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Two particle states in an asymmetric box and the elastic scattering phases

Xu Feng, Xin Li, and Chuan Liu
Department of Physics, Peking University, Beijing, 100871, China

~Received 1 April 2004; published 29 July 2004!

The exact two-particle energy eigenstates in a generic asymmetric rectangular box with periodic boundary
conditions in all three directions are studied. Their relations with the elastic scattering phases of the two
particles in the continuum are obtained for bothD4 and D2 symmetries. These results can be viewed as a
generalization of the corresponding formulas in a cubic box obtained by Lu¨scher before. In particular, the
s-wave scattering length is related to the energy shift in the finite box. Possible applications of these formulas
are also discussed.
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I. INTRODUCTION

Scattering experiments serve as a major experimental
in the study of interactions among particles. In these exp
ments, scattering cross sections are measured. By a pa
wave analysis, one obtains the experimental results
particle-particle scattering in terms of scattering phase sh
in a channel of definite quantum numbers. In the case
strong interactions, experimental results on hadron-had
scattering phase shifts are available in the literature@1–5#.
On the theoretical side, quantum chromodynamics~QCD! is
believed to be the underlying theory of strong interactio
However, as a result of its nonperturbative nature, lo
energy hadron-hadron scattering should be studied wit
nonperturbative method. Lattice QCD provides a genu
nonperturbative method which can tackle these problem
principle, using numerical simulations. In a typical latti
calculation, energy eigenvalues of two-particle states w
definite symmetry can be obtained by measuring appropr
correlation functions. Therefore, it would be desirable to
late these energy eigenvalues which are available thro
lattice calculations to the scattering phases which are
tained in the scattering experiment. This was accomplis
in a series of papers by Lu¨scher@6–9# for a cubic box topol-
ogy. In these references, especially Ref.@8#, Lüscher found a
nonperturbative relation of the energy of a two-particle st
in a cubic box~a torus! with the corresponding elastic sca
tering phases of the two particles in the continuum. T
formula, now known as Lu¨scher’s formula, has been utilize
in a number of applications—e.g., the linear sigma mode
the broken phase@10# and also in quenched QCD@11–18#.
As a result of limited numerical computational power, t
s-wave scattering length, which is related to the scatter
phase shift at vanishing relative three-momentum, is mo
studied in hadron scattering using a quenched approxi
tion. The CP-PACS Collaboration calculated the scatter
phases at nonzero momenta in pion-pions-wave scattering in
the I 52 channel@17# using quenched Wilson fermions an
recently also in two-flavor full QCD@19#.

In typical lattice QCD calculations, if one would like t
probe for physical information concerning two-particle sta
with nonzero relative three-momentum, large lattices hav
be used, which usually requires an enormous amoun
computing resources. One of the reasons for this difficult
0556-2821/2004/70~1!/014505~11!/$22.50 70 0145
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the following. In a cubic box, the three-momenta of a sing
particle are quantized according tok5(2p/L)n[(2p/L)
3(n1 ,n2 ,n3), with nPZ3.1 In order to control lattice arti-
facts due to these nonzero momentum modes, one nee
have large values ofL. One disadvantage of the cubic box
that the energy of a free particle with lowest nonzero m
mentum is degenerate. This means that the second low
energy level of the particle with nonvanishing momentu
corresponds ton5(1,1,0). If one would like to measure
these states on the lattice, even larger values ofL should be
used. One way to remedy this is to use a three-dimensio
box whose shape is not cubic. If we use agenericrectangular
box of size (h1L)3(h2L)3L with h1 and h2 other than
unity, we would have three different low-lying one-partic
energies with nonzero momenta corresponding ton
5(1,0,0), (0,1,0), and (0,0,1), respectively. This scenario
useful in practice since it presents more available lo
momentum modes for a given lattice size, which is import
in the study of hadron-hadron scattering phase shifts. I
recent analysis of nucleon-nucleon scattering on lattices,
authors of Ref.@20# also suggest the use of asymmetric vo
ume lattices. A similar situation also occurs in the study oK
to pp matrix elements~see Ref.@21# for a review and ref-
erences therein!. There, one also needs to study two-partic
states with nonvanishing relative three-momentum. Again
cubic box yields too few available low-lying nonvanishin
momenta and a large value ofL is needed to reach the phys
cal interesting kinematic region. In all of these cases, o
could try an asymmetric rectangular box with only one s
being large while the other sides moderate. One only ha
choose the parameterh1 and h2 appropriately such tha
more low-lying momentum modes can be measure on
lattice with controllable lattice artifacts.

In an asymmetric rectangular box, the original formul
due to Lüscher, which give the relation between the ene
eigenvalues of the two-particle states in the finite box and
continuum scattering phases, have to be modified acc
ingly. The purpose of this paper is to derive the equivale
of Lüscher’s formulas in the case of a generic rectangu

1We use the notationZ3 to stand for the set of three-dimension
integers. That is,nPZ3 means thatn5(n1 ,n2 ,n3) with n1 , n2, and
n3 integers.
©2004 The American Physical Society05-1
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~not necessarily cubic! box. Some results in this paper a
also summarized in Ref.@22#.

We consider two-particle states in a box of size (h1L)
3(h2L)3L with periodic boundary conditions in all thre
directions. For definiteness, we takeh1>1,h2>1, which
amounts to denoting the length of the smallest side of
rectangular box asL. The following derivation depend
heavily on the previous results obtained in Ref.@8#. We will
take over similar assumptions as in Ref.@8#. In particular, the
relation between the energy eigenvalues and the scatte
phases derived in the nonrelativistic quantum mechan
model can be carried over to the case of relativistic, mas
field theory under these assumptions, the same way as in
case of cubic box which was discussed in detail in Ref.@8#.
For the quantum mechanical model, we assume that
range of the interaction, denoted byR, of the two-particle
system is such thatR,L/2.

The modifications which have to be implemented,
compared with Ref.@8#, are mainly concerned with differen
symmetries of the box. In a cubic box, the representation
the rotational group are decomposed into irreducible rep
sentations of the cubic group. In a generic asymmetric b
the symmetry of the system is reduced. In the case ofh1
5h2Þ1, the basic group becomesD4; if h1Þh2Þ1, the
symmetry is further reduced toD2, modulo parity operation
Therefore, the final expression relating the energy eigen
ues of the system and the scattering phases will be differ

This paper is organized as follows. In Sec. II, we discu
the singular periodic solutions to the Helmholtz equatio
The energy eigenstates of the two-particle system can
expanded in terms of these solutions. In Sec. III, we disc
in detail the symmetry of an asymmetric box. Two cases
studied:h15h2 in which case the basic symmetry group
D4 and h1Þh2 in which case the symmetry group isD2.
The irreducible representations of the rotational group
decomposed into irreducible representations of these p
groups. Energy eigenvalues in theA1

1 sector are related to
the scattering phases for the two cases, respectively. In
IV, we discuss the low-momentum and large-volume limit
the general formulas obtained in Sec. III. A simplified fo
mula is obtained for the scattering length and numerical v
ues for the coefficients of this expansion are listed. Finally
Sec. V, we conclude with some general remarks. Some
tails of the calculation are provided in the Appendixes
reference.

II. ENERGY EIGENSTATES AND SINGULAR PERIODIC
SOLUTIONS OF THE HELMHOLTZ EQUATION

Our notation close follows that used in Ref.@8#. The en-
ergy eigenstates in a periodic box is intimately related to
singular periodic solutions of the Helmholtz equation:

~¹21k2!c~r !50. ~1!

If the functionc(r ) is a solution to the Helmholtz equatio
for rÞ0 and it is periodic c(r1n̂L)5c(r ) satisfies
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sup0,r ,L/2r
L11c(r ),` for some integerL, we callc(r ) a

singular periodic solution to the Helmholtz equation of d
greeL.

The momentum modes in the rectangular box are qu
tized ask5(2p/L)ñ. For everyn5(n1 ,n2 ,n3)PZ3, we in-
troduce the notation

ñ[~n1 /h1 ,n2 /h2 ,n3!, n̂[~n1h1 ,h2n2 ,n3!. ~2!

When discussing the singular periodic solutions to the He
holtz equation, one should differentiate two cases: regu
values of k, which means thatukuÞ(2p/L)uñu for any n
PZ3, and singular values ofk, which means thatuku
5(2p/L)uñu for somenPZ3. For our purposes, it suffices t
study the regular values ofk. In this case, the singular per
odic solutions of Helmholtz equation can be obtained fro
the Green’s function

G~r ;k2!5
1

h1h2L3 (
p

eip•r

p22k2
, ~3!

where the summation overp runs over all possible moment
in the rectangular box:p5(2p/L)ñ. One can easily check
that the functionG(r ;k2) is a singular periodic solution o
the Helmholtz equation with degree 1. More singular pe
odic solutions can be obtained as follows. We define

Ylm~r ![r lYlm~V r !, ~4!

whereV r represents the solid angle parameters (u,f) of r in
spherical coordinates;Ylm are the usual spherical harmon
functions. It is well known thatYlm(r ) consist of all linear
independent, homogeneous functions in (x,y,z) of degreel
that transform irreducibly under the rotational group. W
then define

Glm~r ;k2!5Ylm~¹!G~r ;k2!. ~5!

One can show that the functionsGlm(r ;k2) form a complete,
linear independent set of functions of singular periodic so
tions of the Helmholtz equation with degreel. That is to say,
any singular periodic solution of the Helmholtz equati
with degreeL is given by

c~r !5(
l 50

L

(
m52 l

l

v lmGlm~r ,k2!, ~6!

with complex coefficientsv lm . The functionsGlm(r ;k2)
may be expanded into usual spherical harmonics with
result

Glm~r ;k2!5
~2 ! lkl 11

4p FYlm~V r !nl~kr !

1 ( Mlm; l 8m8Yl 8m8~V r ! j l 8~kr !G . ~7!

l 8m8

5-2
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Here, j l andnl are the usual spherical Bessel functions a
the matrixMlm; l 8m8 is related to themodifiedzeta function
via

Mlm; js5 (
l 8m8

~2 !si j 2 lZl 8m8~1,q2;h1 ,h2!

h1h2p3/2ql 811

3A~2l 11!~2l 811!~2 j 11!S l l 8 j

0 0 0D
3S l l 8 j

m m8 2sD , ~8!

whereq5kL/(2p). In this formula, the Wigner 3j symbols
can be related to the Clebsch-Gordan coefficients in the u
way @23#. For a given angular momentum cutoffL, the
quantityMlm; l 8m8 can be viewed as the matrix element of
linear operatorM̂ in a vector spaceHL , which is spanned by
all harmonic polynomials of degreel<L. The modified zeta
function is formally defined by

Zlm~s,q2;h1 ,h2!5(
n

Ylm~ ñ!

~ ñ22q2!s
. ~9!

According to this definition, the summation at the right-ha
side of Eq.~9! is formally divergent fors51 and needs to be
analytically continued. Following similar discussions as
Ref. @8#, one could obtain a finite expression for the modifi
zeta function which is suitable for numerical evaluation. E
plicit formulas for Zlm(s,q2;h1 ,h2) at s51 and s52 are
derived in Appendix A. From the analytically continued fo
mula, it is obvious from the symmetry ofD4 or D2 that, for
l<4, the only nonvanishing zeta functions ats51 areZ00,
Z20, Z262 , Z40, Z462, andZ464. It is also easy to verify
that, if h15h251, all of the above definitions and formula
reduce to the those obtained in Ref.@8#.

In the region where the interaction is vanishing, the e
ergy eigenstates of the two-particle system can be expre
in terms of ordinary spherical Bessel functions

c lm~r !5blm@a l~k! j l~kr !1b l~k!nl~kr !#, ~10!

for some constantsblm . Also, this energy eigenfunction co
incides with a singular periodic solution of the Helmho
equation in this region. Comparison of Eq.~10! with Eq. ~7!
then yields

blma l~k!5 (
l 850

L

(
m852 l 8

l ’

v l 8m8

~2 ! l 8kl 811

4p
Ml 8m8; lm ,

blmb l~k!5v lm

~2 ! lkl 11

4p
, ~11!

with l 50,1, . . . ,L. Note that this equation can be viewed
a linear equation in a vector spaceHL , which is the space o
all complex vectors whose components arev lm with l
50,1, . . . ,L and m52 l , . . . ,l . The matrix elements
Ml 8m8; lm can be viewed as the matrix element of an opera
01450
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M in vector spaceHL . The scattering phases of the tw
particles are related to the coefficientsa l(k) andb l(k) via

e2id l (k)5
a l~k!1 ib l~k!

a l~k!2 ib l~k!
. ~12!

Therefore, nontrivial solution to Eq.~11! requires that

det@e2id2U#50, U5~M1 i !/~M2 i !. ~13!

This gives the general relation between the energy eig
value of a two-particle eigenstate in a finite box with t
corresponding scattering phases.

III. SYMMETRY OF AN ASYMMETRIC BOX

The general result~13! obtained in the previous sectio
can be further simplified when we consider irreducible re
resentations of the symmetry group of the box. We know t
energy eigenstates in a box can be characterized by
transformation properties under the symmetry group of
box. For this purpose, one has to decompose the repres
tions of the rotational group with angular momentuml into
irreducible representations of the corresponding symm
group of the box. For an asymmetric box, the relevant sy
metry group is eitherD4 if h15h2Þ1 or D2 if h1Þh2
Þ1. In a given symmetry sector, denoted by its irreduci
representationG, the representation of the rotational grou
with angular momentuml is decomposed into irreducibl
representations ofD4 or D2. This decomposition may con
tain the irreducible representationG. We may pick our basis
asuG,a; l ,n&. Herea runs from 1 to dim(G), the dimension
of the irreducible representationG. Label n runs from 1 to
the total number of occurrence ofG in the decomposition of
rotational group representation with angular momentuml.
The matrixM̂ is diagonal with respect toG anda by Schur’s
lemma. For convenience, we have listed these basis pol
mials in terms of spherical harmonicsYlm(r ) in Table I. In
this table, in order to make the notation more compact,
have used one single label—i.e., the label of the angu
momentum—to designate a basis vector. Different basis v
tors with the same angular momentum are differentiated
adding a dot, a circle, etc., either on top of or below t
corresponding label.

For the two-particle eigenstate in the symmetry sectoG
in a box of particular symmetry~either D4 or D2), the en-
ergy eigenvalue,E5k2/(2m) with m being the reduced mas
of the two particles, is determined by

det@e2id2Û~G!#50, Û~G!5@M̂ ~G!1 i #/@M̂ ~G!2 i #.
~14!

Here M̂ (G) represents a linear operator in the vector sp
HL(G). This vector space is spanned by all complex vect
whose components arev ln , with l<L, andn runs from 1 to
the number of occurrence ofG in the decomposition of rep
resentation with angular momentuml @8#. To write out more
explicit formulas, one therefore has to consider decomp
tions of the rotational group representations under appro
ate symmetries.
5-3
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TABLE I. Basis polynomials in terms of spherical harmonics for various irreducible representationsG of
the symmetry groupsD4 andD2 up to angular momentuml 54.

GroupD4 GroupD2

l G Basis polynomials G Basis polynomials

0 A1
1 u0& A1 u0&5Y00

1 A2
2 u1& B1

2 u1&5Y10

E2
(u1̃&,u1

>
&) B2

2 ; B3
2 u1̃&5(Y111Y121); u1

>
&5(Y112Y121)

2 A1
1 u2& A1 u2&5Y20

E1
(u2̃&,u2

>
&) B3

1 ; B2
1 u2̃&5(Y211Y221); u2

>
&5(Y212Y221)

B1
1 ; B2

1 u2̄&; u2& A1; B1
1 u2̄&5(Y221Y222); u2&5(Y222Y222)

3 A2
2 u3& B1

2 u3&5Y30

E2
(u3̃&,u3

>
&) B2

2 ; B3
2 u3̃&5(Y311Y321); u3

>
&5(Y312Y321)

B2
2 ; B1

2 u3̄&; u3& B1
2 ; A2 u3̄&5(Y321Y322); u3&5(Y322Y322)

E2
(u3̇&,u3½ &) B2

2 ; B3
2 u3̇&5(Y331Y323); u3½ &5(Y332Y323)

4 A1
1 u4& A1 u4&5Y40

E1
(u4̃&,u4

>
&) B3

1 ; B2
1 u4̃&5(Y411Y421); u4

>
&5(Y412Y421)

B1
1 ; B2

1 u4̄&; u4& A1; B1
1 u4̄&5(Y421Y422); u4&5(Y422Y422)

E1
(u4̇&,u4½ &) B3

1 ; B2
1 u4̇&5(Y431Y423); u4½ &5(Y432Y423)

A1
1 ; A2

1 u4̊&; u48& A1; B1
1 u4̊&5(Y441Y424); u48&5(Y442Y424)
-
al
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m

not

asis
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We first consider the caseh15h2. The basic symmetry
group isD4, which has 4 one-dimensional~irreducible! rep-
resentationsA1 , A2 , B1 , B2 and a two-dimensional irreduc
ible representationE.2 The representations of the rotation
group are decomposed according to

05A1
1 ,

15A2
21E2,

25A1
11B1

11B2
11E1,

35A2
21B1

21B2
21E21E2,

45A1
11A1

11A2
11B1

11B2
11E11E1. ~15!

In most lattice calculations, the symmetry sector that is e
01450
est to investigate is the invariant sectorA1
1 . We therefore

will focus on this particular symmetry sector. We see fro
Eq. ~15! that, up tol<4, s waves,d waves, andg waves
contribute to this sector. This corresponds tofour linearly
independent, homogeneous polynomials with degrees
more than 4, which are invariant underD4. From Table I we
see that the four polynomials can be identified as the b

u0&, u2&, u4&, andu4̊&, respectively.3 Therefore, we can write
out the four-dimensional reduced matrixM(A1

1) whose ma-
trix elements are denoted asM(A1

1) l l 85mll 85ml 8 l , wherel

and l 8 takes values in 0, 2, 4, and 4˚ , respectively. Using the
general formula~8!, it is straightforward to work out these
reduced matrix elements in terms of matrix eleme
Mlm; l 8m8 . These are given explicitly in Appendix B. We fin
that, in the case ofD4 symmetry, Eq.~14! becomes
Ucotd02m00 m02 m04 m04̊

m20 cotd22m22 m24 m24̊

m40 m42 cotd42m44 m44̊

m4̊0 m4̊2 m4̊4 cotd42m4̊4̊

U50. ~16!

For the caseh1Þh2, the symmetry group becomesD2 which has only 4 one-dimensional irreducible representationsA, B1 ,
B2, andB3. The decomposition~15! is replaced by

2The notations of the irreducible representations of groupsD4 andD2 that we adopt here are taken from Ref.@24#, Chap. XII.
3Our conventions for the spherical harmonics are taken from Ref.@25#.
5-4
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05A1,

15B1
21B2

21B3
2 ,

25A11A11B1
11B2

11B3
1 ,

35A21B1
21B1

21B2
21B2

21B3
21B3

2 ,

45A11A11A11B1
11B1

11B2
11B2

11B3
11B3

1 . ~17!

So, up tol<4, A1 occurssix times: once inl 50, twice in l 52 and three times inl 54. The corresponding basis polynomia
can be taken asu0&, u2&, u2̄&, u4&, u4̄&, and u4̊&, respectively. The reduced matrixM̂ (A1) is six dimensional with matrix
elementsMl l 85mll 8 . The explicit expressions for these matrix elements can by found in Appendix B. The relation be
the energy eigenvalue and the scattering phase is similar to Eq.~16! except that the matrix becomes a 636 matrix

Uj02m00 m02 m02̄ m04 m04̄ m04̊

m20 j22m22 m22̄ m24 m24̄ m24̊

m2̄0 m2̄2 j22m2̄2̄ m2̄4 m2̄4̄ m2̄4̊

m40 m42 m42̄ j42m44 m44̄ m44̊

m4̄0 m4̄2 m4̄2̄ m4̄4 j42m4̄4̄ m4̄4̊

m4̊0 m4̊2 m4̊2̄ m4̊4 m4̊4̄ j42m4̊4̊

U50, ~18!

where we have used the simplified notationj l(q)5cotdl(q). In principle, if even higher angular momentum is desired, sim
formulas can be derived.
tu
e
It

-

th

, i

ua-

ive
he

to
r

f

IV. LOW-MOMENTUM EXPANSION
AND THE SCATTERING LENGTH

Usually, scattering phases with higher angular momen
are much smaller than phases with lower angular mom
tum. This is particularly true in low-momentum scattering.
is well known that for small relative momentumk, the scat-
tering phases behave like

tand l~k!;alk
2l 11, ~19!

for small k. Therefore, we anticipate that in the low
momentum limit, scattering phases with smalll will domi-
nate the scattering process. If we treat thed-wave and
g-wave scattering phases as small perturbations, we find
for the D4 symmetry, Eq.~16! can be simplified to

cotd02m005
m02

2

cotd22m22
1

m04
2

cotd42m44
1

m04̄
2

cotd42m4̄4̄

.

~20!

For the symmetryD2, similar to Eq.~20!, Eq. ~18! reads

cotd02m005
m02

2

cotd22m22
1

m02̄
2

cotd22m2̄2̄

1
m04

2

cotd42m44

1
m04̃

2

cotd42m4̃4̃

1
m04̄

2

cotd42m4̄4̄

. ~21!

If the d-wave andg-wave phase shifts were small enough
is easy to check that both Eqs.~20! and ~21! simplify to
01450
m
n-

at

t

cotd0~k!5m005
Z00~1,q2;h1 ,h2!

p3/2h1h2q
. ~22!

For the general case, Eqs.~20! and ~21! offer the desired
relation between the energy eigenvalues in theA1

1 sector and
the scattering phases for the casesh15h2 andh1Þh2, re-
spectively. It is easy to verify that, in both Eqs.~20! and~21!,
contributions that appear in the right-hand side of the eq
tions are smaller by a factor ofq2 compared withm00 on the
left-hand side. They are negligible as long as the relat
momentumq is small enough. Therefore, in both cases, t
s-wave scattering lengtha0 will be determined by the zero
momentum limit of Eq.~22!.

It is also possible to work out the corrections due
higher scattering phases to thes-wave scattering phase. Fo
example, we have

np2d0~q!5f~q!1s2~q!tand2~q!1s4~q!tand4~q!,
~23!

where the anglef(q) is defined via2tanf(q)51/m00(q).
The functionss2(q) and s4(q) represent the sensitivity o
higher scattering phases. ForD4 and D2 symmetries, they
are given by

s2~q!5H m02
2 /~11m00

2 !, for groupD4 ,

~m02
2 1m02̄

2
!/~11m00

2 !, for groupD2 ,
~24!
5-5
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FIG. 1. The functionss2(q2) ands4(q2) as a
function ofq2 are plotted for bothD4 symmetries
with parametersh15h252.
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s4~q!5H ~m04
2 1m04̄

2
!/~11m00

2 !, for groupD4 ,

~m04
2 1m04̄

2
1m04̃

2
!/~11m00

2 !, for groupD2.
~25!

The functionss2(q2) ands4(q2) can be calculated using th
matrix elements given in Appendix B. In Figs. 1 and 2, the
functions are plotted versusq2 for the case ofD4 symmetry
(h15h252) and for the case ofD2 with h152.0, h2
51.5, respectively. It is seen that the functionss2(q2) and
s4(q2) remain finite for allq2.0. For some particular val
ues ofq2, however, these functions can become quite la
in magnitude. This is due to almost coincidence of singula
ties of the numerator and denominator in matrix eleme
m0i which happens for some choices ofh1 and h2. For
values ofq2 away from these values, the functional values
s2 ands4 remain moderate. In Fig. 2, the lower two pane
01450
e

e
i-
ts

f

in the plot are simply the same function as in the upp
panels with the scale of the vertical axis being magnified
order to show the detailed variation of the functions.

We remark here that, in principle, the corrections due
scattering phases with higherl can be estimated from lattic
calculations as well. From Table I it is seen that, for lattic
with D4 symmetry, by inspecting energy eigenstates w
E1, B1

1 , or B2
1 symmetry on the lattice, one can get a

estimate for thed-wave scattering phased2 which dominates
these symmetry sectors. Similarly, for lattices withD2 sym-
metry, the eigenstates withB1

1 , B2
1 , or B3

1 symmetry
should be studied. It is also interesting to note that for l
tices withD4 symmetry, if we study the eigenstates withA2

1

symmetry, then the leading contribution comes fromg-wave
scattering phased4.

We now come to the discussion of scattering length. Fo
large box, a largeL expansion of the formulas can be d
FIG. 2. The functionss2(q2)
ands4(q2) as a function ofq2 are
plotted for both D2 symmetries
with parametersh152, h251.5.
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TABLE II. Numerical values for the subtracted zeta functions and the coefficientsc1(h1 ,h2) and
c2(h1 ,h2) under some typical topology. The three-dimensional rectangular box has a sizeL15h1L, L2

5h2L, andL35L.

L1 :L2 :L3 h1 h2 Ẑ00(1,0;h1 ,h2) Ẑ00(2,0;h1 ,h2) c1(h1 ,h2) c2(h1 ,h2)

1:1:1 1 1 28.913633 16.532316 22.837297 6.375183
6:5:4 1.5 1.25 212.964476 41.526870 22.200918 3.647224
4:3:2 2 1.5 216.015122 91.235227 21.699257 1.860357
3:2:2 1.5 1 210.974332 32.259457 22.328826 3.970732
2:1:1 2 1 211.346631 63.015304 21.805872 1.664979
3:3:2 1.5 1.5 214.430365 53.784051 22.041479 3.091200
2:2:1 2 2 218.430516 137.771800 21.466654 1.278623
v
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duced. Using Eq.~22! and following similar derivations as in
Ref. @8#, we find that thes-wave scattering lengtha0 is re-
lated to the energy difference in a generic rectangular box

dE52
2pa0

h1h2mL3F11c1~h1 ,h2!S a0

L D
1c2~h1 ,h2!S a0

L D 2

1•••G . ~26!

Here, m designates the reduced mass of the two partic
whose mass values arem1 andm2, respectively. The energ
shift dE[E2m12m2 whereE is the energy eigenvalue o
the two-particle state. The functionsc1(h1 ,h2) and
c2(h1 ,h2) are given by

c1~h1 ,h2!5
Ẑ00~1,0;h1 ,h2!

ph1h2
,

c2~h1 ,h2!5
Ẑ00

2 ~1,0;h1 ,h2!2Ẑ00~2,0;h1 ,h2!

~ph1h2!2
,

~27!

where the subtracted zeta function is defined as

Ẑ00~s,q2;h1 ,h2!5 (
uñu2Þq2

1

~ ñ22q2!s
. ~28!

In Table II, we have listed numerical values for the coe
cientsc1(h1 ,h2) and c2(h1 ,h2) under some typical topol
ogy. In the first column of the table, we tabulated the ratio
the three sides of the box:h1 :h2 :1. Note that forh15h2
51, these two functions reduce to the old numerical val
for the cubic box which had been used in earlier scatter
length calculations.

It can be shown that contaminations from higher-angu
momentum scattering phases come in at even higher po
of 1/L. For low relative momenta, thed-wave scattering
phase behaves like tand2(q);a2k55a2(2p/L)5q5, with a2
being thed-wave scattering length. If we treat the effects d
to tand2 perturbatively, we see from Eqs.~20! and~21! that,
in Eq. ~26!, the functionsc1 andc2 receive contributions tha
are proportional to (a2 /L5), which is of higher order in 1/L
for largeL.
01450
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V. CONCLUSIONS

In this paper, we have studied two-particle scatter
states in a generic rectangular box with periodic bound
conditions. The relations of the energy eigenvalues and
scattering phases in the continuum are found. These form
can be viewed as a generalization of the well-known L¨s-
cher’s formulas. In particular, we show that thes-wave scat-
tering length is related to the energy shift by a simple f
mula, which is a direct generalization of the correspond
formula in the case of cubic box. We argued that this asy
metric topology might be useful in practice since it provid
more available low-lying momentum modes in a finite bo
which will be advantageous in the study of scattering ph
shifts at nonzero three-momenta in hadron-hadron scatte
and possibly also in other applications.
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APPENDIX A

In this Appendix, some explicit formulas for the modifie
zeta function defined in Eq.~9! will be given. For conve-
nience of analytic continuation, one first defines the heat k
nel:

K~ t,x!5
1

~2p!3 (
n

ei ñ•x2tñ2

5
h1h2

~4pt !3/2 (
n

e2(1/4t)~x22pn̂!2. ~A1!

Here the first equality is the definition of the heat kern
K(t,x) while the second follows from Poisson’s identity. Th
summations which appear in this formula run over all thre
dimensional integersnPZ3 and the notationñ and n̂ is de-
fined as in Eq.~2!. It is evident that the heat kernelK(t,x) is
periodic in x with period 2pn̂—i.e., K(t,x12pn̂)
5K(t,x). Given a positive numberL.0, we define the
truncated heat kernelK L(t,x) as
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TABLE III. Reduced matrix elementsMl l 8(G) for the symmetry groupD4 for irreducible representationsA1
1 , A2

2 , andE2. Here we
have adopted the basis defined in Table I. For all representations, only the nonvanishing matrix elements up tol 54 are listed. The columns
labeled asu l & and u l 8& indicate the basis vectors in which the matrix elementMl l 8(G) is calculated for each given representation.

G u l & u l 8& Ml l 8(G)

A1
1 0 0 W00

2 0 2W20

2 2 W001
2A5

7
W201

6
7 W40

4 0 W40

4 2 2
6
7 W202

20A5

77
W402

15A65

143
W60

4 4 W001
20A5

77
W201

486
1001W401

20A13

143
W601

490A17

2431
W80

4̊ 0
1

A2
~W441W424!

4̊ 2
2A10

11
~W441W424!2

15

11A26
~W641W624!

4̊ 4
27A2

143
~W441W424!2

6A10

11A13
~W641W624!1

21A1870

4862
~W841W824!

4̊ 4̊ W002
4A5

11
W201

54
143W402

4

11A13
W601

7

143A17
W801

21A5

A4862
~W881W828!

A2
2

1 1 W001
2

A5
W20

3 1 2
3A3

A35
W202

4

A21
W40

3 3 W001
4

3A5
W201

6
11W401

100

33A13
W60

E2

1
>̃

1
>̃ W002

1

A5
W207

A3

A10
~W221W222!

3
>̃

3
>̃ W001

1

A5
W201

1
11W402

25

11A13
W60

7
A2

A15
~W221W222!7

A10

11
~W421W422!7

5A35

11A39
~W621W622!

3
>̃

1
>̃ 2

3A2

A35
W201

A2

A7
W407

A3

2A35
~W221W222!6

A5

2A7
~W421W422!

3̇½ 3̇½ W002
A5

3
W201

3
11W402

5

33A13
W607

35

A3003
~W661W626!

3̇½ 1
>̃ 2

3

2A7
~W221W222!1

1

2A21
~W421W422!6

1

A3
~W441W424!

3̇½ 3
>̃ 2

A2

6
~W221W222!1

3A6

22
~W421W422!2

5A7

33A13
~W621W622!

6
A42

22
~W441W424!7

5A35

11A78
~W641W624!
014505-8
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TABLE IV. Reduced matrix elementsMl l 8(G) for the symmetry groupD4 for irreducible representationsE1, B1
6 , B2

6 , andA2
1 .

G u l & u l 8& Ml l 8(G)

E1 2
>̃

2
>̃ W001

A5

7
W202

4
7 W407

A30

14
~W221W222!7

A10

7
~W421W422!

4
>̃

2
>̃ 2

A30

7
W202

5A2

77
W401

10A6

11A13
W60

7
A5

14
~W221W222!6

9A15

154
~W421W422!6

2A70

11A13
~W621W622!

4
>̃

4
>̃ W001

17A5

77
W201

243
1001W402

1

11A13
W602

392

143A17
W80

7
5A30

77
~W221W222!7

81A10

1001
~W421W422!

7
A105

11A13
~W621W622!7

21A140

143A17
~W821W822!

4̇½ 2
>̃ 2

A5

2A7
~W221W222!2

5A15

22A7
~W421W422!1

2A10

11A13
~W621W622!

6
A15

11
~W441W424!6

10A3

11A13
~W641W624!

4̇½ 4̇½ W002
A5

11
W202

81
143W401

17

11A13
W602

56

143A17
W80

7
A21

A143
~W661W626!7

14A3

A2431
~W861W826!

4̇½ 4
>̃ 2

3A15

11A14
~W221W222!1

27

143A14
~W421W422!

1
3A15

11A13
~W621W622!2

42A5

143A17
~W821W822!

6
27A10

286
~W441W424!6

3

11A26
~W641W624!7

42A2

13A187
~W841W824!

B1/2
1 2̄ 2̄ W002

2A5

7
W201

1
7 W406

A5

A14
~W441W424!

4̄ 4̄ W001
8A5

77
W202

27
91W402

2

A13
W601

196

143A17
W80

6
81A5

143A14
~W441W424!6

3A14

11A13
~W641W624!6

21A14

13A187
~W841W824!

4̄ 2̄ 2
A15

7
W201

30A3

77
W402

5A3

11A13
W60

6
A30

11A7
~W441W424!7

5A42

22A13
~W641W624!

B2/1
2 3̄ 3̄ W002

7
11W401

10

11A13
W606

A70

22
~W441W424!6

5A14

11A13
~W641W624!

A2
1 48 48 W002

4A5

11
W201

54
143W402

4

11A13
W601

7

143A17
W802

21A5

A4862
~W881W828!
014505-9
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K L~ t,x!5K~ t,x!2
1

~2p!3 (
uñu<L

ei ñ•x2tñ2
. ~A2!

We may apply the operatorYlm(2 i¹x) to the heat kernels
defined above. These are denoted as

Klm~ t,x!5Ylm~2 i¹x!K~ t,x!,

K lm
L ~ t,x!5Ylm~2 i¹x!K L~ t,x!. ~A3!

Using heat kernels defined above, one could rewrite
modified zeta function as

Zlm~s,q2;h1 ,h2!5 (
uñu<L

Ylm~ ñ!

~ ñ22q2!s

1
~2p!3

G~s!
E

0

`

dtts21etq2K lm
L ~ t,0!.

~A4!

This expression is convergent as long as Re(s).( l 13)/2.
Close tot50, the functionetq2K lm

L (t,0) behaves like

etq2K lm
L ~ t,0!;

d l0dm0h1h2

~4p!2t3/2
1O~ t21/2!. ~A5!

We may therefore analytically continue the zeta function

Zlm~s,q2;h1 ,h2!

5 (
uñu<L

Ylm~ ñ!

~ ñ22q2!s
1

~2p!3

G~s! H d l0dm0h1h2

~4p!2~s23/2!

1E
0

1

dtts21Fetq2K lm
L ~ t,0!2

d l0dm0h1h2

~4p!2t3/2 G
1E

1

`

dtts21etq2K lm
L ~ t,0!J , ~A6!

which is a valid expression as long as Re(s).1/2. This com-
pletes the process of analytic continuation for the modifi
zeta functions. Using the explicit expression forK lm

L (t,0),
the integral from 0 to 1 in the above formula can be furth
simplified. After some manipulations, we find that the r
sults, when combined with the finite summation, is conv
gent for allL. Therefore, we can now sendL to infinity and
01450
e

y

d

r
-
-

drop the third integral. Since we are only concerned w
modified zeta functions ats51 or s52, we will only give
the expressions for these two cases. The final expression
be written as

Zlm~s,q2;h1 ,h2!

5eq2

(
n

F Ylm~ ñ!

~ ñ22q2!s
1

~s21!Ylm~ ñ!

~ ñ22q2!s21 Ge2ñ2

1
ph1h2

~2s23!
d l0dm01

ph1h2

2
d l0dm0E

0

1

dtts25/2

3~etq2
21!1ph1h2E

0

1

dtts25/2

3F (
nÞ0

YlmS 2 i
p

t
n̂Detq2

e2(p2/t)n̂2G . ~A7!

Note that this expression is valid only fors51 or s52.

APPENDIX B

In this Appendix, we list the reduced matrix elements th
appeared in the formulas in the main text. We define

Wlm~1,q2;h1 ,h2![
Zlm~1,q2;h1 ,h2!

p3/2h1h2ql 11
. ~B1!

Using this notation, we now proceed to list relevant reduc
matrix elementsMl l 8(G) for a given symmetry sectorG.
Here the labelsl and l 8 designates the basis vectors defin
in Table I. For the case ofD4 symmetry, up to angular mo
mentum l 54, the nonvanishing matrix elementsMl l 8(G)
are listed in Tables III and IV.

For the case ofD2 symmetry, by comparing with Table I
one easily sees that the corresponding matrix elements a
fact the same as listed in Tables III and IV. The only diffe
ence is that the name of the irreducible representations
changed. For example, the matrix elements listed underE2

for D4 symmetry are in fact corresponding matrix eleme
for the representationsB2

2 andB3
2 for the D2 symmetry, as

suggested by Table I. Therefore, combining Tables I, III, a
IV, we have all the reduced matrix elements for all irredu
ible representations up tol<4 for bothD4 andD2 symme-
tries.
er-
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