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Hamiltonian study of improved U„1… lattice gauge theory in three dimensions
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A comprehensive analysis of the Symanzik improved anisotropic three-dimensionalU(1) lattice gauge
theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the
static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and
the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved
anisotropic action is presented. The discretization errors in the static potential and the renormalization of the
bare anisotropy are found to be only a few percent compared to errors of about 20–25 % for the unimproved
gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed
in the weak coupling region and the behavior is tested against analytic and numerical results obtained in
various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling
coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with
various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster
convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball
ratio MS /MA approaches exactly 2, as expected in a theory of free, massive bosons.

DOI: 10.1103/PhysRevD.70.014504 PACS number~s!: 11.15.Ha, 11.15.Me, 12.38.Gc
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I. INTRODUCTION

Lattice gauge theory calculations have demonstrated
portant qualitative features of QCD, with increasing acc
racy. Most lattice gauge theory calculations to date have b
performed using Monte Carlo techniques in the Euclide
formulation. Although the Euclidean lattice gauge theory h
been a very successful nonperturbative technique to com
the properties of elementary particles over the years, th
are areas where progress has been very slow. Example
QCD at finite temperature, glue thermodynamics, he
quark spectra, etc. Some of these problems have resiste
lution even by the powerful techniques of Euclidean fie
theory. This suggests that alternative methods should be
sued in parallel with Euclidean lattice gauge theory. A via
alternative that needs to be explored is the Hamiltonian v
sion of QCD. This approach provides a valuable check of
universality of the Euclidean results@1# and has an appealin
aspect in reducing lattice gauge theory to a many-body p
lem. As such the formalism is suited for the application o
host of analytic methods imported from quantum many bo
theory and condensed matter physics. It has been sugg
that Hamiltonian lattice gauge theory could more read
handle finite density QCD@2#. The problems encountered i
finite density QCD in the Euclidean formulation hav
prompted a return to the strong coupling expansions of e
Hamiltonian lattice gauge theory@3#. Similar ideas have bee
pursued recently by Luoet al. @4,5# who propose an alterna
tive Hamiltonian lattice formulation, ‘‘the Monte Carlo
Hamiltonian,’’ and have already demonstrated its valid
and efficiency for theF4 model @6#.

Here we attempt to extend the standard Euclidean p
integral Monte Carlo techniques to Symanzik improv
U(1) gauge theory in three dimensions. Applications of t
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method have been extremely successful@7,8# and have given
rise to great optimism about the possibility of obtaining r
sults relevant to continuum physics from Monte Carlo sim
lations of lattice versions of the corresponding theory. Su
an optimistic view is supported by recent work of Sext
et al. @9#, Boyd et al. @10#, Luo et al. @11# and Morningstar
and Peardon@12# who have attempted to derive masses
the low-lying hadrons from such calculations and report s
cessful results. More recent is the application of path integ
Monte Carlo ~PIMC! techniques to obtain results in th
Hamiltonian limit for theU(1) model in~211! dimensions
@13# and SU~3! lattice gauge theory in~311! dimensions on
anisotropic lattices@14#.

The use of improved actions@15,16# makes possible ac
curate Monte Carlo simulations of QCD on coarse lattic
with greatly reduced computational effort@12,17,18#. In prin-
ciple, with an improved action it is possible to achieve latti
volumes large enough to overcome finite-size effects and
tain measurements with good statistical errors. Coupled w
tadpole improvement@19#, the pursuit of the Symanzik pro
gram has led to significant progress in reducing the discr
zation errors and the renormalization of the anisotropy to
level of a few percent, and makes using anisotropic latti
no more difficult than isotropic ones. At the same time t
merits of using an improved anisotropic lattice have be
well understood@17,20#. Anisotropic lattices allow us to
carry out numerical simulations with a fine temporal reso
tion while keeping the spatial lattice spacing coarse, i.e.at
,as , whereat andas are the lattice spacings in the tempor
and spatial directions, respectively. This is especially imp
tant for QCD Monte Carlo simulations at finite temperatu
and heavy particle spectroscopy. But more importantly
should make extrapolations to the continuum limit more
liable.

As mentioned above, our aim in this work is to app
standard Euclidean path integral Monte Carlo technique
extract the Hamiltonian limit for Symanzik improve
©2004 The American Physical Society04-1
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M. LOAN AND C. HAMER PHYSICAL REVIEW D 70, 014504 ~2004!
U(1)211 lattice gauge theory on anisotropic lattices. T
idea is to measure physical quantities on increasingly an
tropic lattices, and make an extrapolation to the extreme
isotropic limit. The effect of the plaquette improvement
examined by studying the scaling behavior and the sens
ity of scaling coefficients of the string tension and glueb
masses in the Hamiltonian limit,j→0. The rest of the pape
is organized as follows: In Sec. II we briefly review th
formulation of the Symanzik improvedU(1) gauge action in
three dimensions on an anisotropic lattice. The details of
simulations and the methods used to extract the observa
are described in Sec. III. Here we discuss our techniques
calculating the static quark potential, renormalization of a
isotropy, string tension and glueball masses from Wils
loop operators. We present and discuss our results in Sec
Scaling of the string tension, antisymmetric mass gap and
mass ratio in the weak-coupling region are tested aga
theoretical predictions and compared with the estimates
tained by other studies in the Hamiltonian limit. Our conc
sions are given in Sec. V, along with an outline of futu
work.

II. IMPROVED ANISOTROPIC DISCRETIZATION
OF U„1…2¿1

The Symanzik improvedU(1)211 gauge action on an an
isotropic lattice is identical in form to the SU~3! case and is
given1 by @17#

Sg5bsj(
x

(
i , j

F 5

3us
4

Pi j ~x!2
1

12us
6 @Ri j ~x!1Rji ~x!#G

1
b t

j (
x

(
i

F 4

3u2ut
2

Pit~x!2
1

12us
4ut

2
Rit~x!G , ~1!

where Pmn and Rmn are the 131 Wilson loop and 231
rectangular loop in them3n plane respectively. At the tree
level the coefficients are chosen so that the action has
O(a2) discretization corrections. The spatial and tempo
square and rectangular loops are given by

Pi j ~x!5@12Ui~x!U j~x1 î !Ui
†~x1 ĵ !U j

†~x!# ~2!

Ri j ~x!5@12Ui~x!Ui~x1 î !U j~x12 î !Ui
†~x1 î

1 ĵ !Ui
†~x1 ĵ !U j

†~x!# ~3!

Pit~x!5@12Ui~x!Ut~x1 î !Ui
†~x1 t̂ !Ut

†~x!#
~4!

Rit~x!5@12Ui~x!Ui~x1 î !Ut~x12 î !Ui
†~x1 î

1 t̂ !Ui
†~x1 t̂ !Ut

†~x!#, ~5!

1The notation used here differs slightly from that used in R
@21#, where the prefactors were absorbed into the definitions ob
andj. We follow the notation introduced in@17#.
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where x labels the sites of the lattice,i, j are the spatial
indices andUi(x) is the link variable from sitex to x1 î .
The rectangular loop that extends two steps in the time
rection has not been included in the above action. This
the advantage of eliminating negative residue high ene
poles in the gluon propagator@17# but at the same time
leaves errors of the orderat

2 in the action. TheO(at
2) errors,

however, are negligible providedat is small compared toa.
The bare anisotropy parameter isj and is equal to the aspec
ratio of the temporal and spatial lattice spacings at the
level. At higher orders in the perturbative expansion, the b
anisotropy in the simulated action is not the same as
measured value,jphys, due to quantum corrections@22#. The
couplingsbs andb t are defined by@23#

bs5
1

gs
2

, b t5
1

gt
2

. ~6!

The two different couplings in Eq.~1! are necessary in orde
to ensure that in the continuum limit, physical observab
become independent of the kind of lattice regularization c
sen. In the case of an asymmetric lattice, this implies t
physical quantities have to be independent of the anisotr
factor j. To achieve this, one needs to introduce differe
couplings for spatial and temporal directions, which depe
on j. Thej-dependence of the couplingsgs

2 andgt
2 is due to

quantum corrections and leads to an energy sum rule for
quark-antiquark potential, and the glueball mass, which
fers in an important way from that which one would expe
naively.

In the weak coupling limit ofSU(N) lattice gauge theory,
the relation between the scales of the couplings in Euclid
and Hamiltonian formulations has been determined ana
cally from the effective actions@23–26#, using the back-
ground field method on the lattice. For small values ofgE ,
the couplingsgs andgt can be expanded as

1

gt
2
5

1

gE
2

1ct~j!1O~gE
2 ! ~7!

1

gs
2
5

1

gE
2

1cs~j!1O~gE
2 ! ~8!

wheregE is the Euclidean coupling. Forj51, one recovers
the usual Euclidean lattice gauge theory, wheregs5gt
5gE . In the limit j→0, Eqs. ~7! and ~8! reduce to their
Hamiltonian values and one obtains the relation between
Euclidean couplinggE and its Hamiltonian counterpartgH .
Similar calculations have been performed to determine
anisotropic coefficientscs andct at arbitrary anisotropy for a
class of improved actions@20,27–29#. These coefficients be
come an important tool in the analysis of glue thermodyna
ics @30#, the quark-gluon plasma@31,32# and for the determi-
nation of spectral functions at finite temperature@33#. Similar
calculations have not yet been done for theU(1) theory,
however, as far as we are aware.

.

4-2
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HAMILTONIAN STUDY OF IMPROVED U(1) . . . PHYSICAL REVIEW D70, 014504 ~2004!
Tadpole improvement@19# is introduced by renormalizing
the link variables: Ui(x)→Ui(x)/us , and Ut(x)
→Ut(x)/ut , where the mean fieldsus andut can be defined
by using the measured values of the average plaquettes
simulation. In the plaquette mean-link formulation, the me
fields are determined self-consistently and are defined b

us5^Pi j &
1/4, ut

2us
25^Pit&. ~9!

For at!a, the mean temporal linkut is expected to be very
close to unity. For simplicity we use a convenient and gau
invariant definition for us in terms of the mean spatia
plaquette given byus5^Re TrPi j &

1/4, and computeut from
the temporal plaquettePit in Eq. ~9!.

To obtain the Hamiltonian estimates from anisotropic l
tices, a naive extrapolation procedure is followed. In t
procedure we assume classical values of the couplings,
b5bs5b t in Eq. ~1! and extrapolate the physical quantiti
to the extreme anisotropic limit,j→0 at constantb. Such a
procedure is not strictly correct, however, at the quant
level becausebsÞb tÞb due to renormalization.2

As an example of the application of PIMC to the Syma
zik improved action, we consider the case of compactU(1)
gauge theory in three dimensions. The relevance of
model to QCD at finite temperature@35# has made it a stan
dard proving ground for Hamiltonian lattice numerical me
ods. The model has two essential features in common w
QCD, confinement@36–39# and chiral symmetry breaking
@40#. Other common features are the existence of a mass
and a confinement-deconfinement phase transition at s
nonzero temperature. These similarities suggest that a c
parison of the respective mass spectra should be informa
In the continuum limit of theory, the mass gapM is found to
behave as@37#

M2a2'constb exp@22p2bv~0!#5MD
2 ~10!

wherev(0)'0.2527 is the lattice Coulomb Green’s functio
at zero separation. In Hamiltonian theory in which the sp
dimensions are discretized,vH(0)'0.3214 is the analogou
Green’s function@38#. It has been shown analytically that
linear confinement persists for all nonvanishing couplin
no matter how weak@37,38#. The string tension as a functio
of coupling also scales exponentially and obeys a low
bound

K>constMDb21. ~11!

An interesting feature to explore in this context is wheth
the coupling to matter fields will change the permanent c
finement status in~211! dimensions@41#.

2One-loop calculations of the renormalization of the anisotro
and the gauge coupling in spatial and temporal directions for
improved Abelian lattice gauge theory are currently underway
will be reported elsewhere@34#.
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III. METHOD

A. Simulation details

To extract estimates of the string tension and the glue
masses using the Symanzik improved action in Eq.~1!, a set
of simulations are performed on lattices of sizeNs

23Nt (Ns

516 andNt516264), whereNs andNt are the number of
lattice sites in the spatial and temporal directions resp
tively. The lattice size in the time direction is adjusted a
cording to the anisotropy used in order to keep the phys
length in the spatial and temporal directions equal. To a
lyze the behavior in the strong and weak coupling regio
gauge configurations are generated using theMETROPOLIS

algorithm, for a range of couplingsb5122.5. The details of
the algorithm are discussed elsewhere@13#. Starting from an
arbitrary initial gauge configuration, 50 000 sweeps are p
formed for the equilibration of the configurations and t
self-consistent determination of the mean-field parameter
Fourier acceleration procedure@42,43# is used to overcome
the stiffness against variations in the temporal plaquettes
high anisotropies. About 50% of the ordinaryMETROPOLIS

updates are replaced with Fourier updates forj<0.4 and
about 100 000 further sweeps are performed to allow
system to equilibrate.

After thermalization, configurations are stored every 3
sweeps; 1200 stored gauge configurations are used in
measurement of the static quark potential and string ten
and 1500 configurations for the glueball masses at eachb.
Measurements made on the stored configurations are bin
into five blocks with each block containing an average
250 measurements. The mean and standard deviation o
final observables are estimated simply by averaging over
block averages. The simulation parameters used for e
configuration set are shown in Table I. It should be noted t
Table I does not show all of the used values of parameter
the estimation of the physical quantities in Sec. IV.

B. The interquark potential and string tension

The static quark potentialV(r ) is extracted from the ex-
pectation values of the timelike Wilson loopsW(r ,t), which
are expected to behave as

W~r ,t !'(
i

Zi~r !exp@2tVi~r !#, ~12!

where the summation runs over the excited state contribu
to the expectation value, andi 51 corresponds to the lowes
energy contribution. To obtain the optimal overlap of Wilso
loop ~and glueball! operators with the lowest state, it is ne
essary to suppress the contamination from excited sta
This is done by using a simple APE smearing meth
@17,44,45# which is implemented by the iterative replac
ment of the original spatial link variables by a smeared lin
Following the single-link smearing procedure, every spa
like link variableUi(x) on the lattice is replaced by

y
e
d

4-3
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TABLE I. Simulation parameters at variousb andj values.

Volume b j ut us (us)
4 ^P& at us

162332 1.0 0.5 0.9991~3! 0.9218~2! 0.7220 0.7221~4!

162332 1.45 0.5 0.9991~2! 0.9468~2! 0.8038 0.8039~3!

162332 1.75 0.5 0.9997~3! 0.9551~3! 0.8324 0.8325~6!

162332 2.0 0.5 1.0 0.9589~2! 0.8458 0.8459~4!

162332 2.5 0.5 1.0 0.9614~4! 0.8543 0.8544~3!

162340 1.0 0.4 1.0 0.9182~3! 0.7110 0.7111~4!

162340 1.45 0.4 1.0 0.9432~3! 0.7917 0.7918~7!

162340 1.75 0.4 1.0 0.9497~3! 0.8138 0.8139~5!

162340 2.0 0.4 1.0 0.9524~5! 0.8228 0.8229~5!

162340 2.5 0.4 1.0 0.9561~2! 0.8358 0.8359~2!

162348 1.0 0.333 1.0 0.9152~3! 0.7016 0.7017~5!

162348 1.45 0.333 1.0 0.9356~3! 0.7663 0.7664~4!

162348 1.75 0.333 1.0 0.9401~2! 0.7815 0.7816~6!

162348 2.0 0.333 1.0 0.9408~4! 0.7836 0.7837~4!

162348 2.5 0.333 1.0 0.9454~4! 0.7991 0.7992~3!

162364 1.0 0.25 1.0 0.9112~6! 0.6895 0.6892~3!

162364 1.45 0.25 1.0 0.9287~3! 0.7440 0.7439~4!

162364 1.75 0.25 1.0 0.9357~5! 0.7665 0.7663~5!

162364 2.0 0.25 1.0 0.9381~4! 0.7745 0.7738~6!

162364 2.5 0.25 1.0 0.9401~4! 0.7812 0.7811~3!
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Ui~x!→PU(1)FaUi~x!1(
j Þ i

(
6

U j~x!Ui~x6 ĵ !U†~x6 î !G
~13!

whereU2 i[U†(x2 î ) and i and j are purely spatial indices
PU(1) denotes the projection ontoU(1) anda is the smear-
ing parameter. Operators constructed out of smeared l
dramatically reduced the mixing with high frequency mod
thus removing the excited-state contamination in the corr
tion functions. The smearing fraction is fixed toa50.7 and
ten iterations of the smearing process are used. To reduc
variance, we use the technique ofthermal averaging@13,46#,
which amounts to replacing the timelike link variablesUt by
their local averages. This technique was applied to all te
poral links except those adjacent to the spatial legs of loo
which are not independent. The technique has a dram
effect in reducing the statistical noise.

The values of the effective potential are measured fr
the logarithmic ratio of successive Wilson loops

Vt~r !52 lnFW~r ,t11!

W~r ,t ! G ~14!

which is expected to be independent oft for t.0. A plot of
the effective potential is shown in Fig. 1 forb51.70 andj
50.4 for various separationsr . The dashed lines indicate th
plateau values at various separations. As a result of he
smearing, a good plateau behavior is seen at smallt values
for r 51 through 7. Forr>6, we see that the signal is dom
01450
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nated by noise fort.6. We fix the fitting range to be, in
most cases,t52 to 6.

The string tension is then extracted from the Wilson loo
by establishing the linear behavior for the static quark pot
tial at large separationr . We have chosen to fit our results fo
V(r ) to the form@38#

V~r !5a1Kr1b ln~r !, ~15!

where the linear term dominates the behavior at large se
rations and a logarithmic Coulomb term dominates at sm
separations.

C. Renormalization of anisotropy

Since the anisotropy ratio,h, is important in QCD simu-
lations on the anisotropic lattices, we study its behavior
numerical simulations. Measurements of renormalization
anisotropy @47# have been made by comparing the sta
quark potential extracted from correlations along the diff
ent spatial and temporal directions. On an anisotropic lat
there are two different potentialsVt(r ) andVs(r ) extracted
from two different types of loops: timelikeWxt and spacelike
Wxy Wilson loops. The two potentials differ by a factor o
jphys and by an additive constant, since the self-energy c
rections to the static quark potential are different if the qu
and antiquark propagate along the temporal or a spatia
rection. The natural way to proceed is to build ratios of t
Wilson loops,
4-4
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FIG. 1. Effective potential as a
function of Euclidean timet. From
bottom up the horizontal lines cor
respond tor 51 through 7 and in-
dicate the plateau values in th
range 2<t<6.
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Rt~x,t !5
Wxt~x,t11!

Wxt~x,t !

Rs~x,y!5
Wxy~x,y11!

Wxy~x,y!
. ~16!

Asymptotically for larget and y, the ratiosRt and Rs ap-
proach

Rt~x,t !'Zxte
2tVt1~excited state contr.!

Rs~x,y!'Zxye
2yVs1~excited state contr.!. ~17!

The physical anisotropy is then determined from the ratio
the potentialsVt(r ) and Vs(r ) estimated fromRt and Rs,
respectively. The lattice potentials defined by Eq.~17! con-
tain contributions from the self-energy terms. The potentia
simply parametrized as

Vs~j,r !5Vs
0~j!1Vs

f~j,r !, ~18!

whereVs
f is the lattice potential free of self-energy contrib

tions. The timelike potentialVt is treated similarly. To elimi-
nate the effect of the self-energy termV0 in the potentials,
we define a subtracted potential

Vs
sub~j,r ,r 0!5Vs

f~j,r !2Vs
f~j,r 0!

Vf
sub~j,t,t0!5Vt

f~j,t !2Vt
f~j,t0! ~19!

where the subtraction pointsr 0 and t0 are chosen to satisfy
t05jr 0 and the matching of the potentialVt

f(t05jr 0)
5Vs

f(r 0) should be satisfied there. The subtraction radiusr 0

should be chosen to be as small as possible so that fluc
tions of the potential do not increase, in which case simu
tions with high statistics on a larger lattice are required. T
renormalized anisotropy is determined from the ratio
01450
f
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jphys5
Vt

sub~j,r ,r 0!

Vs
sub~j,r ,r 0!

~20!

and the measured anisotropy parameter,h, is then given by

h5
jphys

j
. ~21!

An alternative approach to make the comparison is to fit
measured potentials with the forms@48#

asVs~x!5a1sas
2x1c ln x

asVt~ t !5a1sasatt1c lnF as

att
G . ~22!

The renormalized anisotropyjphys is then determined from
the ratio of the coefficients of the linear terms in the tw
cases. It is advantageous to use the potential at smallr,
where the statistical errors are smaller, and determinejphys
from the ratio of the coefficients of the Coulomb terms; ho
ever, such an estimate depends on short distance effects
is more sensitive to possible discretization errors
O(a4/r 4) @47#.

D. Glueball masses

The numerical analysis of the mass of a glueball havin
given JPC proceeds through a study of the timelike corre
tions between spacelike Wilson loop operatorsF i(t)

C~ t !5^F̄ i
†~ t !F̄ i~ t !&, ~23!

where

F̄ i~ t !5F i~ t !2^0uF i~ t !u0& ~24!
4-5
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FIG. 2. Effective mass plot for
the scalar glueball atb52.0 and
j50.50.
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the
t,
is a gauge invariant vacuum subtracted operator capab
creating a glueball out of the vacuum. It is necessary to s
tract the vacuum contribution for the scalar glueball w
JPC5011, because in the large Euclidean time limit,C(t)
becomes dominated by the lowest energy state carrying
quantum numbers ofF and these quantum numbers m
coincide with that of the vacuum. The vacuum contributi
is averaged over the whole ensemble before subtracting f
the correlator. The glueball mass of interest is then extrac
by studying the exponential decay of the correlation funct
for large Euclidean times, which is expected to behave a

C~ t !5ci@exp~2mit !1exp„2mi~T2t !…#

1~excited state contributions! ~25!
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wheremi is the mass of the lowest-lying glueball which ca

be created byF̄ i(t), andT5Ntat is the extent of the peri-
odic lattice in the time direction. Here, only the lowe
‘‘symmetric’’ ( PC511) and ‘‘antisymmetric’’ (PC
522) glueball states are studied. The measured value
C(t) are expected to fall on a simple exponential curve
suming that the lattice is fine enough for the glueball mas
exhibit scaling behavior according to the theoretical pred
tions.

On a finite lattice with lattice spacinga, the operator
F i(t) has a small overlap with the glueball ground state, a
the mass extracted fromC(t) may be too large owing to the
excited-state contamination. The overlap gets worse as
lattice spacing is reduced and nears the continuum limia
FIG. 3. Static potential,V(r ),
as a function of separationr at b
51.55 andj50.4. The solid line
is a fit to the formV(r )5a1br
1c ln(r ) in the range 3<r<8.
4-6
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FIG. 4. A close up of the static
quark potential,V(r ), at smallr,
using the Symanzik improved ac
tion. The solid line is a fit of Eq.
~15! to on-axis pointsr 54 to 8.
This plot involves measurement
at b51.55 for j50.4 with 10
smearing sweeps at smearing p
rametera50.7.
ue
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r
s
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n

d

th

s

→0. This is obvious since the physical extension of the gl
ball remains fixed, while the operatorF, constructed from
small loops, probes an ever smaller region of the glue
wave function as the lattice spacing is decreased. Henc
becomes important to use an improved glueball operato
as to have approximately the same size as the physical
of the glueball. For such an operator, the overlap with
glueball of interest is strong at small lattice spacing a
signal-to-noise ratio is also optimal@49#.

Following the variational technique of Morningstar an
Peardon@17# and the smearing procedure of Teper@50#, an
optimized operator was found as a linear combination of
basic operatorsf,
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F~ t !5(
a

v iaf ia~ t ! ~26!

where the indexa runs over the rectangular Wilson loop
with dimensions l x5@n21,n11#, l y5@n21,n11# and
smearingns5@m21,m11#. The correlation functionC(t)

is then computed from the optimized glueball operatorF̄ i(t)

Ci~ t !5(
t0

^0uF̄ i~ t1t0!F̄ i~ t0!u0&. ~27!
e

a-
FIG. 5. A close up of the static
quark potential,V(r ), at smallr.
The solid line is a fit of Eq.~15! to
on-axis pointsr 54 to 8. This plot
involves measurements from th
standard Wilson action@13# at b
51.4142 for j50.4 with 10
smearing sweeps at smearing p
rametera50.7.
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Figure 2 shows the effective mass plot for the scalar gl
ball for the measurements atb52.0 andj50.50. The signal
is seen out to the time slice 6 and reaches a plateau regio
1<t<5. The data are noisy fort.5.

We choose to fit the correlation functionC(t) with the
simple form

Ci~ t !5c1coshmi@T/22t# ~28!

to determine the glueball mass estimates.

IV. RESULTS AND DISCUSSION

A. Static quark potential and rotational symmetry

A plot of the static quark potentialV(r ) as a function ofr
at b51.55 andj50.4 is shown in Fig. 3. The data in thi
plot were obtained by looking for a plateau in the effecti
potential.

Because we are concerned to make long distance beh
consistent in both fine and coarse directions, it is adva
geous to use Wilson loops of the largest possible spatial
tent. However, in practice, the statistical errors in large W
son loops grow exponentially with separation. We u
Wilson loops of size 838 and fit the data by Eq.~15!. We fit
in the range 3<r<8 so that we are not sensitive to th
Coulomb term and the discretization errors associated w
it. We see that the data are fitted very well giving the str
tension,K(5sa2)50.044(3).

One of the main features of the improved discretization
the improved rotational invariance@21#. Discretization errors
in the gluon action affect the extent to which continuu
symmetries, such as rotational symmetry, are restored
explore the extent to which rotational invariance is im
proved, we measure the potential at off-axis as well as
axis separations. Thus for improved rotational invariance,
static potential, for example, atr5(4,3) should agree exactl
with that atr5(5,0).
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For a fixed number of configurations and constant phy
cal volume, we show the results from the Symanzik i
proved action and standard Wilson action in Figs. 4 an
respectively. We see that the off axis points for the improv
lattice are excellently fitted by the rotationally invariant fi
ting curve~15! throughr 53 to 8. The data from the Wilson
action lie rather less close to the line of best fit. However
large separations, the standard Wilson action does jus
well as the improved action in extracting the static qua
potential.

TABLE II. Comparison between the measured anisotropyjphys

and the input anisotropyj for the Symanzik improved and th
standard Wilson actions@13#. The measured differences in the of
axis potential atr5(1,1) are also shown.

Action b j jphys DV(A2)
r 052 r 05A2

Improved 1.35 0.50 0.496~5! 0.493~2! 0.03~1!

action 0.40 0.392~4! 0.390~6! 0.03~2!

0.333 0.328~3! 0.320~5! 0.04~4!

1.45 0.444 0.442~6! 0.441~4! 0.04~2!

0.333 0.326~3! 0.321~6! 0.04~3!

0.25 0.246~4! 0.240~7! 0.05~4!

1.55 0.40 0.402~2! 0.398~6! 0.04~2!

0.25 0.241~5! 0.239~7! 0.06~4!

1.65 0.333 0.334~5! 0.332~5! 0.02~1!

1.75 0.25 0.252~4! 0.249~6! 0.03~1!

2.0 0.333 0.335~6! 0.334~2! 0.03~1!

0.25 0.242~4! 0.246~1! 0.06~2!

Wilson 1.35 0.444 0.418~5! 0.419~7! 0.12~1!

action 1.55 0.40 0.379~3! 0.374~6! 0.10~1!

1.70 0.333 0.286~7! 0.289~5! 0.08~1!

2.0 0.333 0.281~6! 0.292~2! 0.13~2!
d
e

t
l
-

FIG. 6. Subtracted spatial an
temporal potentials against th
separationr. This plot involves
measurements atb51.75 andj
50.333 for the subtraction poin
r 05A2. The temporal potentia
Vt

sub has been rescaled by the in
put anisotropy.
4-8



l
t

l
-

HAMILTONIAN STUDY OF IMPROVED U(1) . . . PHYSICAL REVIEW D70, 014504 ~2004!
FIG. 7. Unsubtracted spatia
and temporal potentials agains
the separationr at b51.75 andj
50.333. The temporal potentia
Vt(r ) has been rescaled by the in
put anisotropy.
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As a quantitive measurement of the improvement, the
tential measured in the simulation from nonplanar Wils
loops is compared with an interpolation to the on-axis d
@47#,

DV~r ![
Vsim~r !2Vfit~r !

sr
. ~29!

Results forr5(1,1) are given in Table II. With the mean
field inspired Symanzik improvement, the difference is on
a few percent compared to a difference of about 10–20 %
the Wilson action@13#.
01450
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B. Numerical determination of renormalized anisotropy

We choose the pointsr 052 andA2 to compute the sub
traction potentials of Eq.~19! and use them to obtain th
ratio in Eq.~20!. The subtracted spatial and temporal pote
tials at the subtraction pointr 05A2 are shown in Fig. 6. The
anisotropies measured at these subtraction points for the
proved and unimproved actions at differentb values are
compared in Table II. The two determinations of th
anisotropies are in excellent agreement. These results s
that the input anisotropy is normalized by less than a f
percent for the improved action. This is in contrast with t
FIG. 8. Extrapolation of the
string tension to the Hamiltonian
limit j→0, for variousb. Solid
lines show the quadratic fits inj2

to the data.
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FIG. 9. The string tension as
function of inverse coupling. Our
present estimates are shown
open triangles. Earlier result
from standard Wilson action@13#,
t-expansion @52#, Green’s Func-
tion Monte Carlo simulations@53#
and an exact linked cluster expan
sion @54# are shown as solid tri-
angles, solid circles, open circle
and open squares, respectively.
y
p

an
g
te
le
d
ffi
n
a

il-
a-

or
tic,
-

standard Wilson action@13#, where the measured anisotrop
is found to be about 20–30 % lower than the input anisotro
j.

Figure 7 shows the potentials computed from spatial
temporal Wilson loops without subtracting the self-ener
terms. We find that the difference between the estima
computed from subtracted and unsubtracted potentials is
than 1% for the Symanzik improved action. We conclu
that a few percent renormalization in the anisotropy is su
ciently small that it is unlikely to represent the domina
effect in the final estimates and it is safe to use the b
anisotropy for the tadpole improved Symanzik action.
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C. String tension

To obtain estimates of the string tension in the Ham
tonian limit, an extrapolation is performed by a simple qu
dratic fit in powers ofj2 for eachb value. The simulations
run over a range of anisotropies,j5120.25, thus enabling
reliable extrapolation to the Hamiltonian limit. The errors f
the extrapolation may be obtained by the ‘‘linear, quadra
cubic’’ extrapolant method@51#. Figure 8 shows our esti
mates of the string tension as a function of the anisotropyj2

for various fixed b values. Except atb51.35, a fairly
smooth variation of string tension withj2 for various cou-
plings is seen. The curvature in the extrapolation atb
-
i-
s.

-

.
fi-
FIG. 10. The logarithm of the
string tension as a function of in
verse coupling. Our present est
mates are shown as open triangle
The solid line is the result of fit-
ting to form ~6! for 1.45<b
<1.95. The dash-dot line is the
b4 order strong coupling expan
sion @57#. Our previous estimates
@13# are shown as solid triangles
The dashed line represents the
nite size behavior@58#.
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51.35 suggests that our estimate may be somewhat too
there.

Our extrapolated results for the string tension,K5a2s,
together with the earlier Hamiltonian estimates obtain
from the t-expansion@52#, Green’s Function Monte Carlo
simulations @53# and the Exact Linked Cluster Expansio
~ELCE! @54# are plotted as a function of inverse coupling
Fig. 9. We see that the string tension displays an expone
behavior at weak coupling in accordance with the theoret
prediction. It has rigorously been shown that the string t
sion in U(1)(211) undergoes a ‘‘roughening transition’’
@55,56# at some intermediate coupling estimated to be n
b'0.8. Beyond the transition point, the different estima
of the string tension are expected to agree. The on-
strong coupling series approximants fail to converge bey
b50.8, which prevents the analytic continuation of the
ries expansion beyond the roughening transition. T
t-expansion results, however, do not suffer from this di
culty. A comparison with the GFMC@53# and an exact
linked-cluster expansion@54# shows that our estimates are
good agreement with earlier estimates. Thet-expansion esti-
mates@52# are a little high, but still reasonably accurate.
course, we do not expect that the results for the impro
action should match exactly at finite coupling with other e
timates which were computed for the unimproved action.
believe our PIMC estimates are more reliable and accu
and are also clearly consistent with the behavior predicted
Polyakov@37# and Göpfert and Mack@38#.

Figure 10 shows the scaling behavior of the string tens
together with results obtained using the standard Wilson
tion @13#, as a function ofb. The dashed-dot line is th
strong-coupling expansion to orderb4 @57# and the solid line
represents a fit to the weak-coupling asymptotic form~6!. It
can be seen that our present estimates appear to match n
onto the strong and weak coupling expansions in their
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spective limits. The fourth order strong coupling series e
pansion, obtained from integrated differential approximan
diverges beyondb51.30. In the weak-coupling region, th
string tension is consistent with the predicted scaling beh
ior @38#. An unconstrained fit of the form~6! represents the
data rather well in the interval 1.45<b<1.95. The fit to the
data gives a scaling slope of 3.0460.13 and an intercept o
1.4260.21. The intercept of the scaling curve is roughly tw
times larger in magnitude than the theory predicts, compa
to our previous results with the standard Wilson action@13#
which were higher than theory by a factor of 5–6. Also
contrast with the Wilson action, a significant reduction in t
errors is clearly apparent with the tadpole-improved Sym
zik action ~see Table III!.

In summary, it appears that the overall exponential sca
behavior is the same for both actions, but the constant c
ficient is lower for the Symanzik action by a factor of 2 to
and closer to the theoretical weak-coupling estimate.
seems highly plausible that a different action should giv
different renormalization for the constant coefficient, a
though no analytic calculation of this effect has been don

TABLE III. Comparison of the Hamiltonian results obtained fo
the symmetric and antisymmetric scalar glueball masses (MS , MA)
for the Symanzik improved and Wilson actions.

b Improved action Wilson action
MS MA MS MA

1.0 1.68~1! 1.510~5! 1.9~1! 1.45~7!

1.35 1.207~9! 0.811~5! 1.4~1! 0.9~1!

1.55 0.75~1! 0.444~5! 0.8~2! 0.4~1!

1.70 0.69~2! 0.361~6! 0.5~3! 0.24~9!

1.90 0.352~6! 0.177~3! 0.3~1! 0.17~9!

2.0 0.272~4! 0.136~2! 0.2~1! 0.10~6!
ic
FIG. 11. Extrapolation of the
antisymmetric glueball mass to
the Hamiltonian limit j→0.
Dashed lines show the quadrat
fits in j2 to the data.
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FIG. 12. Glueball masses a
functions ofb. Our present results
for the symmetric and antisym
metric glueball masses (MS , MA)
are shown as open circles and tr
angles, respectively. Earlier re
sults obtained from the Wilson ac
tion @13# are shown as solid
circles and triangles, respectively
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D. Antisymmetric mass gap

The weak-coupling behavior of the mass gap is not
actly known. The rigorous analysis of Go¨pfert and Mack@38#
showed that in the continuum limitU(1)211 reduces to a
massive scalar free field theory, with a mass gapM which is
expected to decrease exponentially as the lattice spacing
to zero. They showed that the lattice photon mass in
Villain action on a 3-dimensional Euclidean lattice is giv
by Eq.~6!. It is often claimed in the literature that the Villai
action is a high-b approximation of the Wilson action so tha
Eq. ~6! should also hold in the weak-coupling limit of th
Wilson model.

The extrapolation of the glueball masses to the Ham
tonian limit is shown in Fig. 11. The extrapolation is pe
formed by using a simple quadratic fit in powers ofj2.
Again we see a smooth dependence onj2, for all b values
analyzed here.

Our extrapolated results for the mass gap together w
earlier Hamiltonian estimates obtained from the Wilson
tion @13# are plotted as a function ofb in Fig. 12. Unlike the
string tension, the strong-coupling expansion of the m
gaps is believed to be analytic near the roughening po
Comparison with earlier Hamiltonian estimates shows t
our present data follow quite closely the strong-coupling
pansion estimates, obtained by the method of integrated
ferential approximants, in the strong and weak-coupling
gions. Thet-expansion estimates@52#, obtained from Pade´
approximants, are found to be substantially less accurate
those from the strong coupling expansion. Beyondb52, the
approximants for the t-expansion do not converge well
that no reliable estimates can be obtained beyond that
pling value.

The asymptotic scaling behavior of the antisymmet
mass gap is shown in Fig. 13. The solid line is the resul
fitting for 1.4<b<2.25 to the form~10! to find the scaling
slope and the intercept of the scaling curve. Our results
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these coefficients are shown and compared with previ
studies in Table IV. These results are obtained by fitting
the form M25b exp@2 f 0b1 f 1# in the weak-coupling re-
gion. It can be seen that the agreement with the earlier res
is remarkable. We find the constant coefficient~intercept of
the scaling curve! is approximately 1.5 times larger in mag
nitude than the theory predicts. This is an improvement o
our previous estimate using the Wilson action@13#, where the
constant coefficients were estimated a factor 5–6 tim
larger. The scaling slope is a little less than the theoret
prediction but in agreement with the estimates obtained
other numerical and analytic calculations~see Table IV!.
Several studies have provided evidence that the antisym
ric mass gap in the Wilson model ofU(1)211 Hamiltonian
lattice gauge theory does not fall in the weak-coupling lim
in the same manner as the periodic Gaussian model.3 This
may be a signal of nonuniversality for the AbelianU(1)
theory.

E. Mass gap ratio

The quantity of interest here is the dimensionless ratioRM

between the symmetric and antisymmetric mass gap in
largeb limit. In this limit the ratioRM5MS /MA is expected
to tend smoothly to its continuum value. In practice, th
limiting value is found by increasingb from strong-coupling
until the mass ratio levels off in the weak coupling regio
Earlier studies of the photon mass@52# showed that the scal
ing of the mass ratio sets in forb.1. If the continuum

3Based on the fact that periodic Gaussian models are spe
forms of Wannier-fuction expansions, Suranyi@59# has argued that
a natural series of models, beginning with periodic Gaussian
approximating the Wilson model with arbitrary precision, does n
exist.
4-12
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FIG. 13. The logarithm of the
antisymmetric mass gap as a fun
tion of b. Open triangles show
our present estimates. The sol
line is the fit to the data for 1
<b<2. Previous estimates from
the Wilson action@13# are shown
as solid triangles.
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theory admits a stable bound state of two photons~a glue-
ball!, then the weak-coupling limit of the mass ratio will li
between 1 and 2. If the continuum theory is simply a fre
field theory of massive scalar photons, as in the Villa
model or if the glueball remains in the continuum theo
only as a resonance, then the ratioRM52 should be ob-
served asb becomes large. Lana@64# argued for a sharp
‘‘transition point’’ at b51.40 where the symmetric boun
state ceases to be stable, and crosses the level consisti
two free axial particles, so that mass ratio suddenly levels
at value 2.

In general, the most accurately calculated physical qu
tity is the string tensionK. Therefore the first quantity tha
we shall extrapolate to the continuum limit will be of th
form M /K, whereM is the glueball mass. The leading co
rections to such a ratio are known to be of the orderO(1/z)2

@50#, where z is some length scale. In the weak-couplin
limit,

TABLE IV. Results for the coefficientsf 0 ~slope of the scaling
curve! and f 1 ~the intercept of the scaling curve! in the weak-
coupling limit for the antisymmetric mass gap.

Source f 0 f 1

Villain ~Hamiltonian! @38# 6.345 4.369
Morningstar@52# 5.23 5.94
Hamer and Irving@60# 5.30 6.15
Hamer, Oitmaa and Weihong@61# 5.42 6.27
Plaquette Expansion@62# 5.01 5.82
Heys and Stump@63# 4.97 6.21
Lana @64# 4.10 4.98
Xiyan, Jinming and Shuohong@65# 5.0 5.90
Dabringhaus, Ristig and Clark@66# 4.80 6.26
Darooneh and Modarres@67# 4.40 5.78
Present Work 5.39~9! 6.3~1!
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MA /K→p2/2 as b→`,

in contrast to QCD, whereM /AK is constant in the con-
tinuum limit. Figure 14 displays the estimates for this qua
tity, as a function ofb. The data certainly appear to level o
below ae f f

2 '0.006 at a value 6. This is quite close to th
predicted value for the Villain model.

Figure 15 shows the behavior of the dimensionless m
ratio RM5MS /MA as a function of effective lattice spacin
squared,ae f f

2 , whereae f f is defined from Eq.~10! as @13#

ae f f5A8p2be2p2bv(0).

The plot shows that the mass ratio approaches very close
the expected value of 2 in the largeb limit. A linear fit to the
data from 0.00026<ae f f

2 <0.0066 givesRM52.00760.01,
which is consistent with a continuum limit valueRM52.
There is no sign of a stable, scalar glueball bound state,
of any sharp ‘‘break’’ in the mass ratio. In comparison with
previous results using the unimproved action, there are
notable features. First, the results are much more accu
Second, the corrections to the continuum limit appear to
linear inae f f

2 , whereas those for the unimproved action we
linear in ae f f @13#. This provides impressive evidence th
the improved action has achieved what it was designed to
produce faster convergence to the continuum limit~see
Table V!.

V. SUMMARY AND CONCLUSIONS

In this work, we have applied the standard Euclidean p
integral Monte Carlo method to obtain results in the Ham
tonian limit of the Symanzik improvedU(1)211 lattice
gauge theory on anisotropic lattices. Monte Carlo resu
were obtained for the static quark potential, renormaliz
anisotropy, the string tension, and the lowest-lying glueb
masses. The interquark potential with the improved act
4-13
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FIG. 14. The dimensionless ra
tio MA /bK as a function of effec-
tive lattice spacing,ae f f . Open
triangles show our present PIMC
estimates. Our previous estimate
using the Wilson action@13# are
shown as solid triangles.
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exhibits good rotational symmetry. We found that both t
improved and standard Wilson action do equally well in e
tracting the static potential at large separations. The
proved discretization allows substantially more accurate
timates of the string tension and the glueball masses.
extrapolations to the Hamiltonian limit were performed
simple quadratic fits.

In this limit the string tension displays an asymptotic b
havior which is in excellent agreement with the behav
predicted by the weak-coupling approximation of Go¨pfert
and Mack@38#. The scaling coefficient of the scaling curv
for the mass gap was estimated to be roughly twice as la
in magnitude as the weak-coupling prediction. This is
improvement over our previous unimproved results wh
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were estimated to be larger by a factor of 5–6. We belie
that these estimates can be further improved by taking
renormalization of the couplings into account, i.e., comp
ing the action beyond the tree-level.

The weak-coupling behavior of the antisymmetric ma
gap was found to agree with the theoretical expectations.
parameters agree quite well with the results obtained fr
previous numerical and analytic calculations. The mass r
RM5MS /MA was observed to scale to 2.00760.01 in the
continuum limit. No sign of a glueball bound state or a sha
crossover between the levels was seen. This is in exce
agreement with the statement of Go¨pfert and Mack@38#, that
the continuum limit corresponds to a theory of free boso
whereRM52 exactly. It also shows very clearly the value
s
s.

-

FIG. 15. Mass ratio,RM , as a
function of effective lattice spac-
ing, ae f f . Our present estimate
are shown as the open triangle
The solid line is the fit to the data
in the range 0.00026<ae f f

2

<0.0066. The solid triangles
show our earlier estimates ob
tained from the Wilson action
@13#.
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using an improved action, in giving more rapid convergen
to the continuum limit, as well as improved accuracy.

Taking advantage of the improved discretization on ani
tropic lattices, we aimed to apply the Euclidean path integ
Monte Carlo approach to examine the Hamiltonian limit
U(1) theory. The results obtained here clearly demonst
that PIMC is a more reliable technique than other quant
Monte Carlo methods, such as Green’s Function Mo
Carlo, which gave only qualitative estimates of the stri
tension and the mass gap~see Table VI!.

Although suffering from the disadvantage that it requir
an extrapolation to the anisotropic limit, PIMC is the pr
ferred Monte Carlo technique for obtaining reliable results
the Hamiltonian formulation, just as in the Euclidean form
lation. In order to make the PIMC method a more valua
tool in Hamiltonian lattice gauge theories, it will be cruci
to show that it allows one to treat eventually matter fields
well as gauge fields especially in the non-Abelian case.

TABLE V. Comparison of the Hamiltonian estimates for dime
sionless mass ratioRM obtained using the improved and standa
Wilson actions.

b RM

Improved action Wilson action

1.0 1.11~2! 1.32~1!

1.35 1.4~1! 1.5~2!

1.55 1.7~1! 2.1~1.1!
1.70 1.9~2! 2.2~1.5!
1.90 2.0~3! 2.2~1.5!
2.0 2.0~5! 2.4~1.6!
.
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TABLE VI. PIMC results for the string tension,K, sym-
metric and antisymmetric glueball massesMS , MA and the mass
ratio RM .

b ae f f K MS /K MA /K RM

1.0 0.3724 0.329~2! 5.10~5! 4.58~4! 1.11~2!

1.15 0.2481 0.189~3! 7.8~1! 6.1~1! 1.28~3!

1.25 0.1884 0.141~2! 8.9~2! 6.4~1! 1.38~4!

1.35 0.1425 0.112~5! 10.8~5! 7.3~4! 1.4~1!

1.40 0.1239 0.096~5! 10.4~5! 6.7~3! 1.6~1!

1.45 0.1076 0.067~4! 13.9~9! 8.0~5! 1.7~2!

1.55 0.0810 0.045~3! 16.6~1.0! 9.8~6! 1.7~1!

1.60 0.0702 0.041~2! 18.1~1.1! 10.1~6! 1.8~1!

1.65 0.0608 0.034~2! 19.3~1.3! 10.4~9! 1.8~2!

1.70 0.0527 0.028~2! 24.1~2.1! 12.6~1.0! 1.9~2!

1.75 0.0425 0.023~2! 22.0~2.2! 11.6~1.1! 1.9~3!

1.80 0.0395 0.021~2! 21.6~2.7! 11.1~1.3! 1.9~3!

1.85 0.0341 0.016~2! 23.4~2.5! 12.3~1.3! 1.9~3!

1.90 0.0295 0.013~2! 25.9~3.2! 13.0~1.6! 1.6~3!

2.0 0.0220 0.010~2! 26.0~4.5! 12.9~2.2! 2.0~5!

2.10 0.0164 0.009~2! 23.4~5.0! 11.5~2.5! 2.0~6!

2.20 0.0122 0.008~2! 18.9~8.7! 9.6~2.4!
A.
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