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Hamiltonian study of improved U (1) lattice gauge theory in three dimensions
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A comprehensive analysis of the Symanzik improved anisotropic three-dimensigaal lattice gauge
theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the
static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and
the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved
anisotropic action is presented. The discretization errors in the static potential and the renormalization of the
bare anisotropy are found to be only a few percent compared to errors of about 20—25 % for the unimproved
gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed
in the weak coupling region and the behavior is tested against analytic and numerical results obtained in
various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling
coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with
various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster
convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball
ratio Mg/M 5 approaches exactly 2, as expected in a theory of free, massive bosons.
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I. INTRODUCTION method have been extremely succesEfu#8] and have given
rise to great optimism about the possibility of obtaining re-
Lattice gauge theory calculations have demonstrated imsults relevant to continuum physics from Monte Carlo simu-
portant qualitative features of QCD, with increasing accu-ations of lattice versions of the corresponding theory. Such
racy. Most lattice gauge theory calculations to date have beesn optimistic view is supported by recent work of Sexton
performed using Monte Carlo techniques in the Euclidearet al. [9], Boyd et al. [10], Luo et al. [11] and Morningstar
formulation. Although the Euclidean lattice gauge theory hasand Peardo12] who have attempted to derive masses of
been a very successful nonperturbative technique to computhke low-lying hadrons from such calculations and report suc-
the properties of elementary particles over the years, thereessful results. More recent is the application of path integral
are areas where progress has been very slow. Examples avionte Carlo (PIMC) technigues to obtain results in the
QCD at finite temperature, glue thermodynamics, heavyHamiltonian limit for theU(1) model in(2+1) dimensions
quark spectra, etc. Some of these problems have resisted §a3] and SU3) lattice gauge theory i3+ 1) dimensions on
lution even by the powerful techniques of Euclidean fieldanisotropic lattice$14].
theory. This suggests that alternative methods should be pur- The use of improved actiod5,16 makes possible ac-
sued in parallel with Euclidean lattice gauge theory. A viablecurate Monte Carlo simulations of QCD on coarse lattices
alternative that needs to be explored is the Hamiltonian verwith greatly reduced computational eff¢it2,17,18. In prin-
sion of QCD. This approach provides a valuable check of theiple, with an improved action it is possible to achieve lattice
universality of the Euclidean result§] and has an appealing volumes large enough to overcome finite-size effects and ob-
aspect in reducing lattice gauge theory to a many-body probtain measurements with good statistical errors. Coupled with
lem. As such the formalism is suited for the application of atadpole improvemeritl9], the pursuit of the Symanzik pro-
host of analytic methods imported from quantum many bodygram has led to significant progress in reducing the discreti-
theory and condensed matter physics. It has been suggesteation errors and the renormalization of the anisotropy to the
that Hamiltonian lattice gauge theory could more readilylevel of a few percent, and makes using anisotropic lattices
handle finite density QCIP2]. The problems encountered in no more difficult than isotropic ones. At the same time the
finite density QCD in the Euclidean formulation have merits of using an improved anisotropic lattice have been
prompted a return to the strong coupling expansions of earlyell understood[17,20. Anisotropic lattices allow us to
Hamiltonian lattice gauge theof$]. Similar ideas have been carry out numerical simulations with a fine temporal resolu-
pursued recently by Luet al. [4,5] who propose an alterna- tion while keeping the spatial lattice spacing coarse, ag.,
tive Hamiltonian lattice formulation, “the Monte Carlo <ag, wherea, anda, are the lattice spacings in the temporal
Hamiltonian,” and have already demonstrated its validityand spatial directions, respectively. This is especially impor-
and efficiency for theb* model[6]. tant for QCD Monte Carlo simulations at finite temperature
Here we attempt to extend the standard Euclidean pathnd heavy particle spectroscopy. But more importantly it
integral Monte Carlo techniques to Symanzik improvedshould make extrapolations to the continuum limit more re-
U(1) gauge theory in three dimensions. Applications of thisliable.
As mentioned above, our aim in this work is to apply
standard Euclidean path integral Monte Carlo techniques to
*Electronic address: mushe@phys.unsw.edu.au extract the Hamiltonian limit for Symanzik improved
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U(1),,, lattice gauge theory on anisotropic lattices. Thewhere x labels the sites of the lattice, j are the spatial
idea is to measure physical quantities on increasingly anisqndices andU;(x) is the link variable from sitec to x+1.
tropic lattices, and make an extrapolation to the extreme anfhe rectangular loop that extends two steps in the time di-
isotropic limit. The effect of the plaquette improvement is rection has not been included in the above action. This has
examined by studying the scaling behavior and the sensitithe advantage of eliminating negative residue high energy
ity of scaling coefficients of the string tension and glueballpoles in the gluon propagatdd7] but at the same time
masses in the Hamiltonian limi§—0. The rest of the paper |eaves errors of the ordef in the action. Thed(a?) errors,

is organjzed as follows: I.n _Sec. Il we briefly revi_ew _the however, are negligible provides} is small compared ta.
formulation of the Symanzik improved(1) gauge action in - The pare anisotropy parameteréignd is equal to the aspect
three dl_men5|ons on an anisotropic lattice. The details of thestio of the temporal and spatial lattice spacings at the tree
simulations and the methods used to extract the observablgsye|. At higher orders in the perturbative expansion, the bare
are described in Sec. Ill. Here we discuss our techniques fo&nisotropy in the simulated action is not the same as the

calculating the static quark potential, renormalization of an{easured value,,s, due to quantum correctiofig2]. The
isotropy, string tension and glueball masses from Wilsoruoyplings3. and 5, are defined by23]

loop operators. We present and discuss our results in Sec. IV.

Scaling of the string tension, antisymmetric mass gap and the 1

mass ratio in the weak-coupling region are tested against Bs=—, PBi=
theoretical predictions and compared with the estimates ob- g§ g
tained by other studies in the Hamiltonian limit. Our conclu-

sions are given in Sec. V, along with an outline of future The two different couplings in Eq1) are necessary in order

1
—- (6)
t

work. to ensure that in the continuum limit, physical observables
become independent of the kind of lattice regularization cho-

Il. IMPROVED ANISOTROPIC DISCRETIZATION sen. In the case of an asymmetric lattice, this implies that

OF U(1)p41 physical quantities have to be independent of the anisotropy

factor £. To achieve this, one needs to introduce different
couplings for spatial and temporal directions, which depend
on . The ¢é-dependence of the coupling$ andg? is due to
guantum corrections and leads to an energy sum rule for the
quark-antiquark potential, and the glueball mass, which dif-
fers in an important way from that which one would expect
naively.

In the weak coupling limit oSU(N) lattice gauge theory,
the relation between the scales of the couplings in Euclidean
£ 5“4 (D" and Hamiltonian formulations has been determined analyti-

cally from the effective action§23-26, using the back-
where P,, and R,,, are the X1 Wilson loop and %1 ground field method on the lattice. For small valuegygt
rectangular loop in the.X v plane respectively. At the tree- the couplingsgs andg; can be expanded as
level the coefficients are chosen so that the action has no

The Symanzik improvetd (1), ; gauge action on an an-
isotropic lattice is identical in form to the $B) case and is
given' by [17]

ngﬁsgg 2

5 1
Fpij(x)_l_zuG[Rij(X)"'Rji(x)]

4

1
— 5 Pit(X)— ——Z—=Ri()
3u?u? 12utu?

O(a?) discretization corrections. The spatial and temporal 1 1 )
square and rectangular loops are given by ;Zg—z+0t(§)+0(gg) (7)
t E
P () =[1-U;,00U;(x+DU{(x+ U] 0] (2)
1 1
? s - ===+ +0(g
Rij(x)=[1—U;(x)U;(x+1)U;(x+21) U] (x+i o o2 cs(§) +O(ge) ®)

2 t ~ t
+PHUIx+DUj(X)] 3 wheregg is the Euclidean coupling. F@r=1, one recovers

R . the usual Euclidean lattice gauge theory, where=g;
Py () =[ 1= U;(x)Uy(x+ 1)U (x+ 1)U (x)] =ge. In the limit é€=0, Egs.(7) and (8) reduce to their
4 Hamiltonian values and one obtains the relation between the
Euclidean couplinggg and its Hamiltonian counterpagi; .

Rie(X)=[1—U;(X)U;(x+1)Uy(x+20)UT (x+1 Similar calculations have been performed to determine the
- - anisotropic coefficientss andc, at arbitrary anisotropy for a
+HU (X+HU{(X)], (5)  class of improved actior[£0,27—29. These coefficients be-

come an important tool in the analysis of glue thermodynam-
ics[30], the quark-gluon plasm&1,32 and for the determi-
The notation used here differs slightly from that used in Ref.nation of spectral functions at finite temperat[88]. Similar
[21], where the prefactors were absorbed into the definitiong of calculations have not yet been done for tél) theory,
and &, We follow the notation introduced ifil7]. however, as far as we are aware.
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Tadpole improvemerjtL9] is introduced by renormalizing ll. METHOD
the link variables: U;(x)—U;(X)/ug, and UX)
—U(x)/u;, where the mean fieldss andu, can be defined
by using the measured values of the average plaquettes in a
simulation. In the plaquette mean-link formulation, the mea
fields are determined self-consistently and are defined by

A. Simulation details

To extract estimates of the string tension and the glueball

asses using the Symanzik improved action in #j.a set
of simulations are performed on lattices of suéx N; (Ng
B va 22 =16 andN,=16—64), whereNg andN, are the number of

Us=(Pij)™  Ugus=(Py). (9 Jattice sites in the spatial and temporal directions respec-
tively. The lattice size in the time direction is adjusted ac-

For a;<a, the mean temporal link, is expected to be very cording to the anisotropy used in order to keep the physical
close to unity. For simplicity we use a convenient and gaugéength in the spatial and temporal directions equal. To ana-
invariant definition forug in terms of the mean spatial lyze the behavior in the strong and weak coupling regions,
plaquette given byis=(Re TrPij)l"‘, and computes; from  gauge configurations are generated using MEFROPOLIS
the temporal plaquette;; in Eq. (9). algorithm, for a range of couplingd=1—2.5. The details of

To obtain the Hamiltonian estimates from anisotropic lat-the algorithm are discussed elsewhgt8]. Starting from an
tices, a naive extrapolation procedure is followed. In thisarbitrary initial gauge configuration, 50 000 sweeps are per-
procedure we assume classical values of the couplings, i.&fermed for the equilibration of the configurations and the
B=PBs= B¢ in Eq. (1) and extrapolate the physical quantities self-consistent determination of the mean-field parameters. A
to the extreme anisotropic limiE—0 at constan3. Such a  Fourier acceleration procedufé2,43 is used to overcome
procedure is not strictly correct, however, at the quantumhe stiffness against variations in the temporal plaquettes for
level becauses # B;# B due to renormalizatiof. high anisotropies. About 50% of the ordinameTROPOLIS

As an example of the application of PIMC to the Syman-updates are replaced with Fourier updates §et0.4 and
zik improved action, we consider the case of compagt)  about 100000 further sweeps are performed to allow the
gauge theory in three dimensions. The relevance of theystem to equilibrate.
model to QCD at finite temperatuf85] has made it a stan- After thermalization, configurations are stored every 300
dard proving ground for Hamiltonian lattice numerical meth-sweeps; 1200 stored gauge configurations are used in the
ods. The model has two essential features in common witineasurement of the static quark potential and string tension
QCD, confinemen{36-39 and chiral symmetry breaking and 1500 configurations for the glueball masses at gach
[40]. Other common features are the existence of a mass gapeasurements made on the stored configurations are binned
and a confinement-deconfinement phase transition at someto five blocks with each block containing an average of
nonzero temperature. These similarities suggest that a com50 measurements. The mean and standard deviation of the
parison of the respective mass spectra should be informativéinal observables are estimated simply by averaging over the
In the continuum limit of theory, the mass ghpis found to  block averages. The simulation parameters used for each

behave a$37] configuration set are shown in Table I. It should be noted that
Table | does not show all of the used values of parameters in
M2a?~ consp ex] — 272Bv(0)]=M3 (10)  the estimation of the physical quantities in Sec. IV.
wherev (0)~0.2527 is the lattice Coulomb Green’s function B. The interquark potential and string tension

at zero separation. In Hamiltonian theory in which the space

dimensions are discretized,;(0)~0.3214 is the analogous  The static quark potential(r) is extracted from the ex-
Green’s functior 38]. It has been shown analytically that a pectation values of the timelike Wilson loop#(r,t), which
linear confinement persists for all nonvanishing couplingsare expected to behave as

no matter how weak37,3§. The string tension as a function

of coupling also scales exponentially and obeys a lower
bound W(r,t)=~2 Zi(rexd —tvi(n], (12
I

K=consMpB 1. (1)

where the summation runs over the excited state contribution
An interesting feature to explore in this context is whetherto the expectation value, arek 1 corresponds to the lowest
the coupling to matter fields will change the permanent conenergy contribution. To obtain the optimal overlap of Wilson
finement status i1i2+1) dimensiong41]. loop (and gluebal)l operators with the lowest state, it is nec-

essary to suppress the contamination from excited states.

This is done by using a simple APE smearing method

2One-loop calculations of the renormalization of the anisotropyl17,44,43 which is implemented by the iterative replace-

and the gauge coupling in spatial and temporal directions for thénent of the original spatial link variables by a smeared link.
improved Abelian lattice gauge theory are currently underway and=ollowing the single-link smearing procedure, every space-
will be reported elsewhers4]. like link variable U;(x) on the lattice is replaced by

014504-3



M. LOAN AND C. HAMER PHYSICAL REVIEW D 70, 014504 (2004

TABLE |. Simulation parameters at varioysand ¢ values.

Volume B £ Uy Ug (ug)? (P) atug
16°x 32 1.0 0.5 0.999B) 0.92182) 0.7220 0.7220)
16°x 32 1.45 0.5 0.9997?) 0.94682) 0.8038 0.803®)
16°x 32 1.75 0.5 0.9993) 0.95513) 0.8324 0.8328)
16°%x 32 2.0 0.5 1.0 0.9589) 0.8458 0.845@)
162x 32 2.5 0.5 1.0 0.9614) 0.8543 0.854@®)
16°x 40 1.0 0.4 1.0 0.9183) 0.7110 0.71104)
16°x 40 1.45 0.4 1.0 0.9433) 0.7917 0.791€)
167X 40 1.75 0.4 1.0 0.9493) 0.8138 0.813%)
16X 40 2.0 0.4 1.0 0.9528) 0.8228 0.822%)
16°X 40 2.5 0.4 1.0 0.95G62) 0.8358 0.835@)
16°x 48 1.0 0.333 1.0 0.91%32) 0.7016 0.701®)
16°x 48 1.45 0.333 1.0 0.93%8) 0.7663 0.7664)
16°% 48 1.75 0.333 1.0 0.9402) 0.7815 0.7816)
16%°x 48 2.0 0.333 1.0 0.9408) 0.7836 0.783®)
16°x 48 2.5 0.333 1.0 0.94%4) 0.7991 0.799®)
16°X 64 1.0 0.25 1.0 0.9118) 0.6895 0.689®)
16°X 64 1.45 0.25 1.0 0.9283) 0.7440 0.743@)
16°Xx 64 1.75 0.25 1.0 0.93%3) 0.7665 0.766@®)
16°X 64 2.0 0.25 1.0 0.93%3) 0.7745 0.7738®)
16°X 64 2.5 0.25 1.0 0.94Ga) 0.7812 0.781M)

. . nated by noise fot>6. We fix the fitting range to be, in
Ui(X)— Py an(x)+§ Z U;00U i (x=])UT(x=1) most cases,=2 to 6.
S The string tension is then extracted from the Wilson loops
(13 by establishing the linear behavior for the static quark poten-
tial at large separation We have chosen to fit our results for

WhereU,iEUT(x—f) andi andj are purely spatial indices. V(r) to the form[38]

Py(1) denotes the projection ontd(1) anda is the smear-

ing parameter. Operators constructed out of smeared links
dramatically reduced the mixing with high frequency modes, V(r)=a+Kr+bin(r), (19
thus removing the excited-state contamination in the correla-

tion functions. The smearing fraction is fixed é6=0.7 and ) . i

ten iterations of the smearing process are used. To reduce tMd1€re the linear term dominates the behavior at large sepa
variance, we use the techniquetbérmal averaging13,46,  rations and a logarithmic Coulomb term dominates at small
which amounts to replacing the timelike link variablgsby ~ Séparations.
their local averages. This technique was applied to all tem-

poral links except those adjacent to the spatial legs of loops,

which are not independent. The technique has a dramatic

C. Renormalization of anisotropy

effect in reducing the statistical noise. Since the anisotropy ratioy, is important in QCD simu-
The values of t.he effective potent_lal are measured fromations on the anisotropic lattices, we study its behavior by
the logarithmic ratio of successive Wilson loops numerical simulations. Measurements of renormalization of

anisotropy[47] have been made by comparing the static

quark potential extracted from correlations along the differ-
(14 ent spatial and temporal directions. On an anisotropic lattice

there are two different potential(r) andV(r) extracted

from two different types of loops: timeliké/,; and spacelike
which is expected to be independenttdbr t>0. A plot of W, Wilson loops. The two potentials differ by a factor of
the effective potential is shown in Fig. 1 f@gr=1.70 andé  £,,,sand by an additive constant, since the self-energy cor-
=0.4 for various separations The dashed lines indicate the rections to the static quark potential are different if the quark
plateau values at various separations. As a result of heawand antiquark propagate along the temporal or a spatial di-
smearing, a good plateau behavior is seen at stallues  rection. The natural way to proceed is to build ratios of the
for r=1 through 7. For =6, we see that the signal is domi- Wilson loops,

W(r,t+1)

Vi(r)=—In WirD
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R(X,y) = Wiy(X,y+1) (16) and the measured anisotropy parametgris then given by
Wiy(X,Y)
3
Asymptotically for larger andy, the ratiosR; and Rg ap- n= %ys . (21)
proach

An alternative approach to make the comparison is to fit the

Ri(x,t)~Z,.e” "Vt+ (excited state conir. . :
() =2y ( ) measured potentials with the forrfés]

R.(X,y)~Z,,e YVs+ (excited state coniy. 1
s0Y) =2y ( ’ @9 aVy(x)=a+ca2x+clnx

The physical anisotropy is then determined from the ratio of

the potentialsV,(r) and V4(r) estimated fromR; and R, ag
respectively. The lattice potentials defined by Etj7) con- aVi(t)=a+oaattcin at|’ (22
tain contributions from the self-energy terms. The potential is
simply parametrized as The renormalized anisotropnys is then determined from
o ¢ the ratio of the coefficients of the linear terms in the two
Vs(£,1)=Vs(€) +V(£,1), (18) cases. It is advantageous to use the potential at snraller

‘. _ , . where the statistical errors are smaller, and deterrijigs
whereV is the lattice potential free of self-energy contribu- 5y the ratio of the coefficients of the Coulomb terms; how-
tions. The timelike potentidV, is treated s.lmllarly. To e[|m|- ever, such an estimate depends on short distance effects and
nate the effect of the self-energy tevf? in the potentials, s more sensitive to possible discretization errors of
we define a subtracted potential o(a’/r%) [47].

sub _\f f
VsTHEnTo) = V(&) —V(&iro) D. Glueball masses

VEUR(E t,to) = VI(£,0) — VI(£,to) (19) The numerical analysis of the mass of a glueball having a

given JPC proceeds through a study of the timelike correla-

where the subtraction pointg andt, are chosen to satisfy tions between spacelike Wilson loop operatdrgt)
to=¢éry and the matching of the potentia\ytf(tozgro) .
=V!(r,) should be satisfied there. The subtraction radjus C(t)=(D] () Di(1)), (23
should be chosen to be as small as possible so that fluctua-
tions of the potential do not increase, in which case simulawhere
tions with high statistics on a larger lattice are required. The o
renormalized anisotropy is determined from the ratio ®;(t)=D;(t)—(0|D;(t)|0) (29
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t

is a gauge invariant vacuum subtracted operator capable @fherem; is the mass of the lowest-lying glueball which can
creating a glueball out o_f th_e vacuum. It is necessary to s_ubOe created byfi(t), andT=N,a, is the extent of the peri-
tract the vacuum contribution for the scalar glueball with y4ic |attice in the time direction. Here only the lowest
JP€=0"", because in the large Euclidean time lin@x(t) “symmetric’ (PC=++) and ‘“antisymmetric’ (PC
becomes dominated by the lowest energy state carrying the” _y glyeball states are studied. The measured values of
quantum numbers o> and these quantum numbers may ¢ty are expected to fall on a simple exponential curve as-
coincide with that of the vacuum. The vacuum contributiongming that the lattice is fine enough for the glueball mass to

is averaged over the whole ensemble before subtracting froRy bt scaling behavior according to the theoretical predic-
the correlator. The glueball mass of interest is then extractegy,g

by studying th_e expo_nential d_ecay of the correlation function o, 5 finite lattice with lattice spacing, the operator
for large Euclidean times, which is expected to behave as ®,(t) has a small overlap with the glueball ground state, and

C(t)=c;[exp(— mit) + exp(— m(T—1))] the mass extracted fr_om(_t) may be too large owing to the
excited-state contamination. The overlap gets worse as the

+ (excited state contributions (25 lattice spacing is reduced and nears the continuum lianit,

1 T T T T T

FIG. 3. Static potentialy/(r),
as a function of separationat 8
=1.55 and¢=0.4. The solid line
is a fit to the formV(r)=a+br
+cIn(r) in the range 3r=<8.

V(r)
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0.35 FIG. 4. A close up of the static

quark potential V(r), at smallr,
using the Symanzik improved ac-
tion. The solid line is a fit of Eq.
(15) to on-axis pointsr=4 to 8.
This plot involves measurements
at B=1.55 for £=0.4 with 10
smearing sweeps at smearing pa-
rametera=0.7.

V(r)ps

0.25

0.2
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—0. This is obvious since the physical extension of the glue-

ball remains fixed, while the operatdr, constructed from ()=, vigpialt) (26)
small loops, probes an ever smaller region of the glueball ‘

wave function as the lattice spacing is decreased. Hence it

becomes important to use an improved glueball operator s@here the indexx runs over the rectangular Wilson loops
as to have approximately the same size as the physical siz@ith dimensions I,=[n—1n+1], l,=[n—1n+1] and

of the glueball. For such an operator, the overlap with thesmearingng=[m—1m-+1]. The correlation functiorC(t)
glueball of interest is strong at small lattice spacing and —

signal-to-noise ratio is also optimp4g). Is then computed from the optimized glueball operaboft)
Following the variational technique of Morningstar and

Peardon17] and the smearing procedure of Tepg0], an

optimized operator was found as a linear combination of the Ci(t)=, <0|5i(t+t0)5i(t0)|0>- (27)

basic operatorgp, to

08

0.7

FIG. 5. A close up of the static
quark potential V(r), at smallr.
The solid line is a fit of Eq(15) to
on-axis pointg =4 to 8. This plot
involves measurements from the
standard Wilson actiofil3] at 8
=1.4142 for £&=0.4 with 10
smearing sweeps at smearing pa-
rametera=0.7.

06
V(r)
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Figure 2 shows the effective mass plot for the scalar glue- TABLE Il. Comparison between the measured anisotrépy, s
ball for the measurements At=2.0 andé=0.50. The signal and the input anisotropy¥ for the Symanzik improved and the
is seen out to the time slice 6 and reaches a plateau region féfandard Wilson actionisl3]. The measured differences in the off-

1<t<5. The data are noisy fdr>5. axis potential ar=(1,1) are also shown.
We choose to fit the correlation functidd(t) with the _
simple form Action B 3 éphys AV(42)
ro=2 ro=+2
Ci(t)=c,coshm;[ T/2—t] (28

Improved ~ 1.35 0.50 0.496) 0.4932) 0.031)
to determine the glueball mass estimates. action 0.40 0.39@) 0.3906) 0.032)
0.333 0.328) 0.3205)  0.044)
IV. RESULTS AND DISCUSSION 1.45 0444 0.44®) 0.4414)  0.042

0.333 0.3263) 0.3216) 0.043)

A. Static quark potential and rotational symmetry 0.25 0.2464)  0.2407) 0.054)

A plot of the static quark potentidl(r) as a function of 1.55 0.40 0.40@2) 0.3986) 0.042)
at B=1.55 andé=0.4 is shown in Fig. 3. The data in this 0.25 0.2415) 0.2397) 0.064)
plot were obtained by looking for a plateau in the effective 165 0333 0.33% 03325 0.021)
potential. 1.75 025 0.25@) 0.2496) 0.031)

Because we are concerned to make long distance behavior 20 0.333 0.33%) 0.3342) 0.031)
consistent in both fine and coarse directions, it is advanta- 025 0.2424) 0.2461) 0.062)
geous to use Wilson loops of the largest possible spatial eXpjiison 1.35 0444 0418 0.4197) 0.121)
tent. However, in practice, the statistical errors in large Wil-5.4ion 155 040 0379 0.3746) 0.101)
son loops grow exponentially with separation. We use 170 0333 028F) 02895  0.081)
Wilson loops of size & 8 and fit the data by Eq15). We fit 20 0333 0286) 02922 0.132)

in the range 3=r=8 so that we are not sensitive to the
Coulomb term and the discretization errors associated with

it. We see that the data are fitted very well giving the string i i ) )
tension,K (= a?) =0.0443). For a fixed number of configurations and constant physi-

One of the main features of the improved discretization i@ volume, we show the results from the Symanzik im-
the improved rotational invarian¢@1]. Discretization errors ~Proved action and standard Wilson action in Figs. 4 and 5
in the gluon action affect the extent to which continuumrespectively. We see that the off axis points for the improved
symmetries, such as rotational symmetry, are restored. Tigttice are excellently fitted by the rotationally invariant fit-
explore the extent to which rotational invariance is im-ting curve(15) throughr =3 to 8. The data from the Wilson
proved, we measure the potential at off-axis as well as onaction lie rather less close to the line of best fit. However, at
axis separations. Thus for improved rotational invariance, théarge separations, the standard Wilson action does just as
static potential, for example, at=(4,3) should agree exactly well as the improved action in extracting the static quark

with that atr=(5,0). potential.
08 N T T T T T T T T
V&, 1-ViievE) o
or | vie, n-vieva) - & CI
o6} & .

FIG. 6. Subtracted spatial and
> 05T & 1 temporal potentials against the
o & separationr. This plot involves
&}; 04} J measurements g8=1.75 and¢

2. =0.333 for the subtraction point
B" ro=+2. The temporal potential
os} 1 V$UP has been rescaled by the in-
& W put anisotropy.
o2} ]
m
o1} L ]
15 2 25 3 35 4 45 5 55 6
r
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2 V, -0 ' ' ' ~ B=175
VS - A §=O333

0.8
V(r)

0.6

FIG. 7. Unsubtracted spatial
and temporal potentials against
the separatiom at 3=1.75 and¢
=0.333. The temporal potential
V,(r) has been rescaled by the in-
put anisotropy.

04

0.2

As a quantitive measurement of the improvement, the po- B. Numerical determination of renormalized anisotropy
tential measured in the simulation from nonplanar Wilson
loops is compared with an interpolation to the on-axis data We choose the points,=2 and J2 to compute the sub-

[47], traction potentials of Eq(19) and use them to obtain the
ratio in Eq.(20). The subtracted spatial and temporal poten-
AV(r)= Vsin(1) — V() _ (29) tials at the subtraction poimp= \/2 are shown in Fig. 6. The
or anisotropies measured at these subtraction points for the im-

proved and unimproved actions at differefit values are
Results forr=(1,1) are given in Table Il. With the mean- compared in Table Il. The two determinations of the
field inspired Symanzik improvement, the difference is onlyanisotropies are in excellent agreement. These results show
a few percent compared to a difference of about 10—20 % fothat the input anisotropy is normalized by less than a few
the Wilson actior{13]. percent for the improved action. This is in contrast with the

FIG. 8. Extrapolation of the
string tension to the Hamiltonian
limit ¢&—0, for variousB. Solid
lines show the quadratic fits i&f
to the data.
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0% A Improved action ~A—
Wilson action -~ A~
o3t ﬁ t expansion - @]
ELCE -
GFMC O~
025 A FIG. 9. The string tension as a
function of inverse coupling. Our
o2} A - present estimates are shown as
K open triangles. Earlier results
O from standard Wilson actiofil3],
015 A - iy t-expansion[52], Green’s Func-
4 tion Monte Carlo simulationf53]
o1 b A & | and an exact linked cluster expan-
: ; sion [54] are shown as solid tri-
A angles, solid circles, open circles
0.05 F Aa, N . and open squares, respectively.
| ﬁAAAAAA A A |
1 12 14 16 18 2 22 24
§
standard Wilson actiofil3], where the measured anisotropy C. String tension
is found to be about 20—30 % lower than the input anisotropy
& To obtain estimates of the string tension in the Hamil-

Figure 7 shows the potentials computed from spatial andonian limit, an extrapolation is performed by a simple qua-
temporal Wilson loops without subtracting the self-energydratic fit in powers of¢? for eachp value. The simulations
terms. We find that the difference between the estimate&In over a range of anisotropies:=1—0.25, thus enabling

computed from subtracted and unsubtracted potentials is leLgliable extrapolation to the Hamiltonian limit. The errors for

L . the extrapolation may be obtained by the “linear, quadratic,
0,
than 1% for the Symanzik improved action. We concludecubic,, extrapolant method51]. Figure 8 shows our esti-

that a few percent renormalization in the anisotropy is sufﬁ-mates of the string tension as a function of the anisotpy

ciently small that it is unlikely to represent the dominantfo; various fixed 8 values. Except a3=1.35, a fairly
effect in the final estimates and it is safe to use the bargmooth variation of string tension witi? for various cou-

anisotropy for the tadpole improved Symanzik action. plings is seen. The curvature in the extrapolation gat
Improved action A
Wilson action —A-
-1 R4 0(|34) strong-coupling expansion—-—
N Asymptotic weak-couﬁling -
Finite-size scaling behaviour — ------

FIG. 10. The logarithm of the
string tension as a function of in-
verse coupling. Our present esti-
mates are shown as open triangles.
The solid line is the result of fit-
ting to form (6) for 1.45<p8
=<1.95. The dash-dot line is the
B* order strong coupling expan-
sion [57]. Our previous estimates
[13] are shown as solid triangles.
The dashed line represents the fi-
nite size behaviof58].

In[K/B]
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=1.35 suggests that our estimate may be somewhat too high TABLE Ill. Comparison of the Hamiltonian results obtained for
there. the symmetric and antisymmetric scalar glueball maskbs, (M »)

Our extrapolated results for the string tensidh=a?o,  for the Symanzik improved and Wilson actions.
together with the earlier Hamiltonian estimates obtained

from the t-expansion[52], Green’s Function Monte Carlo A Improved action Wilson action
simulations[53] and the Exact Linked Cluster Expansion Ms Ma Ms Ma
(ELCE) [54] are plotted as a function of inverse coupling in ]TO 1.681) 1.5105) 1.901) 1.457)
Fig. 9. We see that the string tension displays an exponenti

. T : . 1.35 1.2079) 0.8115) 1.41) 0.91)
behavior at weak coupling in accordance with the theoretic 0.751) 0.4445) 0.82) 0.4(1)
prediction. It has rigorously been shown that the string ten-" ' ' ' :

. . . . 1.70 0.692) 0.3616) 0.53) 0.249)
sion in U(1)+,) undergoes a foughening transitioh 90 0.3526) 0.1773) 0.31) 0.179)
[55,56 at some intermediate coupling estimated to be near” : : : :

0.2724) 0.1362) 0.21) 0.106)

B~0.8. Beyond the transition point, the different estimates’”
of the string tension are expected to agree. The on-axis
strong coupling series approximants fail to converge beyondpective limits. The fourth order strong coupling series ex-
B=0.8, which prevents the analytic continuation of the se-pansion, obtained from integrated differential approximants,
ries expansion beyond the roughening transition. Thaliverges beyongd=1.30. In the weak-coupling region, the
t-expansion results, however, do not suffer from this diffi- string tension is consistent with the predicted scaling behav-
culty. A comparison with the GFM{53] and an exact ior [38]. An unconstrained fit of the forn6) represents the
linked-cluster expansiofb4] shows that our estimates are in data rather well in the interval 1.453=<1.95. The fit to the
good agreement with earlier estimates. Tiexpansion esti- data gives a scaling slope of 3060.13 and an intercept of
mates[52] are a little high, but still reasonably accurate. Of 1.42+0.21. The intercept of the scaling curve is roughly two
course, we do not expect that the results for the improvedimes larger in magnitude than the theory predicts, compared
action should match exactly at finite coupling with other es-to our previous results with the standard Wilson acfib8]
timates which were computed for the unimproved action. Wavhich were higher than theory by a factor of 5-6. Also in
believe our PIMC estimates are more reliable and accurateontrast with the Wilson action, a significant reduction in the
and are also clearly consistent with the behavior predicted bgrrors is clearly apparent with the tadpole-improved Syman-
Polyakov[37] and Ggfert and Mack 38]. zik action (see Table II).

Figure 10 shows the scaling behavior of the string tension In summary, it appears that the overall exponential scaling
together with results obtained using the standard Wilson adsehavior is the same for both actions, but the constant coef-
tion [13], as a function of3. The dashed-dot line is the ficient is lower for the Symanzik action by a factor of 2 to 3,
strong-coupling expansion to ord@f [57] and the solid line and closer to the theoretical weak-coupling estimate. It
represents a fit to the weak-coupling asymptotic f@én It ~ seems highly plausible that a different action should give a
can be seen that our present estimates appear to match nicelifferent renormalization for the constant coefficient, al-
onto the strong and weak coupling expansions in their rethough no analytic calculation of this effect has been done.

12 T y v T *
I 2 e =1.25 ]
1 _‘__.______.— B
__-.-'.".-
[VX- N o E
:M;\ 5 FIG. 11. Extrapolation of the
06 --0----0-"""77 T | 2 b antisymmetric glueball mass to
- -O‘O'-O- =1. y 9
---0-C B=145 the Hamiltonian limit ¢—0.
______________ A Dashed lines show the quadratic
04 b JUPUSPNRREE Y s---" T - B=165 ] fits in € to the data.
pooAATEETE B -
._._ll-l-""""' B=185
o2F-"HW- T 5\
A A-AA-A A Ao A B 2.0
0 . . . .
0 0.2 04 0.6 08 1
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) MéImproved action) —O—
o | M AImproved action) +~A- ]
* Wilson action) - @
1 [ (Wilson action) —A—
O
]
'8 $ © ? FIG. 12. Glueball masses as
0O functions of 3. Our present results
A o _ _ for the symmetric and antisym-
M W+ T® ' i metric glueball massedM(s, M)
A 40 ' are shown as open circles and tri-
A 8 o T angles, respectively. Earlier re-
- ! o ® sults obtained from the Wilson ac-
A*A } ® tion [13] are shown as solid
osr ¢ O o | 1 circles and triangles, respectivel
$A A f ¥ gles, resp y.
1 A A A 0O T
B St
of .
1 1.2 14 16 B 18 2 22 24
D. Antisymmetric mass gap these coefficients are shown and compared with previous

The weak-coupling behavior of the mass gap is not exStudies in Table IV. These results are obtained by fitting to
actly known. The rigorous analysis of iert and Mack38]  the form M?=gex —foB+f,] in the weak-coupling re-
showed that in the continuum liml/(1),. , reduces to a 9ion. It can be seen that the agreement with the earlier results
massive scalar free field theory, with a mass iawhich is  is remarkable. We find the constant coefficiéintercept of
expected to decrease exponentially as the lattice spacing go#¥ scaling curveis approximately 1.5 times larger in mag-
to zero. They showed that the lattice photon mass in th&@itude than the theory predicts. This is an improvement over
Villain action on a 3-dimensional Euclidean lattice is given our previous estimate using the Wilson actj@s], where the
by Eq.(6). It is often claimed in the literature that the Villain constant coefficients were estimated a factor 5-6 times
action is a highg approximation of the Wilson action so that larger. The scaling slope is a little less than the theoretical
Eq. (6) should also hold in the weak-coupling limit of the prediction but in agreement with the estimates obtained in
Wilson model. other numerical and analytic calculatioiisee Table V.

The extrapolation of the glueball masses to the Hamil-Several studies have provided evidence that the antisymmet-
tonian limit is shown in Fig. 11. The extrapolation is per- ric mass gap in the Wilson model &f(1),,; Hamiltonian
formed by using a simple quadratic fit in powers &.  |attice gauge theory does not fall in the weak-coupling limit
Again we see a smooth dependenceéénfor all B values i the same manner as the periodic Gaussian mbdiais

analyzed here. _may be a signal of nonuniversality for the Abeliah(1)
Our extrapolated results for the mass gap together W'“?heory.

earlier Hamiltonian estimates obtained from the Wilson ac-
tion [13] are plotted as a function ¢ in Fig. 12. Unlike the
string tension, the strong-coupling expansion of the mass
gaps is believed to be analytic near the roughening point. The quantity of interest here is the dimensionless tjo
Comparison with earlier Hamiltonian estimates shows thabetween the symmetric and antisymmetric mass gap in the
our present data follow quite closely the strong-coupling ex{argeg limit. In this limit the ratioRy =Mg/M 4 is expected
pansion estimates, obtained by the method of integrated dito tend smoothly to its continuum value. In practice, this
ferential approximants, in the strong and weak-coupling retimiting value is found by increasing from strong-coupling
gions. Thet-expansion estimate$2], obtained from Pade until the mass ratio levels off in the weak coupling region.
approximants, are found to be substantially less accurate thaarlier studies of the photon mag2] showed that the scal-

those from the strong coupling expansion. Bey@ivd2, the  ing of the mass ratio sets in fg8>1. If the continuum
approximants for the t-expansion do not converge well so

that no reliable estimates can be obtained beyond that coo=—"

pling value. Based on the fact that periodic Gaussian models are special

The asymptotic scaling behavior of the antisymmetriCforms of Wannier-fuction expansions, Surafi§®] has argued that
mass gap is shown in Fig. 13. The solid line is the result ok natural series of models, beginning with periodic Gaussian and
fitting for 1.4<B=<2.25 to the form(10) to find the scaling approximating the Wilson model with arbitrary precision, does not
slope and the intercept of the scaling curve. Our results foexist.

E. Mass gap ratio
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1 I;nproved action —A—
Wilson action c A
Asymptotic weak coupling —
of .
Bl
2t FIG. 13. The logarithm of the
—_ antisymmetric mass gap as a func-
Q- 3 tion of 8. Open triangles show
(\E our present estimates. The solid
g f line is the fit to the data for 1
— <B<2. Previous estimates from
sk the Wilson action[13] are shown
as solid triangles.
6
7F
Py A ; A A ; A
1 12 14 16 B 1.8 2 22 24
theory admits a stable bound state of two phot@glue- Mp/K—m22 as B—oe,

ball), then the weak-coupling limit of the mass ratio will lie
between 1 and 2. If the continuum theory is simply a free-in contrast to QCD, wherél/ K is constant in the con-
field theory of massive scalar photons, as in the Villaintinuum limit. Figure 14 displays the estimates for this quan-
model or if the glueball remains in the continuum theorytity, as a function of3. The data certainly appear to level out
only as a resonance, then the raRg =2 should be ob- below aZ;~0.006 at a value 6. This is quite close to the
served asB becomes large. Lang64] argued for a sharp predicted value for the Villain model.
“transition point” at 8=1.40 where the symmetric bound Figure 15 shows the behavior of the dimensionless mass
state ceases to be stable, and crosses the level consistingrafio Ry =Mg/M, as a function of effective lattice spacing
two frlee z;xial particles, so that mass ratio suddenly levels owquaredaZ,;, wherea,; is defined from Eq(10) as[13]
at value 2.

In general, the most accurately calculated physical quan- o= \Bm2Be T A0,
tity is the string tensiorK. Therefore the first quantity that )
we shall extrapolate to the continuum limit will be of the The plot shows that the mass ratio approaches very closely to
form M/K, whereM is the glueball mass. The leading cor- the expected value of 2 in the largelimit. A linear fit to the
rections to such a ratio are known to be of the o@ét/¢)>  data from 0.00026aZ;=<0.0066 givesRy=2.007+0.01,

[50], where ¢ is some length scale. In the weak-coupling which .is congistent with a continuum limit valugy=2.
limit, There is no sign of a stable, scalar glueball bound state, nor

of any sharp break in the mass ratio. In comparison with
previous results using the unimproved action, there are two
notable features. First, the results are much more accurate.
Second, the corrections to the continuum limit appear to be
linear ina2,;, whereas those for the unimproved action were

TABLE V. Results for the coefficient$, (slope of the scaling
curve and f; (the intercept of the scaling curvén the weak-
coupling limit for the antisymmetric mass gap.

Source fo f, linear in ag¢; [13]. This provides impressive evidence that
the improved action has achieved what it was designed to do:

Villain (Hamiltoniar) [38] 6.345 4.369 produce faster convergence to the continuum lifsee
Morningstar[52] 5.23 5.94 Table V).
Hamer and Irvind 60] 5.30 6.15
Hamer, Oitmaa and Weihor{@1] 5.42 6.27 V. SUMMARY AND CONCLUSIONS
Plaquette Expansiof62] 5.01 5.82
Heys and Stump63] 4.97 6.21 In this work, we have applied the standard Euclidean path
Lana[64] 4.10 4.98 integral Monte Carlo method to obtain results in the Hamil-
Xiyan, Jinming and Shuohon@5] 5.0 5.90 tonian limit of the Symanzik improvedJ(1),,, lattice
Dabringhaus, Ristig and Clafié6] 4.80 6.26 gauge theory on anisotropic lattices. Monte Carlo results
Darooneh and Modarrd$§7] 4.40 5.78 were obtained for the static quark potential, renormalized
Present Work 5.39) 6.31) anisotropy, the string tension, and the lowest-lying glueball

masses. The interquark potential with the improved action
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T 4; X Improved action —a— |
A A , Wilson action - &
65 4{; A ]
6 ’ 1
55 S b
. FIG. 14. The dimensionless ra-
5 . T tio M, /BK as a function of effec-
f & tive lattice spacing,a.;s- Open
asp - triangles show our present PIMC
3 estimates. Our previous estimates
4 ‘ 4 using the Wilson action13] are
. shown as solid triangles.
35 .
A
J A 1
25 A A : : : : A
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
2
Qefr

exhibits good rotational symmetry. We found that both thewere estimated to be larger by a factor of 5—-6. We believe
improved and standard Wilson action do equally well in ex-that these estimates can be further improved by taking the
tracting the static potential at large separations. The imfenormalization of the couplings into account, i.e., comput-
proved discretization allows substantially more accurate esng the action beyond the tree-level.
timates of the string tension and the glueball masses. The The weak-coupling behavior of the antisymmetric mass
extrapolations to the Hamiltonian limit were performed by gap was found to agree with the theoretical expectations. The
simple quadratic fits. parameters agree quite well with the results obtained from
In this limit the string tension displays an asymptotic be-previous numerical and analytic calculations. The mass ratio
havior which is in excellent agreement with the behaviorRy,=Mg/M, was observed to scale to 2.000.01 in the
predicted by the weak-coupling approximation of gkart  continuum limit. No sign of a glueball bound state or a sharp
and Mack[38]. The scaling coefficient of the scaling curve crossover between the levels was seen. This is in excellent
for the mass gap was estimated to be roughly twice as largagreement with the statement of @ert and MacK 38, that
in magnitude as the weak-coupling prediction. This is anthe continuum limit corresponds to a theory of free bosons,
improvement over our previous unimproved results whichwhereRy, =2 exactly. It also shows very clearly the value of

FIG. 15. Mass ratioRy, , as a
function of effective lattice spac-
ing, aess. Our present estimates
are shown as the open triangles.
The solid line is the fit to the data
in the range 0.00026a2
=<0.0066. The solid triangles
show our earlier estimates ob-

0 : : . tained from the Wilson action
o [23].
Improved action A
Wilson action - A
05 : Scaling behaviour —
0 0.001 0.002 0.003 . 0.004 0.005 0.006 0.007
Qofr
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TABLE V. Comparison of the Hamiltonian estimates for dimen- ~ TABLE VI. PIMC results for the string tensionk, sym-
sionless mass ratiRy obtained using the improved and standard metric and antisymmetric glueball masdds, M, and the mass

Wilson actions. ratio Ry, .
B Ru B Aofs K Mg/K M /K Ru

Improved action Wilson action 10 03724  0.32@) 5.105) 4.584) 1.112)
1.0 1.112) 1.321) 1.15 0.2481 0.189) 7.81) 6.1(1) 1.283)
1.35 1.41) 1.502) 1.25  0.1884 0.14®) 8.92) 6.4(1) 1.384)
1.55 1.70) 2.1(1.1) 135 0.1425 0.11%)  10.85) 7.34) 1.41)
1.70 1.92) 2.21.5 1.40 0.1239 0.096) 10.45) 6.7(3) 1.6(1)
1.90 2.G3) 2.2(1.5 145  0.1076 0.064)  13.99) 8.0(5) 1.7(2)
2.0 2.045) 2.4(1.6 1.55 0.0810 0.04B3) 16.61.0 9.8(6) 1.7(2)

1.60 0.0702 0.042) 18.11.1) 10.16) 1.8(1)
1.65 0.0608 0.032) 19.31.3 10.49) 1.8(2)

using an improved action, in giving more rapid convergencel.70  0.0527  0.022) 24.12.1) 12610 192
to the continuum limit, as well as improved accuracy. 175 0.0425 0.022) 22022 11.61.1) 1993
Taking advantage of the improved discretization on aniso4.80 ~ 0.0395  0.022) 21.642.7) 11.11.3 1.99)
tropic lattices, we aimed to apply the Euclidean path integrall.85 0.0341 0.01®) 23.425 12.31.3 199
Monte Carlo approach to examine the Hamiltonian limit of 1.90 0.0295 0.012) 25.93.2 13.01.9 1.6(3)
U(1) theory. The results obtained here clearly demonstrate.o 0.0220 0.01@ 26.04.5 12.92.2 2.0(5)
that PIMC is a more reliable technique than other quantun?.10 0.0164 0.002) 23.45.0 11.525 2.06)
Monte Carlo methods, such as Green’s Function Monte20  0.0122 0.008) 18.98.7 9.62.4
Carlo, which gave only qualitative estimates of the string
tension and the mass gégee Table V).
Although suffering from the disadvantage that it requires
an extrapolation to the anisotropic limit, PIMC is the pre- ACKNOWLEDGMENTS
ferred Monte Carlo technique for obtaining reliable results in
the Hamiltonian formulation, just as in the Euclidean formu- This work was supported by the Australian Research
lation. In order to make the PIMC method a more valuableCouncil. We are grateful for access to the computing facili-
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