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Perturbative odderon in quasidiffractive photon-photon scattering

Stefan Braunewell* and Carlo Ewerz†
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We study the perturbative Odderon in the quasidiffractive processg (* )g (* )→hchc . At high energies this
process is dominated by Odderon exchange and can be viewed as the theoretically cleanest test of the pertur-
bative Odderon. We calculate the differential and total cross section, as well as the dependence on the energy
and on the photon virtualities, taking into account the effects of resummation of logarithms of the energy. The
results are compared with those obtained with a simple exchange of three noninteracting gluons. We present
the expected cross section for this process at a future Linear Collider and discuss implications for other
processes involving the perturbative Odderon.
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I. INTRODUCTION

The Odderon is the partner of the Pomeron carrying ne
tive charge parity quantum number. In high energy scatte
processes it gives the leading contribution to processe
which negativeC parity is exchanged in thet channel.

After the concept of the Odderon had been proposed
@1#, it was for a long time almost exclusively discussed in t
context of elastic or inclusive processes. These have the
advantage that the Odderon gives only one of many con
butions to the scattering amplitude and a clean identifica
of the Odderon is rather difficult. The only experimental e
dence of the Odderon so far has been found as a small
ference between the differential cross sections of ela
proton-proton and antiproton-proton scattering at the CE
ISR @2#. As a result of the low statistics of the data and t
difficulty of extracting the Odderon contribution, however,
is not possible to interpret this as an unambiguous signa
the Odderon. For a more detailed review of the phenome
logical and theoretical status of the Odderon we refer
reader to@3#.

Recently an important change of direction in the sea
for the Odderon has taken place. Now the search con
trates on processes in which it basically gives the only c
tribution to the cross section. The cross section for such p
cesses is in general smaller than for elastic or inclus
processes, but here already the observation of the proce
such would establish the existence of the Odderon. Exam
of such exclusive processes are the double-diffractive p
duction of vector mesons in proton-~anti!proton scattering
@4# or the diffractive production of pseudoscalar or tens
mesons in electron-proton scattering@5–15#. In all of these
processes Odderon exchange gives the main contributio
the cross section at high energies. Other possible contr
tions can only arise due to photon or Reggeon exchange
both of these contributions are under good theoretical c
trol. Another interesting possibility is to study the interfe
ence between Pomeron and Odderon exchange. This is
sible in the diffractive production of final states that can

*Electronic address: S.Braunewell@thphys.uni-heidelberg.de
†Electronic address: C.Ewerz@thphys.uni-heidelberg.de
0556-2821/2004/70~1!/014021~15!/$22.50 70 0140
a-
g
in

in
e
is-
i-
n

-
if-
ic
N

of
o-
e

h
n-
-

o-
e
as

es
o-

r

to
u-
ut

n-

os-

produced both in aC511 and in aC521 state like for
example a pair of charged pions. The interference term
tween the two corresponding production mechanisms can
isolated in suitable asymmetries like for example the cha
or spin asymmetry. Asymmetries of this kind have been st
ied in @16–20#. Also here already experimental observati
of an asymmetry could firmly establish the existence of
Odderon.

The first experimental search for one of these exclus
processes was performed for the case of diffractive pion p
toproduction inep scattering at HERA in@21#. This process
is the one for which the largest cross section is expected,
its theoretical description obviously has to rely on nonpert
bative techniques. Such a calculation was performed in@11#
making use of the stochastic vacuum model@22–24# in the
framework of the functional approach to high energy scat
ing developed in@25#. In @21# the experimental results hav
been compared to expectations based on that calculation
no signal of Odderon exchange has been found. The fai
of the theoretical prediction for this process is currently n
understood.

In order to avoid the large theoretical uncertainties of no
perturbative calculations in diffractive pion production o
can consider the diffractive production of heavy pseud
scalar or tensor mesons. In that case the large mass o
meson provides a hard scale, and one can hope that pe
bation theory is applicable even for real photons. Here
particular the production ofhc mesons has been considere
see@7,8,13#. The expected cross section for that process w
in the range of several tens of picobarns. In a study of ela
pp scattering it has subsequently been found that the ch
of parameters in the Odderon-proton coupling in those c
culations was very optimistic@26#, and a realistic estimate o
the cross section should be even smaller by at least an o
of magnitude. As a result of the small cross section, the p
cess is not of immediate phenomenological interest, bu
has turned out to be quite interesting from a theoretical p
spective.

That interest is related to the occurrence of large lo
rithms of the energy in the perturbative series. In the simp
possible perturbative picture the exchange of an Oddero
described by the exchange of three noninteracting gluons
symmetric color state. In higher orders in perturbation the
©2004 The American Physical Society21-1
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large logarithms of the energy can compensate the small
of the strong coupling constant,aslogs;1, and one needs to
resum these logarithms. For the case of the Odderon
leads to the generalized leading logarithmic approximat
~GLLA ! which is encoded in the Bartels-Kwiecin´ski-
Praszałowicz~BKP! equation@27,28#. Recently two different
solutions of this equation have been found explicitly in@29#
and @30#. The former solution does not couple to theghc
impact factor in leading order and is hence not relevant
the production ofhc mesons. The latter solution, the s
called Bartels-Lipatov-Vacca~BLV ! solution, on the other
hand, does couple to that impact factor. Its intercept exa
equals 1, and it hence leads to a cross section which is
stant with the energy up to logarithmic corrections. The B
solution was recently also found in the dipole picture of hi
energy scattering@31#.

Although the intercept of the BLV solution is equal to th
intercept of the simple three-gluon exchange model for
Odderon, it has quite different properties. So far the phen
enological consequences of using the BLV solution in
scattering amplitude have been considered only in the
fractive production ofhc mesons in@13,14#. Interestingly, in
@13# it was found that for real photons the resulting cro
section is by about a factor of 5 larger than the one obtai
in @7,8# by using a simple three-gluon exchange for desc
ing the Odderon. It is a very interesting question whether t
enhancement is a general property of the BLV solution
whether and how strongly it depends on the couplings of
Odderon to the proton and to theghc impact factor. It is one
of the aims of the present paper to address this question

All of the processes mentioned above involve the c
pling of the Odderon to the proton. This coupling is know
to be rather sensitive to the internal structure of the pro
@26#, and it is therefore possible that due to nonperturba
effects this coupling is small. In that case it could be qu
difficult to find the Odderon in these processes. It is theref
interesting to study also processes which do not involve
uncertainties of the Odderon-proton coupling. From a th
retical point of view the quasidiffractive processg (* )g (* )

→hchc is the cleanest possible probe of the Odderon. A
result of the large mass of the charm quark, the coupling
the Odderon to theghc impact factor can be calculated pe
turbatively even for small photon virtualities. Again, alrea
the observation of this process at high energies would fir
establish the existence of the Odderon. More generally,
can study the quasidiffractive processesg (* )g (* )→MM and
g (* )g (* )→MX with M being a heavy pseudoscalar or tens
meson. Also these can occur at high energies only du
Odderon exchange. Such processes have first been stud
@32,33# and more recently for the case ofhc meson produc-
tion in @34#. In these studies the Odderon has been mode
as a simple exchange of three noninteracting gluons.

In the present paper we study in detail the proc
g (* )g (* )→hchc at high energies. In particular, we take in
account the effects of resumming large logarithms of
energy in perturbation theory by using the BLV solution
the BKP equation. That allows us to perform a detailed stu
of the properties of the BLV Odderon solution in a com
pletely perturbative process, that is in a clean theoretical
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ting which does not involve model assumptions about
impact factors. The properties of the BLV Odderon can e
ily be compared to those of an Odderon modeled by
exchange of three noninteracting gluons. Furthermore,
comparing the behavior of the BLV solution in this proce
and in the processgp→hcp we can draw some conclusion
about the possible origin of the enhancement obtained in
latter process for the BLV solution as compared to sim
three-gluon exchange. Another important motivation for t
present study is to estimate the chances of finding the O
eron in the processg (* )g (* )→hchc in e1e2 scattering at a
future Linear Collider.

In Sec. II we provide the cross section formulas for t
processg (* )g (* )→hchc . In particular we discuss the BLV
solution and theghc impact factor. In Sec. III we study the
resulting cross section and its dependence on the diffe
parameters. After discussing some technical details of
calculation, we start with the case of real photons and ca
late the differential and total cross sections in Sec. III B. T
applicability of the saddle point approximation for the BL
Odderon solution in this process is considered in Sec. III
We investigate the energy dependence of the cross sectio
Sec. III D. In Sec. III E we address the possibility to obser
this process at a future Linear Collider. The case of virt
photons is studied in Sec. III F. Finally, we discuss our
sults in the light of results obtained for the BLV solution
the processgp→hcp in Sec. III G. Our main results are
summarized in Sec. IV.

II. SCATTERING AMPLITUDE

A. High energy factorization

We consider the processg (* )g (* )→hchc at high energy
and relatively small momentum transfer, that iss@utu in
terms of Mandelstam variables. The photons in the ini
state can both be real or virtual. The large mass of the ch
quark provides a justification for treating the process in p
turbation theory.

At high energies the process is dominated by Odde
exchange. Diagrams involving quark exchange in thet chan-
nel are suppressed by powers of the energy and can be
glected at the energies which we will consider below. As
result of high energy factorization, the scattering amplitu
for Odderon exchange can be written in the form illustra
in Fig. 1. The amplitude is a convolution of the Odder
Green functionG with two impact factorsF coupling the
Odderon to the external particles. Symbolically,

A;^FuuGuF l&, ~1!

and the convolution includes the integration over the unc
strained transverse momenta of the gluons as will be
scribed further below. The subscriptsu and l of the impact
factors stand for the upper and lower impact factors, resp
tively. For the Odderon Green functionG one can insert
either the BLV Odderon solution or the propagation of thr
noninteracting gluons as the simplest possible model for
perturbative Odderon.
1-2
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In order to make the paper self-contained we collect in
following sections the known results for the impact facto
and for the Odderon Green function, and we bring them i
a form which can then be used to compute the above am
tude and the resulting cross section.

B. g\hc impact factor

We first consider the impact factor that describes the tr
sition of a photon~real or virtual! into anhc meson and three
t-channel gluons in a color singlet state as it has been ca
lated in @7#. There it was found that the impact factor h
only transverse components. The resulting expression re

F i5be l
iS (

(123)

~k11k22k3! l

Q214mc
21~k11k22k3!2

2
ql

Q214mc
21q2D , i 51,2, ~2!

where the sum runs over all cyclic permutations and the
dex i corresponds to the two possible transverse polarizat
of the incident photon. Furthermore,qÄk11k21k3 is the
total momentum transfer, and we will havet52q2. Q2 is
the virtuality of the photon,mc51.4 GeV the mass of the
charm quark,e l

i the totally antisymmetric tensor in two d
mensions, and we have

b5
4

qc

dabc

Nc
Aas

3

a
p3Gmhc

. ~3!

Hereas anda are the strong and electromagnetic coupli
constants, respectively. The charm quark carries the ch
qc52/3, and thehc meson has a radiative~photon! width of
G57 keV and a mass ofmhc

52.98 GeV.

The factordabc is the totally symmetric structure consta
for the color SU(Nc) group. The scattering amplitude con
tains the contraction

dabcdabc5
Nc

224

Nc
daa5

40

3
, ~4!

where the last equality holds forNc53.

FIG. 1. Factorized form of the scattering amplitude f
g (* )g (* )→hchc .
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C. BLV solution

The BLV Odderon solutionC (n,n) found in @30# is con-
structed from the known eigenfunctionsE(n,n) of the BFKL
equation@35,36#. These eigenfunctions are labeled by a d
crete quantum numbernPZ, called the conformal spin, an
a continuous quantum numbernPR. The functionsE(n,n)

were found in impact parameter space in@37#, and they can
be obtained in transverse momentum space via a Fou
transformation. We will use the same symbolE(n,n) for both
representations of the BFKL eigenfunctions. In the BLV s
lution the eigenfunctions of the BKP integral operator a
constructed as

C (n,n)~k1 ,k2 ,k3!5c~n,n! (
(123)

~k11k2!2

k1
2k2

2

3E(n,n)~k11k2 ,k3!, ~5!

where the sum runs over cyclic permutations, andn needs to
be an odd integer. We use the same normalization conven
as in@13#, so that the Odderon states have the same norm
the Pomeron eigenfunctions of which they are construc
This leads to

c~n,n!5A Ncas

2p2@23x~n,n!#
. ~6!

The functions~5! are eigenfunctions of the BKP integral op
erator with eigenvalues

x~n,n!5
Ncas

p F2c~1!2cS 11unu
2

1 in D
2cS 11unu

2
2 in D G , ~7!

where c is the logarithmic derivative of the Euler gamm
function G.

The Odderon Green function in spectral representatio
constructed as a superposition of all states with odd inte
numbersn and general~real! n:

G5 (
odd n

E
2`

`

dneyx(n,n)
~2p!2~n21n2/4!

@n21~n21!2/4#@n21~n11!2/4#

3C (n,n)~k1 ,k2 ,k3!C* (n,n)~k18 ,k28 ,k38!. ~8!

Here y5 log(s/s0) is the rapidity ands0 is a fixed energy
scale. The scales0 is undetermined in leading logarithmi
approximation, and we will discuss possible choices fors0 in
Sec. III D below. The normalization in Eq.~8! is chosen in
such a way that in the limit of vanishing coupling,as→0,
the Green function reduces to the exchange of three no
teracting gluons.

In order to calculate the momentum integral for the sc
tering amplitude, we need to know the BFKL eigenfunctio
in momentum space. In impact parameter space the ei
functions are
1-3
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E(n,n)~r10,r20!5S r 12

r 10r 20
D hS r̄ 12

r̄ 10r̄ 20
D h̄

, ~9!

where r i j 5r i2r j . On the right-hand side~RHS! we use
complex coordinatesr i for describing positions in the two
dimensional impact parameter space. Further we have
conformal weights h5(11n)/21 in and h̄512h* 5(1
2n)/21 in.

The Fourier transform of these eigenfunctions was ca
lated in @13#. It was found that the momentum space fun
tions have the form

E(n,n)~ l1 ,l2!5EA
(n,n)~ l1 ,l2!1Ed

(n,n)~ l1 ,l2!, ~10!

where EA
(n,n) denotes an analytic contribution andEd

(n,n) a
part containingd-functions. The analytic part reads

EA
(n,n)~ l1 ,l2!5C@X~ l1 ,l2!2X~ l2 ,l1!#, ~11!

where the coefficientC is

C5
~2 i !n

~4p!2
hh̄~12h!~12h̄!G~12h!G~12h̄!. ~12!

The expressionX can be given in terms of the hypergeome
ric function F(a1 ,a2 ;b;z)5 2F1(a1 ,a2 ;b;z):

X~ l1 ,l2!5S l 1

2 D h̄22S l̄ 2

2
D h22

FS 12h,22h;2;2
l̄ 1

l̄ 2
D

3FS 12h̄,22h̄;2;2
l 2

l 1
D . ~13!

The two-dimensional momenta are denoted as complex n
bers on the RHS.

The d-function part in Eq.~10! is simpler. Denoting the
total momentum transfer~in complex notation! by q5 l 1
1 l 2, it can be written as

Ed
(n,n)~ l1 ,l2!5@d (2)~ l1!1~21!nd (2)~ l2!#

i n

2p
212h2h̄

3
G~12h̄!

G~h!
qh̄21q* h21. ~14!

D. Calculation of the scattering amplitude

We want to calculate the scattering amplitudes

Ai j 5
s

3~2p!4
^Fu

i uGuF l
j& ~15!

for different transverse polarizationsi , j of the incoming pho-
tons, where we have distributed the constant factors as in@8#.
In order to compute these expressions, we have to eval
integrals over the independent transverse momenta, e.g
01402
he
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^F i uC (n,n)&5E d2k1d2k2F i~k1 ,k2 ;q!C (n,n)~k1 ,k2 ;q!.

~16!

However, this four-dimensional integral reduces to a tw
dimensional one@30#:

^F i uC (n,n)&5
b

c~n,n!
E d2kf i~k,q2k!E(n,n)

„k,q2k…

[
b

c~n,n!
^f i uE(n,n)&, ~17!

where the reduced impact factor is

f i~k,q2k!5
e l

i~2k2q! l

Q214mc
21~2k2q!2

. ~18!

Let us now consider the infinite sum over odd values on
in Eq. ~8! which needs approximation in order to be eva
ated numerically. In the full Green function~8! the exponen-
tial factor eyx(n,n) clearly is of special importance to the in
tegrand, and an expansion of its argument can help
determine the dominant values ofn. Expanding Eq.~7! up to
second order aroundn50 yields

x~n,n!5
Ncas

p F2c~1!22cS 11unu
2 D

1c9S 11unu
2 D n21O~n4!G . ~19!

For values ofn other than61 we therefore get a constan
part in the Taylor expansion of the argument of the expon
tial which grows withn. We have in fact checked numer
cally the contribution ofn53 and find that this term is al
ready of relative size;1024 compared to the leading term
Therefore we can reduce the sum to one overn561.

Now we can further simplify the integral that we have
calculate numerically. The analytic part reduces forn561
to

EA
(n,n561)~k,q2k!56

1

~4p!2
n~11n2!G2~12 in!

3@X~k,q2k!2X~q2k,k !#. ~20!

For n51, Eq. ~13! leads to

X(n51)~k,q2k!5S k

2D in22S q̄2 k̄

2
D in21

3FS 2 in,12 in;2;2
k̄

q̄2 k̄
D

3FS 12 in,22 in;2;2
q2k

k D . ~21!

For n521, we get
1-4
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X(n521)~k,q2k!5X(n51)~ q̄2 k̄,k̄!, ~22!

and thus obtain

EA
(n,n521)~k,q2k!5EA

(n,n51)~ k̄,q̄2 k̄!. ~23!

From now on we choose the coordinate axes such tha
total momentum transferq is in the 1-direction, so that in
complex notationq is purely real. As we have an integra
over both components of the two-dimensional moment
vectork, we can replace the second component by its ne
tive value, which in complex notation corresponds to co
plex conjugation. In the reduced impact factor~18! we have
to switch the sign of thei 51 component due to thee sym-
bol. The i 52 expression remains unchanged because it
cludes only the first component of the momentum in its n
merator. For iÞ j in Eq. ~15! the coherent sum overn
561 thus gives two equal but opposite results. For para
photon polarizations,i 5 j , the resulting expression in Eq
~15! is the same forn51 andn521. Thus, we can work
with the expressionEA

(n,n51) , which we will denote asEA
(n)

from now on.
Let us now turn to thed-function part forn561. For the

d-function part one also obtains the same result forn511
andn521, which we will denote byEd

(n) :

Ed
(n)5Ed

(n,n561)~k,q2k!5@d (2)~k!

2d (2)~q2k!#
i

2p
42 in

G~12 in!

G~11 in!

q2in

q
. ~24!

With our specific choiceq5(q,0) we can easily evaluate th
convolution of thed-function part with the impact factor. We
can see from Eq.~18! that due to thee tensor thei 51
component of the impact factor vanishes fork50 or k5q,
that is when thed-functions in Eq.~24! are applied. Hence
the only non-vanishing contribution to the convolution of t
d-function part with the impact factor is the one fori , j
52:

^f i 52uEd
(n)&5

i

p

1

4in

G~12 in!

G~11 in!

q2in

Q214mc
21q2

. ~25!

E. Saddle point approximation

In @13# diffractive production of anhc meson ingp scat-
tering was calculated in the saddle point approximat
~SPA!. For our study this approximation will not be neede
and our results given below will not make use of the SP
Nevertheless, it is interesting for us to study the same
proximation also for our scattering process in order to d
cuss our results in the context of those of@13#. For this
purpose then integral in Eq.~8! is approximated by expand
ing the argument of the exponential and othern-dependent
factors in the integrand~in particular the BFKL eigenfunc-
tions! in Taylor series. In lowest non-vanishing order t
Lipatov characteristic function~7! is quadratic inn:
01402
he
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-

x~n,61!522
Ncas

p
z~3!n21O~n4!. ~26!

The rest of the integrand is also expanded inn. The first
non-vanishing term in the expansion of the analytic part is
first order, but this term vanishes in the momentum integ
because it is orthogonal to thehc impact factor; see@13#. The
first term that survives this convolution is of second ord
The d-function part leads to a non-vanishing contributio
already in zeroth order inn:

Ed,0
(n)~k1 ,k2!5@d (2)~k1!2d (2)~k2!#

i

2p

1

q
. ~27!

Therefore in@13# only the d contribution is calculated. We
will study in Sec. III C below how that approximation affec
our results. As we will show, the SPA turns out to be ina
equate for our process.

III. NUMERICAL RESULTS

A. Details of the calculation

In the following sections we will present our numeric
results for the cross section forg (* )g (* )→hchc and for its
dependence on various parameters. In the present sectio
make several general remarks relevant for those results.

The differential cross section is obtained from the amp
tudesAi j involving the BLV Odderon solution as

ds

dt
5

1

16ps2

1

4 (
i , j 51

2

uAi j u2. ~28!

As we have seen in the previous section, the mixed polar
tion amplitudes vanish. Furthermore, we find numerica
that thei , j 51 contribution to the cross section is only;1%
of that coming fromi , j 52. Since the numerical error of ou
calculation is also on the percent level, we neglect this c
tribution. We hence have

ds

dt
5

1

64ps2
uAu2, ~29!

whereA5A22. According to the discussion above we obta
the scattering amplitudeA as the integral:

A52
s

3~2p!4E2`

`

dneyx(n)

~2p!2S n21
1

4D
n2~n211!

b2

c~n!2

3^fuE(n)&u^fuE(n)& l* , ~30!

where we have the reduced impact factorf5f i 52, and the
convolution off with E(n) is defined in Eq.~17!. Further,
E(n) has two parts as in Eq.~10!, and we have setn511
here while multiplying by 2 to take into account the cont
bution of n521 as explained in the previous section.

Our results below are obtained from a numerical eval
tion of the integral~30!. We emphasize that we compute th
1-5



o
lt
in
In
o
a

e
o-

t
te
x-
u
in

to
m
e
rs

t
he
T
d

ac

ou

on
. I
ti
rs
ria
th
-
-

ev

th

rg
,
ic
ib
s
re

red

fer

y
ur

-of-
i-
nt
ss

on-
tup

an
ess

y
tion

a
l

for

to

all
the

n
al

l
rac-
ch

two
et

-
ec-

e

the

of

S. BRAUNEWELL AND C. EWERZ PHYSICAL REVIEW D70, 014021 ~2004!
integral without further approximations. In particular we d
not use the saddle point approximation for our main resu
The outcome of using the SPA is included below only
order to discuss the applicability of that approximation.
fact we will show that the saddle point approximation is n
applicable to our process in the phenomenologically relev
kinematical region.

Recall that the convolutionŝfuE(n)&u,l in the integrand
of Eq. ~30! involve only two-dimensional integrations; se
Eq. ~17!. The reduction from a four-dimensional to a tw
dimensional integral in these convolutions occurred due
the special structure of the BLV Odderon solution. The in
gral ~30! involves hypergeometric functions which are e
pensive to evaluate in terms of computer time. But beca
of the reduction to two-dimensional integrations
^fuE(n)&u,l , it is still possible to perform the integral~30!
using Mathematica.

As already pointed out in Sec. II D, we do not take in
account contributions to the BLV solution with quantu
numbernÞ61. We have in fact calculated numerically th
n53 contribution for a variety of values of the paramete
Q2, s and t and find it to be negligible.

One of the most interesting questions which we want
study is how the BLV Odderon solution compares to t
exchange of three noninteracting gluons in our process.
latter exchange is the simplest possible perturbative mo
for the Odderon. Technically speaking it amounts to repl
ing the Odderon Green functionG in Eq. ~15! by three free
gluon propagators:

G3g5d (2)~k182k1!d (2)~k282k2!
1

k1
2k2

2k3
2

. ~31!

The cross section forg (* )g (* )→hchc with a simple three-
gluon exchange was calculated in@34#. We have reproduced
the results of that paper in order to compare them with
calculations.

Our calculation is based on the BLV Odderon soluti
which results from the resummation of leading logarithms
should be pointed out that there are several uncertain
which are inevitable in that approximation scheme. The fi
of these uncertainties concerns the choice of the approp
value of the strong coupling constant. Strictly speaking
scale ofas is undetermined in the GLLA. In all our calcula
tions we useas5as(mc

2)50.38 to allow for an easy com
parison with the results from@34# and @13# where the same
value had been chosen. It should be emphasized, how
that already a small change inas implies a considerable
change in the cross section. This is due to the simple fact
the cross section contains a factoras

6 already from the cou-
pling of the three gluons to the impact factors.

Another important uncertainty is the choice of the ene
scales0 in y5 log(s/s0). Also this scale is, strictly speaking
undetermined in the GLLA and has to be chosen as a typ
energy scale for the process. We will discuss several poss
choices in detail in Sec. III D. It will turn out that choice
which appear equally natural can lead to quite different
sults.
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Of course there is a minimal momentum transfer requi
for the transition from a real photon in the initial state to ahc
meson in the final state. That minimal momentum trans
tmin can be estimated to betmin'2mhc

4 /s. At the energies

which we will consider its numerical value will be ver
small and will not have any quantitative effect visible in o
figures.

B. Cross section for the scattering of real photons

For the calculations in this section we choose a center
mass energyAs5300 GeV. This choice is somewhat arb
trary and our main motivation for it is that later on we wa
to compare the behavior of the BLV solution in the proce
gg→hchc to that in the processgp→hcp. The latter was
calculated for the HERA energy in@13#, and we therefore use
the same energy here. As the processgg→hchc is phenom-
enologically interesting mainly as a subprocess of electr
positron scattering for example, in an actual collider se
there is a continuous energy range available for thegg scat-
tering, rather than a fixed center-of-mass energy. We give
estimate on the size of the cross section for the proc
e1e2→hchc in Sec. III E, but in the first part we are onl
concerned with the properties of the differential cross sec
of the subprocess. The squared energys enters in the argu-
ment of the exponential asy5 log(s/s0), with the scale factor
s0 on which we will comment later. For this section we use
scale s05mhc

2 . Our numerical results for the differentia

cross section for real photons~virtuality Q25Qu,l
2 50) are

shown in Fig. 2, together with the corresponding results
the noninteracting three-gluon process from@34#.

Comparing our numerical results for the BLV solution
the three noninteracting gluons in thet channel, we find a
huge enhancement of the differential cross section at sm
momentum transfer. The cross section calculated with
BLV solution reaches a maximal value of'120 fb/GeV2 at
t5tmin'21023 GeV2, and then quickly falls to
'88 fb/GeV2 already atutu50.01 GeV2. The simple solu-
tion exhibits a fundamentally differentt dependence that ca
fairly well be described by an exponential decay. Its maxim
value att5tmin is only '5 fb/GeV2, so there is a maxima
enhancement factor of about 25 that comes from the inte
tion of the three gluons. As the BLV curve has a mu
steeper t dependence, the two curves intersect atutu
'3.5 GeV2.

We have also estimated the total cross sections for the
cases. For the calculation involving the BLV solution we g
a cross section of abouts tot

BLV'59 fb, whereas the simple
three-gluon process yieldss tot'43 fb. In both cases, no cut
off for the integral was needed as the differential cross s
tion falls off sufficiently quickly with growingutu to allow
for a reasonable estimate of the contribution from largeutu.
We notice that the minimal momentum transfertmin is suffi-
ciently small atAs5300 GeV so that it does not affect th
calculation of the total cross section.

In summary, we see that the BLV solution enhances
total cross section ofgg→hchc by a factor of about 1.5
compared to the noninteracting three-gluon calculation
1-6
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FIG. 2. Results for the differ-
ential cross section for real pho
tons (Q250) and center-of-mass
energyAs5300 GeV.
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@34#. The dependence of the differential cross section on
momentum transfer changes significantly, and the region
small momentum transfer becomes more important in
case of the BLV solution.

Unfortunately, the origin of the change in thet depen-
dence is somewhat difficult to trace. The dependence of
cross section ont is rather involved both for three-gluo
exchange and for the BLV solution. In the case of the B
solution, for example, it enters via the dependence on
momentum transferq in various terms in the amplitude
among them hypergeometric functions; see Sec. II D. As
will see in the next section, the slope of the differential cro
section for the BLV solution is forutu.1 GeV2 roughly
similar to the one obtained in the saddle point approxim
tion, in which it is easily found to be;1/(4mh

21t)4. How-
ever, also thet dependence of the three-gluon exchange c
not be extracted directly and needs to be determi
numerically resulting in the exponential-like decay describ
above. Therefore we find it difficult to give a simple physic
explanation for the change of thet dependence due to resum
mation. Let us finally note that a very similar effect has be
observed in the quasidiffractive reactiongg→J/cJ/c in
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@38#. In that case the resummation results in a BFKL glu
ladder exchange instead of a simple two-gluon exchan
and also there thet dependence becomes much steeper in
resummed calculation.

C. Comparison with the saddle point approximation

Next we want to study the reliability of the saddle poi
approximation for our process. This question is primarily
theoretical interest. However, it turns out that due to the
pergeometric functions in the BLV solution it is numerical
extremely challenging to calculate processes in which
BLV Odderon solution is coupled to a proton. For these o
has to make use of the SPA, and it is therefore interestin
study the reliability of that approximation. For this our pr
cess is well suited since here we can compare the SPA to
exact result.

Figure 3 shows our exact results together with the re
obtained by using the saddle point approximation as
scribed in Sec. II E. Again we have chosenAs5300 GeV.
We find a maximal enhancement factor of the exact calcu
tion over the SPA of order 25 att5tmin , but quickly shrink-
-

FIG. 3. Differential cross sec-
tion: comparison of two different
approximations of the Odderon
wave function with the exact re
sult.
1-7
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FIG. 4. Comparison of the dif-
ferent contributions tô fuE(n)&;
the solid line is the Gauss-like
function I (n) representing the
momentum-independent factors o
the n integrand ~the curve is
scaled and shifted; see text!.
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ing with increasingutu to an enhancement of order 2. For th
total cross section the SPA calculation leads tos tot

SPA

'13 fb, hence underestimating the total cross section
proximately by a factor 5. So we find that the SPA in
simplest form should not be applied to the scattering proc
at hand, at least if one is interested in small values ofutu.

This result appears surprising at first sight, as it was fou
that in calculations involving the BFKL Pomeron the sadd
point approximation typically overestimates the cross s
tion, the deviation from the actual cross section usually be
of the order of 20%; see for example@39# for the case of the
total hadronic cross section in virtual photon collisions. W
therefore find it instructive to discuss the origin of the lar
deviation and its direction in the case of the BLV solution
our process.

As was mentioned in Sec. II E, in the SPA the analy
partEA

(n) of the BFKL eigenfunction is completely neglecte
In Fig. 3 we also show how this affects thet dependence
Going to smallutu, the curve resulting from the full calcula
tion ~including the analytic part! has a much steepert depen-
dence than the SPA curve, leading to the large enhancem
We have also included in this figure the cross section
tained by neglecting the analytic part while calculating then
integral numerically without the SPA. That curve is ve
similar to the SPA curve in itst dependence, but is higher b
a factor of about 1.5. Thus we see that the crucial differe
is not caused by the approximation of the argument of
exponential, but by the fact that the analytic part is n
glected.

The omission of the analytic partEA
(n) in the SPA is due to

the fact that the first non-vanishing term in the Taylor exp
sion ~in n) of EA

(n) is of second order, whereas the de
function contributionEd

(n) already has a non-vanishing zero
order term. But as the factory in the exponent is not very
large, the analytic piece nevertheless contributes subs
tially to then integral. Thus a numerical investigation of th
n dependence of the different parts of the solution is nee
to obtain a clearer picture of the importance of the analy
part.

In Fig. 4 we show the real and imaginary parts of bo
contributions to the expression^fuE(n)&u at utu
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50.01 GeV2. We have not included the constant factors
this calculation, so that the figure shows only the relative s
of the different terms. We recall that, before being integrat
the expression̂ fuE(n)&u gets multiplied with the corre-
sponding lower part and the rest of then integrand in Eq.
~30!. The latter is given by

I ~n!5eyx(n)

~2p!2S n21
1

4D
n2~n211!

b2

c~n!2
. ~32!

To better understand the significance of a particular con
bution to the overall result, we have included in Fig. 4 a
this momentum-independent contributionI (n) to the integral
~solid curve!. It basically gives a Gauss-like curve with
maximumI 0 at n50. It is scaled and shifted in such a wa
that the lower horizontal axis in the figure is theI (n)50
level and the upper one theI (n)5I 0 level ~see the RHS of
the figure!.

It now becomes clear from the figure, why the SPA can
lead to good results in our calculation. The analytic p
~dashed lines! gets comparable in size to thed-function part
~dotted! already atn'0.2, where the Gauss-like factor~solid
line! is still at about 70% of its maximal value. At large
values ofn the analytic part even contributes dominantly
the amplitude. Compared to the approximated integra
where the analytic part is neglected but then integration is
done numerically~no SPA!, this gives an enhancement by
factor of 12 in the differential cross section~which can be
understood when keeping in mind that the express
^fuE(n)& gets squared when the result of the lower part
multiplied and again squared when the cross section is
culated!. The analytic part falls off much faster withutu than
the d-function part, so the SPA improves with increasin
momentum transfer. For values ofutu.5 GeV2 it reproduces
the t dependence fairly well. Nevertheless, even for larg
values ofutu the size of the differential cross section is si
nificantly underestimated by the SPA. We find that the a
lytic part EA becomes negligible at smallt only for ex-
tremely largey above;100.
1-8
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FIG. 5. s dependence of the
differential cross section for rea
photons for utu50.01,0.1,1,10
GeV2 ~top to bottom!. The points
are numerical results, and the line
represent fits~see text!.
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D. Energy and scale dependence of the cross section

The intercept of the BLV solution equals unity, so the
should be no power-like energy dependence of the cross
tion. But as the continuous quantum numbern of the BLV
solution leads to a cut in the complex angular moment
plane~instead of a simple pole!, we expect a log2c(t)s depen-
dence. This can be numerically verified by keepingt fixed
and calculating the cross section as a function ofs. Again,
the results of this calculation can be compared to the SP
check the significance of the latter. The comparison with
noninteracting three-gluon exchange process does not
any new insight, as there is no energy dependence in
cross section.

The saddle point approximation gives an inverse logar
mic dependence on the energy, as can be easily seen
keeping in mind thats only appears in the Gaussian exp
nential exp(2yc8n2) in the factor y5 log(s/s0) ~with c8
52Ncas /p). Similar results are expected for the numeric
calculation if this approximation should be reasonable. Ho
ever, as pointed out in the previous section, in the domai
the momentum transfer that gives the largest contribution
the total cross section~i.e. the smallutu domain! the applica-
bility of the saddle point approximation is very questionab

Again, we have calculated the differential cross sect
numerically, this time varyings. To the results a function o
the form

f ~s!5a log2b~s/s0! ~33!

is fitted with fitting parametersa andb that depend only ont.
To see the change of thes dependence with varyingt, we
have performed the calculation forutu50.01, 0.1, 1 and
10 GeV2. The results for a wide range of squared center-
mass energiess together with the fitted curves are shown
Fig. 5.

One can see that the expected behavior is reprodu
quite well by the numerical results. This should however
be understood as a possibility to determine the value ofb in
Eq. ~33! as a function oft. From the fits we get values forb
ranging from 1.9 atutu50.01 GeV2 to 2.4 at utu51 GeV2,
but in the limit of asymptotically larges, all these curves
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eventually have to approach the saddle point approximat
because it does become valid at some large value ofy when
the Gaussian factor gets so narrow that only the region
smalln gives a sizeable contribution to the integrand. The
fore, in the limits→`, we know thatb→1.

In the case of center-of-mass energies accessible
present and planned accelerators~up toy'10), however, the
fitted curves give a reasonable description of the energy
pendence. Again, we find the SPA to be inappropriate for
parameter range of smallutu and realistics. In order to keep
the figure readable, we did not include the SPA curves,
again they fail completely in quantitatively reproducing t
numerical results. This can be easily seen from the fact
the exponent of the logarithm is determined to be arounb
'2, whereas the SPA gives an exponentb51. It is only at
values ofs well beyond any realistic size (y@100) that the
saddle point approximation becomes acceptable already
small utu.

We now turn to the question of the dependence of
results on the choice of the scales0. For all of the previous
calculations we had chosen the fixed scales05mhc

2 in y

5 log(s/s0). The scales0 of the energy cannot be determine
in LLA since a change ins0 is formally sub-leading in the
expansion of logarithms. The numerical results, however,
naturally depend on the specific choice. It is therefore in
esting to see the influence of different choices ofs0 on the
cross section. Ifs, t andQ are fixed, a change of the scales0
by a factor ofd clearly has the same effect as replacings by
s/d with fixed scale. It is then straightforward to obtain th
resulting cross sections from the results obtained above
long as the scales0 remains small compared tos, the change
does not qualitatively alter the results.

Yet the overall magnitude of the cross section is sign
cantly changed by a change in the scale factor. For exam
in comparison withs05mhc

2 the choices051 GeV2, which

is the typical mass scale for hadronic processes, change
result by an approximately constant factor of about 2
Compared to this uncertainty, the numerical and systema
errors in our calculations are definitely negligible. Strict
speaking, the numerical values of our results should only
1-9
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taken as an indication for the order of magnitude. The app
priate choice fors0 and hence the absolute results could o
be determined in a next-to-leading order calculation. T
qualitative dependence on the momentum transfer and on
center-of-mass energy, however, is quite stable un
changes of the scale factor.

As soon as we consider non-vanishing virtualities of o
or both of the photons, the choice of the scales0 becomes
even more ambiguous. As the virtuality of the photon p
vides another momentum scale for the reaction, it is nat
to include it into the scale factor. The inclusion of the virt
ality in s0 will lead to different results for the dependence
the differential cross section on the virtuality of the photo
as will be discussed in more detail in Sec. III F.

E. Possible realizations ofhc meson photoproduction

In order to relate our results to phenomenology, we w
to give some estimates for the cross section in possible fu
collider setups. So far, we have been concerned with
processgg→hchc with real photons at the fixed center-o
mass energyAs5300 GeV. That scale was chosen having
mind a later comparison to other works concerning the p
cessgp→hcp.

A possible realization of quasidiffractive doublehc pro-
duction would be the photon collider option at TESLA.
this section we use the definitions and numbers given in
TESLA design report@40#. From an electron-positron cente
of-mass beam energy ofEbeam5500 GeV a beam of rea
photons with a maximum center-of-mass energyAs
5390 GeV can be produced. However, as a result of
production mechanism of inverse Compton scattering,
resulting beam is not very narrowly peaked, but has a m
mum at aboutAs5360 GeV with a width at half maximum
of about 15%. The luminosity for photons with an energy
this peak region is estimated asLgg51.131034 cm22 s21.
As the dependence on the momentum transfer at this en
does not give any new insight, we do not show a figure of
differential cross section~the curve looks exactly like Fig. 2!.
The total cross section forAs5360 GeV iss tot'55 fb. This
would lead to a total number of events of the order of 105 in
five years of continuous running.

Another possibility of realizing the processgg→hchc is
directly in electron-positron collisions. Here the process
curs as a subprocess ine1e2→e1e2hchc at high energies.
Thegg subsystem in such a collision has a continuous sp
trum and we have to integrate over the energy fractions
@34# this calculation was performed in the equivalent pho
approximation~see also@41#! for the noninteracting three
gluon exchange process. There, it was much easier to ca
late the convolution integral, as the simple solution does
exhibit any energy dependence. Because of the large num
cal effort of calculating total cross sections in our approa
we use the results from the previous section to estimate
energy dependence of the total cross section. There we fo
fairly good fits of the form} logb(s/s0) with values of b
around 2. Therefore, we approximate the total cross sec
by
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s tot~s!5s0log22S s

s0
D , ~34!

wheres055040 fb is determined from the value ofs tot at
As5300 GeV.

The center-of-mass energyAs in the gg subprocess is
related to the beam energyEbeamas

s5z1z2Ebeam
2 , ~35!

where z1 ,z2 are the fractions of the electron and positr
energies carried by the two photons.

In the equivalent photon approximation the energy dis
bution of the photons is given by the flux facto
f g(z,Qmin

2 ,Qmax
2 ). For untaggede6 it reads@for details see

Eqs.~23!–~25! in @34##:

f g~z!5
a

2p S 11~12z!2

z
log

~12z!2Ebeam
2 Qmax

2

me
2z

D , ~36!

where we useQmax
2 530 mrad. The cross section for the pr

cesse1e2→e1e2hchc , which corresponds to the collisio
of almost real photons, is given by

E
0

1

dz1E
0

1

dz2Q~s2smin!s tot~s! f g~z1! f g~z2!. ~37!

Heresmin denotes the minimal squared center-of-mass ene
for the process. Again,Ebeam5500 GeV is used.

If we integrate over the complete domain of possible v
ues for s—that is, 4mhc

2 ,s,Ebeam
2 —we get a total cross

section for the electron-positron scattering process
'55 fb, as opposed to 3.5 fb, which was obtained for
simple three-gluon exchange in@34#. However, with a
squared center-of-mass energys5smin[4mhc

2 one is clearly

not in the high energy limit. In particular, the requireme
s@t is not met. Therefore, we have performed the calcu
tion again for a minimal squared energy of 10smin and ob-
tain for thee1e2 total cross section a value ofs tot'7 fb.
The large difference between these values comes abou
cause the total photon cross section rises as one goes to
values ofs. Compared to the value atAs5300 GeV the total
cross section forAs5smin is larger by a factor of 50.

Stating it very cautiously, we estimate the total cross s
tion of the processe1e2→e1e2hchc to be of the order of
10 fb. The planned luminosity at TESLA is 3.
31034 cm22 s21 @40#. The resulting order of magnitude o
the number of events is similar as in the case of the pho
collider option.

A realistic assessment of the feasibility of a measurem
of our process at a future Linear Collider would clearly r
quire a more detailed study of the process including dete
cuts and tagging efficiencies. Such a study is beyond
scope of the present paper.
1-10
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FIG. 6. Differential cross sec-
tion for real and virtual (Q2

525 GeV2) photons for As
5300 GeV.
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F. Virtual photon scattering

So far we have been concerned with the case of real p
ton scattering. In this section we consider the cross sec
for virtual photons. For definiteness, we choose a virtua
Q2525 GeV2, again motivated by the choice in@13#. The
comparison of the differential cross section for real and v
tual photons is presented in Fig. 6. We would like to po
out that now and in the following we are again consider
cross sections forgg scattering rather than for the corre
sponding process ine1e2 scattering. We have included i
the figure the cross sections for the case of two real phot
one real photon and one virtual photon, and two virtual p
tons.

In the latter two processes there is an additional nat
scale in the process that can be included in the scale fa
s0. In addition to the choices discussed in Sec. III D th
clearly gives another range of reasonable choices. For
case of two real photons we have used agains05mhc

2 ; for

the processes in which at least one virtual photon is involv
we have chosens05mhc

2 1Q2. That choice appears natur

in particular in the light of the typical energy scales occ
ring in deep inelastic scattering. In the case of a virtual p
ton scattering on a real photon, one could also think of us
some kind of average momentum scale~for example the geo-
metric or the arithmetic mean!. This would change the result
only by a factor which is almost independent ofutu.

In Fig. 6 it can be seen that the basic dependence on
squared momentum transfer is qualitatively similar for
three processes, but the absolute size of the result is q
different. The virtuality of a photon leads to a suppression
the differential cross section. If both photons are virtual,
cross section is further suppressed. The relative enhance
of the real photon scattering over the processes includ
virtual photons decreases with growingutu. This behavior
does not come as a surprise if one looks at the reduced
pact factor~18!:

f~k,q2k!}
~2k12q!

Q214mc
21~2k2q!2

. ~38!
01402
o-
n

y

-
t

s,
-

al
tor

he

d,

-
-
g

he
l
ite
f
e
ent
g

-

The dominant region for the momentum integration is wh
the gluon momentumk is small. For small values ofutu the
suppression by the virtuality is therefore basically given b
factor '1/Q2. For a value ofutu comparable in size toQ2,
the suppression is only'1/2, and ifutu@Q2 the effect of the
virtuality becomes negligible.

For the total cross section this gives a strong suppres
with respect toQ2. For one virtual (Q2525 GeV2) and one
real photon, we get a total cross sections tot'5 fb, for both
being virtuals tot'1 fb ~for both real, the cross section wa
s tot'59 fb). The three-gluon approximation leads to cro
sectionss tot'2 fb for one virtual photon ands tot'0.2 fb if
both photons are virtual. Thus we see that the enhancem
of the total cross section of the BLV Odderon over the thr
gluon approximation gets amplified when one considers
tual photons.

Next, we want to investigate the dependence of the dif
ential cross section on the virtuality of one photon~Fig. 7!
when the second photon is real. For this we keept fixed
(utu51 GeV2) and varyQ2 in one impact factor. As was
already mentioned above, the results of the numerical ca
lations depend on the specific choice ofs0 which can now
include the virtualityQ2. In that case theQ2 dependence of
the cross section will strongly be affected by the spec
choice ofs0.

In Fig. 7 we plot the results for three different calcul
tions: the approximation by three noninteracting gluons a
the numerical BLV Odderon calculation with two choices f
the scale factor. These are the scale that was used in@13#,
s05mhc

2 1Q2, which we will call ‘‘full’’ scale factor because
of the inclusion of the virtuality, and a ‘‘reduced’’ versio
without the virtuality of the photon,s05mhc

2 . As we have

pointed out above, there is no way to determine in the L
which scale choice is the correct one. Consequently
terms ‘‘full’’ and ‘‘reduced’’ are not meant in the sense th
the ‘‘full’’ scale factor is ‘‘better’’ in any sense. We see tha
the reduced scale factor leads to a steeper slope than the
scale factor. Again, we find that the three-gluon approxim
tion exhibits a yet steeper slope with respect toQ2. Never-
theless, all curves have a somewhat similar dependenc
the virtuality.
1-11
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FIG. 7. Q2 dependence of the
differential cross section for one
virtual and one real photon atutu
51 GeV2: comparison of BLV
Odderon with two different
choices for the scale factors0 and
noninteracting three-gluon ex
change.
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A remark is in order here concerning the applicability
the BKP Odderon in the case of a virtual photon scatter
on a real one. If the virtuality of the former is large, there
an evolution in transverse momentum along the exchan
gluons in thet channel. The BKP equation, on the oth
hand, takes into account only evolution in energy but no
transverse momentum. The situation of two largely differ
photon virtualities would hence require the inclusion
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! type
evolution@42–44# and is not appropriately described by BK
evolution. This limitation of our results for largely differen
virtualities should be kept in mind when interpreting the
sults of the present section.

Ignoring that limitation for the moment, we now want
investigate the ‘‘asymptotic’’Q2 dependence. That depen
dence is of theoretical rather than of phenomenological
terest, but can be useful for gaining insight into the BL
Odderon solution. Again we consider the case of one virt
and one real photon. In Figs. 8~for the reduced scale factor!
and 9~for the full scale factor! we plot the cross section as
function ofQ2 for utu50.01 and 1 GeV2. The points are our
numerical results; the curves are certain fits on which we
comment below.
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If the Q2 dependence is not included ins0, the result is
simple. In the regionmc

2!Q2!s we find a (t-independent!
scaling behavior of the cross section ofds/dt}Q24 ~the
fitted curves in Fig. 8!. This can be easily understood. Th
virtuality of the incident photon appears explicitly only in th
impact factors~38!, as the BLV Green function itself doe
not exhibit a Q2 dependence. The momentum integra
^fuE(n)& receive the dominant contribution from the regio
of small transverse momenta. As long as all momentum co
ponents are small compared toAQ2, the error we make by
pulling the numerator out of the integral as a factor ofQ22 is
small. In the cross section this gives a contribution ofuQu24.
We have added to the figures a fit with exactly thatQ2 de-
pendence to show the agreement with the numerical res

If we include aQ2 dependence in the scales0 via the
‘‘full’’ scale factor s05mhc

2 1Q2, the overall dependence o

Q2 changes qualitatively. In the domainmhc

2 !Q2!s we ba-

sically expect a curve that resembles theuQu24 result from
the simple choices05mhc

2 multiplied by the dependence tha

we get from Sec. III D,} log2b(t)(s/Q2). In Fig. 9 we show
the numerical results together with a fit representing that
e

FIG. 8. Q2 dependence of the
differential cross section for one
virtual and one real photon,utu
50.01 GeV2 ~upper points! and
utu51 GeV2 ~lower points! with
reduced scale factors0; the points
are numerical results, and th
curves are fits~see text!.
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FIG. 9. Q2 dependence of the
differential cross section for one
virtual and one real photon,utu
50.01 GeV2 ~upper points! and
utu51 GeV2 ~lower points! with
full scale factors0 (Q2 included!;
the points are numerical results
and the curves are fits~see text!.
f
rly
p

t

th
in
d

o
er
ig
n
f

of
te
b

en
s

he

w
on
o
h
s

pf
t

f t
ic

ec

fo
al

ns

-
our
the
ion

ion

is
the
ur
the
ge.

nt
ro-

tal
that

di-
n in

le
oss
on
at-
t is
on
ent
re,
e

hat
the
er-
pectation. The fit fails whenQ2 approaches the boundary o
the domain in which it is expected to apply but gives a fai
good description of the slope within that domain. The slo
with respect toAQ2 is about 3.2 forutu50.01 GeV2 and
about 3.0 forutu51 GeV2, indicating that the slope is no
entirely independent oft.

A remark is in order here concerning the question of
twist of the different solutions to the BKP equation and,
particular, of the BLV solution. This issue has been a
dressed in@45,46#; see also@47#. The twist of the Odderon
solutions is an interesting quantity from a theoretical point
view and crucial for a thorough understanding of the diff
ent solutions. It should be kept in mind, however, that at h
energies~or small Bjorkenx) the operator product expansio
becomes problematic and eventually breaks down; see
example@48#. Our results illustrate an additional problem
the phenomenological aspects of the Odderon twist. A po
tial measurement of the Odderon twist is likely to be o
scured by the effects of different but theoretically equival
choices of the energy scales0, at least as long as one work
in the GLLA.

G. Comparison with photon-proton scattering

In @13# the processgp→hcp was studied using the BLV
Odderon solution. The coupling of the BLV Odderon to t
proton is more complicated than theghc impact factor, and
here the reduction of the four-dimensional integral over t
transverse momenta is not reduced to a two-dimensional
One therefore has to make use of the saddle point appr
mation for a numerical calculation of the cross section. T
quality of the saddle point approximation is difficult to asse
in that process. A comparison with our process can be hel
in this respect, since there we can compare the SPA with
exact results and are hence able to trace the effects o
approximation. In our calculations we have used kinemat
parameters similar to those of@13#, and we can therefore
hope that our results can give us an idea of what the eff
of the exact calculation ingp→hcp can be.

Before we discuss possible implications of our results
the processgp→hcp we want to point out some gener
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differences between the results for that process found in@13#
and the results found here for thegg case. As was already
found in the approximation of three noninteracting gluo
@7,8# the differential cross section for the processgp→hcp
vanishes asutu→0. This is due to the coupling of the Odd
eron to the proton impact factor and is not expected in
scattering process. In addition, the calculation involving
BLV solution leads to a pronounced dip in the cross sect
at utu'0.07 GeV2. Also this is due to the coupling of the
Odderon to the proton as was pointed out in@13#, and such a
dip is not expected ingg→hchc .

In @13# a sizable difference between the BLV cross sect
and the exchange of three noninteracting gluons@7,8# was
found in g (* )p→hcp. For real photons, the cross section
enhanced by a factor of 5 due to resummation, that is for
BLV solution. We find a much smaller enhancement in o
process. In addition, when calculating our process in SPA
results are actually smaller than for three-gluon exchan
Therefore, it appears that ingp scattering the enhanceme
is caused solely by the coupling of the Odderon to the p
ton. In the case of virtual photons~with Q2525 GeV2) the
gp calculation in SPA gives an enhancement of the to
cross section by one order of magnitude. This means
there is an additional enhancement factor of 2~as compared
to the respective three-gluon calculation! caused by the vir-
tuality of the photon. We find approximately the same ad
tional enhancement factor in the case of one virtual photo
our process.

In Sec. III C we found that for our process the sadd
point approximation significantly underestimates the cr
section. As the convolution of the Odderon wave functi
with theghc impact factor in the case of photon-proton sc
tering was calculated in saddle point approximation too, i
plausible to expect that using the full numerical calculati
also in that process would lead to an additional enhancem
that is approximately the square root of the one found he
i.e. by about a factor of 2 for the total cross section. W
should point out, however, that it is by no means clear t
the saddle point approximation also underestimates
Odderon-proton coupling. Instead, also a completely diff
1-13



iv-
re
t o

g
re
CD
c
v

ga
n
es

io
e
ib
n
os
n-
ly

t d
v

os
th
ta
a
a
th
r

th
-

pr

th
ib
an
ive

d-
As

nu-
is
ave

. In
the
-
ex-
a-

he
ails
order
e
ur
is

l
idif-
ple

n the
imi-
to

nal
ne.

not
oint

ms
la-
this
of
-
r a

for

S. BRAUNEWELL AND C. EWERZ PHYSICAL REVIEW D70, 014021 ~2004!
ent behavior of the full 4-dimensional integral is conce
able. It would be important to study this problem in mo
detail and to determine at least the direction of the effec
the saddle point approximation in that coupling.

IV. CONCLUSIONS AND OUTLOOK

We have studied the quasidiffractive processg (* )g (* )

→hchc at high energies which is mediated by the exchan
of an Odderon. This process is considered to be the theo
cally cleanest probe of the Odderon in perturbative Q
since it does not involve the uncertainties typically asso
ated with the coupling of the Odderon to a proton. We ha
taken into account the effects of resummation of large lo
rithms of the energy by using the BLV Odderon solutio
This is the only solution of the BKP equation which coupl
in leading order to theghc impact factor.

We have investigated in detail the effect of resummat
in this process by comparing our results to the exchang
three noninteracting gluons which is the simplest poss
model for a perturbative Odderon. For real photons we fi
that resummation strongly enhances the differential cr
section at smallutu, but leads to a faster decrease with i
creasingutu. The total cross section is consequently on
slightly enhanced due to resummation. The enhancemen
to resummation is more pronounced when one considers
tual photons. We find a logarithmic decrease of the cr
section with the energy in agreement with the intercept of
BLV solution being exactly 1. We have discussed in de
the effects of different possible choices for the energy sc
s0 which is undetermined in leading logarithmic approxim
tion. We have investigated this uncertainty and find that
cross section is rather sensitive to the choice of the ene
scale, in particular in the case of virtual photons when
scales0 can naturally involve also the virtuality of the pho
tons.

We have estimated the expected event rates for the
cessgg→hchc at a future Linear Collider fore1e2 scatter-
ing as well as for a photon collider option. In both cases
observation of the Odderon in this process appears feas
but more detailed studies accounting for detector cuts
tagging efficiencies will be required to obtain a conclus
assessment of this process.
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All previous phenomenological studies of the BLV Od
eron solution were done for processes involving protons.
a result of the complicated Odderon-proton coupling, the
merical effort for an exact calculation of the cross section
prohibitively large in these cases. These processes h
therefore been studied in the saddle point approximation
our process a considerable simplification occurs due to
special structure of theghc impact factor and an exact nu
merical calculation becomes possible. We have used our
act results to test the quality of the saddle point approxim
tion in our process. We find that for realistic values of t
kinematical parameters the saddle point approximation f
and underestimates the actual cross section by about an
of magnitude. We have identified the origin of this larg
deviation and have indicated possible implications of o
result for processes in which the BLV Odderon solution
coupled to a proton.

Finally, we would like to point out that also other fina
states can be produced via Odderon exchange in quas
fractive photon-photon scattering. An interesting exam
among them is the single-inclusive processgg→hcX which
can be treated in a similar way as the process discussed i
present paper. In that process, however, the situation is s
lar to the processes in which the BLV Odderon is coupled
a proton. The coupling of the BLV Odderon to thegX impact
factor does not allow one to reduce the four-dimensio
integral over transverse momenta to a two-dimensional o
An exact numerical evaluation of the integral is therefore
feasible and again one has to make use of the saddle p
approximation. In the light of our results, however, it see
likely that also here that approximation gives only a re
tively poor estimate of the actual cross section. Despite
difficulty it would be very interesting to study the effects
resummation also ingg→hcX and in related processes in
volving tensor mesons in more detail since they might offe
good chance to observe the Odderon.
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