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Two particle states in an asymmetric box and the elastic scattering phases
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The exact two-particle energy eigenstates in a generic asymmetric rectangular box with periodic boundary
conditions in all three directions are studied. Their relations with the elastic scattering phases of the two
particles in the continuum are obtained for b@h and D, symmetries. These results can be viewed as a
generalization of the corresponding formulas in a cubic box obtained lsghen before. In particular, the
s-wave scattering length is related to the energy shift in the finite box. Possible applications of these formulas
are also discussed.
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[. INTRODUCTION the following. In a cubic box, the three-momenta of a single
particle are quantized according to=(2m/L)n=(2/L)

Scattering experiments serve as a major experimental took(n,,n,,ns), with ne Z3.1 In order to control lattice arti-
in the study of interactions among particles. In these experifacts due to these nonzero momentum modes, one needs to
ments, scattering cross sections are measured. By a partiddave large values df. One disadvantage of the cubic box is
wave analysis, one obtains the experimental results othat the energy of a free particle with lowest nonzero mo-
particle-particle scattering in terms of scattering phase shiftsnentum is degenerate. This means that the second lowest-
in a channel of definite quantum numbers. In the case oénergy level of the particle with nonvanishing momentum
strong interactions, experimental results on hadron-hadrooorresponds tan=(1,1,0). If one would like to measure
scattering phase shifts are available in the literafdre5].  these states on the lattice, even larger values siiould be
On the theoretical side, quantum chromodynant@€D) is  used. One way to remedy this is to use a three-dimensional
believed to be the underlying theory of strong interactionshox whose shape is not cubic. If we usgemericrectangular
However, as a result of its nonperturbative nature, low-box of size @p;L)X(7,L)XL with 7, and 5, other than
energy hadron-hadron scattering should be studied with anity, we would have three different low-lying one-particle
nonperturbative method. Lattice QCD provides a genuinenergies with nonzero momenta corresponding rio
nonperturbative method which can tackle these problems is-(1,0,0), (0,1,0), and (0,0,1), respectively. This scenario is
principle, using numerical simulations. In a typical lattice useful in practice since it presents more available low-
calculation, energy eigenvalues of two-particle states wittmomentum modes for a given lattice size, which is important
definite symmetry can be obtained by measuring appropriaté the study of hadron-hadron scattering phase shifts. In a
correlation functions. Therefore, it would be desirable to retecent analysis of nucleon-nucleon scattering on lattices, the
late these energy eigenvalues which are available throughuthors of Ref[20] also suggest the use of asymmetric vol-
lattice calculations to the scattering phases which are obume lattices. A similar situation also occurs in the studyof
tained in the scattering experiment. This was accomplishetb 7 matrix elementgsee Ref[21] for a review and ref-
in a series of papers by saher{6—9] for a cubic box topol-  erences therejnThere, one also needs to study two-particle
ogy. In these references, especially 8, Luscher found a  states with nonvanishing relative three-momentum. Again, a
nonperturbative relation of the energy of a two-particle statecubic box yields too few available low-lying nonvanishing
in a cubic box(a torug with the corresponding elastic scat- momenta and a large value bofis needed to reach the physi-
tering phases of the two particles in the continuum. Thiscal interesting kinematic region. In all of these cases, one
formula, now known as Lscher’s formula, has been utilized could try an asymmetric rectangular box with only one side
in a number of applications—e.g., the linear sigma model irbeing large while the other sides moderate. One only has to
the broken phasgl0] and also in quenched QC[11-18.  choose the parametey, and 7, appropriately such that
As a result of limited numerical computational power, themore low-lying momentum modes can be measure on the
swave scattering length, which is related to the scatterindattice with controllable lattice artifacts.
phase shift at vanishing relative three-momentum, is mostly In an asymmetric rectangular box, the original formulas
studied in hadron scattering using a quenched approximatue to Lischer, which give the relation between the energy
tion. The CP-PACS Collaboration calculated the scatteringigenvalues of the two-particle states in the finite box and the
phases at nonzero momenta in pion-pgenave scattering in - continuum scattering phases, have to be modified accord-
the =2 channel17] using quenched Wilson fermions and ingly. The purpose of this paper is to derive the equivalents
recently also in two-flavor full QCI)19]. of Luscher’s formulas in the case of a generic rectangular

In typical lattice QCD calculations, if one would like to
probe for physical information concerning two-particle states————
with nonzero relative three-momentum, large lattices have to e use the notatiof® to stand for the set of three-dimensional
be used, which usually requires an enormous amount dftegers. That ispe 78 means thah=(n;,n,,n3) with n;, n,, and
computing resources. One of the reasons for this difficulty i integers.
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(not necessarily cubjcbox. Some results in this paper are supg,_, ., ,,r* *1y(r) <o for some integen, we cally(r) a

also summarized in Ref22]. singular periodic solution to the Helmholtz equation of de-
We consider two-particle states in a box of sizg,l() greeA.

X (m,L) XL with periodic boundary conditions in all three ~ The momentum modes in the rectangular box are quan-

directions. For de_flnlteness, we takg=1,7,=1, \_/vh|ch tized ask=(2m/L)T. For everyn=(n;,n,,ns) € 73, we in-

amounts to denoting the length of the smallest side of thg.yq,ce the notation

rectangular box ad.. The following derivation depends

heavily on the previous results obtained in H&fl. We will ~ A

take over similar assumptions as in R&. In particular, the N=(N1/71.N2/72,n3), N=(N171,72M2.05). ()

relation between the energy eigenvalues and the scatterin ) , ) . .
phases derived in the nonrelativistic quantum mechanica hen discussing the singular periodic solutions to the Helm-

model can be carried over to the case of relativistic, massiv8©!tz €quation, one should differentiate two cases: regular

field theory under these assumptions, the same way as in tiv@lues ofk, which means thatk|# (2#/L)[n| for any n

case of cubic box which was discussed in detail in R&f. €73, and singular values ok, which means thafk|

For the quantum mechanical model, we assume that the (27/L)|n| for somene 7. For our purposes, it suffices to

range of the interaction, denoted B/ of the two-particle  study the regular values &f In this case, the singular peri-

system is such tha&@<<L/2. odic solutions of Helmholtz equation can be obtained from
The modifications which have to be implemented, asthe Green'’s function

compared with Ref(8], are mainly concerned with different

symmetries of the box. In a cubic box, the representations of elpr
the rotational group are decomposed into irreducible repre- G(r;k?)= 3 T o 3
sentations of the cubic group. In a generic asymmetric box, 71772 P p -k

the symmetry of the system is reduced. In the caseyof

=,#1, the basic group becomd,; if 7,# 7,#1, the where the summation ov@rruns over all possible momenta

symmetry is further reduced @,, modulo parity operation. in the rectangular boxp=(2/L)n. One can easily check

Therefore, the final expression relating the energy eigenvakhat the functionG(r;k?) is a singular periodic solution of

ues of the system and the scattering phases will be differentne Helmholtz equation with degree 1. More singular peri-
This paper is organized as follows. In Sec. Il, we discussdic solutions can be obtained as follows. We define

the singular periodic solutions to the Helmholtz equation.

The energy eigenstates of the two-particle system can be Vim(D=1"Y m(Q)), (4)

expanded in terms of these solutions. In Sec. lll, we discuss

in detail the symmetry of an asymmetric box. Two cases argvhere(), represents the solid angle parametets#) of r in

studied: ;= 7, in which case the basic symmetry group is spherical coordinates,,, are the usual spherical harmonic

D, and n;# n, in which case the symmetry group 3,.  functions. It is well known thaf),(r) consist of all linear

The irreducible representations of the rotational group ar¢hdependent, homogeneous functions xy(z) of degreel

decomposed into irreducible representations of these poiRhat transform irreducibly under the rotational group. We
groups. Energy eigenvalues in th* sector are related t0 then define

the scattering phases for the two cases, respectively. In Sec.

IV, we discuss the low-momentum and large-volume limit of Gim(r:k?) =Vim(V)G(r:k?). (5)

the general formulas obtained in Sec. Ill. A simplified for-

mula is obtained for the scattering length and numerical valpne can show that the functiofs,,(r;k?) form a complete,
ues for the coefficients of this expansion are listed. Finally, ininear independent set of functions of singular periodic solu-
Sec. V, we conclude with some general remarks. Some d§jons of the Helmholtz equation with degreéThat is to say,
tails of the calculation are provided in the Appendixes forany singular periodic solution of the Helmholtz equation

reference. with degreeA is given by
A
Il. ENERGY EIGENSTATES AND SINGULAR PERIODIC P(r)= 2 2 U|mG|m(r,k2), (6)
SOLUTIONS OF THE HELMHOLTZ EQUATION [=0 m=-1

Our notation close follows that used in RE8|. The en- with complex coefficientsy;,,. The functionsG(r:k2)

ergy elgenst_ate.s In a Per'Od'C box is intimately re"’?‘te‘?' to th(?nay be expanded into usual spherical harmonics with the
singular periodic solutions of the Helmholtz equation:

result
(V24+Kk2) ¢(r)=0. (1) (—)'K*1
v Gim(r;k?) = =5 ——| Yim(Q0)ni(kn)
If the function (r) is a solution to the Helmholtz equation
for r#0 and it is periodic ¢(r+nL)=y(r) satisfies + 2 Mg Y (Q0)j (kD) [ (D)

I'm’
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Here,j, andn, are the usual spherical Bessel functions andM in vector spaceH, . The scattering phases of the two
the matrix M.,y is related to themodifiedzeta function particles are related to the coefficierigk) and g,(k) via

via
i (k) +i (k)
. o= —— —_° 12
s I B (L ) (K= 15(K) 12
Im;js™— 7
I'm’ gl Therefore, nontrivial solution to Eq11) requires that
(1 i . .

><J(2|+1)(2|'+1)(2j+1)k0 0 JO) defe’’~U]=0, U=(M+i)/(M=i). (13

This gives the general relation between the energy eigen-
value of a two-particle eigenstate in a finite box with the
' (8 corresponding scattering phases.

I |
X /
m m -—s

whereq=KkL/(2). In this formula, the Wigner Bsymbols . SYMMETRY OF AN ASYMMETRIC BOX
can be related to the Clebsch-Gordan coefficients in the usual i i i ,
way [23]. For a given angular momentum cutoff, the The general resulfl3) obtained in the previous section

can be further simplified when we consider irreducible rep-
resentations of the symmetry group of the box. We know that
energy eigenstates in a box can be characterized by their
transformation properties under the symmetry group of the
box. For this purpose, one has to decompose the representa-
~ tions of the rotational group with angular momentuirimto
Mm—(n). (9) irreducible representations of the corresponding symmetry
(F]Z—qz)S group of the box. For an asymmetric box, the relevant sym-
metry group is eitheD, if ny=n,#1 or D, if n1# n,
According to this definition, the summation at the right-hand 1. |n a given symmetry sector, denoted by its irreducible
side of Eq.(9) is formally divergent fois=1 and needs to be representatiod’, the representation of the rotational group
analytically continued. Following similar discussions as inwith angu|ar momentum is decomposed into irreducible
Ref. [8], one could obtain a finite exprESSion for the mOdiﬁEdrepresentations dD4 or D2_ This decomposition may con-
zeta function which is suitable for numerical evaluation. EX'tain the irreducib'e representatiﬁh We may p|Ck our basis
plicit formulas for Zi,(s,0% 71,7,) ats=1 ands=2 are  as|T",a;l,n). Herea runs from 1 to dim[), the dimension
derived in Appendix A. From the analytically continued for- of the irreducible representatidh. Labeln runs from 1 to
mula, it is obvious from the symmetry &, or D, that, for  the total number of occurrence Bfin the decomposition of
I<4, the only nonvanishing zeta functionssat 1 areZy,  rotational group representation with angular momentum

izo’ .1;5212_’ 343,134:”2, farrwld 2?314- Itdisf.a_ls'o easydt(? verifly The matrixM is diagonal with respect tB anda by Schur’s
that, It ,=7,=1, all of the above definitions and formulas |65 For convenience, we have listed these basis polyno-

reduce to the_ those obtalne_d n Rﬁﬂ' . I mials in terms of spherical harmoni@§,,(r) in Table I. In
In the region where the interaction is vanishing, the en-

. | thjs table, in order to make the notation more compact, we
ergy eigenstates of the twp-partlcle system can be EXPreSSEve used one single label—i.e., the label of the angular
in terms of ordinary spherical Bessel functions

momentum—to designate a basis vector. Different basis vec-
_ i tors with the same angular momentum are differentiated by
=b K)ji(kr)+ B, (k)n;(kr)], 10 . ; .

Yim(1) = binl an(k)j, (kr)+ Bi (k) (ko) ] (10 adding a dot, a circle, etc., either on top of or below the

for some constantb,,,. Also, this energy eigenfunction co- corresponding label. _
incides with a singular periodic solution of the Helmholtz ~ For the two-particle eigenstate in the symmetry seétor

equation in this region. Comparison of H40) with Eq.(7)  in @ box of particular Symme_tryeither_D4 or D,), the en-
then yields ergy eigenvalueE =k?/(2u) with u being the reduced mass

of the two patrticles, is determined by

quantity M., can be viewed as the matrix element of a

linear operatoM in a vector spacét, , which is spanned by
all harmonic polynomials of degrde= A. The modified zeta
function is formally defined by

Z|m(slq2; M1 7]2) = ;

A I el +1
(=) k s r - ~ ISR .
bman(k)= 2 X v 7 ——Mimim, defe?’—~0(I')]=0, O(I)=[M(I)+i/[M(T)-i].
I'=0m'=-1"
(14)
b (K)= (—)'kI+1 (12) Here|\7|(F) represents a linear operator in the vector space
B (K) = Vi 4o H(T'). This vector space is spanned by all complex vectors

whose components atg,, with <A, andn runs from 1 to
with 1=0,1, ... A. Note that this equation can be viewed asthe number of occurrence & in the decomposition of rep-
a linear equation in a vector spakf, , which is the space of resentation with angular momenturp8]. To write out more
all complex vectors whose components arg, with | explicit formulas, one therefore has to consider decomposi-
=0,1,...A and m=—1,...|. The matrix elements tions of the rotational group representations under appropri-
M m1m €an be viewed as the matrix element of an operatoate symmetries.
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TABLE I. Basis polynomials in terms of spherical harmonics for various irreducible representhtioins
the symmetry group®, andD, up to angular momenturi=4.

GroupD, GroupD,
| r Basis polynomials r Basis polynomials
0 A{ 0) A" 10y =Yoo
1 Ay 1) By 11)=Y10
E (12).11)) B Bs 11) =Vt i-1); [1)=(V11=V1-1)

2 A7 [2) A" [2)= Vs

E” (|§>,|?)) Bs: By [2)=(Vor+ Vo-1); 12)= (V1= V2-1)
By B; 12); |2) A" By 2)= (Yoot V2-2); 12)= (Vo= Va-2)
3 Ay 3) B: 13)=V30
E (EM?)) Bz Bs |~i):(y31+y3—1)? 13)=(Va1—V5-1)
Bz By 13); 13) By A” 13)=(Vart Vs-2); [3)=(Vs2— V3-2)
E (13).13)) BaiBs  [3)=(VastVsoa): 13)=(Vas—Va-0)
4 Al 4) AT |4)=Ya0
E* (14),14)) Bs:B; [4)=(VartVa-1); [4)=(Var=Va-1)
Bi; B |Z>7 |ﬂ> A"; B] |Z>:(y42+y4—2)? |‘_1>:(y42_y4—2)
E” (14).14)) B3 Bs 14y = (Vag+ Va-2); 14)=(Vaz— Va-3)
Al A |4); |4) ATBY ) =(Vat Vara)i |8)=(Vas—Ya_s)

We first consider the casg;= 7,. The basic symmetry est to investigate is the invariant sectdf . We therefore
group isD,, which has 4 one-dimension@freduciblg rep-  will focus on this particular symmetry sector. We see from
resentation®\;, A,, By, B, and a two-dimensional irreduc- Eq. (15) that, up tol<4, s waves,d waves, andy waves
ible representatiofit.> The representations of the rotational contribute to this sector. This correspondsfoarr linearly
group are decomposed according to independent, homogeneous polynomials with degrees not
more than 4, which are invariant undey. From Table | we

N
0=Ar, see that the four polynomials can be identified as the basis
1=A, +E", |0), |2), |4), and|4), respectively Therefore, we can write
out the four-dimensional reduced matriX(A;) whose ma-
2=A;+B;+B; +E", trix elements are denoted ad(A; ), =m, . =m;,,, wherel

andl’ takes values in 0, 2, 4, and fespectively. Using the
general formula8), it is straightforward to work out these
reduced matrix elements in terms of matrix elements
Mim:1'ms - These are given explicitly in Appendix B. We find
that, in the case db, symmetry, Eq(14) becomes

In most lattice calculations, the symmetry sector that is easi-

3=A, +B; +B, +E +E",

4=A7+A7+A; +B+B;+ET+E". (15)

CotSp— Moo Mgy Moy Mo
Mo Cot 5 — My, Moy 117y}
| =0 (16)
Myo Mgy Cotd,— My, My
Mo mz My coté,—my;

For the casey,# 7,, the symmetry group becom&s, which has only 4 one-dimensional irreducible representatforiz, ,
B,, andB5. The decompositiolil5) is replaced by

2The notations of the irreducible representations of grddpsnd D, that we adopt here are taken from Rgf4], Chap. XII.
30ur conventions for the spherical harmonics are taken from [IREF.
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0=A",
1=B; +B, +B;,
2=A"+A"+B; +B, +Bj,
3=A +B; +B; +B, +B, +B; +Bj,
4=A"+A"+A*+B]+B; +B, +B, +B; +B; . (17)

So, up tol <4, A" occurssixtimes: once il =0, twice inl =2 and three times ih=4. The corresponding basis polynomials
can be taken af0), |2), |2), |4), |4), and|4), respectively. The reduced matt(A*) is six dimensional with matrix
elementsM;;,=m;, . The explicit expressions for these matrix elements can by found in Appendix B. The relation between
the energy eigenvalue and the scattering phase is similar t61lEgexcept that the matrix becomes &6 matrix

£o— Moo Mo, Moz Mog Mog Moz
My Ex— My, mMy2 My 1y Ma3
Mo maz2 o~ My My Mz4 M | 0 19
Myo Mgz My7 Ea—Myy Mgy Myz
M0 M2 Mz M4 E4—Myy My
Mo Mz, mzz M4 Mz §4— My

where we have used the simplified notaté&(q) = cot§(q). In principle, if even higher angular momentum is desired, similar
formulas can be derived.

IV. LOW-MOMENTUM EXPANSION 212 71 70)
AND THE SCATTERING LENGTH Cot 5 (K) = Mpg= 28— 2 712 772)

) (22
T 3/2771 720

Usually, scattering phases with higher angular momentum
are much smaller than phases with lower angular momen-

tum. This is particularly true in low-momentum scattering. It fqy the general case, Eq0) and (21) offer the desired
is well kk?own tt?akE for Sl'rl?a” relative momentuknthe scat- e jation between the energy eigenvalues inAffesector and
tering phases behave like the scattering phases for the casgs= », and n,# 7,, re-
spectively. It is easy to verify that, in both Eq20) and(21),
a2+l Ve ) . .
tand;(k)~ak™ "+, (19 contributions that appear in the right-hand side of the equa-
. i tions are smaller by a factor of compared withmg, on the
for small k. Therefore, we anticipate that in the low- |eft.hand side. They are negligible as long as the relative
momentum limit, scattering phases with smialill domi-  omentumq is small enough. Therefore, in both cases, the

nate the scattering process. If we treat tthevave and ¢\ aye scattering length, will be determined by the zero
g-wave scattering phases as small perturbations, we find thal o mentum limit of Eq(22).

for the D, symmetry, Eq(16) can be simplified to It is also possible to work out the corrections due to
5 higher scattering phases to thevave scattering phase. For
ma, ma, Moz example, we have
cot 50_ m00: .
COtd,—Mpy  COLO,— My cotd,—mygy
20
@0 (@)= () + o @)tans,(a) + ou(@)tandy(q),
For the symmetnD,, similar to Eq.(20), Eq. (18) reads 23
m3, még ma, where the angleb(q) is defined via—tan¢(q) =1/mgy(q).

COt & — Moo= The functionso,(q) and o4(q) represent the sensitivity of

cotd,—m cots,—ms5 Cotds—m
2 2 e Lo higher scattering phases. Fbr, and D, symmetries, they

2. 2 are given by
m m
+ 04 S (21)
cotd,— Nz  cotd,— My,
_ _ ma,/(1+m2y), for groupDy,
If the d-wave andg-wave phase shifts were small enough, it o,(q)= ’ 2 ) 24)
is easy to check that both EqR0) and (21) simplify to (Moo +my2)/ (1+mgg),  for groupDs,
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2.0-2.0(Entire)
3 15
25
2 10
o FIG. 1. The functionsr,(g?) ando,(g?) as a
215 4 function ofg? are plotted for botD, symmetries
1 5 with parametersy,= 7,=2.
0.5
0 /\/\l\ 0
1 2 3 4 5 1 2 3 4 5
o o
(mS4+ ng)/(lergo), for groupD, in the pIQt are simply the same func_tion as in the_ upper
o4(q)= ) ) panels with the scale of the vertical axis being magnified, in
(M4t mez+mez)/(1+miy), for groupD,. order to show the detailed variation of the functions.
(25) We remark here that, in principle, the corrections due to

scattering phases with highkcan be estimated from lattice

The functionso,(q?) ando,(g?) can be calculated using the calculations as well. From Table | it is seen that, for lattices
matrix elements given in Appendix B. In Figs. 1 and 2, thesewith D, symmetry, by inspecting energy eigenstates with
functions are plotted versug for the case oD, symmetry E*, By, or B; symmetry on the lattice, one can get an
(71,=n,=2) and for the case oD, with ;=2.0, 7, estimate for thal-wave scattering phas® which dominates
=1.5, respectively. It is seen that the functiongq®) and  these symmetry sectors. Similarly, for lattices with sym-
o4(g?) remain finite for allg?>0. For some particular val- metry, the eigenstates witB; , B, , or By symmetry
ues ofg?, however, these functions can become quite largeshould be studied. It is also interesting to note that for lat-
in magnitude. This is due to almost coincidence of singularitices withD, symmetry, if we study the eigenstates wib

ties of the numerator and denominator in matrix elementsymmetry, then the leading contribution comes frgiwave
mo; which happens for some choices @f and 7,. For  scattering phasé,.

values ofg? away from these values, the functional values of ~We now come to the discussion of scattering length. For a
o, ando, remain moderate. In Fig. 2, the lower two panelslarge box, a large. expansion of the formulas can be de-

2.0-1.5(Entire)
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2 * 100
40
50 ‘ ‘
20t l
0 V\M _L_/\ i l__/\ 0 A P 3
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ando,(q°) as a function of}~ are
2.0-1.5(Part) plotted for bothD, symmetries
10 15 : with parametersy; =2, 7,=1.5.
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6
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4 F
5
TV
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q q2
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TABLE Il. Numerical values for the subtracted zeta functions and the coefficieyts,,n,) and
c»(71,7m,) under some typical topology. The three-dimensional rectangular box has &;size,L, L,

= 7]2'., andL3: L.
Ll:LZ:L3 71 72 200(1,0;7]1,7/2) 200(2,0;7]1,7/2) C1(771v772) 02(7711772)
1:1:1 1 1 —8.913633 16.532316 —2.837297 6.375183
6:5:4 15 1.25 —12.964476 41.526870 —2.200918 3.647224
4:3:2 2 15 —16.015122 91.235227 —1.699257 1.860357
3:2:2 15 1 —10.974332 32.259457 —2.328826 3.970732
2:1:1 2 1 —11.346631 63.015304 —1.805872 1.664979
3:3:2 15 15 —14.430365 53.784051 —2.041479 3.091200
2:2:1 2 2 —18.430516 137.771800 —1.466654 1.278623
duced. Using E¢(22) and following similar derivations as in V. CONCLUSIONS

Ref. [8], we find that thesswave scattering length, is re-

lated to the energy difference in a generic rectangular box vi% In this paper, we have studied two-particle scattering

tates in a generic rectangular box with periodic boundary
conditions. The relations of the energy eigenvalues and the
scattering phases in the continuum are found. These formulas
can be viewed as a generalization of the well-knowrs-Lu
cher’s formulas. In particular, we show that thevave scat-

(26)  tering length is related to the energy shift by a simple for-
mula, which is a direct generalization of the corresponding

Here, u designates the reduced mass of the two particleéormula in the case of cubic box. We argued that this asym-
whose mass values ang, andm,, respectively. The energy Metric topology might be useful in practice since it provides
shift SE=E—m,—m, whereE is the energy eigenvalue of more available low-lying momentum modes in a finite box,

the two-particle state. The functiong,(7;,7%,) and which will be advantageous in the study of scattering phase
C.( 71, 7,) are given by shifts at nonzero three-momenta in hadron-hadron scattering

and possibly also in other applications.
200(110;771 ’ 772)
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where the subtracted zeta function is defined as APPENDIX A
A In this Appendix, some explicit formulas for the modified
Zoo(S,0% 11, m2) = — (28)  zeta function defined in Eq9) will be given. For conve-
[nZ#q? (N°—q°) nience of analytic continuation, one first defines the heat ker-

In Table Il, we have listed numerical values for the coeffi- ne

cientscy(7,7,) andcy(74,72) under some typical topol- 1 ~
ogy. In the first column of the table, we tabulated the ratio for K(t,x)= 2 > el
the three sides of the boxy;: 7,:1. Note that fory;= 7, "
=1, these two functions reduce to the old numerical values T R
for the cubic box which had been used in earlier scattering =" e WM (x—2mn)2. (A1)
length calculations. (4mt)¥2 %

It can be shown that contaminations from higher-angular-
momentum scattering phases come in at even higher powe
of 1/L. For low relative momenta, thed-wave scattering
phase behaves like ta#)(q) ~a,k>=a,(27/L)°q°, with a, _ _ _ *z e
being thed-wave scattering length. If we treat the effects duedimensional integers < Z° and the notatiom andn is de-
to tanb‘z perturbative|y' we see from Eq@O) and(21) that' fined as in Eq(Z) It is evident that Ehe heat kemE](t,X) JS
in Eq. (26), the functions; andc, receive contributions that periodic in x with period 2mn—i.e., K(t,x+2n)
are proportional tod,/L°), which is of higher order in I/  =X(t,x). Given a positive numbeA >0, we define the
for largelL. truncated heat kerndl *(t,x) as

ere the first equality is the definition of the heat kernel
(t,x) while the second follows from Poisson'’s identity. The
summations which appear in this formula run over all three-
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TABLE lll. Reduced matrix elementdA,.(T") for the symmetry groud, for irreducible representations; , A, , andE~. Here we
have adopted the basis defined in Table I. For all representations, only the nonvanishing matrix elementsdugreolisted. The columns
labeled agl) and|l") indicate the basis vectors in which the matrix eleméy, (T') is calculated for each given representation.

r I ") My (T)
A7 0 0 Wao
2 0 ~Wao
2.5
2 2 Woot —Waot $Wio
4 0 Wao
4 ) i _2o£W _ 15/65
7 20 77 40 143 60
20 J" 20V13 490\17
4 4 Woot Wzo + 1ogi Wao+ 143 Weot 5431
4 0 L Waet W)
72 44t Wa—y
. 2J10 15
4 2 S Wiagt Wiy g) ————= (Wt W
11 (WagtWa—s) 11\/%( 54t We—4)
. 27\2 6110 21./1870
4 4 143 73 Wast 4—4)_—11\/E(W64+W6—4) 2862 —ar5 (Waat We_4)
. . 4\/— 4 7 215
4 4 Woo— —7 Waot W, Weot+ Waot Weg+ Wa_
00— 20t 123Wa0— NE 60 143)17 80 4862( sst Ws_g)
P 1 1 2
Woot —=Wao
V5
3 1 3[W 4
NN
3 3 Wt —=Waot EWaot —2
00 3\/5 20" 117V40 33\/1—3
= 1 1 1W \/—(W +Ws )
= 20+ 22 2-2
: f o
3 3 Woot W +EW, 25 W
S 00 NG 20T 77 Wao 11713 60
2 Jl— 5\/—
F——=WotW,_5)F Wit W, Weot+ We_2)
\/1—5( 22 2-2 ( 42 4— 2 \/—9( 62 6—-2
~ ~ 32 ﬁ @
3 1 — = Woot =Waor =Wt W o) =—= (W42+W4 2)
~ e 2 27
3 3 W—EW F 2 W —— —— Wes+ Ws—s)
: : 00~ 3 W0t 11 Wao ng 3003 et We-s
. ~ 1 1
3 1 \/—(sz Wy o)+ \/—(W42 Wy o) * T(W44+W4 4)
: 3 2 36 57
3 3 Woot+ W. + Waot W, Weot+ W,
: S ( 20t Wa ) 2( st Wa_2)— 33\/—3( 52t Wes—2)
J— 5135
52 S5 Waat Wy a)+ 1\/—(W64 We—4)

014505-8
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TABLE IV. Reduced matrix elements/,,(I') for the symmetry grou, for irreducible representatiors™, By , B, , andA; .

I ")

M ()

e 3 3

4 2

Iﬂ(Vsz‘*‘ Wy o)t ——Fr

[N
[N}

N

[N

+—
1113

Woot

-

Woot

27

15
iH WagtWaa) =

WOO_

V30

7 W4o+ (W22+ Wh o) ¥—=—

52, 10J€
wt 11¢"§
915

154

5 10
TWZO (W42+ Wa_2)

@SJ’

20T

V5 270
11y13

392

- w,
143/17 °

(Wapt Wa-2)

(Wat Wy 5) £

(Wt Ws_2)

1[

243
Wzo+ 1001 Wa0o—

1
11\/EW60
8110
1001
21J126
143J_7
515
227
10V3
1113
81 17
o~ 143Waot 11\/1—3W60
143
JE__'

53

\/—(sz TWs o) F
/105
113
\/_

= Wert W o) ¥ ——=(Wsot Ws_»)

2410
Wit Wy o)+ —=

1113

(WaotWs_5)— (Wea+We-2)

= Weat Wes_4)

V5

11

56

- W,
14317 °

(Wae+We—6)

Wa

\/Z—(Wee We—g) ¥ ==
3Y15
11414
3115

(Wagt Wo_p)+ (WaztWy-2)

143J"Z
125
14317

(Weot Ws_5) — (Wt Ws_5)

Wy a)* 3 (Wea+ W, )—'42J§ (Wit
— e — +
4-4 11\/% 64 6—4 13 /—187 84

5 4)

Nl
N

+
B1/2

EN
|4>|

[EN
IN]

Woot

25

) V5
Woo— TWZO"' 7Waot E(W44+ Wa-4)

8[

196

— W,
14317 °

4
(Weat W, (WaatWs_4)

A P o
13187

2
WeoT

V13
+_3JIZ
_11¢I'

27
27 Wa0~ 51 Wao~

o]
1]

Ban

4
(WeatWes—4)

5.1
+
1113

A;

N
ofs

4f

1 W s Wao—

7 21\5
14317 Mo g6z

00— (WegtWe-_g)

4
1113 Voot
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N 1 - drop the third integral. Since we are only concerned with
K (t,X):K(t-X)—W > €M™ (A2)  modified zeta functions a=1 or s=2, we will only give
Inj<A the expressions for these two cases. The final expression may

We may apply the operat¥i,(—iV,) to the heat kernels D€ written as

defined above. These are denoted as

’C|m(t,x):y|m(_iVX)’C(t,X),

Zim(8,9% 11, 72)
Vim(M) (s—l)ym(ﬁ)]eﬁz

2
K (1) = Vim( =1 KA (£,%). (A3) ; (nP—g?s (n?—g?s?t
Usin.g. heat kernels_ defined above, one could rewrite the N T2 55 4 777717725 s ldtts_S/z
modified zeta function as (25—3) 109mo™ T 2100%mo |
Vim(n) 2 Lo
Z|m(5,0|2;711,712)=~2 ~2m—25 x(etq _1)+7T771772f dtts 5/2
M=a (N°—09) 0
(277')3[OC s 1 tq? ( PN 2 2inr2
“Lel K (1,0). X —i—n|elde (70N A7
Ty ), T (10) 2 im| —i ¢ (A7)

(A4) Note that this expression is valid only fer=1 ors=2.

This expression is convergent as long as $Re{((l +3)/2.

Close tot=0, the functione‘qzlcﬁn(t,O) behaves like APPENDIX B

In this Appendix, we list the reduced matrix elements that

8,06 i i i i
(a2 A 109m0 771772 1 appeared in the formulas in the main text. We define
eld K:|m(t,0)"‘w+0(t ). (AS)
(4)<t
We may therefore analytically continue the zeta function by Zim(1.9% 71, 72)
Win(L8% 71, 72) = —5—— 71 (B1)
Zim(8,9% 71, 72) 71720
V(M 2m3( 800m0m172 Using this notation, we now proceed to list relevant reduced
= g2 T(s) > matrix elementsM,,,(I") for a given symmetry sectol.
<A (N°—Q7%) (4m)*(s—3/2) Here the label$ and|’ designates the basis vectors defined

in Table I. For the case db, symmetry, up to angular mo-

+J1dtt571 etqzmn(t,o)_% mentum| =4, the nonvanishing matrix elementst,, (I")
0 (4m)“t are listed in Tables Il and V.
For the case oD, symmetry, by comparing with Table I,
T ees— 1t g A one easily sees that the corresponding matrix elements are in
+ L dte"e IC,m(t,O)] ' (A6) fact the same as listed in Tables Il and IV. The only differ-

ence is that the name of the irreducible representations are

which is a valid expression as long as Bef 1/2. This com- changed. For example, the matrix elements listed uider
pletes the process of analytic continuation for the modifiedor D, symmetry are in fact corresponding matrix elements
zeta functions. Using the explicit expression fﬁq“m(t,O), for the representation8, andBj; for the D, symmetry, as

the integral from 0 to 1 in the above formula can be furthersuggested by Table I. Therefore, combining Tables I, Ill, and
simplified. After some manipulations, we find that the re-1V, we have all the reduced matrix elements for all irreduc-
sults, when combined with the finite summation, is converdble representations up le<4 for bothD, andD, symme-
gent for allA. Therefore, we can now serndto infinity and  tries.
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