mn|2) + Dpd_ s 10(|Mn|2)), VII. FERMION MASSES IN THE HIGGSLESS MODEL
(6.32 OF ELECTROWEAK SYMMETRY BREAKING

IN WARPED SPACE
and the bulk equations further require that ] )
We are now finally ready to consider the SU(2)

m,A,=|m,|C, and m,B,=—|m,|D,. (6.33 X SU(2)rXU(1)g_. model in warped space, where elec-
troweak symmetry breaking is achieved by boundary condi-

The two boundary conditions tions (rather than by a Higgs boson on the TeV brames
discussed in6], this model has a custodial $2) symmetry
Yr+=MRyg+ and yYrg= (6.34  that protects the parameter from large corrections, and thus

to leading log order the structure of the standard model in the
then lead to the equation determining the eigenvaings gauge sector is reproduced. However, an obvious lingering
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question is whether realistic values of the fermion mass (0#9,+f?) xrr+ =M?Ric*d, Yrir+ (7.3
could be obtained in this model. This model could be con-
sidered the AdS dual of walking technicol®5], and it is P r+=0. (7.9

well known that in technicolor theories it is difficult to natu- i _
rally obtain a realistic fermion spectrum. Here we will show, For modes withm?< f the BC(7.3) can be approximated by
that in the extra dimensional model there is enough freedom

in the parameter space of the theory to be able to incorporate N MZR n 7
the observed fermion masses. XRrir+ = Mn £2 YRR (7.9
A. Quark sector wherem, is the A" mass eigenvalue.

The left handed leptons and quarks will be in SU(2) The mass term on the TeV brane will be given by

doublets, while the right handed ones in SU{2joublets, . |R 4 ,

exactly as in Eqs(5.1), (5.2 and(5.19. Thus we will have STeV:f d"x 7 MoR' (¥rxL

two SU2) doublet Dirac fermions for the leptons and two L L

separately for the quarks in the bulk for every generation, T XLURT YLXRT XRYL) |2=R - (7.6

XLr>¥L r- Each Dirac fermion has a bulk massg and a . .
Dirac massMp on the TeV brane that mixes the two bulk Note, that in order to have a natural Lagrangian the param-

fermions. In addition we assume that there is a Dirac fermior£!€MoR’ should be of order one, thid,, should be of the
localized on the Planck brane that mixes with. This will order of TeV. From thls mass term the boundary conditions
again be necessary to be able to sufficiently split the mass the Te\( brane will be ar.lalogous to the flat space case
of the up and down type fermions. iscussed in Secs. IV and V.

We again assume that the fielgg g and x| g are such LR =—MpR Y- 1.7
that in the absence of brane localized masses or mixings the
fields x, andr would have zero modes, that is the BC’s in XrIR'=MpR' xR~ (7.9
the absence of the brane terms are as in(E®

VLR = XRIR R =0. (7.1) For the mode decomposition the bulk wavefunction solutions

' ' we take for the general case #2 g# integer:

Since we would like the zero modédat least for the light N
fermions to be localized near the Planck brafie order to XLR™
recover the SM relations for the gauge couplingsge need N 52 n N
to pick the bulk mass terms, >1/2 andcg<—1/2. The  ¥Lr=Z (ALRrI-121¢ (M2) =B rI1p-¢ (Mn2)),
reversal of the inequality facg is due to the fact that for the (7.9
right handed doublets we want thg fields to have zero
modes, and for these types of zero modes the localizatio
properties as a function af are modified, withc<—1/2
localized near the Planck brane whide- —1/2 near the TeV
brane.

The bulk part of the fermion action will be as in E§.2),
and the bulk equations of motion are as in E@s5), (6.6).
To find the appropriate boundary conditions, we need to co
sider the brane localized mass and mixing terms. The mixin
term on the Planck brane will be of the form

Z2(A] RIyzt e r(M2) + Bl rJ- 12—, 4(Mn2)),

Where m, is the 4D mass of the given mode that one is
considering. For a mode witm,R’<1 we can expand the
Bessel functions for small arguments, and since the coeffi-
cientsA| r,B| g depend on the eigenvalue,, some overall
powers ofm,, can be absorbed into these constants to make
the expansion more transpardffom here on we will sup-
npress the index), keeping the terms at most quadratic in
g, we get:

N ZL,RngCL'R+1+E enl 1 m?2z2
XL'R_ 2CL,R+1 L.R ’ 2_4CL,R ’

SPIZJ' d4x(—i§_0"‘c9,u§—i 7]0#‘9#;—’_]‘(7754—5)

1_

2,2 B n,1l-c
+MVR(ré+ Ev)) 12 e A 1o |- e T
R RM|z=R> ' L.R ’ 2+4CL,R 1_20L,R

where¢ and » are brane localized fermions, which together 10

form a Dirac fermion with a Dirac madson the brane. On |mposing the above boundary conditions we find that the
the Planck brane only SU(2X U(1)y is unbroken, and this  Jightest eigenmode is approximately given*bgassuming
extra Dirac fermion is assumed to be an SY(8nglet car-  againc, >1/2cg< —1/2)

rying the U(1), quantum numbers of the right handed SM

fermion fields, such that the mixing with mixing malskin

Eq. (7.2 is allowed. This is the analog of the=0 term in “In the following formulas we only keep the terms which can be
the Lagrangian in the flat space case discussed in Secs. Wading inR'/R for chosen values of bulk masses. Among the re-
and V. Since the warp factor on the Planck brane is one, theaining terms we separately keep only the leading contributions
boundary conditions following from this brane localized La- proportional toM? and f? terms becaus#/f is a free parameter
grangian will exactly match that in flat space: which may be large.
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J(2c,—1)(—2ca—1)fMp [ R cL-cr—1 functions to have a I;_arger overlap on the TeV brane. There-
0~ ) > — fore we need to consider the cage<1/2, cg> —1/2 so that
ViZ+ (= 2cg— 1M R the top quark is localized near the TeV brane rather than near

(7.1)  the Planck brane, which will make it possible to get a suffi-
ciently large top quark mass. Using similar methods as be-
The approximatiorc, >1/2, cg<—1/2 should be sufficient fore we find that in this casec(<1/2, cg>—1/2) the ap-
for the light quarks, but for the top quark we need the waveproximate lowest mass eigenvalue is

M2(1—2¢,)(1+2cg)
R)ZCRJrlMZ (1_20L)M2DR/2 )

2
my~

(7.12

205121 _
1+MpgR'“(1—c_+cg)+ 2 (1+2cgr)| 1+ 1-2c,

For completeness we also briefly discuss the special casesaykeli2 and/orcg=1/2. Withc, =1/2, cg>—1/2 we find
that the lightest eigenmode is given by

) 2(1+20R)f2M%R'1+2CR

mg~ =% . (7.13
IogE(R’1+2CRf2(2+(1+20R)M%R’ZH—2R1+2°R((1+20R)M2—f2))
|
The complementary casg=—1/2 andc, >1/2 gives onal mass of the brane fermions. A reasonable quark mass
) - spectrum can be obtained using the following parameters:
- (2c.—1)f?Mp R g 21 (i) For the first generation take& =—cr=.6, Mp
Mo ) ! , \R’ ' (7.14 =50 GeV andM/f=3.8 for the up sector anil/f=0 for
fflog+M the down sector. Them,~3 MeV, my=6 MeV and the
first KK excitations appear at 1.2 TeV then 1.3 Té6th for
while for the doubly special casg = —cr=1/2: up and dowh
- (ii) For the second generation take= —cg=.52, Mp
2 f“Mp 21 =112 GeV andM/f=50 for the strange sector. Theng
(7.19 ~110 MeV, m;=~1.3 GeV and the first KK excitations ap-

pear at 1.1 TeV then 1.3 Tetboth for s and &

(iii) For the third generation we need localize both the left

Let us now use these expressions to demonstrate that it anded and the right handed zero modes near the TeV brane
possible to obtain a realistic mass spectrum for all the SMn order to be able to get a large enough top quark mass. One
fermions. We will use Eq¢(7.11) for the first two generations, numerical example is, =0.4cg=—1/3, Mp =900 GeV, f
while for the third generation quarks we use Ef12. We  =2.5x10' GeV andM =10" GeV for the bottom sector
have also numerically solved the bulk equations with theand M=0 for the top sector. For these parameters we get
appropriate boundary conditions, and found that Egdl),  m,~175 GeV andn,~4.5 GeV. The first KK excitations
(7.12 are generically good approximations for the lowestof the bottom quark appear at the relatively low value of
eigenvalues, up to the ten percent level. For the results pre~550 GeV, while for the top quark at-700 GeV. This
sented below we have used the numerical solutions to thevould imply that the third generatiofsince it would be lo-
eigenvalue equations rather than the approximate formulagalized near the TeV brapeould be very different from the
(7.12), (7.12. We also use the numerical solution to find the first two, and interesting effects in flavor physics could be
lightest KK excitations in each case. We will not attempt toobservable. For a recent analysis of examples of the conse-
explain all the observed CKM matrix elements in this paperquences for a composite third generation [s24.
though we see no reason why it should be hard to obtain the The above numbers are only given for the purpose of
right values. In order to correctly reprodudd the masses of demonstrating the viability of obtaining a realistic set of
the W and theZz, throughout the fits we will use the values quark masses. However, there are several free parameters
R=101°GeV !, R'=2x102GeV !. The parameter thatone can vary for obtaining the correct massgscg and
Mp should be of the order of the TeV scale, while the split-Mp, while the ratioM/f is mostly set by the amount of
ting between the up and down-type fermions will be obtainedsplitting within a multiplet. Here we have only assumed the
by choosing an appropriate value for the ratidf, that is  simplest possibility when one of the two fermions within a
the ratio of the mixing with the brane fermions to the diag-generation have a mixing with the brane localized fermions.

mO R’ ) R’ )
|Ogﬁ f |OgE+M
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KK
My, m
-0.5 -0.5
Cr Cr
-0.52 -0.52
-0.54 -0.54
-0.56 =0.56
-0.58 -0.58
-0.6 -0.6
0.5 0.52 0.54 0.56 0.58 0.6 0.5 0.52 0.54 0.56 0.58 0.6

(a) oL (b) oL

FIG. 1. (a) Contour plot of the value oMy needed to obtaim.=1.2 GeV for varying values of, andcg. The regions starting with
the darkest moving toward the lighter ones corresponil g=0.1,0.3,0.6,1,1.5,2,2.5,3,3.5,4,4.5 Te¥g) Contour plot of the value of the
lightest KK mass for the second generation quarks assumingvtgas chosen such thah.=1.2 GeV, for varying values of, andcg.
The regions starting with the darkest moving toward the lighter ones correspdigye 0.1,0.3,0.5,0.7,0.9,1.1 TeV.

Clearly, there is a much richer spectrum of possibilities for B. Lepton sector

such mixings which we will however not deal with here. To ope has a variety of options for generating the lepton
illustrate some of the available free parameters, we have vafasses. The nicest possibility would be to have an extra
ied thec’s andMp around the solution for the second gen- dimensional implementation of the usual neutrino see-saw
eration, while keeping the ¢ and s quark masses fixed. Thmechanism which takes advantage of the fact that the right
resulting relation betweety ,cg andMp, is displayed in Fig.  handed neutrino is a singlet under all the SM gauge groups.
1(a). In Fig. 1(b) we show the dependence of the mass of theThis implies that on the Planck brane one can simply add a
lightest KK mode on the parametess andcg. Note, that a

characteristic feature of all of these solutions is that the mass M

of the lightest KK mode decreases with increadihg . This D

is due to the fact that for largél ; the KK mass is sensitive G 228
to the value of thee’s but notMyp, itself. This can be simply R
seen by taking the largé ; limit, where the resonance mass ~0.325
is just set by the scale R/.
Since the amount of interesting new flavor physics in the -0.35
third generation crucially depends on the deviationcpf
from 1/2, we have examined how small—1/2 could be. ~0=373
For this we have generated calculated the acceptable values
of ¢, ,cr and Mp that would give us the correct top quark ~0.4
mass, which is shown in Fig. 2. One can see that the smallest
possible value for 1/2¢, is ~0.03. el
It is also interesting to note that since the mixing with
very heavy fermions on the Planck brane is essentially -0.45
equivalent to introducing brane kinetic terms, we can easily e
implement the Hiller-Schmaltz mechanism for solving the 0.30.3250.350.375 0.4 0.4250.45
strongCP problem[27]. If all intergeneration mixing arises cL

on the Planck brane by mixing with the heavy Planck brane

fermions, then the net effect for the light fermions is that all  F|G. 2. Contour plot of the value okl needed to obtain
the mixing appears in kinetic terms; then all complex phaseSnmp= 175 GeV for varying values af, andcg. The regions start-
can be rotated into the CKM matrix without introducing ing with the darkest moving toward the lighter ones correspond to
strong CP violation [27]. Mp=1,152...,6,6.5 TeV.
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mKK

Vi
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M/t M/t
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FIG. 3. (a Contour plot of the value o1 needed to obtaim, =100 MeV andm, —2>< 102 eV for varying values oM andM/f.
The regions starting with the darkest moving toward the Ilghter ones correspd)mg#(ﬂ 6,8,10,13,16,19,2210 GeV. (b) Contour plot
of the mass of the first KK excitation of the muon neutrino, keeping fixge- 100 MeV andm, =2X 10 2 eV and varyingVi, andM/f.
The regions starting with the darkest moving toward the lighter ones correspcm?fte 300, 400 500,600,700 GeV.

brane localized mass term to the right handed neufsimze Instead of the appearance of the intermediate sbhie
SU(2) g is broken therg Using similar methods as before we ~ 10'! GeV for the Majorana mass of the right-handed neu-
find that the neutrino mass is given by trino (which is somewhat lower than usually assumeuhe

can insist on the real see-saw formula. A real see-saw mecha-
nism can actually be achieved if the suppression of the
(7.16 )
charged lepton masses comparedvig is the consequence
not only of a warp factor suppression but also of an addi-
whereMp, is the Majorana mass of the right handed neutrinotional mixing with Planck-brane localized fermions as in the
on the Planck brane. In absence of any brane localized fegeneral casé7.11). The neutrino masses would still be given
mions, the charged lepton masses are given by(E4l) by Eq.(7.16), with a scaleM different from the scal® in
with M=0 then we find the relation between the neutrlnoEq (7.11). This way one could choose an, of order .1 to
and the charged lepton mass to be 2 TeV for all three generations, and the sdsllg needed for
2 the neutrino masses would be closer to the usually assumed
1 M- values of order 18 to 10'° GeV. A possible choice of pa-
- —2cg—1 Mg’ (717 rameters could be for example:
(i) For the first generation take, = —cg=.55, Mp
where them|— are the masses of the charged leptons. Note=100 GeV, M/f=1500 for the suppression of the electron

that this is almost completely analogous to the usual see-salass tome=~500 keV, andMg=10" GeV for the suppres-
formula, with the only difference being that the large scaleSion of the electron neutrino massrg, ~10°° eV,

directly suppresses the charged lepton mass squares, and notii) For the second generation tak@— —Cr=.52, Mp

a mass of order 100 GeV as is usually assumed. That is, the 1000 GeV, M/f =500 for the suppression of the muon
difference is in the appearance of the charged lepton Yukawaass tan,~100 MeV, andV g= 10* GeV for the suppres-
coupling. Using this mechanism one could get realistic lepsion of the muon neutrino mass mmv ~2x107 3 eV,

M5
m,=(2c,—1)
R

R’ ’

R ) 2(c.—cr—1)

m

14

ton masses using for example the following parameters: (i) For the third generation takeL— —cg=.51, Mp
(i) For the first generation take =-cgr=.65 Mp  =2000 GeV,M/f=100 for the suppression of the tau mass
=130 GeV andMg=10'"GeV. Thenm,~500 keV, M,  tom ~1.7 GeV, andMr=6x 10 GeV for the suppression
~10 " eV. of the muon neutrino mass ta, ~3X 10 2 eV.
(i) For the second generation take=—cg=.58, Mp On Fig. 3a) we have plotted the values of the see-saw
—2502G><e]\-g_and\|\//|R 3X10'GeV. Thenm,~100 MeV,  scale,Mg, needed to reproduce, =100 MeV andm,
~ e

=2x10 3 eV, while varying the other free parameteM;D

(iii) For the third generation take, = —cg=.53, Mp, andM/f (we have further imposed that = —cg). On Fig.
=240 GeV andMg=10"GeV. Thenm,~1.7 GeV,m,  3(b), we have also computed the mass of the first KK exci-
~4X10 2 eV. tation of the muon neutrinos. Its mass decreasellgsn-
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creases and we note that it is also almost independent of the 0 —i 1 0
value ofM/f needed to fit the muon as long as we keep the 02=( 0 ) o= 0 — 1), (A2)
mass of the muon neutrino fixed. !
Another possibility that we will not explore here, due to 0 1 0 —i
its relative complexity, is that the charged lepton and neu- P —1,, _1:( ) _2:( )
trino come from two different SU(2) doublets as in Ref. 10 i 0
[11].
(1 0
o | #3
VIIl. CONCLUSIONS 0 -1

We have considered theories with fermions on an extraA famous relation about the Pauli matrices is
dimensional interval. We derived the consistent BC's from . . . .
the variational principle and explained how to associate the o*o”’+c"c*=27*" and o*oc’+oc"c*=2n"".
various BC’s to different physical situations. We have ap- (A4)
plied our results to Higgsless models of electroweak symme- . . . _ . )
try breaking, and showed that realistic fermion mass spectra A 5D Dirac spinor is written in terms of a pair of two
can be generated without the presence of a Higgs fields boffPMPonent spinors
in flat and in warped space. Y
=
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inally, x ¢ andﬁ denote the two Lorentz invariant scalars:

These products are symmetric
APPENDIX A: SPINOR AND GAMMA MATRIX -
CONVENTIONS x¥=wx and xig=iy. (A9)

For completeness, we give in this appendix the conven-
tion about spinors and Dirac matrices used throughout the
paper. We have mainly followed the conventions of Wess and

APPENDIX B: EXAMPLES OF KK DECOMPOSITION
IN FLAT SPACE WITH THE SIMPLEST BC'S

Bagger[21]. _ ) o ) ) We present in this appendix explicit examples of KK de-
We are working with a mostly “ space-time signature,  composition of fermions in flat space.
(+———-), and we have chosen the chiral representation \ve pegin by giving the full KK decomposition in the case
of the Dirac gamma matrices: of the simplest Dirichlet-Neumann BC's: there aeoriori
" four different cases to discuss, but the case= x| =0 is
#= B 7 similar to o= ¢ =0 and thg casgo= =0 s sim_il_ar to
o4 0 #10=x;L.=0. So let us mention the KK decompositions for

the latter cases only:
i, o0 (i) when ¢0=4 =0: there is a zero mode foy only,
) (A1)  Wwith an exponential wave function localized either on the 0
or L brane depending on the sign of bulk Dirac mass, as well
as a tower of massive modes mixed betwgeand ¢:

= 5_
©=0,1,2,3 andIl' (0 i1,

wheres* and o* are the usual Pauli matrices

o= -1, ol=

R m
(0 1) X=Aoe y§0+r121 An COSkny_k_Slnkny Xns
= n

10 (B1)
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[

(Isost|>+[coc ) [m3] sinfkaL — [sc, [*(m sink,L

mn .
y=- z 7 Ansinkny iy, (B2) 5 5 . )
n=1 Kn —kncosk,L)?—|cos, |*(msink,L +k,cosk,L)
with KK massesm, solution of the quantization equation: +(CoSESLCT +50Ch C ST )k2=0. (B13)
sink,L=0, ki=m;—m? (B3)  When all the boundary angles are real, the above equation

- . factorizes into the two simpler equations:
(i) when o= x| =0: there is no zero mode at all and

the tower of massive modes is given by +m,cos ag— ey )Sink,L — K,Sin(ag— a; )cosk,L
- m +msin(ag+ o )sink,L=0. (B14)
x=2> A, coskyy — i~ Sinkn | xn. (B4) oot "
"t A In particular, we recover the resul(83)—(B6) for the par-
o ticular anglesag, @ =0,7/2.
mn .
Y= 2 1Ak i, (B5)
n=1 %n APPENDIX C: BOUNDARY CONDITIONS

IN THE PRESENCE OF VARIOUS LOCALIZED

with KK massean, now solution of the equation:
MASS-MIXING-KINETIC TERMS

kn=mtank,L, ki=mj—m’. (B6) In this appendix, we would like to extend the discussion
of Sec. IV, and present the BC’s in the presence of various
localized operators on the boundaries. Of particular interest
are localized terms for fermions in complex representations.
(87)  Majorana masses for such theories are forbidden, however,

localized kinetic terms are not, neither are localized Dirac
wheresy, (co.) stand for the sinécosing of some(possi- ~Mmasses. We will also discuss examples where bulk fermions
bly compleX angles,aq, , that determine which linear com- are mixing with fermions that are localized at the boundaries.
bination of the fields on the two boundaries are vanishing. We will be following the steps outlined at the beginning
The first thing to notice is that these BC's can be imposedf Sec. IV: we first add the localized terms yat € to the
only when the 5D fermion belongs to a real representation obulk equations of motion in order to efficiently deal with the
the gauge group. In this case, the KK modes will be 4Ddiscontinuities in the wave functions. At the real boundary
Majorana fermions and the KK decomposition will be of they=0 we impose as always the simplest BC's

Let us now discuss the KK decomposition when we im-
pose BC’s of the form(2.12:

SoL¥joL T CoLX|oL=0

form
dsx0=0, #10=0, IsxL.=0, ¢, =0. (CI
X:; 9n(Y)&n(X), (B8) We then takee—0 and identify the relevant BC's af
=0" andy=L".
lﬂ:; Fa(¥) &n(X), (B9) 1. Adding localized kinetic terms

We add an extra boundary kinetic interaction localized at
y=¢€>0 to one of the two two-component spinors through
the 4D boundary action

with the spinorsé,(x) satisfying the Majorana equation:
—i0"d, &+ M€, =0, (B10)

_ _ a4,
— ", &yt mE £,=0. (B11) Sap= f d™Xikx o0 X|y=e- (C2

The wave functions are of the forif3.9), (3.10 with m, The equations of motion are modified to
being now replaced bym,|. In general there is no zero mode

except if there exists a tuning between the angitgg and —i0Hd, x(1+KkS(y—€))— dsih+miy=0, (C3)
the bulk massn: a

sin(ap— a ) —sin(ap+ a )tanhmL=0.  (B12) —i0"d,¢+ dsx+my=0. (C4

For the massive KK modes, as before, the bulk equation¥itegrating the first equation over the delta function gives a
give A, and B, in terms ofC, and D, and the boundary jump condition forgs which then implies a jump in the de-
equations reduce to two complex equations for two complexivative of y:

unknowns. The masses are thus obtained as the roots of a4 o o

by 4 determinant. After some algebra we obtain the quanti-  [¢] .= —ixo"d, x| and [dsx].=i0"d,[¢]|..

zation equation: (CH)
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Using the valuegC1) of the fields on the boundary, we fi- require discontinuities ims, andy, only. No further regular-

nally obtain the BC’s we were after ization of the delta function would then be necessary. And
. L o the BC’s would simply read
+=—ikatd + and J +=10"d  hg+.
¢|0 uX|0 5X|0 u¥lo (C6) ¢1|0+:MDL¢2\O+! (013)
This is exactly a boundary condition of the formy ( X2o+=—MpLxijo+- (C19

—~ico™9,x)jo+ =0 obtained from the variational principle in - \ve note that whichever way we go, the BC’s are all the
Eq. (2.1, where the parameter being identified as the game in the limit of smalMpL. And, in the flat case, the

coefficient of the boundary localized kinetic term. lowest eigenmode is a Dirac fermion with mads, . More
importantly, the form of the boundary condition is indepen-
2. Adding a Dirac mixing of bulk fermions on the boundary dent of the regularization of the delta function, and at most
We consider two bulk fermions that are mixed togetherth® interpretation of the physical meaning M, might de-
through a Dirac mass on the boundary pend on it

4 —— —— 3. Mixing with brane fermions
Sip=| d"XMpL(Yox1+ X182+ hix2t x2¢01)j0- _ N
We now analyze a more general case where, in addition to

(€7 the bulk fermions, there are localized spinors on the bound-
aries which mix with bulk fermions through Dirac mass
terms. The addition of a Dirac mixing mass on the L
brane leads to a 4D action given by

We further need to specify the values of the fields/at0
andy=L. We are assuming that as usual

Jsx1joL=0, ¥1j0.=0, 5920, =0, Xx2/0L.=0, (C8) _ _ -
S4D:J d*x(—iéo*d,E—inotd,n+ MLY(nx+x7)
in such a way that wheMp—0 there are two zero modes
corlrespondmg toe, and i,. _ o +H(E+En)) gL, (C15

n the present case, there is an ambiguity when we want to
push the interaction mass at a distanceway from the whereM andf have mass dimension 1.
boundary. Indeed if we were to push the whole expression To find the corresponding boundary conditions, we follow
(C7), we will end up with discontinuity in the wave functions our by now usual procedure and push the interactions a small
of both ¢, and ¢, and y; and y,, which then requires a distancee away from the boundary at=L, and solve the
regularization of the products like¢»5(y—€), for instance resulting equations of motion which are given by
by an averaging of/, over its limits from both sides. In this _ . o
case, using the valud€8) of the fields aty=0, we get the —io*d, x—dstp+my+ MLY»8(y—L+€)=0, (C19
following BC's aty=0" N

—i0*d,+ dsx+my=0,

MpL (C1
Yo+ =7 Y20+ (C9 _
1+ -M3L2 —iotd,n+MLYy+f¢=0,
4 (C18
MpL —io*d, &+ Tn=0.
Xelor =~ —°——Xajo+- (C10 g (C19
1+ >M3L2 . . . .
4 Integrating the first equation over the delta function gives the
jump for ¢:
Another regularization would consist for instance in o o
smoothing the delta function by a square potential, []jL-c=MLY?y, (C20

Mp/a®(y)®(a—y), and then take the limia—0. In this _ . . o
case, we would arrive at slightly modified BC’s of the form Which, using the defined valu€1) of ¢ aty=L implies the
following BC aty=L"
10+ =2 tanhM pL /2 0+, (C11) _ .
1o pierae Y= —MLYZ;, (c21)

X2jo+ =~ 2 taniMpL/2xy)o+. (€12 Then the last two equations can then be combined in the

i i followi :
Another possibility will be to impose the valu¢€d) on oflowing way

the boundary before pushing &taway. from. the brane. In ((?M(?M‘Ffz);:—iMle;”‘é’MX‘L. (C22
that case, the bulk equations of motion will be compatible
with continuous wave functions fag, and x; and would  Taking the limite—0, we finally arrive at the BC's:
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Ju_—: -M |_1/2;’ (€23 When the bulk fermion appears to be neutral with respect

to the residual gauge symmetry on the boundary, it can
couple to a Majorana fermion on the brane. So let us see how
the previous BC'’s are modified in that case. The 4D bound-

We notice that interactionéC15) lead to a generalization ary localized action is
of the boundary condition obtained by adding a brane local- - o
!ze_d_k|ne_t|c term. Inde_ed, in the limit Whe‘ran_o_lM tend to S4D:J d*(—i notd,n+M LY px+x7)
infinity with a fixed ratio, the boundary conditidit€24) re-
duces precisely to EqC6). This is expected since in the 1 —
limit of large massf of the brane fermions they must be a2ttt an)y- (C25
integrated out. This leaves one massless fermion, which is @nereM andf have again a mass dimension 1.

linear combination of and y, and its kinetic term contains The same procedure of pushing the interactioaway

a delta-function contribution, originating from the localized ;5 the boundary and taking the limit—0 leads to a jump
kinetic term for¢, which is proportional tdM?/f2. Whenwe w and a jump indgy and the BC’s finally read:
constructed a realistic pattern for the quark and lepton

(073, + T2 gy -=IM2LoPd x| (C24

masses in Sec. VII, we explicitly introduced brane localized E‘L,: ~MLYZy, (C26)
fermions but it should be kept in mind that a similar spec-

trum can be obtained just by introducing on the Planck brane Isx|L-=(—=M2Ly+fy) -

localized kinetic terms for the bulk fermions. (C27
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