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Fermions on an interval: Quark and lepton masses without a Higgs
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We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the
interval that are consistent with the variational principle, and explain which ones arise in various physical
circumstances. We apply these results to Higgsless models of electroweak symmetry breaking, where elec-
troweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions
of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would
give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample
fermion mass spectra for the standard model quarks and leptons as well as their resonances.
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I. INTRODUCTION

The most exciting question facing particle physics is h
electroweak symmetry is broken in nature. Since the sca
ing of massiveW andZ bosons violate unitarity at the sca
of ;1.8 TeV, we know that some new particles must app
before those scales are reached to unitarize these ampli
or the theory will be strongly interacting. In 4D the on
possibility to unitarize these scattering amplitudes~with a
single particle! is via the exchange of a scalar Higgs partic
It has been recently pointed out in@1# that extra dimensions
may provide an alternative way for unitarizing the scatter
of the massive gauge bosons via the exchange of a towe
massive Kaluza-Klein~KK ! gauge bosons~see also@2,3#!. In
this case electroweak symmetry would be broken not by
expectation value of a scalar~or a scalar condensate!, but
rather by the boundary conditions~BC’s! for the gauge
fields.1 As long as the BC’s are consistent with the variati
of a fully gauge invariant action, the symmetry breaking w
be soft in the sense that the UV properties of the scatte
amplitudes will be as in the higher dimensional gauge the
@1#.

A model of Higgsless electroweak symmetry breaki
~EWSB! with a realistic gauge structure has been presen
in @6#. However, the Higgs scalar of the standard model~SM!
serves two purposes: besides breaking the electroweak
metry it is also necessary for the generation of ferm
masses without explicitly breaking gauge invariance. T
purpose of this paper is to examine how fermion masses

*Email address: csaki@mail.lns.cornell.edu
†Email address: grojean@spht.saclay.cea.fr
‡Email address: hubisz@mail.lns.cornell.edu
§Email address: shirman@lanl.gov
i Email address: terning@lanl.gov
1For other possibilities of utilizing extra dimensions for ele

troweak symmetry breaking see@4,5#.
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be generated in Higgsless models where EWSB happens
BC’s in extra dimensions.

The structure of these Higgsless models is generically
the following form@6#: we consider the a modification of th
Randall-Sundrum model@8# with gauge fields in the bulk
@9,10#, where the bulk gauge group is SU(2)L3SU(2)R
3U(1)B2L . The addition of the second SU(2)R in the bulk
is necessary@11# in order to ensure the presence of a cus
dial SU(2)R symmetry in the holographic interpretation@12#.
On the Planck brane SU(2)R3U(1)B2L is broken to U~1! Y ,
while EWSB happens on the TeV brane where SU(2L
3SU(2)R→SU(2)D ~an early flat space version of thi
model was presented in@1#, and recently re-examined in
@13#!. Two important issues regarding the warped Higgsl
model that were not addressed fully in@6# were the genera-
tion of fermion masses without a Higgs boson, and the c
rections to electroweak precision observables. The issu
fermion masses will be discussed in detail in this pap
There are several potential sources for corrections to e
troweak precision observables in a Higgsless model: the
larged gauge structure, the missing Higgs scalar, and
modified fermion sector. Recently@13# examined theS pa-
rameter in the flat space version of this model and found
analogously to technicolor theories there is a large posi
contribution. However, no comprehensive analysis of
electroweak observables including all sources of correcti
listed above has been done to date. We plan to address
issues for the case of an AdS5 bulk ~as considered in@6,7#! in
a forthcoming publication.

In order to be able to generate a viable spectrum
coupling for the SM fermions, the fermions have to feel t
effect of EWSB, so they need to be connected with the T
brane. However they cannot be simply put on the TeV bra
since in that case they would form multiplets of SU(2)D ,
which they do not. Thus the fermions also have to be put i
the bulk, as in@14–20#. We assume that the left handed S
fermions will form SU(2)L doublets and the right hande
ones SU(2)R doublets~including a right handed neutrino!.
Since 5D bulk fermions contain two 4D Weyl spinors~like a
©2004 The American Physical Society12-1
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4D Dirac fermion!, one has to first make sure that in eve
5D bulk fermion there is only a single 4D Weyl spinor ze
mode. These zero modes will be identified with the usual
fermions. In order to recover the usual gauge coupling str
ture for the light fermions, the zero modes for the light fe
mions have to be localized close to the Planck brane. S
the theory on the TeV brane is vector-like, one can sim
add a mass term on the TeV brane that connects the left
right handed fermions. This is however not sufficient, sin
the gauge group on the TeV brane would force the up-t
and down-type fermions to be degenerate. The splitting
tween these fermions can be achieved by mixing the r
handed fermions with fermions localized on the Planck br
where SU(2)R is broken~which is equivalent to adding dif
ferent Planck-brane induced kinetic terms for the rig
handed fermions!. The detailed models for the fermio
masses for the warped space Higgsless model will be
sented in Sec. VII~while the analog constructions for th
somewhat simpler flat-space toy model can be found in S
V!.

Before we discuss fermion mass generation for the Hig
less models in detail, we will discuss the general issues
rounding the often confusing subject of BC’s and masses
fermions in one extra dimension. In Sec. II we examine
possible BC’s for fermions on an interval that are consist
with the vanishing of the boundary variations of the actio
This is an extension of the general discussion of@1# of BC’s
in an extra dimension to the fermion sector. In Sec. III
discuss the general KK decomposition for fermions on
interval ~with some simple examples worked out in detail
Appendix B!, while in Sec. IV we give the physical interpre
tation of the various BC’s obtained from the variational pr
ciple. More important examples for BC’s in the presence
mixing of bulk fermions on a brane are presented in App
dix C. In Sec. V we apply the results of Secs. II–IV
propose the BC’s for the fermion sector of the flat spa
Higgsless model. In Sec. VI we discuss the general issue
fermionic BC’s in warped space, and then finally present
BC’s and mass spectra for the warped space Higgsless m
in Sec. VII. We conclude in Sec. VIII. Appendix A contain
notations and spinor conventions.

II. FERMION BOUNDARY CONDITIONS
FROM THE VARIATIONAL PRINCIPLE

We start by considering a theory of 5D fermions on
interval of lengthL, with a bulk Dirac massm, and possibly
also masses for the component fermions on the bounda
For the moment we will assume that the geometry of
interval is flat and we will come back later to the pheno
enologically more interesting case of an AdS5 interval. In
5D, the smallest irreducible representation of the Lore
group is the Dirac spinor, which of course contains two tw
component spinors from the 4D point of view. The bulk a
tion for the Dirac spinorC is given by the usual form

S5E d5xS i

2
~C̄GM]MC2]MC̄GMC!2mC̄C D

~2.1!
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whereM50,1,2,3,5. Usually, in the second term the diffe
ential operator is integrated by parts and gives a contribu
identical to the first term. However when the fifth dimensi
is a finite interval, boundary terms appear in the process
integrating by parts and using the conventional form of
action would require us to explicitly introduce those boun
ary terms. That this is the convenient starting point can
seen from the fact that the action is real or equivalently t
the corresponding Hamiltonian is Hermitian. Writing out th
action in terms of the two-component spinors contained
the 5D Dirac spinor as

C5S xa

c̄ȧD ~2.2!

and integrating by parts in the 4D coordinates where we
require that the fields vanish at large distances, we obtain
following Lagrangian for the two-component spinors~for
spinor and gamma matrices conventions, see Appendix A!:

S5E d5xS 2 i x̄s̄m]mx2 icsm]mc̄

1
1

2
~c]5Jx2x̄]5J c̄ !1m~cx1x̄c̄ ! D , ~2.3!

where]5
J5]5

W2]5
Q , with the arrows indicating the direction

of action of the differential operator. Varying the action wi
respect tox̄ andc we obtain the standard bulk equations
motion which are given by

2 i s̄m]mx2]5c̄1mc̄50,

2 ism]mc̄1]5x1mx50. ~2.4!

However one needs to be careful with the variation, sin
one needs to do an integration by parts in the extra dim
sion, which will give an extra term for the variation of th
action on the boundaries of the interval. Requiring that
boundary term in the variation vanishes will give the desir
boundary conditions for the fermion fields~we denote by
@X#0

L the quantityXuL2Xu0):

dSbound5
1

2E d4x@dxc2dcx2dc̄x̄1dx̄c̄#0
L50.

~2.5!

To proceed further we need to specify the boundary c
ditions. These have to be such that the boundary variatio
Eq. ~2.5! vanishes. Note, that this is a somewhat unus
boundary variation term~at least compared to the case
scalar and gauge fields! since it mixes the two Weyl spinors
We will first discuss the simplest and most common
adopted solutions, and then consider the more general c
The most obvious solution to enforce the vanishing of E
~2.5! is by fixing one of the two spinors to zero on the e
points, for example

c u0,L50. ~2.6!
2-2
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As soon as we imposed this condition, we also have
dc u0,L50, and the full boundary variation term vanishe
This would naively suggest thatx remains arbitrary at the
end points, however this is not the case, since we still hav
require that the bulk equations of motion are satisfied eve
where, including at the end points of the interval. Since
bulk equations mixc andx, whenc50 we get a first order
equation for justx, which can be considered as the bounda
condition for thex field:

~]5x1mx! u0,L50. ~2.7!

In the limit of m→0 this is the BC that is usually employe
when considering orbifold projections. The usual argumen
that if one assigns a definite parity tox and c under y→
2y, then due to the termc]5x in the bulk,x andc have to
have opposite parities, so ifc is chosen to have negativ
parity ~that is it vanishes on the end points! thenx has to be
positive, so its derivative should vanish. This is basica
what we see in this simplest solution, except that it is v
easy to deal with the bulk mass term. If one were to think
this interval as the orbifold projection of a circle, then t
only way one can fit a bulk mass into the picture is if t
bulk mass is assumed to switch signs at the orbifold fix
points ~the mass itself has negative parity!, which then
makes figuring out the right BC’s in the presence of the m
term quite hard. We can see that in the interval formulat
one does not have to worry about such subtleties.

We have seen above that the simplest possible solution
the vanishing of the boundary variation leads to the bound
conditions generically employed when considering orbifo
constructions. However, one does not need to require
individual terms in Eq.~2.5! to vanish, it is sufficient for the
whole sum to vanish. In fact, requiring the individual vari
tions to vanish over-constrains the system, as is clear fro
simple counting of the degrees of freedom of the theo
There are two constants associated with the solutions of
first order differential equations. One boundary condition
each end of the interval then specifies the system. If
forces the individual terms in the boundary variation on o
end point to vanish, then there is no freedom of bound
conditions on the opposite end point. Thus one should
nerically only impose one BC at each end of the interv
Such a BC expresses one of the spinors in terms of the o
With that in mind we can see that the most general solu
to the vanishing of the boundary variation is when, on
boundary, the two fieldsc and x are proportional to each
other:

ca u0,L5~Ma
bxb1Naḃx̄ ḃ! u0,L ~2.8!

where M and N are two matrices that may involve som
derivatives along the dimensions of the boundary. The ac
will then have a vanishing boundary variation provided th
M andN satisfy the two conditions

Ma
b5sMebgMg

deda and Naḃ5sNNaḃ
†

~2.9!
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where sM ,N are signs due to some possible integration
part of the differential operators contained inM andN. Two
simple solutions are

Ma
b5cda

b for any constantc, ~2.10!

Naḃ5 icsaḃ
m

]m for any real constantc. ~2.11!

Note that for fermions belonging to a complex representat
of the gauge group, gauge invariance requires that either
operatorM or its inverse vanishes. Let us discuss in mo
detail the solutions of the typec u0,L5C0,Lx u0,L , for arbitrary
values ofC0,L . A better way of expressing this condition
by saying that some linear combination of the two fermi
fields has to satisfy a Dirichlet boundary condition on bo
ends. However, these can be different combinations on
two sides:

s0,Lc u0,L1c0,Lx u0,L50 ~2.12!

wheres0,L (c0,L) stand for the sine~cosine! of some~possi-
bly complex! angles,a0,L , that determine which linear com
bination of the fields on the two boundaries are vanishing
there are gauge symmetries in the bulk, under which
fermions transform, thenc andx transform in complex con-
jugate representations, as can be seen from Eq.~2.2!. This
means that it is only possible to mix the two fields on t
boundary with nontrivial angles if the fermion is in a re
representation. Thus for real representationss0,L could in
principle be arbitrary, however for complex representatio
the only possibilities ares0,L50 or s0,L51. We will see later
on that this choice of BC’s corresponds to adding a Majora
mass on the brane.

III. KALUZA-KLEIN DECOMPOSITION

Now we would like to discuss how to perform the Kaluz
Klein decomposition of these fields. In general, when
fermion belongs to a complex representation of the symm
try group, the KK modes can only acquire Dirac masses
the KK decomposition is of the form

x5(
n

gn~y!xn~x!, ~3.1!

c̄5(
n

f n~y!c̄n~x!, ~3.2!

wherexn andcn are 4D two-component spinors which form
a Dirac spinor of massmn and satisfy the 4D Dirac equation

2 i s̄m]mxn1mnc̄n50, ~3.3!

2 ism]mc̄n1mnxn50. ~3.4!

Plugging this expansion into the bulk equations we get
following set of coupled first order differential equations f
the wave functionsf n andgn :

gn81mgn2mnf n50, ~3.5!
2-3
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f n82m fn1mngn50. ~3.6!

Combining the two equations we get as usual decoupled
ond order equations:

g91~mn
22m2!g50, ~3.7!

f 91~mn
22m2! f 50. ~3.8!

Depending on the sign ofmn
22m2 the wave functionsgn and

f n will be either sines and cosines or sinhes and coshes~we
define ccosknL5coshknL for kn

25m22mn
2.0 and

ccosknL5cosknL for kn
25mn

22m2.0 and similarly for
ssinknL):

gn~y!5Anccoskny1Bnssinkny, ~3.9!

f n~y!5Cnccoskny1Dnssinkny.
~3.10!

These wave functions are analogous to the ones obtaine
bosonic fields. For fermions, the bulk equations are going
teach us something more about the wave functions. Ind
the first order coupled differential equations~3.5!, ~3.6! re-
late the coefficientsAn ,Bn ,Cn ,Dn to each other. Using the
form ~3.9!, ~3.10! of the wave functions and formnÞ0, the
two bulk equations are equivalent to one another and imp
for kn

25mn
22m2.0,

mCn2knDn2mnAn50, ~3.11!

knCn1mDn2mnBn50. ~3.12!

Whenm22mn
2.0, the sign of the term involvingkn in the

second equation is flipped.
The boundary conditions may also allow the presence

zero mode which can have a nontrivial profile of the fo
~3.9!, ~3.10! with kn

25m2 for a nonvanishing bulk mass. Fo
the case of the zero mode the bulk equations~3.5!, ~3.6! are
decoupled and simply reduce to

A052B0 and C05D0 . ~3.13!

Some explicit examples of KK decomposition are giv
in Appendix B when BC’s of the formsc u1cx u are imposed
at 01 andL2. We also discuss there how to amend the fo
of the decomposition~3.1! when the gauge quantum numbe
of the fermion allow the KK modes to have Majoran
masses.

Before we close this section, we just remind the rea
what the status of all of these various boundary conditi
with respect to each other is: that is can we have the diffe
modes corresponding todifferent boundary conditions
present in the theory at the same time? The answer is n
theory is obtained by fixing the BC’s for the fields~picking
one of the possibilities from the list given above! once and
for all. If we were to include modes corresponding to diffe
ent BC’s into the theory, we would lose Hermiticity of th
Hamiltonian, that is the theory would no longer be unitary
one were to insist on putting these different modes toget
01501
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an additional super-selection rule would have to be ad
that would make these different modes orthogonal, signa
that they belong to a different sector of the Hilbert spa
which practically means that a new quantum number co
sponding to the choice of the BC would have to be add
But usually this is avoided by simply considering only
fixed BC.

IV. PHYSICAL INTERPRETATION OF THE BOUNDARY
CONDITIONS

We would like to have an intuitive physical picture of th
various fermionic boundary conditions. Unlike a scalar fie
which in the absence of boundary interactions naturally ha
flat profile (]5f50) on the boundary, the fermions cann
have a purely flat wave function. This is a result of the d
namics of 5D fermions, which can be broken up into tw
two-component spinors. The bulk equations of motion
these spinors imply that, in the absence of a bulk Dirac m
~as we will assume throughout this section!, if one spinor
profile has zero derivative at a boundary, then the oppo
spinor must obey Dirichlet boundary conditions, and vi
versa. However, we have seen in Sec. II that there is a var
of BC’s that one can impose instead of the simplest]5x u
5c u50 condition. The purpose of this section~and its con-
tinuation in Appendix C! is to understand what physical situ
ations the various BC’s~some of which may seem quite ob
scure at first sight! correspond to.

What we would like is to be able to consider a setup w
arbitrary localized masses or mixings or kinetic terms a
translate these into some BC’s similar to the form of E
~2.8!. However, it is not easy to arrive at these BC’s from t
variational principle if the localized terms are directly add
at the boundary. The reason is that due to the first or
nature of the bulk equations of motion the presence o
localized term necessarily implies a discontinuity in some
the wave functions. If the localized term is added directly
the boundary, one would have to treat the values and va
tions of the fields at the boundaries as independent from
bulk values which makes the procedure very hard to co
plete. Instead, our general approach to treating the local
terms will be the following:

Push the localized terms at a distancee away from the
boundary, which implies the presence of ad-function in the
bulk equations of motion;

Impose the simplest BC’s]5x u5c u50 at the real bound-
ary y50,L;

By combining the jump equation aty5e with the BC’s at
y50 obtain a relation between the fields aty5e;

Take the limite→0 and treat the relation among the field
at y5e as the BC’s for the theory on an interval with th
localized terms added on the boundaries.

By construction, the BC’s obtained this way will alway
satisfy the variational principle@that is make Eq.~2.5! or its
analog in the presence of more fields vanish#, but this way
the physical interpretation of the possible parameters app
ing in the BC’s will become clear.

In this section we will first show what a possible physic
realization of the usually applied simple BC]5x u5c u50 is,
2-4
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and then consider adding a Majorana mass on the boun
as discussed above. Many more important examples of
ing localized terms will be discussed in Appendix C.

A. Physical realization of the simplest Dirichlet-Neumann BC’s

The easiest way to realize the simple]5x u5c u50 bound-
ary condition is to give the fermions a mass that is a funct
of an extra dimensional coordinate, where this extra dim
sion is infinite in extent. For example, one can construc
square well mass term given by

m~y!5m2u~2y!1m1u~y2L ! ~4.1!

whereu is the usual Heaviside function. Takingm2 andm1

to be large, yet finite, the solution consists of modes wh
tail off exponentially outside of the well. The wave function
of x andc in region I (y<0) and II (y>L) are given by

~ I ! H f n5Cn
2ekn

2y

gn5An
2ekn

2y
~ II ! H f n5Cn

1ekn
1y

gn5An
1ekn

1y
~4.2!

wherekn
625m6

2 2umn
2u. As m grows, the exponentials dro

off more and more quickly, and thus the fermions are c
fined to a ‘‘fat brane’’ of widthL ~which corresponds to the
well!. The wave functions aty50 and y5L are continu-
ously matched with the solution within the ‘‘well’’

~0<y<L ! H f n5Cncosmny1Dnsinmny

gn5Ancosmny1Bnsinmny.
~4.3!

The existence of a 4D massless mode depends on
details of the mass profilem(y). For instance, whenm1

5m25m, a quick calculation shows that this particul
mass background does not lead to a normalizable chiral
mode profile. Indeed the ‘‘bulk’’ equations of motion to
gether with the continuity conditions aty50 andy5L leads
to the quantization equation

mntanmnL5Am22mn
2, ~4.4!

which obviously does not allow a massless mode.
However, if one changes the mass profile tom152m2

5m, the quantization equation becomes

Am22mn
2 tanmnL52mn , ~4.5!

which now supports a massless solution. This is a stepw
analogue of the well known domain wall localization of ch
ral fermions@22#. Whenm→`, the solution within the well
can be equivalently obtained by ignoring the exterior regio
and by imposing the following boundary conditions~for m
.0)

]5x u050, c u050, ]5x uL50, c uL50. ~4.6!

B. BC’s in the presence of a brane localized Majorana mass

We now consider adding localized terms to the ferm
action, and ask how the simple BC derived above w
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change in the presence of these terms. We will illustrate
detail how to implement the steps outlined at the beginn
of this section for the case when a Majorana mass is ad
on the boundary. This example in the context of orbifolds h
been discussed in@23# ~see also@24#!. Several other physica
examples are worked out in Appendix C.

To be able to add a Majorana mass at they50 boundary,
we need of course to consider a fermion that belongs to a
representation of the unbroken gauge group. On top of
bulk action~2.1!, we then consider the following brane a
tion ~slightly separated from the boundary!:

S4D5E d4x
1

2
L~Mxx1M* x̄x̄ !uy5e . ~4.7!

Note that the mass has been written asML to give to M a
mass dimension equal to one.

To find the modified BC’s in the presence of this bra
mass term, the first step is to chose the Dirichlet-Neum
BC’s the two two-component spinorsx and c would have
satisfied at the ‘‘real boundary’’y50 in the absence of the
Majorana mass term. Thus as previously we assume tha

]5x u050, c u050, ]5x uL50, c uL50. ~4.8!

The effect of the brane mass term is to introduce disco
nuities in the wave functions aty5e. The bulk equations of
motion are modified to

2 i s̄m]mx2]5c̄1mc̄1M* Ld~y2e!x̄50, ~4.9!

2 ism]mc̄1]5x1mx50. ~4.10!

Integrating the first equation over the delta function te
shows that, whilex remains continuous, the value of thec
profile undergoes a jump:

@c̄# ue5M* Lx̄ ue . ~4.11!

Becausec undergoes a jump, the second bulk equation
motion requires that the derivative ofx also undergoes a
jump:

@]5x# ue5 ism]m@c̄# ue . ~4.12!

In the limit e→0 and from the fixed values~4.8! of x andc
at y50, the jump equations finally give the BC aty501.
This is what we will be interpreting as the BC correspondi
to the theory with Majorana masses on the boundaryy50
~the BC aty5L remain of course unaffected by the ma
term localized aty50):

]5x u015 ism]mc̄ u012mx u01, c u015MLx u01,

]5x uL250, c uL250. ~4.13!

The first equation is just the bulk equation of motion eva
ated at the boundary, so we conclude that the BC corresp
ing to the Majorana mass is just

c u015MLx u01. ~4.14!
2-5
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CSÁKI et al. PHYSICAL REVIEW D 70, 015012 ~2004!
What one should recognize at this point is that Eq.~4.13!
corresponds precisely to the boundary condition

~c0c1s0x! u0150 ~4.15!

with ML52s0 /c0. Thus we have a completely dynamic
description of one of the boundary conditions mentioned
Sec. II. One can also reproduce the other types of BC’s
adding different boundary localized operators like a localiz
kinetic term or a mass interaction term with boundary loc
ized fermions. An exhaustive list of cases are worked ou
Appendix C.

V. FERMION MASSES IN THE SU „2…LÃSU„2…RÃU„1…BÀL

FLAT SPACE TOY MODEL

As an application of the previous sections, we will co
sider generating masses for leptons in a Higgsless extra
mensional model in flat space where the bulk gauge group2 is
SU(2)L3SU(2)R3U(1)B2L as presented in Ref.@1#. This
model has large corrections to the electroweak precision
servables, and cannot be viewed as a realistic model for e
troweak symmetry breaking. However, most of the large c
rections can be eliminated by putting the same model
warped space@6#, or as pointed out recently in@13# by add-
ing large brane localized gauge kinetic terms in the flat sp
case. We find it useful to first present some of the feature
the construction for the fermion masses in the flat sp
model, as a preparation for the more complicated war
case presented at the end of this paper.

A. Lepton sector

As always in a left-right symmetric model, the fermion
are in the representations (2,1,21/2) and (1,2,21/2) of
SU(2)L3SU(2)R3U(1)B2L for left and right handed lep
tons respectively. Since we assume that the fermions liv
the bulk, both of these are Dirac fermions, thus every ch
SM fermion is doubled~and the right handed neutrino
added similarly!. Thus the left handed doublet can be writt
as

~xnL
,c̄nL

,xeL
,c̄eL

! t, ~5.1!

where (xnL
,xeL

) will eventually correspond to the SM

SU(2)L doublet and (cnL
,ceL

) is its SU(2)L antidoublet
partner needed to form a complete 5D Dirac spinor. Si
larly, the content of the right-handed doublet is

~xnR
,c̄nR

,xeR
,c̄eR

! t, ~5.2!

where (cnR
,ceR

) would correspond to the ‘‘SM’’ right-
handed doublet, i.e., the right electron and the extra r
neutrino, while (xnR

,xeR
) is its antidoublet partner agai

needed to form a complete 5D Dirac spinor.

2With quarks in the bulk there is also a bulkSU(3)color gauge
group.
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For simplicity we assume for now the absence of a b
Dirac mass term~we will later need to introduce such term
in the warped scenario to build a realistic model!. In the
absence of any brane induced mass terms the fi
xnL

,xeL
,cnR

and ceR
would contain zero modes, while th

other fields would acquire a KK mass of the order of t
compactification scale. Thus without the additional bound
masses that we need to add, the boundary conditions w
be

cnLu0,L5ceLu0,L5xnRu0,L5xeRu0,L50. ~5.3!

We also assume that, as explained in@1,6#, on one brane the
SU(2)L3SU(2)R symmetry is broken to the diagona
SU(2)D , while on the other brane SU(2)R3U(1)B2L is
broken to U(1)Y . This means that on the SU(2)D brane the
theory is nonchiral, and a Dirac mass termMD connecting
the left and right fermions can be added. Assuming that
Dirac mass term is added on they5L brane, the boundary
conditions will be the same as in Appendix C 2:

ceLu0150, xeRu0150, ~5.4!

ceLuL252MDLceRuL2, xeRuL25MDLxeLuL2. ~5.5!

The KK decomposition is of the form~3.1!, leading to an
electron mass being solution of the equation:

tan~mnL !5MDL ~5.6!

which, for MD!1/L, is solved bym0;MD . The lowest
mass state is as expected a Dirac fermion with a mass th
just given by the Dirac mass added on the brane.

However, the unbroken SU(2)R symmetry so far guaran
tees that the neutrino has the same mass as the electron
neutrino mass needs to be suppressed by some sort of a
saw mechanism, which can be achieved, as in Appendix
by coupling the neutrino to a fermion localized on the bra
where SU(2)R3U(1)B2L is broken to U(1)Y . Let us thus
introduce an extra right-handed neutrinojnR

localized on

that brane. Being SU(2)L3U(1)Y neutral, this extra brane
fermion can have a Majorana mass as well as a mixing m
term with cnR

via the 4D Lagrangian aty50

S4D5E d4x~2 i j̄nR
s̄m]mjnR

1ML1/2~jnR
cnR

1 j̄nR
c̄nR

!

1 f ~jnR
jnR

1 j̄nR
j̄nR

!!. ~5.7!

The boundary conditions on the SU(2)L3U(1)Y brane are
then

cnLu0150, ~5.8!

xnRu0152ML1/2jnR
, ~5.9!

2 i s̄m]mxnRu011 f x̄nRu012M2Lc̄nR u0150. ~5.10!
2-6
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The boundary conditions on the SU(2)D brane remain
untouched:

cnLuL252MDLcnRuL2, ~5.11!

xnRuL25MDLxnLuL2. ~5.12!

The KK expansion will be of the form

j5(
n

cnjn~x!, ~5.13!

xnL
5(

n
gn

(nL)
~z!jn~x!, xnR

5(
n

gn
(nR)

~z!jn~x!,

~5.14!

c̄nL
5(

n
f n

(nL)
~z!j̄n~x!, c̄nR

5(
n

f n
(nR)

~z!j̄n~x!,

~5.15!

where thejn’s are 4D Majorana spinors of massmn:

2 i s̄m]mjn1mnj̄n50 and 2 ism]mj̄n1mn* jn50.
~5.16!

Together with the bulk equations of motion these BC’s le
to the following mass spectrum for neutrino’s~assuming the
eigenmassmn real!

2
f 2mn

M2L
~MD

2 L cos2mnL2sin2mnL !5~11MD
2 L2!sin 2mnL.

~5.17!

For f MD
2 L!M2 andMDL!1 we get that the lowest mode

a Majorana fermion with a mass approximately given by

m0;
f MD

2

M2
, ~5.18!

which is of the typical see-saw type since the Dirac ma
MD , which is of the same order as that of the electron ma
is suppressed by the large masses of the right handed ne
nos localized on the brane. Thus a realistic spectrum
achievable in this simple toy model for the leptons.

B. Quark sector

In order to get a realistic mass spectrum for the qua
one cannot simply add a single brane localized tw
component fermion as for the neutrinos, since in that case
would induce an anomaly in the effective theory. Instead,
need to introduce a vector-like brane localized color trip
with the quantum numbers of the up-type right handed qu
and its conjugate~or the down type for a mixing for the
down quarks!. So the fields that we are considering now a
01501
d

s,
s,
tri-
is

s,
-
e

e
t
rk

S xuL

c̄uL

xdL

c̄dL

D ,S xuR

c̄uR

xdR

c̄dR

D ,S juR

h̄uR

D , ~5.19!

where (xuL
,xdL

) will be identified as the SMSU(2)L quark

doublet andcuR
and cdR

as the SM right handed quarks

(cuL
,cdL

) andxuR
andxdR

are their partners needed to for
complete 5D spinors and they will get KK masses of order
the compactification scale. Finally (juR

,h̄uR
) is a localized

4D Dirac spinor that will couple tocuR
on the SU(2)L

3U(1)Y brane aty50. We will thus again assume that i
the absence of the brane localized mass terms and mix
the fieldsxuL

,xdL
,cuR

andcdR
would have zero modes. Th

4D brane localized terms aty50 are:

Sy505E d4x~2 i j̄uR
s̄m]mjuR

2 ihuR
sm]mh̄uR

1 f ~huR
juR

1h̄uR
j̄uR

!1ML1/2~juR
cuR

1 j̄uR
c̄uR

!!,

~5.20!

while at y5L, we just had an SU(2)D invariant Dirac mass
term mixing the left and the right quarks:

Sy5L5E d4xMDL~~xuL
cuR

1xuR
cuL

1H.c.!

1~xdL
cdR

1xdR
cdL

1H.c.!!. ~5.21!

Since we have not included any mixing term aty50 for the
down-type quarks their spectrum will just be of the sam
form as for the electrons above, determined by the equa

tan~mnL !5MDL. ~5.22!

The boundary conditions for the up-type quarks are sim
to those obtained in Appendix:

cuLu0150, ~5.23!

xuRu0152ML1/2juR
, ~5.24!

~]m]m1 f 2!xuRu012M2Lism]mc̄uR u0150, ~5.25!

cuLuL252MDLcuRuL2, xuRuL25MDLxuLuL2.
~5.26!

The KK decomposition will be of the usual form~3.1! and
leads to the following quantization equation similar to t
neutrino’s mass equation:

2
mn

22 f 2

M2Lmn

~sin2mnL2MD
2 L2cos2mnL !

5~11MD
2 L2!sin 2mnL, ~5.27!
2-7
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CSÁKI et al. PHYSICAL REVIEW D 70, 015012 ~2004!
which again, forf MDL!Af 21M2 andMDL!1, has a so-
lution approximated by

m0;
MDf

Af 21M2
. ~5.28!

If M! f , we can suppress the brane Dirac mass usin
see-saw type mechanism, or ifM; f we can get a mass jus
slightly modified compared to the brane Dirac mass. We
use this freedom to generate both the masses of the light
two generations as well as the masses of the massive
generation. We will discuss this much more in the contex
the more realistic warped model in the coming section.

VI. FERMIONS IN WARPED SPACE

A. Bulk equations of motion

We now extend the discussion of the previous section
truncated warped spacetime, which as usual we take to
slice of AdS5 @8#. The conformally flat metric correspondin
to this situation is given by

ds25S R

z D 2

~hmndxmdxn2dz2!. ~6.1!

The boundaries of the spacetime are atR;1/M Pl and R8
;1 TeV21. Fermions in such a space have been conside
in @14,15,17–19#. Here we first briefly review the generi
features of the fermion wave functions in this space, and t
repeat our analysis for the acceptable boundary condit
for this situation.

The fermion action in a curved background is generica
given by

S5E d5xAgS i

2
~C̄ea

MgaDMC2DMC̄ea
MgaC!2mC̄C D ,

~6.2!

whereea
M is the generalization of the vierbein to higher d

mensions~‘‘fü nfbein’’! satisfying

ea
Mhabeb

N5gMN, ~6.3!

the ga’s are the usual Dirac matrices, andDM is the covari-
ant derivative including the spin connection term. Note ag
that the differential operators have not been integrated
parts in order to avoid the introduction of any bounda
terms that would otherwise be needed to make the ac
real.

For the AdS5 metric in the conformal coordinates writte
above, eM

a 5(R/z)dM
a , and DmC5(]m1gmg5 /(4z))C,

D5C5]5C, however the spin connection terms involved
the two covariant derivatives of Eq.~6.2! cancel each othe
and thus do not contribute in total to the action. Finally,
terms of two component spinors, the action is given by
01501
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S5E d5xS R

z D 4S 2 i x̄s̄m]mx2 icsm]mc̄

1
1

2
~c]5
Jx2x̄]5

J c̄ !1
c

z
~cx1x̄c̄ ! D , ~6.4!

wherec is the bulk Dirac mass in units of the AdS curvatu
1/R, and again]5

J5]5
W2]5

Q with the convention that the dif-
ferential operators act only on the spinors and not on
metric factors.

The bulk equations of motion derived from this action a

2 i s̄m]mx2]5c̄1
c12

z
c̄50, ~6.5!

2 ism]mc̄1]5x1
c22

z
x50. ~6.6!

The KK decomposition takes its usual form~the case of a
Majorana KK decomposition will be discussed in detail
Sec. VI B 2!

x5(
n

gn~z!xn~x! and c̄5(
n

f n~z!c̄n~x!, ~6.7!

where the 4D spinorsxn and c̄n satisfy the usual 4D Dirac
equation with massmn :

2 i s̄m]mxn1mnc̄n50 and 2 ism]mc̄n1mnxn50.
~6.8!

The bulk equations then become ordinary~coupled! differen-
tial equations of first order for the wave functionsf n andgn :

f n81mngn2
c12

z
f n50, ~6.9!

gn82mnf n1
c22

z
gn50. ~6.10!

For a zero mode, if the boundary conditions were to all
its presence, these bulk equations are already decoupled
are thus easy to solve, leading to:

f 05C0S z

RD c12

, ~6.11!

g05A0S z

RD 22c

, ~6.12!

whereA0 and C0 are two normalization constants of ma
dimension 1/2.

For the massive modes, the first order differential eq
tions can be uncoupled and we obtain the two second o
differential equations:

f n92
4

z
f n81S mn

22
c22c26

z2 D f n50, ~6.13!
2-8
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gn92
4

z
gn81S mn

22
c21c26

z2 D gn50,

~6.14!

whose solutions are linear combinations of Bessel functio

gn~z!5z5/2~AnJc11/2~mnz!1BnYc11/2~mnz!! ~6.15!

f n~z!5z5/2~CnJc21/2~mnz!1DnYc21/2~mnz!!.
~6.16!

The bulk equations of motion~6.9!, ~6.10! further impose
that

An5Cn and Bn5Dn . ~6.17!

B. Boundary conditions

To find the consistent boundary conditions, we need
again consider the boundary terms in the variation of
action:

dSbound5
1

2E d4xFR4

z4
~dxc2dcx2dc̄x̄1dx̄c̄ !G

R

R8

,

~6.18!

which agrees with the expression for flat space up to
irrelevant factor ofR4/z4. Thus the boundary conditions tha
make the boundary variation of the action vanish will gene
cally be of the same form as for the flat space case, tha
those given in Eqs.~2.8!–~2.11!. If the fermions are in rea
representations of the gauge groupMa

b is allowed to be non-
vanishing, but if they are in complex representationsMa

b has
to be zero.

1. Boundary conditions in absence of extra boundary operator

As an example let us consider the simplest case, when
make the conventional choice of imposing Dirichlet BC’s
both ends:

c uR150 and c uR8250. ~6.19!

These BC’s allow for a chiral zero mode in thex sector
while the profile forc has to be vanishing, so we find for a
arbitrary value of the bulk massc that the zero modes ar
given by:

f 050 and g05A0S z

RD 22c

. ~6.20!

The main impactc has on the zero mode is where it is loca
ized, close to the Planck brane~aroundz5R) or the TeV
brane~aroundz5R8). This can be seen by considering th
normalization of the fermion wave functions. To obtain
canonically normalized 4D kinetic term for the zero mod
one needs

E
R

R8
dzS R

z D 5 z

R
A0

2S z

RD 422c

51
01501
s:

o
e

e

-
is

e

,

i.e.

A05
A122c

RcAR8122c2R122c

, ~6.21!

where the first factor in the integral comes from the volum
Ag, thez/R factor from the vierbein and the rest is the wa
function itself~squared!. To figure out where this zero mod
is localized in a covariant way, we can send either brane
infinity and see whether the zero mode remains norma
able. For instance, sending the TeV brane to infinity,R8
→`, the integral~6.21! converges only forc.1/2, in which
case the zero mode is localized near the Planck brane. C
versely, forc,1/2, when the Planck brane is sent to infinit
R→0, the integral~6.21! remains convergent and the ze
mode is thus localized near the TeV brane. In the AdS-C
language@12# this corresponds to the fact that forc.1/2 the
fermions will be elementary~since they are localized on th
Planck brane!, while for c,1/2 they are to be considered a
composite bound states of the CFT modes~since they are
peaked on the TeV brane!.

This result can also be seen easily when using the pro
distance coordinate along the extra dimension. In this c
the AdS5 metric is written as (k51/R is the AdS curvature!:

ds25e22kyhmndxmdxn2dy2. ~6.22!

And the actual normalized wave functions~including the
volume and vierbein factors! are

e2(2c21)k(y2yPl) for c.1/2 ~and yTeV→`!,
~6.23!

e2(122c)k(yTeV2y) for c,1/2 ~and yPl→2`!.
~6.24!

Finally, let us point out that if we were to impose Dirich
let BC’s on both ends of the interval forx, we would have
found a zero mode in thec sector. And this zero mode woul
have been localized on the Planck brane forc,21/2 and
localized on the TeV brane forc.21/2.

2. Boundary conditions with a brane Majorana mass term

To familiarize ourselves more with the BC’s in warpe
space, we will repeat the flat-case analysis of Sec. IV B
consider the case when a Majorana mass is added on
Planck brane for thex field ~which would otherwise have a
zero mode!.3 Based on our discussions we expect that
boundary condition on the Planck brane would be modifi
to

~cosac2sinax! uR150 ~6.25!

where sina50 corresponds to the case with no Majora
mass, while cosa50 to the case with a very large Majoran

3While this paper was in preparation@20# appeared, which also
presents a detailed treatment of a Planck-brane localized Majo
mass term.
2-9
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mass. To identify the actual relation between the Majora
mass anda we again consider adding the Majorana mass
z5R1e, read off the BC’s from the bulk equations, an
then sende→01. In this case the bulk equation of motio
will be modified to

2 i s̄m]mx2]5c̄1
c12

z
c̄1

M* R2

z
x̄d~z2R2e!50,

~6.26!

whereM is the Majorana mass added. There will be a d
continuity in the profile forc, it is given by the jump equa
tion

@c# uR1e5MRx uR1e , ~6.27!

from which, usingc uR50, we can read off the relevan
boundary condition

c uR15MRx uR1, ~6.28!

which is indeed of the form~6.25!.
The KK decomposition is of the form

x5(
n

gn~z!jn~x! and c̄5(
n

f n~z!j̄n~x!,

~6.29!

where the 4D spinorsjn satisfy the usual 4D Majorana equ
tion with massmn :

2 i s̄m]mjn1mnj̄n50 and 2 ism]mj̄n1mn* jn50.
~6.30!

Instead of the expansion in the Bessel and Neumann fu
tions, it turns out that it is more convenient to expand
terms ofJn andJ2n . These functions are linearly indepe
dent as long asn is not an integer, that is ifcÞ1/21 integer.
We will then treat thec51/2 as a special case later. Th
reason why it is more convenient to use these function
that the expansion for small arguments, needed for an
proximate solution for the lowest modes, will be much si
pler if we use this basis. Thus the wave functionsf n andgn
will be of the form

gn~z!5z5/2~AnJc11/2~ umnuz!1BnJ2c21/2~ umnuz!!,
~6.31!

f n~z!5z5/2~CnJc21/2~ umnuz!1DnJ2c11/2~ umnuz!!,
~6.32!

and the bulk equations further require that

mnAn5umnuCn and mnBn52umnuDn . ~6.33!

The two boundary conditions

c uR15MRx uR1 and c uR8250 ~6.34!

then lead to the equation determining the eigenvaluesmn :
01501
a
t

-

c-

is
p-
-

Jc21/2J̃2c11/22J2c11/2J̃c21/2

56MR~Jc11/2J̃2c11/21J2c21/2J̃c21/2!,

~6.35!

where Jn5Jn(umnuR) and J̃n5Jn(umnuR8). This equation
can be approximately solved for the lowest eigenmode~as-
suming thatm0R8!1) by expanding the Bessel functions fo
small arguments as

Jn~x!;S x

2D n 1

G~n11!
. ~6.36!

We find that forc.1/2 the lowest eigenmode is approx
mately given by

m0;~2c21!M , ~6.37!

while for c,1/2 it is

m0;~122c!M S R

R8
D 122c

. ~6.38!

The c51/2 case has to be treated separately, since in
case the expansion has to be in terms of the Bessel
Neumann functions. The equation that the eigenvalues h
to solve will be given by

J0Ỹ02Y0J̃056MR~J1Ỹ02Y1J̃0!. ~6.39!

For the lightest mode we find

m0;
M

log
R8

R

. ~6.40!

The interpretation of these expressions is quite clear. W
c.1/2, we expect the resulting mass to be proportiona
the mass added on the Planck brane, since the fields th
selves are localized near the Planck brane. Forc,1/2 the
zero mode is localized near the TeV brane, so adding a m
on the Planck brane has only a small effect due to the w
function suppression. For thec51/2 case the wave function
is flat, and one expects the usual volume suppression a
flat backgrounds; that is one expects a suppression by
proper distance between the branes. The expressions a
are in clear correspondence with these expectations.

VII. FERMION MASSES IN THE HIGGSLESS MODEL
OF ELECTROWEAK SYMMETRY BREAKING

IN WARPED SPACE

We are now finally ready to consider the SU(2L
3SU(2)R3U(1)B2L model in warped space, where ele
troweak symmetry breaking is achieved by boundary con
tions ~rather than by a Higgs boson on the TeV brane!. As
discussed in@6#, this model has a custodial SU~2! symmetry
that protects ther parameter from large corrections, and th
to leading log order the structure of the standard model in
gauge sector is reproduced. However, an obvious linge
2-10
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question is whether realistic values of the fermion m
could be obtained in this model. This model could be co
sidered the AdS dual of walking technicolor@25#, and it is
well known that in technicolor theories it is difficult to natu
rally obtain a realistic fermion spectrum. Here we will sho
that in the extra dimensional model there is enough freed
in the parameter space of the theory to be able to incorpo
the observed fermion masses.

A. Quark sector

The left handed leptons and quarks will be in SU(2L
doublets, while the right handed ones in SU(2)R doublets,
exactly as in Eqs.~5.1!, ~5.2! and ~5.19!. Thus we will have
two SU~2! doublet Dirac fermions for the leptons and tw
separately for the quarks in the bulk for every generati
xL,R ,c̄L,R . Each Dirac fermion has a bulk masscL,R and a
Dirac massMD on the TeV brane that mixes the two bu
fermions. In addition we assume that there is a Dirac ferm
localized on the Planck brane that mixes withcR . This will
again be necessary to be able to sufficiently split the ma
of the up and down type fermions.

We again assume that the fieldscL,R and xL,R are such
that in the absence of brane localized masses or mixings
fieldsxL andcR would have zero modes, that is the BC’s
the absence of the brane terms are as in Eq.~5.3!

cLuR,R85xRuR,R850. ~7.1!

Since we would like the zero modes~at least for the light
fermions! to be localized near the Planck brane~in order to
recover the SM relations for the gauge couplings!, we need
to pick the bulk mass termscL.1/2 and cR,21/2. The
reversal of the inequality forcR is due to the fact that for the
right handed doublets we want thec fields to have zero
modes, and for these types of zero modes the localiza
properties as a function ofc are modified, withc,21/2
localized near the Planck brane whilec.21/2 near the TeV
brane.

The bulk part of the fermion action will be as in Eq.~6.2!,
and the bulk equations of motion are as in Eqs.~6.5!, ~6.6!.
To find the appropriate boundary conditions, we need to c
sider the brane localized mass and mixing terms. The mix
term on the Planck brane will be of the form

SPl5E d4x~2 i j̄ s̄m]mj2 ihsm]mh̄1 f ~hj1 j̄ h̄ !

1MAR~cRj1 j̄ c̄R!! uz5R , ~7.2!

wherej andh are brane localized fermions, which togeth
form a Dirac fermion with a Dirac massf on the brane. On
the Planck brane only SU(2)L3U(1)Y is unbroken, and this
extra Dirac fermion is assumed to be an SU(2)L singlet car-
rying the U(1)Y quantum numbers of the right handed S
fermion fields, such that the mixing with mixing massM in
Eq. ~7.2! is allowed. This is the analog of they50 term in
the Lagrangian in the flat space case discussed in Sec
and V. Since the warp factor on the Planck brane is one,
boundary conditions following from this brane localized L
grangian will exactly match that in flat space:
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~]m]m1 f 2!xRuR15M2Rism]mcRuR1, ~7.3!

cLuR150. ~7.4!

For modes withmn
2! f 2 the BC~7.3! can be approximated by

xRuR1
n

5mn

M2R

f 2
c RuR1

n , ~7.5!

wheremn is the nth mass eigenvalue.
The mass term on the TeV brane will be given by

STeV5E d4xS R

z D 4

MDR8~cRxL

1x̄Lc̄R1cLxR1x̄Rc̄L! uz5R8 . ~7.6!

Note, that in order to have a natural Lagrangian the para
eterMDR8 should be of order one, thusMD should be of the
order of TeV. From this mass term the boundary conditio
on the TeV brane will be analogous to the flat space c
discussed in Secs. IV and V:

cLuR8252MDR8cRuR82 ~7.7!

xRuR825MDR8xLuR82. ~7.8!

For the mode decomposition the bulk wavefunction solutio
we take for the general case 1/21cL,RÞ integer:

xL,R
n 5z5/2~AL,R

n J1/21cL,R~mnz!1BL,R
n J21/22cL,R

~mnz!!,

c L,R
n 5z5/2~AL,R

n J21/21cL,R
~mnz!2BL,R

n J1/22cL,R
~mnz!!,

~7.9!

where mn is the 4D mass of the given mode that one
considering. For a mode withmnR8!1 we can expand the
Bessel functions for small arguments, and since the coe
cientsAL,R ,BL,R depend on the eigenvaluemn , some overall
powers ofmn can be absorbed into these constants to m
the expansion more transparent~from here on we will sup-
press the indexn), keeping the terms at most quadratic
mn , we get:

xL,R
n 5z2S ÃL,RmnzcL,R11

2cL,R11
1B̃L,Rz2cL,RS 12

m2z2

224cL,R
D D ,

c L,R
n 5z2S ÃL,RzcL,RS 12

m2z2

214cL,R
D2

B̃L,Rmnz12cL,R

122cL,R
D .

~7.10!

Imposing the above boundary conditions we find that
lightest eigenmode is approximately given by4 ~assuming
againcL.1/2,cR,21/2)

4In the following formulas we only keep the terms which can
leading inR8/R for chosen values of bulk masses. Among the
maining terms we separately keep only the leading contributi
proportional toM2 and f 2 terms becauseM / f is a free parameter
which may be large.
2-11
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m0;
A~2cL21!~22cR21! f MD

Af 21~22cR21!M2 S R

R8
D cL2cR21

.

~7.11!

The approximationcL.1/2, cR,21/2 should be sufficien
for the light quarks, but for the top quark we need the wa
it
SM
,
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lit
e
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01501
e

functions to have a larger overlap on the TeV brane. The
fore we need to consider the casecL,1/2, cR.21/2 so that
the top quark is localized near the TeV brane rather than n
the Planck brane, which will make it possible to get a su
ciently large top quark mass. Using similar methods as
fore we find that in this case (cL,1/2, cR.21/2) the ap-
proximate lowest mass eigenvalue is
m0
2;

MD
2 ~122cL!~112cR!

11MD
2 R82~12cL1cR!1S R

R8
D 2cR11

M2

f 2
~112cR!S 11

~122cL!MD
2 R82

122cR
D . ~7.12!

For completeness we also briefly discuss the special cases whencL51/2 and/orcR51/2. With cL51/2, cR.21/2 we find
that the lightest eigenmode is given by

m0
2;

2~112cR! f 2MD
2 R8112cR

log
R8

R
~R8112cRf 2~21~112cR!MD

2 R82!12R112cR~~112cR!M22 f 2!!

. ~7.13!
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The complementary casecR521/2 andcL.1/2 gives

m0
2;

~2cL21! f 2MD
2

f 2log
R8

R
1M2

S R

R8
D 2cL21

, ~7.14!

while for the doubly special casecL52cR51/2:

m0
2;

f 2MD
2

log
R8

R S f 2log
R8

R
1M2D . ~7.15!

Let us now use these expressions to demonstrate that
possible to obtain a realistic mass spectrum for all the
fermions. We will use Eq.~7.11! for the first two generations
while for the third generation quarks we use Eq.~7.12!. We
have also numerically solved the bulk equations with
appropriate boundary conditions, and found that Eqs.~7.11!,
~7.12! are generically good approximations for the lowe
eigenvalues, up to the ten percent level. For the results
sented below we have used the numerical solutions to
eigenvalue equations rather than the approximate form
~7.11!, ~7.12!. We also use the numerical solution to find t
lightest KK excitations in each case. We will not attempt
explain all the observed CKM matrix elements in this pap
though we see no reason why it should be hard to obtain
right values. In order to correctly reproduce@6# the masses o
the W and theZ, throughout the fits we will use the value
R510219 GeV21, R85231023 GeV21. The parameter
MD should be of the order of the TeV scale, while the sp
ting between the up and down-type fermions will be obtain
by choosing an appropriate value for the ratioM / f , that is
the ratio of the mixing with the brane fermions to the dia
is

e

t
e-
e

as

r,
e

-
d

-

onal mass of the brane fermions. A reasonable quark m
spectrum can be obtained using the following parameter

~i! For the first generation takecL52cR5.6, MD

550 GeV andM / f 53.8 for the up sector andM / f 50 for
the down sector. Thenmu'3 MeV, md'6 MeV and the
first KK excitations appear at 1.2 TeV then 1.3 TeV~both for
up and down!.

~ii ! For the second generation takecL52cR5.52, MD

5112 GeV andM / f 550 for the strange sector. Thenms

'110 MeV, mc'1.3 GeV and the first KK excitations ap
pear at 1.1 TeV then 1.3 TeV~both for s and c!.

~iii ! For the third generation we need localize both the l
handed and the right handed zero modes near the TeV b
in order to be able to get a large enough top quark mass.
numerical example iscL50.4,cR521/3, MD5900 GeV, f
52.531010 GeV andM51015 GeV for the bottom sector
and M50 for the top sector. For these parameters we
mtop'175 GeV andmb'4.5 GeV. The first KK excitations
of the bottom quark appear at the relatively low value
;550 GeV, while for the top quark at;700 GeV. This
would imply that the third generation~since it would be lo-
calized near the TeV brane! would be very different from the
first two, and interesting effects in flavor physics could
observable. For a recent analysis of examples of the co
quences for a composite third generation see@26#.

The above numbers are only given for the purpose
demonstrating the viability of obtaining a realistic set
quark masses. However, there are several free param
that one can vary for obtaining the correct masses:cL ,cR and
MD , while the ratioM / f is mostly set by the amount o
splitting within a multiplet. Here we have only assumed t
simplest possibility when one of the two fermions within
generation have a mixing with the brane localized fermio
2-12
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FIG. 1. ~a! Contour plot of the value ofMD needed to obtainmc51.2 GeV for varying values ofcL andcR . The regions starting with
the darkest moving toward the lighter ones correspond toMD50.1,0.3,0.6,1,1.5,2,2.5,3,3.5,4,4.5 TeV.~b! Contour plot of the value of the
lightest KK mass for the second generation quarks assuming thatMD is chosen such thatmc51.2 GeV, for varying values ofcL andcR .
The regions starting with the darkest moving toward the lighter ones correspond toMKK50.1,0.3,0.5,0.7,0.9,1.1 TeV.
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Clearly, there is a much richer spectrum of possibilities
such mixings which we will however not deal with here. T
illustrate some of the available free parameters, we have
ied thec’s andMD around the solution for the second ge
eration, while keeping the c and s quark masses fixed.
resulting relation betweencL ,cR andMD is displayed in Fig.
1~a!. In Fig. 1~b! we show the dependence of the mass of
lightest KK mode on the parameterscL andcR . Note, that a
characteristic feature of all of these solutions is that the m
of the lightest KK mode decreases with increasingMD . This
is due to the fact that for largeMD the KK mass is sensitive
to the value of thec’s but notMD itself. This can be simply
seen by taking the largeMD limit, where the resonance mas
is just set by the scale 1/R8.

Since the amount of interesting new flavor physics in
third generation crucially depends on the deviation ofcL

from 1/2, we have examined how smallcL21/2 could be.
For this we have generated calculated the acceptable va
of cL ,cR and MD that would give us the correct top qua
mass, which is shown in Fig. 2. One can see that the sma
possible value for 1/22cL is ;0.03.

It is also interesting to note that since the mixing w
very heavy fermions on the Planck brane is essenti
equivalent to introducing brane kinetic terms, we can ea
implement the Hiller-Schmaltz mechanism for solving t
strongCP problem@27#. If all intergeneration mixing arises
on the Planck brane by mixing with the heavy Planck bra
fermions, then the net effect for the light fermions is that
the mixing appears in kinetic terms; then all complex pha
can be rotated into the CKM matrix without introducin
strongCP violation @27#.
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B. Lepton sector

One has a variety of options for generating the lep
masses. The nicest possibility would be to have an e
dimensional implementation of the usual neutrino see-s
mechanism which takes advantage of the fact that the r
handed neutrino is a singlet under all the SM gauge grou
This implies that on the Planck brane one can simply ad

FIG. 2. Contour plot of the value ofMD needed to obtain
mtop5175 GeV for varying values ofcL andcR . The regions start-
ing with the darkest moving toward the lighter ones correspond
MD51,1.5,2, . . . ,6,6.5 TeV.
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FIG. 3. ~a! Contour plot of the value ofMR needed to obtainmm5100 MeV andmnm
5231023 eV for varying values ofMD andM / f .

The regions starting with the darkest moving toward the lighter ones correspond toMR54,6,8,10,13,16,19,2231014 GeV. ~b! Contour plot
of the mass of the first KK excitation of the muon neutrino, keeping fixedmm5100 MeV andmnm

5231023 eV and varyingMD andM / f .
The regions starting with the darkest moving toward the lighter ones correspond tomnm

KK5300,400,500,600,700 GeV.
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brane localized mass term to the right handed neutrino@since
SU~2! R is broken there#. Using similar methods as before w
find that the neutrino mass is given by

mn5~2cL21!
MD

2

MR
S R

R8
D 2(cL2cR21)

, ~7.16!

whereMR is the Majorana mass of the right handed neutr
on the Planck brane. In absence of any brane localized
mions, the charged lepton masses are given by Eq.~7.11!
with M50 then we find the relation between the neutri
and the charged lepton mass to be

mn i
5

1

22cR21

ml
i
2

2

MR
, ~7.17!

where theml
i
2 are the masses of the charged leptons. N

that this is almost completely analogous to the usual see-
formula, with the only difference being that the large sc
directly suppresses the charged lepton mass squares, an
a mass of order 100 GeV as is usually assumed. That is
difference is in the appearance of the charged lepton Yuk
coupling. Using this mechanism one could get realistic l
ton masses using for example the following parameters:

~i! For the first generation takecL52cR5.65, MD
5130 GeV andMR51010 GeV. Thenme'500 keV, mne

'1027 eV.
~ii ! For the second generation takecL52cR5.58, MD

5250 GeV andMR5331010 GeV. Thenmm'100 MeV,
mnm

'231023 eV.

~iii ! For the third generation takecL52cR5.53, MD
5240 GeV andMR51012 GeV. Thenmt'1.7 GeV, mnt

'431022 eV.
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Instead of the appearance of the intermediate scaleMR

;1011 GeV for the Majorana mass of the right-handed ne
trino ~which is somewhat lower than usually assumed!, one
can insist on the real see-saw formula. A real see-saw me
nism can actually be achieved if the suppression of
charged lepton masses compared toMD is the consequence
not only of a warp factor suppression but also of an ad
tional mixing with Planck-brane localized fermions as in t
general case~7.11!. The neutrino masses would still be give
by Eq. ~7.16!, with a scaleMR different from the scaleM in
Eq. ~7.11!. This way one could choose anMD of order .1 to
2 TeV for all three generations, and the scaleMR needed for
the neutrino masses would be closer to the usually assu
values of order 1015 to 1016 GeV. A possible choice of pa
rameters could be for example:

~i! For the first generation takecL52cR5.55, MD

5100 GeV, M / f 51500 for the suppression of the electro
mass tome'500 keV, andMR51016 GeV for the suppres-
sion of the electron neutrino mass tomne

;1028 eV,

~ii ! For the second generation takecL52cR5.52, MD
51000 GeV, M / f 5500 for the suppression of the muo
mass tomm'100 MeV, andMR51015 GeV for the suppres-
sion of the muon neutrino mass tomnm

'231023 eV,

~iii ! For the third generation takecL52cR5.51, MD
52000 GeV,M / f 5100 for the suppression of the tau ma
to mt'1.7 GeV, andMR5631014 GeV for the suppression
of the muon neutrino mass tomnt

'331022 eV.
On Fig. 3~a! we have plotted the values of the see-s

scale, MR , needed to reproducemm5100 MeV andmnm

5231023 eV, while varying the other free parameters,MD
andM / f ~we have further imposed thatcL52cR). On Fig.
3~b!, we have also computed the mass of the first KK ex
tation of the muon neutrinos. Its mass decreases asMD in-
2-14
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creases and we note that it is also almost independent o
value ofM / f needed to fit the muon as long as we keep
mass of the muon neutrino fixed.

Another possibility that we will not explore here, due
its relative complexity, is that the charged lepton and n
trino come from two different SU(2)R doublets as in Ref.
@11#.

VIII. CONCLUSIONS

We have considered theories with fermions on an ex
dimensional interval. We derived the consistent BC’s fro
the variational principle and explained how to associate
various BC’s to different physical situations. We have a
plied our results to Higgsless models of electroweak sym
try breaking, and showed that realistic fermion mass spe
can be generated without the presence of a Higgs fields
in flat and in warped space.
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APPENDIX A: SPINOR AND GAMMA MATRIX
CONVENTIONS

For completeness, we give in this appendix the conv
tion about spinors and Dirac matrices used throughout
paper. We have mainly followed the conventions of Wess
Bagger@21#.

We are working with a mostly ‘‘2 ’’ space-time signature
(12222), and we have chosen the chiral representat
of the Dirac gamma matrices:

Gm5S 0 sm

s̄m 0 D ,

m50,1,2,3 andG55S i12 0

0 2 i12
D ~A1!

wheresm and s̄m are the usual Pauli matrices

s05212 , s15S 0 1

1 0D ,
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s25S 0 2 i

i 0 D , s35S 1 0

0 21D , ~A2!

s̄05212 , s̄15S 0 1

1 0D , s̄25S 0 2 i

i 0 D ,

s̄35S 1 0

0 21D . ~A3!

A famous relation about the Pauli matrices is

sms̄n1sns̄m52hmn and s̄msn1s̄nsm52hmn.
~A4!

A 5D Dirac spinor is written in terms of a pair of two
component spinors

C5S xa

c̄ȧD . ~A5!

The dotted and undotted indices of a two component sp
are raised and lowered with the 232 antisymmetric tensors
eab5 isab

2 and eȧḃ5 isȧḃ
2 and their inverseeab52 isab

2 ,

eȧḃ52 isȧḃ
2 :

xa5eabxb and c̄ ȧ5eȧḃc̄ ḃ. ~A6!

Note also the adjoint relation:

~x†!a5x̄ ȧ. ~A7!

Finally, xc andx̄c̄ denote the two Lorentz invariant scalar

xc5xaca and x̄c̄5x̄ ȧc̄ ȧ. ~A8!

These products are symmetric

xc5cx and x̄c̄5c̄x̄. ~A9!

APPENDIX B: EXAMPLES OF KK DECOMPOSITION
IN FLAT SPACE WITH THE SIMPLEST BC’S

We present in this appendix explicit examples of KK d
composition of fermions in flat space.

We begin by giving the full KK decomposition in the cas
of the simplest Dirichlet-Neumann BC’s: there area priori
four different cases to discuss, but the casex u05x uL50 is
similar toc u05c uL50 and the casex u05c uL50 is similar to
c u05x uL50. So let us mention the KK decompositions f
the latter cases only:

~i! when c u05c uL50: there is a zero mode forx only,
with an exponential wave function localized either on the
or L brane depending on the sign of bulk Dirac mass, as w
as a tower of massive modes mixed betweenx andc:

x5A0e2myj01 (
n51

`

AnS coskny2
m

kn
sinknyDxn ,

~B1!
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c52 (
n51

`
mn

kn
Ansinknycn , ~B2!

with KK massesmn solution of the quantization equation:

sinknL50, kn
25mn

22m2. ~B3!

~ii ! when c u05x uL50: there is no zero mode at all an
the tower of massive modes is given by

x5 (
n51

`

AnS coskny2
m

kn
sinknyDxn , ~B4!

c52 (
n51

`
mn

kn
Ansinknycn , ~B5!

with KK massesmn now solution of the equation:

kn5m tanknL, kn
25mn

22m2. ~B6!

Let us now discuss the KK decomposition when we i
pose BC’s of the form~2.12!:

s0,Lc u0,L1c0,Lx u0,L50 ~B7!

wheres0,L (c0,L) stand for the sine~cosine! of some~possi-
bly complex! angles,a0,L , that determine which linear com
bination of the fields on the two boundaries are vanishi
The first thing to notice is that these BC’s can be impos
only when the 5D fermion belongs to a real representation
the gauge group. In this case, the KK modes will be
Majorana fermions and the KK decomposition will be of t
form

x5(
n

gn~y!jn~x!, ~B8!

c̄5(
n

f n~y!j̄n~x!, ~B9!

with the spinorsjn(x) satisfying the Majorana equation:

2 i s̄m]mjn1mnj̄n50, ~B10!

2 ism]mj̄n1mn* jn50. ~B11!

The wave functions are of the form~3.9!, ~3.10! with mn
being now replaced byumnu. In general there is no zero mod
except if there exists a tuning between the anglesa0,L and
the bulk massm:

sin~a02aL!2sin~a01aL!tanhmL50. ~B12!

For the massive KK modes, as before, the bulk equati
give An and Bn in terms of Cn and Dn and the boundary
equations reduce to two complex equations for two comp
unknowns. The masses are thus obtained as the roots o
by 4 determinant. After some algebra we obtain the qua
zation equation:
01501
-

.
d
f

s

x
a 4
i-

~ us0sLu21uc0cLu2!umn
2usin2knL2us0cLu2~m sinknL

2kncosknL !22uc0sLu2~m sinknL1kncosknL !2

1~c0s0* sLcL* 1s0c0* cLsL* !kn
250. ~B13!

When all the boundary angles are real, the above equa
factorizes into the two simpler equations:

6mncos~a02aL!sinknL2knsin~a02aL!cosknL

1m sin~a01aL!sinknL50. ~B14!

In particular, we recover the results~B3!–~B6! for the par-
ticular anglesa0 ,aL50,p/2.

APPENDIX C: BOUNDARY CONDITIONS
IN THE PRESENCE OF VARIOUS LOCALIZED

MASS-MIXING-KINETIC TERMS

In this appendix, we would like to extend the discussi
of Sec. IV, and present the BC’s in the presence of vari
localized operators on the boundaries. Of particular inte
are localized terms for fermions in complex representatio
Majorana masses for such theories are forbidden, howe
localized kinetic terms are not, neither are localized Dir
masses. We will also discuss examples where bulk fermi
are mixing with fermions that are localized at the boundari

We will be following the steps outlined at the beginnin
of Sec. IV: we first add the localized terms aty5e to the
bulk equations of motion in order to efficiently deal with th
discontinuities in the wave functions. At the real bounda
y50 we impose as always the simplest BC’s

]5x u050, c u050, ]5x uL50, c uL50. ~C1!

We then takee→0 and identify the relevant BC’s aty
501 andy5L2.

1. Adding localized kinetic terms

We add an extra boundary kinetic interaction localized
y5e.0 to one of the two two-component spinors throu
the 4D boundary action

S4D52E d4xikx̄s̄m]mx uy5e . ~C2!

The equations of motion are modified to

2 i s̄m]mx~11kd~y2e!!2]5c̄1mc̄50, ~C3!

2 ism]mc̄1]5x1mx50. ~C4!

Integrating the first equation over the delta function give
jump condition forc which then implies a jump in the de
rivative of x:

@c̄# ue52 iks̄m]mx̄ ue and @]5x# ue5 ism]m@c̄# ue .
~C5!
2-16



-

n

e

s

t

io
s

in
ia

m

bl

nd

he

n-
ost

n to
nd-
s

w
mall

the

the

FERMIONS ON AN INTERVAL: QUARK AND LEPTON . . . PHYSICAL REVIEW D70, 015012 ~2004!
Using the values~C1! of the fields on the boundary, we fi
nally obtain the BC’s we were after

c̄ u0152 iks̄m]mx̄ u01 and ]5x u015 ism]mc̄ u01.
~C6!

This is exactly a boundary condition of the form (c

2 icsm]mx̄) u0150 obtained from the variational principle i
Eq. ~2.11!, where the parameterc being identified as the
coefficient of the boundary localized kinetic term.

2. Adding a Dirac mixing of bulk fermions on the boundary

We consider two bulk fermions that are mixed togeth
through a Dirac mass on the boundary

S4D5E d4xMDL~c2x11x̄1c̄21c1x21x̄2c̄1! u0 .

~C7!

We further need to specify the values of the fields aty50
andy5L. We are assuming that as usual

]5x1u0,L50, c1u0,L50, ]5c2u0,L50, x2u0,L50, ~C8!

in such a way that whenMD→0 there are two zero mode
corresponding tox1 andc2.

In the present case, there is an ambiguity when we wan
push the interaction mass at a distancee away from the
boundary. Indeed if we were to push the whole express
~C7!, we will end up with discontinuity in the wave function
of both c1 and c2 and x1 and x2, which then requires a
regularization of the products likec2d(y2e), for instance
by an averaging ofc2 over its limits from both sides. In this
case, using the values~C8! of the fields aty50, we get the
following BC’s at y501

c1u015
MDL

11
1

4
MD

2 L2

c2u01, ~C9!

x2u0152
MDL

11
1

4
MD

2 L2

x1u01. ~C10!

Another regularization would consist for instance
smoothing the delta function by a square potent
MD /aQ(y)Q(a2y), and then take the limita→0. In this
case, we would arrive at slightly modified BC’s of the for

c1u0152 tanhMDL/2c2u01, ~C11!

x2u01522 tanhMDL/2x1u01. ~C12!

Another possibility will be to impose the values~C8! on
the boundary before pushing ite away from the brane. In
that case, the bulk equations of motion will be compati
with continuous wave functions forc2 and x1 and would
01501
r

to

n

l,

e

require discontinuities inc1 andx2 only. No further regular-
ization of the delta function would then be necessary. A
the BC’s would simply read

c1u015MDLc2u01, ~C13!

x2u0152MDLx1u01. ~C14!

We note that whichever way we go, the BC’s are all t
same in the limit of smallMDL. And, in the flat case, the
lowest eigenmode is a Dirac fermion with massMD . More
importantly, the form of the boundary condition is indepe
dent of the regularization of the delta function, and at m
the interpretation of the physical meaning ofMD might de-
pend on it.

3. Mixing with brane fermions

We now analyze a more general case where, in additio
the bulk fermions, there are localized spinors on the bou
aries which mix with bulk fermions through Dirac mas
terms. The addition of a Dirac mixing mass on they5L
brane leads to a 4D action given by

S4D5E d4x~2 i j̄ s̄m]mj2 ihsm]mh̄1ML1/2~hx1x̄h̄ !

1 f ~hj1 j̄ h̄ !! uy5L , ~C15!

whereM and f have mass dimension 1.
To find the corresponding boundary conditions, we follo

our by now usual procedure and push the interactions a s
distancee away from the boundary aty5L, and solve the
resulting equations of motion which are given by

2 i s̄m]mx2]5c̄1mc̄1ML1/2h̄d~y2L1e!50, ~C16!

2 ism]mc̄1]5x1mx50,
~C17!

2 ism]mh̄1ML1/2x1 f j50,
~C18!

2 i s̄m]mj1 f h50.
~C19!

Integrating the first equation over the delta function gives
jump for c:

@c̄# uL2e5ML1/2h̄, ~C20!

which, using the defined value~C1! of c at y5L implies the
following BC at y5L2

c̄ uL252ML1/2h̄. ~C21!

Then the last two equations can then be combined in
following way:

~]m]m1 f 2!h̄52 iML 1/2s̄m]mx uL . ~C22!

Taking the limite→0, we finally arrive at the BC’s:
2-17
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c̄ uL252ML1/2h̄, ~C23!

~]m]m1 f 2!c̄ uL25 iM 2Ls̄m]mx uL2. ~C24!

We notice that interactions~C15! lead to a generalization
of the boundary condition obtained by adding a brane loc
ized kinetic term. Indeed, in the limit whenf andM tend to
infinity with a fixed ratio, the boundary condition~C24! re-
duces precisely to Eq.~C6!. This is expected since in th
limit of large massf of the brane fermions they must b
integrated out. This leaves one massless fermion, which
linear combination ofj andx, and its kinetic term contains
a delta-function contribution, originating from the localize
kinetic term forj, which is proportional toM2/ f 2. When we
constructed a realistic pattern for the quark and lep
masses in Sec. VII, we explicitly introduced brane localiz
fermions but it should be kept in mind that a similar spe
trum can be obtained just by introducing on the Planck br
localized kinetic terms for the bulk fermions.
g,

.
,
.

u-

s.

tt.

ch

v.

h

g

01501
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e

When the bulk fermion appears to be neutral with resp
to the residual gauge symmetry on the boundary, it c
couple to a Majorana fermion on the brane. So let us see
the previous BC’s are modified in that case. The 4D bou
ary localized action is

S4D5E d4(2 ihsm]mh̄1ML1/2~hx1x̄h̄ !

1 1
2 f ~hh1h̄h̄ ! uy5L ~C25!

whereM and f have again a mass dimension 1.
The same procedure of pushing the interactione away

from the boundary and taking the limite→0 leads to a jump
in c and a jump in]5x and the BC’s finally read:

c̄ uL252ML1/2h̄, ~C26!

]5x uL25~2M2Lx1 f c! uL2.
~C27!
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