PHYSICAL REVIEW D 70, 014021 (2004

Perturbative odderon in quasidiffractive photon-photon scattering
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We study the perturbative Odderon in the quasidiffractive prog&ssy*)— 7.7, . At high energies this
process is dominated by Odderon exchange and can be viewed as the theoretically cleanest test of the pertur-
bative Odderon. We calculate the differential and total cross section, as well as the dependence on the energy
and on the photon virtualities, taking into account the effects of resummation of logarithms of the energy. The
results are compared with those obtained with a simple exchange of three noninteracting gluons. We present
the expected cross section for this process at a future Linear Collider and discuss implications for other
processes involving the perturbative Odderon.
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I. INTRODUCTION produced both in &=+1 and in aC=—1 state like for
example a pair of charged pions. The interference term be-

The Odderon is the partner of the Pomeron carrying negatween the two corresponding production mechanisms can be
tive charge parity quantum number. In high energy scatteringsolated in suitable asymmetries like for example the charge
processes it gives the leading contribution to processes iar spin asymmetry. Asymmetries of this kind have been stud-
which negativeC parity is exchanged in thechannel. ied in[16—-20. Also here already experimental observation

After the concept of the Odderon had been proposed if an asymmetry could firmly establish the existence of the
[1], it was for a long time almost exclusively discussed in theOdderon.
context of elastic or inclusive processes. These have the dis- The first experimental search for one of these exclusive
advantage that the Odderon gives only one of many contriprocesses was performed for the case of diffractive pion pho-
butions to the scattering amplitude and a clean identificatiomoproduction inep scattering at HERA if21]. This process
of the Odderon is rather difficult. The only experimental evi-is the one for which the largest cross section is expected, but
dence of the Odderon so far has been found as a small difts theoretical description obviously has to rely on nonpertur-
ference between the differential cross sections of elastibative techniques. Such a calculation was performdd.1h
proton-proton and antiproton-proton scattering at the CERNnaking use of the stochastic vacuum mof2—24 in the
ISR [2]. As a result of the low statistics of the data and theframework of the functional approach to high energy scatter-
difficulty of extracting the Odderon contribution, however, it ing developed if25]. In [21] the experimental results have
is not possible to interpret this as an unambiguous signal dfeen compared to expectations based on that calculation, and
the Odderon. For a more detailed review of the phenomenaio signal of Odderon exchange has been found. The failure
logical and theoretical status of the Odderon we refer thef the theoretical prediction for this process is currently not
reader tq3]. understood.

Recently an important change of direction in the search In order to avoid the large theoretical uncertainties of non-
for the Odderon has taken place. Now the search concemerturbative calculations in diffractive pion production one
trates on processes in which it basically gives the only conean consider the diffractive production of heavy pseudo-
tribution to the cross section. The cross section for such proscalar or tensor mesons. In that case the large mass of the
cesses is in general smaller than for elastic or inclusiveneson provides a hard scale, and one can hope that pertur-
processes, but here already the observation of the processlaetion theory is applicable even for real photons. Here in
such would establish the existence of the Odderon. Examplgsarticular the production of). mesons has been considered;
of such exclusive processes are the double-diffractive prosee[7,8,13. The expected cross section for that process was
duction of vector mesons in protdantjproton scattering in the range of several tens of picobarns. In a study of elastic
[4] or the diffractive production of pseudoscalar or tensorpp scattering it has subsequently been found that the choice
mesons in electron-proton scatteriff-15]. In all of these  of parameters in the Odderon-proton coupling in those cal-
processes Odderon exchange gives the main contribution tulations was very optimisti26], and a realistic estimate of
the cross section at high energies. Other possible contribuhe cross section should be even smaller by at least an order
tions can only arise due to photon or Reggeon exchange, bof magnitude. As a result of the small cross section, the pro-
both of these contributions are under good theoretical coneess is not of immediate phenomenological interest, but it
trol. Another interesting possibility is to study the interfer- has turned out to be quite interesting from a theoretical per-
ence between Pomeron and Odderon exchange. This is paspective.
sible in the diffractive production of final states that can be That interest is related to the occurrence of large loga-

rithms of the energy in the perturbative series. In the simplest

possible perturbative picture the exchange of an Odderon is
*Electronic address: S.Braunewell@thphys.uni-heidelberg.de  described by the exchange of three noninteracting gluons in a
"Electronic address: C.Ewerz@thphys.uni-heidelberg.de symmetric color state. In higher orders in perturbation theory
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large logarithms of the energy can compensate the smallnetisg which does not involve model assumptions about the
of the strong coupling constantogs~1, and one needs to impact factors. The properties of the BLV Odderon can eas-
resum these logarithms. For the case of the Odderon thiy be compared to those of an Odderon modeled by the
leads to the generalized leading logarithmic approximatiorexchange of three noninteracting gluons. Furthermore, by
(GLLA) which is encoded in the Bartels-Kwiéski- comparing the behavior of the BLV solution in this process
PraszatlowicZBKP) equation27,28. Recently two different ~and in the procesgp— »p we can draw some conclusions
solutions of this equation have been found explicithf29]  about the possible origin of the enhancement obtained in the
and[30]. The former solution does not couple to the,  latter process for the BLV solution as compared to simple
impact factor in leading order and is hence not relevant fothree-gluon exchange. Another important motivation for the
the production ofn, mesons. The latter solution, the so- Present study is to estimate the chances of finding the Odd-
called Bartels-Lipatov-VaccaBLV) solution, on the other €ron in the process™)y*)— 5.7 in e*e” scattering at a
hand, does couple to that impact factor. Its intercept exactijuture Linear Collider.
equals 1, and it hence leads to a cross section which is con- In Sec. Il we provide the cross section formulas for the
stant with the energy up to logarithmic corrections. The BLVProcessy™*)y*)— 5.5 In particular we discuss the BLV
solution was recently also found in the dipole picture of highsolution and they 7. impact factor. In Sec. Ill we study the
energy scatterinf31]. resulting cross section and its dependence on the different

Although the intercept of the BLV solution is equal to the parameters. After discussing some technical details of the
intercept of the simple three-gluon exchange model for th&alculation, we start with the case of real photons and calcu-
Odderon, it has quite different properties. So far the phenomlate the differential and total cross sections in Sec. Il B. The
enological consequences of using the BLV solution in theapplicability of the saddle point approximation for the BLV
scattering amplitude have been considered only in the difOdderon solution in this process is considered in Sec. Il C.
fractive production ofp, mesons if13,14]. Interestingly, in ~ We investigate the energy dependence of the cross section in
[13] it was found that for real photons the resulting crossSec. Il D. In Sec. Ill E we address the possibility to observe
section is by about a factor of 5 larger than the one obtainethis process at a future Linear Collider. The case of virtual
in [7,8] by using a simp|e three-g|uon exchange for describ.phOtOI’lS is studied in Sec. Il F. Finally, we discuss our re-
ing the Odderon. Itis a very interesting question whether thasults in the light of results obtained for the BLV solution in
enhancement is a general property of the BLV solution oithe processyp— n:p in Sec. Ill G. Our main results are
whether and how strongly it depends on the couplings of theummarized in Sec. IV.
Odderon to the proton and to they, impact factor. It is one
of the aims of the present paper to address this question.

All of the processes mentioned above involve the cou- Il. SCATTERING AMPLITUDE
pling of the Odderon to the proton. This coupling is known A. High energy factorization
to be rather sensitive to the internal structure of the proton , ) (%) ,
[26], and it is therefore possible that due to nonperturbative We consider the procesg™)y(*)— 5.7, at high energy

effects this coupling is small. In that case it could be quite?"d relatively small momentum transfer, thatss|t| in

difficult to find the Odderon in these processes. It is thereford€Ms of Mandelstam variables. The photons in the initial

interesting to study also processes which do not involve th§tate can both be real or virtual. The large mass of the charm

uncertainties of the Odderon-proton coupling. From a theoguark_provides a justification for treating the process in per-
retical point of view the quasidiffractive procesé*),(*)  turbation theory. _ _

— 717 IS the cleanest possible probe of the Odderon. As a At high energies t_he process 1s dommated_by Odderon
result of the large mass of the charm quark, the coupling ofXcange. Diagrams involving quark exchange inttbiean-

the Odderon to the 7. impact factor can be calculated per- nel are suppressed _by powers of th_e energy and can be ne-
turbatively even for small photon virtualities. Again, already glected at the energies which we will consider below. As a

the observation of this process at high energies would firml);eSUIt of high energy factorization, the scattering amplitude

establish the existence of the Odderon. More generally, on@" ©dderon exchange can be written in the form illustrated

can study the quasidiffractive processé® »*) MM and g Fig. f1. The émpli;ude is a con;/oluti(;rll) of th?‘ Odc:]eron
Y1) ), M X with M being a heavy pseudoscalar or tensorS€€n unctionG with two impact factorsd coupling the

meson. Also these can occur at high energies only due thderon to the external particles. Symbolically,

Odderon exchange. Such processes have first been studied in -
A~(®[G|Dy), D

[32,33 and more recently for the case 9f meson produc-
tion in [34]. In these studies the Odderon has been modeled
as a simple exchange of three noninteracting gluons. and the convolution includes the integration over the uncon-

In the present paper we study in detail the processtrained transverse momenta of the gluons as will be de-
y*) ) 5.7, at high energies. In particular, we take into scribed further below. The subscripisand| of the impact
account the effects of resumming large logarithms of thefactors stand for the upper and lower impact factors, respec-
energy in perturbation theory by using the BLV solution of tively. For the Odderon Green functio® one can insert
the BKP equation. That allows us to perform a detailed studither the BLV Odderon solution or the propagation of three
of the properties of the BLV Odderon solution in a com- noninteracting gluons as the simplest possible model for the
pletely perturbative process, that is in a clean theoretical seperturbative Odderon.
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C. BLV solution

The BLV Odderon solution? ™ found in[30] is con-
structed from the known eigenfunctioi$”™ of the BFKL
equation[35,36. These eigenfunctions are labeled by a dis-
crete quantum numbere Z, called the conformal spin, and
a continuous quantum numbere R. The functionsE(*'™
were found in impact parameter space 37], and they can
be obtained in transverse momentum space via a Fourier
transformation. We will use the same symlisl'™ for both
representations of the BFKL eigenfunctions. In the BLV so-
lution the eigenfunctions of the BKP integral operator are

) ] ) constructed as
FIG. 1. Factorized form of the scattering amplitude for
(%) (%)

T WO kg ey )=o) 3, K

In order to make the paper self-contained we collect in the (123 kika
following sections the known results for the impact factors XE® (ky+ky,Ka), (5)
and for the Odderon Green function, and we bring them into

a form which can then be used to compute the above amplighere the sum runs over cyclic permutations, aneds to

tude and the resulting cross section. be an odd integer. We use the same normalization convention
as in[13], so that the Odderon states have the same norm as
B. y— 7. impact factor the Pomeron eigenfunctions of which they are constructed.

We first consider the impact factor that describes the tran NS leads to

sition of a photor(real or virtua) into an#. meson and three
t-channel gluons in a color singlet state as it has been calcu- c(v,n)= / Neas )
lated in[7]. There it was found that the impact factor has vI= 27 —3x(v,n)]

only transverse components. The resulting expression reads
| The functiong(5) are eigenfunctions of the BKP integral op-
P —pel (ki +ka—ks) erator with eigenvalues
"\ @ Q2+ amZ+ (ky+ko—k3)?

Ncas 1+|n| .
[ x(v,n)= 2(1)— o +iv
q . T 2
B R 1=1,2, (2)
Q +4mc+q 1+|n|
- —iv||, (7)
where the sum runs over all cyclic permutations and the in- 2

dexi corresponds to the two possible transverse polarizations ] ) ) o
of the incident photon. Furthermorg=k,+k,+ks is the where s is the logarithmic derivative of the Euler gamma

total momentum transfer, and we will have —q?. Q? is functionI". o o
the virtuality of the photonm,=1.4 GeV the mass of the The Odderon Green function in spectral representation is
charm quark,ei the totally antisymmetric tensor in two di- constructed as a superposition of all states with odd integer
mensions, and we have numbersn and general(rea) v:

4 dabC a3 G— 2 @ d yX(V,n) (277)2(]}2—"_”2/4)
b=— =2Tm, . (3) - U 2 122 2
9e N, o e oddn [vo+(n—=1)%/4][ vo+ (n+1)</4]
><‘If(”'”)(kl,k2,k3)\lf*("'”)(ki,k§,ké). (8

Here ag and « are the strong and electromagnetic coupling
constants, respectively. The charm quark carries the char

1010_272/3'\7“ (tjhe% mesgfn] hziszagéaga'ill\(@hotor) width of scale. The scals, is undetermined in leading logarithmic
— (kevand a mass ne < € A approximation, and we will discuss possible choicessfon
The factord®®® is the totally symmetric structure constant Sec. 11l D below. The normalization in E8) is chosen in

for the color SUN,) group. The scattering amplitude con- sych a way that in the limit of vanishing coupling;—0,

Yere y=log(dsy) is the rapidity ands, is a fixed energy

tains the contraction the Green function reduces to the exchange of three nonin-
) teracting gluons.
gabegabe Ne—4 5,33:4_0 4) In order to calculate the momentum integral for the scat-
N, 3’ tering amplitude, we need to know the BFKL eigenfunctions

in momentum space. In impact parameter space the eigen-
where the last equality holds fod.=3. functions are
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hf 7 \D 4 ,
E<unkrlo,r2&::( f12 ) (-fff ) : ) <¢ﬂ|@“”“°>=zj'dzkldzkzdﬂ(kl,kz:q)qN”J”<kl,k2;q»
M0 20/ \ rqgrog (16)

whererj;=r;—r;. On the right-hand sidéRHS) we use However, this four-dimensional integral reduces to a two-
complex coordinates; for describing positions in the two- dimensional ong30]:
dimensional impact parameter space. Further we have the

conform_al weightsh=(1+n)/2+iv and h=1-h* =(1 (DT WMy = b f d?k ' (k,q— k) E@M(k,q—k)
—n)/2+iv. c(v,n)
The Fourier transform of these eigenfunctions was calcu-
lated in[13]. It was found that the momentum space func- — b <¢i|E(V,n)> 17)
tions have the form c(v,n) '
ECN(I4,1,) = E&V'”)(Il,I2)+EE;”'”)(I1,|2), (10) where the reduced impact factor is
- ibut e(2k—q)'
where E{"™ denotes an analytic contribution are"" a & (kq—K)= ! _ (19)
part containings-functions. The analytic part reads Q%+ 4m§+(2k—q)2
ECM(11,1)=C[X(I1,15) = X(I5,11)]1, (11) Let us now consider the infinite sum over odd values of
in Eq. (8) which needs approximation in order to be evalu-
where the coefficient is ated numerically. In the full Green functidB) the exponen-
tial factor e’X(*™ clearly is of special importance to the in-
(—i)" — _ _ tegrand, and an expansion of its argument can help us
C= 2hh(l—h)(l—h)l“(l—h)l“(l—h). (12 determine the dominant values mfExpanding Eq(7) up to
) second order around=0 yields
The expressiolX can be given in terms of the hypergeomet- Noag 1+|n|
ric function F(a;,a,;b;z)=,F,(a;,a,:b;2): x(vin)=——2¢(1)=2¢)| ——
1 \h=2(T,\"2 1, L[ 1+]n]
X(ly,15) = 51 (52) Fl1-h2-h;2;— = | —— | 00| (19
2
o l, For values ofn other than=1 we therefore get a constant
X F( 1-h,2—-h;2;— I_> . (13)  part in the Taylor expansion of the argument of the exponen-
1

tial which grows withn. We have in fact checked numeri-
cally the contribution oih=3 and find that this term is al-

The two-dimensional momenta are denoted as complex nun- . . 4 .
bers on the RHS. ready of relative size-10" " compared to the leading term.

The S-function part in Eq.(10) is simpler. Denoting the Therefore we can reducg thg sum to one av er-1.
; . e Now we can further simplify the integral that we have to
total momentum transfefin complex notatioh by q=1, . .
. . calculate numerically. The analytic part reduces rier =1
+1,, it can be written as

to
in _
E%V'n)(|1’|2):[5(2)(|1)+(_1)n5(2)(|2)]ﬂ21_h_h E(v,nz:l)(kq—k)zi ! v(1+v2)T%(1-iv)
_ 8 ’ (47)2
FA-h) o ne X(K,q—k)—X(q—kKk)]. (20
r'(h) e (14 X[X(k,g—k)—X(g—k,k)]. (20)

Forn=1, Eq.(13) leads to

D. Calculation of the scattering amplitude K\ iv-2 a_k iv—1
We want to calculate the scattering amplitudes XM=Y (k,q—k)= (E) (%
Al = (0] G|D]) (15 i ioe
3(271_)4 u X F iv,1—iv;2; E_?
for different transverse polarizationg of the incoming pho- . ... 09—k
tons, where we have distributed the constant factors g&.in XF|1=iv,2=1v2= k | (2D)

In order to compute these expressions, we have to evaluate
integrals over the independent transverse momenta, e.g. Forn=-—1, we get
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X(="Y(k,q—k)=X"="1(q—k,k), (22) Neas

x(v,x1)=-2 - L(3) P+ O(v?). (26)

and thus obtain
The rest of the integrand is also expandedvinThe first

(v.n=-1) =1 AT non-vanishing term in the expansion of the analytic part is of
Ea (ka—k)=Ex (k,q=k). 23 first order, but this term vanishes in the momentum integral
ecause it is orthogonal to thg impact factor; segl3]. The

) b
From now on we choose the coordinate axes such that the.ci 1orm that survives this convolution is of second order.

total momentum trgnsfetq is in the 1-direction, so fchat N The s-function part leads to a non-vanishing contribution
complex notationq is purely real. As we have an integral already in zeroth order im:

over both components of the two-dimensional momentum
vectork, we can replace the second component by its nega- i

tive value, which in complex notation corresponds to com- EG3(Ky ko) =[P (ky)— 5(2)(k2)]2— —. (27)
plex conjugation. In the reduced impact fact@B) we have 79

to switch the sign of the=1 component due to the sym-  Therefore in[13] only the & contribution is calculated. We
bol. Thei=2 expression remains unchanged because it in;j study in Sec. Il C below how that approximation affects

cludes only the first component of the momentum in its NU-5yr results. As we will show, the SPA turns out to be inad-
merator. Fori#j in Eq. (15 the coherent sum oven  equate for our process.

==+1 thus gives two equal but opposite results. For parallel
photon polarizationsi=j, the resulting expression in Eq.
(15) is the same fon=1 andn=—1. Thus, we can work
with the expressiofE("""=Y), which we will denote a&(” A. Details of the calculation

from now on. , In the following sections we will present our numerical
Let us now turn to thes-function part fom==1. Forthe = agyits for the cross section fof*)y*) _, »_n. and for its

d-function part one also obtains the same resultfer+1  gependence on various parameters. In the present section we

IIl. NUMERICAL RESULTS

andn=—1, which we will denote bye{”: make several general remarks relevant for those results.
. The differential cross section is obtained from the ampli-
EWV =gy "==Yk,qg-k)=[5?(k) tudesA'l involving the BLV Odderon solution as
i T(1-iv) g?” d 1 1 2
-5(g-K)]z=—4""————. (24 2T - ij|2
(@=WI524 " F i) g (24) n _16%24”2:1 | Al|2, (28)

With our specific choicej=(q,0) we can easily evaluate the As we have seen in the previous section, the mixed polariza-
convolution of thes-function part with the impact factor. We tion amplitudes vanish. Furthermore, we find numerically
can see from Eq(18) that due to thee tensor thei=1  that thei,j=1 contribution to the cross section is oniyl %
component of the impact factor vanishes kor0 ork=q,  of that coming fromi,j=2. Since the numerical error of our

that is when thes-functions in Eq.(24) are applied. Hence calculation is also on the percent level, we neglect this con-
the only non-vanishing contribution to the convolution of thetripution. We hence have

S-function part with the impact factor is the one foy

. G S (29
. . 2y dt  e4ans? '
(@gEp)y=L T 10T (25
¢ O 4iv T(1+iv) Q24+ 4m2+q?’ whereA=A?2 According to the discussion above we obtain
the scattering amplituda as the integral:
E. Saddle point approximation 1
. . . . (271')2 V24 = 2

In [13] diffractive production of any, meson inyp scat- _o S * dpeyx(® 4/ b
tering was calculated in the saddle point approximation B 3(2m)4) = ve P(12+1)  c(v)?
(SPA). For our study this approximation will not be needed,
and our results given below will not make use of the SPA. X{P|EMY (SIEM)F, (30)

Nevertheless, it is interesting for us to study the same ap- .

proximation also for our scattering process in order to diswhere we have the reduced impact facfor ¢'=2, and the
cuss our results in the context of those [af3]. For this  convolution of ¢ with E( is defined in Eq(17). Further,
purpose the integral in Eq.(8) is approximated by expand- E(*) has two parts as in Eq10), and we have set=+1

ing the argument of the exponential and othedependent here while multiplying by 2 to take into account the contri-
factors in the integrandin particular the BFKL eigenfunc- bution of n=—1 as explained in the previous section.

tions) in Taylor series. In lowest non-vanishing order the  Our results below are obtained from a numerical evalua-
Lipatov characteristic functiofi7) is quadratic inv: tion of the integral30). We emphasize that we compute that
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integral without further approximations. In particular we do  Of course there is a minimal momentum transfer required
not use the saddle point approximation for our main resultsfor the transition from a real photon in the initial state tga
The outcome of using the SPA is included below only inmeson in the final state. That minimal momentum transfer
order to discuss the applicability of that approximation. Int;, can be estimated to u@]inw—m‘j] /s. At the energies

. . . . . C
fact we will show that the saddle point approximation is not,ynich we will consider its numerical value will be very

applicable to our process in the phenomenologically relevan | and will not have any quantitative effect visible in our
kinematical region. figures.

Recall that the convolutiong|E("),, in the integrand
of Eqg. (30 involve only two-dimensional integrations; see
Eq. (17). The reduction from a four-dimensional to a two- B. Cross section for the scattering of real photons
dimensional integral in these convolutions occurred due to
the special structure of the BLV Odderon solution. The inte-
gral (30) involves hypergeometric functions which are ex-
pensive to evaluate in terms of computer time. But becaus
of the reduction to two-dimensional integrations in
($|EM),,, it is still possible to perform the integr&80)
using Mathematica.

As already pointed out in Sec. Il D, we do not take into
account contributions to the BLV solution with quantum
numbern# = 1. We have in fact calculated numerically the

n=3 contribution for a variety of values of the parameters, . X
y P tering, rather than a fixed center-of-mass energy. We give an

Q% sandt and find it to be negligible. estimate on the size of the cross section for the process
One of the most interesting questions which we want to P

study is how the BLV Odderon solution compares to the® € — 77 In Sec. Il E, .bUt in the f!rst part we are only
exchange of three noninteracting gluons in our process. Th(éoncerned with the properties of the dlﬁerentla_ll Cross section
latter exchange is the simplest possible perturbative mod fthte ?Ltjrt:process. Tthel squ?re(l/enesg?ﬂt(tar:s n tTe far%u-
for the Odderon. Technically speaking it amounts to replac—men of the exponential g5=log(s/sy), Wi € scale factor

ing the Odderon Green functidd in Eq. (15) by three free So oln wh_|ch2we vaII Commef“ I?ter. Flor t]tns Sﬁctlzpﬁwe u§ela
gluon propagators: scale s,=m’, . Our numerical results for the differentia

For the calculations in this section we choose a center-of-
mass energy/s=300 GeV. This choice is somewhat arbi-
gary and our main motivation for it is that later on we want
0 compare the behavior of the BLV solution in the process
vy— 7. 1o that in the procesyp— 7n.p. The latter was
calculated for the HERA energy [d3], and we therefore use
the same energy here. As the process— 7.7, is phenom-
enologically interesting mainly as a subprocess of electron-
positron scattering for example, in an actual collider setup
there is a continuous energy range available forjtlyescat-

Te
cross section for real photorgirtuality Q2=Qﬁ,,=0) are

1 shown in Fig. 2, together with the corresponding results for
Gag= 62 (ki—kq) 8P(ky—kz) 5. (31) the noninteracting three-gluon process fridd].
kiksks Comparing our numerical results for the BLV solution to

the three noninteracting gluons in thehannel, we find a

The cross section foy™*)y*)— 5 7. with a simple three- huge enhancement of the differential cross section at small
gluon exchange was calculated[84]. We have reproduced momentum transfer. The cross section calculated with the
the results of that paper in order to compare them with ouBLV solution reaches a maximal value ef120 fb/Ge\f at
calculations. t=tm,~—10 3 GeV?, and then quickly falls to

Our calculation is based on the BLV Odderon solution~88 fb/Ge\? already at|t|=0.01 Ge\f. The simple solu-
which results from the resummation of leading logarithms. Ittion exhibits a fundamentally differentdependence that can
should be pointed out that there are several uncertaintigfgirly well be described by an exponential decay. Its maximal
which are inevitable in that approximation scheme. The firsvalue att=t,, is only ~5 fb/Ge\?, so there is a maximal
of these uncertainties concerns the choice of the appropriaenhancement factor of about 25 that comes from the interac-
value of the strong coupling constant. Strictly speaking thdion of the three gluons. As the BLV curve has a much
scale ofag is undetermined in the GLLA. In all our calcula- steepert dependence, the two curves intersect |t
tions we usea = as(m§)=0.38 to allow for an easy com- ~3.5 Ge\/.
parison with the results frorf84] and[13] where the same We have also estimated the total cross sections for the two
value had been chosen. It should be emphasized, howeveases. For the calculation involving the BLV solution we get
that already a small change ins implies a considerable a cross section of aboutf:’~59 fb, whereas the simple
change in the cross section. This is due to the simple fact thahree-gluon process yields,~43 fb. In both cases, no cut-
the cross section contains a factef already from the cou- off for the integral was needed as the differential cross sec-
pling of the three gluons to the impact factors. tion falls off sufficiently quickly with growing|t| to allow

Another important uncertainty is the choice of the energyfor a reasonable estimate of the contribution from Igtge
scales, in y=log(ssy). Also this scale is, strictly speaking, We notice that the minimal momentum transtgy, is suffi-
undetermined in the GLLA and has to be chosen as a typicaliently small at\’s=300 GeV so that it does not affect the
energy scale for the process. We will discuss several possiblelculation of the total cross section.
choices in detail in Sec. Il D. It will turn out that choices  In summary, we see that the BLV solution enhances the
which appear equally natural can lead to quite different retotal cross section ofyy— 7.7, by a factor of about 1.5
sults. compared to the noninteracting three-gluon calculation of
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T T
100 BLV - numerical calculation -
three noninteracting gluons

FIG. 2. Results for the differ-
ential cross section for real pho-
tons (Q%=0) and center-of-mass
energy/s=300 GeV.

do/dt [fb/GeV?]

[t [GeV?]

[34]. The dependence of the differential cross section on thg38]. In that case the resummation results in a BFKL gluon
momentum transfer changes significantly, and the region dtdder exchange instead of a simple two-gluon exchange,
small momentum transfer becomes more important in thend also there thedependence becomes much steeper in the
case of the BLV solution. resummed calculation.

Unfortunately, the origin of the change in thedepen-
dence is spmewha_lt difficult to trace. The dependence of the Comparison with the saddle point approximation
cross section ort is rather involved both for three-gluon
exchange and for the BLV solution. In the case of the BLY ~Next we want to study the reliability of the saddle point
solution, for example, it enters via the dependence on th@pproximation for our process. This question is primarily of
momentum transfelq in various terms in the amplitude, theoretical interest. However, it turns out that due to the hy-
among them hypergeometric functions; see Sec. Il D. As wgergeometric functions in the BLV solution it is numerically
will see in the next section, the slope of the differential crosseextremely challenging to calculate processes in which the
section for the BLV solution is foit|>1 Ge\? roughly ~ BLV Odderon solution is coupled to a proton. For these one
similar to the one obtained in the saddle point approximahas to make use of the SPA, and it is therefore interesting to
tion, in which it is easily found to be- 1/(4mf7+t)4. How-  study the reliability of that approximation. For this our pro-
ever, also thé dependence of the three-gluon exchange caneess is well suited since here we can compare the SPA to the
not be extracted directly and needs to be determine@xact result.
numerically resulting in the exponential-like decay described Figure 3 shows our exact results together with the result
above. Therefore we find it difficult to give a simple physical obtained by using the saddle point approximation as de-
explanation for the change of thelependence due to resum- scribed in Sec. Il E. Again we have chos¢e=300 GeV.
mation. Let us finally note that a very similar effect has beenWe find a maximal enhancement factor of the exact calcula-
observed in the quasidiffractive reactiopy—J/4J/¢ in  tion over the SPA of order 25 att,,,, but quickly shrink-

100 numerical evaluation - full expression -
numerical evaluation - no analytic part -~~~ --
saddle point approximation - ---- 1

FIG. 3. Differential cross sec-
tion: comparison of two different
approximations of the Odderon
wave function with the exact re-
sult.

do/dt [fb/GeV?]

[t [GeV?]
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ing with increasindt| to an enhancement of order 2. For the =0.01 Ge\?. We have not included the constant factors in
total cross section the SPA calculation leads ¢g"  this calculation, so that the figure shows only the relative size
~13 fb, hence underestimating the total cross section apef the different terms. We recall that, before being integrated,
proximately by a factor 5. So we find that the SPA in itsthe expression(¢|E("), gets multiplied with the corre-
simplest form should not be applied to the scattering processponding lower part and the rest of theintegrand in Eq.
at hand, at least if one is interested in small valueft|of (30). The latter is given by
This result appears surprising at first sight, as it was found
that in calculations involving the BFKL Pomeron the saddle
point approximation typically overestimates the cross sec-
tion, the deviation from the actual cross section usually being |(v)=evx(")
of the order of 20%; see for examlg9] for the case of the
total hadronic cross section in virtual photon collisions. We
therefore find it instructive to discuss the Origin of the |argeT0 better understand the Significance of a particuiar contri-
deviation and its direction in the case of the BLV solution in pytion to the overall result, we have included in Fig. 4 also
our process. this momentum-independent contributighy) to the integral
As was mentioned in Sec. I E, in the SPA the analytic(solid curve. It basically gives a Gauss-like curve with a
partEY” of the BFKL eigenfunction is completely neglected. maximuml, at »=0. It is scaled and shifted in such a way
In Fig. 3 we also show how this affects thedependence. that the lower horizontal axis in the figure is they)=0
Going to small|t|, the curve resulting from the full calcula- |evel and the upper one tHér) =1, level (see the RHS of
tion (including the analytic parthas a much steepedepen-  the figure.
dence than the SPA curve, leading to the large enhancement. |t now becomes clear from the figure, why the SPA cannot
We have also included in this figure the cross section obtead to good results in our calculation. The analytic part
tained by neglecting the analytic part while calculating the (dashed linesgets comparable in size to tifefunction part
integral numerically without the SPA. That curve is very (dotted already atv~0.2, where the Gauss-like facttolid
similar to the SPA curve in itsdependence, but is higher by |ine) is still at about 70% of its maximal value. At larger
a factor of about 1.5. Thus we see that the crucial diﬁerenCQaiueS ofr the anaiytic part even contributes dominantiy to
is not caused by the approximation of the argument of thehe amplitude. Compared to the approximated integrand,
exponential, but by the fact that the analytic part is ne-where the analytic part is neglected but théntegration is
glected. done numericallyno SPA, this gives an enhancement by a
The omission of the analytic pa” in the SPAis due to  factor of 12 in the differential cross sectidwhich can be
the fact that the first non-vanishing term in the Taylor expanunderstood when keeping in mind that the expression
sion (in v) of E(AV) is of second order, whereas the delta(#|E(")) gets squared when the result of the lower part is
function contributiorE%”’ already has a non-vanishing zeroth multiplied and again squared when the cross section is cal-
order term. But as the factorin the exponent is not very culated. The analytic part falls off much faster with| than
large, the analytic piece nevertheless contributes substathe S-function part, so the SPA improves with increasing
tially to the v integral. Thus a numerical investigation of the momentum transfer. For values [6f>5 Ge\? it reproduces
v dependence of the different parts of the solution is needethe t dependence fairly well. Nevertheless, even for larger
to obtain a clearer picture of the importance of the analytiovalues of|t| the size of the differential cross section is sig-
part. nificantly underestimated by the SPA. We find that the ana-
In Fig. 4 we show the real and imaginary parts of bothlytic part E, becomes negligible at small only for ex-
contributions to the expression(#|E™), at |t|  tremely largey above~100.

(277)2 b2

2(12+1)  c(v)?

1
2

+ —
iy

(32
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1000 =T

100 E

FIG. 5. s dependence of the
differential cross section for real
photons for |t|=0.01,0.1,1,10
Ge\? (top to bottom. The points
are numerical results, and the lines
represent fit§see texk

dojdt [th/GeV?]
5

0.1 L1l L SR | L PR S T L PR S T
1000 10000 100000 1e4+06
5 [GeV?
D. Energy and scale dependence of the cross section eventually have to approach the saddle point approximation,

The intercept of the BLV solution equals unity, so thereP&cause it does become valid at some large valyevetien
should be no power-like energy dependence of the cross setle Gaussian factor gets so narrow that only the region of
tion. But as the continuous quantum numbeof the BLV small v gives a sizeable contribution to the integrand. There-
solution leads to a cut in the complex angular momentunfore, in the limits—c, we know thato— 1.
plane(instead of a simple pojewe expect a log®s depen- In the case of center-of-mass energies accessible at
dence. This can be numerically verified by keepiniixed ~ present and planned acceleratrs toy~10), however, the
and calculating the cross section as a functiors.ohgain, fitted curves give a reasonable description of the energy de-
the results of this calculation can be compared to the SPA tgendence. Again, we find the SPA to be inappropriate for the
check the significance of the latter. The comparison with théarameter range of smat| and realistics. In order to keep
noninteracting three-gluon exchange process does not givBe figure readable, we did not include the SPA curves, but
any new insight, as there is no energy dependence in th&gain they fail completely in quantitatively reproducing the
cross section. numerical results. This can be easily seen from the fact that

The saddle point approximation gives an inverse logariththe exponent of the logarithm is determined to be arooind
mic dependence on the energy, as can be easily seen wher2, whereas the SPA gives an exponbrtl. It is only at
keeping in mind thas only appears in the Gaussian expo- values ofs well beyond any realistic sizeyg>100) that the
nential exptyc'1?) in the factor y=log(sls) (with ¢’ saddle point approximation becomes acceptable already for
=2N.as/7). Similar results are expected for the numericalsmall |t|.
calculation if this approximation should be reasonable. How- We now turn to the question of the dependence of our
ever, as pointed out in the previous section, in the domain ofesults on the choice of the scalg For all of the previous
the momentum transfer that gives the largest contribution tealculations we had chosen the fixed scsaje mfyc iny

the total cross sectiofi.e. the smallt| domain the applica-  —|og(s/s). The scales, of the energy cannot be determined
bility of the saddle point approximation is very questionable.in | LA since a change irs, is formally sub-leading in the
Again, we have calculated the differential cross sectiorexpansion of logarithms. The numerical results, however, do
numerically, this time varying. To the results a function of naturally depend on the specific choice. It is therefore inter-
the form esting to see the influence of different choicessgfon the
_ “b cross section. 1§, t andQ are fixed, a change of the scalg
f(s)=alog "(s/so) (33 by a factor ofd clearly has the same effect as replacéigy

To see the change of thedependence with varying we ~ fesulting cross sections from the results obtained above. As

have performed the calculation fdt|=0.01, 0.1, 1 and long as the scals, remains small compared g the change

10 Ge\2. The results for a wide range of squared center-of-d0€s not qualitatively alter the results. S

mass energies together with the fitted curves are shown in  Yet the overall magnitude of the cross section is signifi-

Fig. 5. cantly changed by a change in the scale factor. For example,
One can see that the expected behavior is reproducdd cOmparison withsy=m _the choiceso=1 GeV?, which

quite well by the numerical results. This should however nots the typical mass scale for hadronic processes, changes the

be understood as a possibility to determine the valueiof  result by an approximately constant factor of about 2/3.

Eq. (33) as a function ot. From the fits we get values ftr =~ Compared to this uncertainty, the numerical and systematical

ranging from 1.9 ait|=0.01 Ge\f to 2.4 at|t|=1 Ge\?,  errors in our calculations are definitely negligible. Strictly

but in the limit of asymptotically larges, all these curves speaking, the numerical values of our results should only be
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taken as an indication for the order of magnitude. The appro- s
priate choice fos, and hence the absolute results could only T S) = Uo|09_2(s—) : (34
be determined in a next-to-leading order calculation. The 0
qualitative dependence on the momentum transfer and on the, _ .
center-of-mass energy, however, is quite stable unde‘fyhere 0o=5040 fb is determined from the value oty at
changes of the scale factor. V5=300 GeV. ) )
As soon as we consider non-vanishing virtualities of one 1 N€ center-of-mass energys in the yy subprocess is
or both of the photons, the choice of the scajebecomes related to the beam ener@peamas
even more ambiguous. As the virtuality of the photon pro-
vides another momentum scale for the reaction, it is natural S= leZEgeam (35
to include it into the scale factor. The inclusion of the virtu-
ality in So will lead to different results for the dependence of where Z,,Z, are the fractions of the electron and positron
the differential cross section on the virtuality of the photons.energies carried by the two photons.
as will be discussed in more detail in Sec. lll F. In the equivalent photon approximation the energy distri-
bution , of 'ghe photons is given by the flux factor
E. Possible realizations ofp. meson photoproduction Eég,(%ging)a?n [Zcé)é‘]:untaggecb 't readsfor details see

In order to relate our results to phenomenology, we want

to give some estimates for the cross section in possible future N2 1—7)2E2 2
collider setups. So far, we have been concerned with the f(z)= il 1+{1-2) Iog( 2)"Ebeanf) max . (36)
processyy— n.n. With real photons at the fixed center-of- 2m z mgz

mass energy/s=300 GeV. That scale was chosen having in
mind a later comparison to other works concerning the proynere we us®2. =30 mrad. The cross section for the pro-
max "

CESSYpP— 7¢P. cessete  —ete” which corresponds to the collision
A possible realization of quasidiffractive doublg pro- ¢ Jimost ;al pho?[gzcs, is given by P

duction would be the photon collider option at TESLA. In ’

this section we use the definitions and numbers given in the ) .

TESLA design reporf40]. From an electron-positron center- J dz J dz,0(s—S. S\ (z)f (2 3

of-mass beam energy @,..,=500 GeV a beam of real o o ? (5= Smn) 7ol S)F(20)T(22). - (37)

photons with a maximum center-of-mass energfs

=390 GeV can be produced. However, as a result of theyores  genotes the minimal squared center-of-mass energy
production mechanism of inverse Compton scattering, th‘?or the process. AgairEpe,,=500 GeV is used
. . eam b

resulting beam is not very narrowly peaked, but has a maxi- ¢ \ve integrate over the complete domain of possible val-
mum at about,/s=360 GeV with a width at half maximum ues for s—that is, 4“37C<5< E2

oo . . —we get a total cross
of about 15%. The luminosity for photons with an energy in bearn gt
this peak region is estimated &s,,=1.1x 10% cm2s ! section for the electron-positron scattering process of
=1

s . .
As the dependence on the momentum transfer at this energy>> o @S opposed to 3.5 fb, which was obtained for the
imple three-gluon exchange if84]. However, with a

does not give any new insight, we do not show a figure of th e :

differential cross sectiotthe curve looks exactly like Fig)2 ~ Sduared center-of-mass enemgy sy,=4m;, one is clearly
The total cross section fq@: 360 GeV iso,~55 fb. This  not in the high energy limit. In particular, the requirement
would lead to a total number of events of the order of itD S>>t is not met. Therefore, we have performed the calcula-
five years of continuous running. tion again for a minimal squared energy of 4§, and ob-

Another possibility of realizing the processy— 7.7, is  tain for theg*e* total cross section a value of,~7 fb.
directly in electron-positron collisions. Here the process oc-The large difference between these values comes about be-

curs as a subprocesséie” —ete 7.7, at high energies. cause the total photon cross section rises as one goes to small
The yy subsystem in such a collision has a continuous specvalues ofs. Compared to the value as=300 GeV the total
trum and we have to integrate over the energy fractions. Irtross section fok/s= s, is larger by a factor of 50.

[34] this calculation was performed in the equivalent photon Stating it very cautiously, we estimate the total cross sec-
approximation(see alsq41]) for the noninteracting three- tion of the procese*e™ —e*e™ 7.7, to be of the order of
gluon exchange process. There, it was much easier to calcd® fb. The planned Iluminosity at TESLA is 3.4
late the convolution integral, as the simple solution does nok 10** cm™2?s™! [40]. The resulting order of magnitude of
exhibit any energy dependence. Because of the large numethe number of events is similar as in the case of the photon
cal effort of calculating total cross sections in our approachcollider option.

we use the results from the previous section to estimate the A realistic assessment of the feasibility of a measurement
energy dependence of the total cross section. There we fourad our process at a future Linear Collider would clearly re-
fairly good fits of the form=log®(¥/sy) with values ofb  quire a more detailed study of the process including detector
around 2. Therefore, we approximate the total cross sectioouts and tagging efficiencies. Such a study is beyond the
by scope of the present paper.
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F. Virtual photon scattering The dominant region for the momentum integration is where

hdhe gluon momentunk is small. For small values df| the

So far we have been concerned with the case of real p d . ) > c X .
ton scattering. In this section we consider the cross Secti?fuppressmn by the virtuality is therefore basically given by a

: - = factor ~1/Q2. For a value oflt| comparable in size t@?
for virtual photons. For definiteness, we choose a virtualit L TS N2 X
Q?=25 Ge\?, again motivated by the choice [13]. The the suppression is onkt 1/2, and if|t[>Q? the effect of the
. . ! . . virtuality becomes negligible.
comparison of the differential cross section for real and vir- For the total cross section this gives a strong suppression

tual photons is presented in Fig. 6. We would like to pomtwith respect toQ2. For one virtual Q%=25 Ge\?) and one
out that now and in the foIIo.wmg we are again considering.q | photon, we get a total cross sectisg~5 fb, for both
cross sections foryy Scattering rather than for the corre- paing virtualo,,~1 fb (for both real, the cross section was
sponding process ie" e scattering. We have included in . ‘59 o). The three-gluon approximation leads to cross
the figure the cross sections for the case of two real photongectionsg,,~2 fb for one virtual photon ane-,~0.2 fb if
one real photon and one virtual photon, and two virtual phooth photons are virtual. Thus we see that the enhancement
tons. of the total cross section of the BLV Odderon over the three-
In the latter two processes there is an additional naturagjluon approximation gets amplified when one considers vir-
scale in the process that can be included in the scale factenal photons.
So- In addition to the choices discussed in Sec. Ill D this Next, we want to investigate the dependence of the differ-
clearly gives another range of reasonable choices. For thential cross section on the virtuality of one photdfig. 7)
case of two real photons we have used aggin mfk; for  when the second photon is real. For this we keédjxed

the processes in which at least one virtual photon is involvecx(|t|_1 Ge\F)_ and varyQ® in one impact factor. As was
h hoses,=m?2 + Q2. That choice appears natural already mentioned above, the results of the numerical calcu-
we have ¢ 0=’ . pp

. _ _ . . lations depend on the specific choice sgfwhich can now

in particular in the light of the typical energy scales occur-include the virtualityQ?2. In that case th€? dependence of
ring in deep inelastic scattering. In the case of a virtual phothe cross section will strongly be affected by the specific
ton scattering on a real photon, one could also think of usinghoice ofs,.

some kind of average momentum scéfm example the geo- In Fig. 7 we plot the results for three different calcula-
metric or the arithmetic meaniThis would change the results tions: the approximation by three noninteracting gluons and
only by a factor which is almost independent| the numerical BLV Odderon calculation with two choices for

In Fig. 6 it can be seen that the basic dependence on tHée scale factor. These are the scale that was us¢i3in
squared momentum transfer is qualitatively similar for allso=mfzc+ Q?, which we will call “full” scale factor because
three processes, but the absolute size of the result is quitsf the inclusion of the virtuality, and a “reduced” version
different. The virtuality of a photon leads to a suppression ofyithout the virtuality of the ph0t0n$o=mf, . As we have
the differential cross section. If both photons are virtual, the inted out above, there is no way to detérmine in the LLA
cross section is further suppressed. The relative enhancem %ich scale choic;e is the correct one. Consequently the
of the real photon scattering over the processes includingerms stull” and “reduced” are not meanf in the sense that
virtual photons decreases with growifd. This behavior the “full” scale factor is “better” in any sense. We see that

dOEtanO: Cflrgﬁ as a surprise if one looks at the reduced 'MAe reduced scale factor leads to a steeper slope than the full
pact factor 1o): scale factor. Again, we find that the three-gluon approxima-

(2k'—q) tion exhibits a yet steeper slope with respectt Never-
d(kg—k)o — > > (38)  theless, all curves have a somewhat similar dependence on
Q+4m;+(2k—q) the virtuality.
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FIG. 7. Q? dependence of the
differential cross section for one
virtual and one real photon 3|
=1 GeV?: comparison of BLV
Odderon with two different
choices for the scale factgp and
noninteracting three-gluon ex-
change.

do/dt [fb/GeV?]

0.01 '
Q* [GeV?|

A remark is in order here concerning the applicability of  If the Q2 dependence is not included &, the result is
the BKP Odderon in the case of a virtual photon scatteringsimple. In the regiorm?><Q?<s we find a ¢-independent
on a real one. If the virtuality of the former is large, there isscaling behavior of the cross section @é/dtzQ~* (the
an evolution in transverse momentum along the exchangegtted curves in Fig. 8 This can be easily understood. The
gluons in thet channel. The BKP equation, on the other iy ality of the incident photon appears explicitly only in the
hand, takes into account only evolution in energy but not iy nact factors(39), as the BLV Green function itself does
transverse momentum. The situation of two largely dn‘ferentnot exhibit a Q2 dependence. The momentum integrals
ph°‘°r! V|rtual_|t|es WOUld hence require the inclusion 0f<¢>|E(V)) receive the dominant contribution from the region
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) ' type of small transverse momenta. As long as all momentum com-
evolution[42—44 and is not appropriately described by BKP ¢ I d.t@ h ke b
evolution. This limitation of our results for largely different ponents areé small compared ¥@°, the error we ma Ze- y

pulling the numerator out of the integral as a factofof is

virtualities should be kept in mind when interpreting the re- ; el N .
sults of the present section. small. In the cross section this gives a contributioh@f“.
Ignoring that limitation for the moment, we now want to e have added to the figures a fit with exactly th¥t de-

investigate the “asymptotic’'Q? dependence. That depen- pendence to show the agreement with the numerical results.
dence is of theoretical rather than of phenomenological in- If we include aQ? dependence in the scafy via the
terest, but can be useful for gaining insight into the BLV “full” scale factor sosz7C+ Q?, the overall dependence on
Odderon solution. Again we consider the case of one wrtuabz changes qualitatively. In the domainE} <Q%<s we ba-
and one real photon. In Figs.(&r the reduced scale facjor € —4

sically expect a curve that resembles tkg ~* result from

and 9(for the full scale factorwe plot the cross section as a - ¢ 5 oy
function of Q2 for |{|=0.01 and 1 Ge¥. The points are our the simple ch0|cer>0=m,7C multiplied by the dependence that
numerical results; the curves are certain fits on which we wilwe get from Sec. lll D=log ®9(gQ?). In Fig. 9 we show

comment below. the numerical results together with a fit representing that ex-
100 F— — T — T —TT T —
T i
N
o~ 001 RN - FIG. 8. Q2 dependence of the
% LA . - differential cross section for one
9 0.0001 - RS | virtual and one real photonlt|
& - =0.01 GeV? (upper points and
5 I o 1 [t|=1 GeV? (lower points with
& 1e-06 [ \\L'\;Jﬁ ) - reduced scale factayp; the points
= Sl ] are numerical results, and the
AN curves are fitgsee te
1e-08 |- N 4 Xk
°3
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pectation. The fit fails whe@? approaches the boundary of differences between the results for that process fou@3h
the domain in which it is expected to apply but gives a fairlyand the results found here for they case. As was already
good description of the slope within that domain. The slopefound in the approximation of three noninteracting gluons
with respect t0\/Q? is about 3.2 for|t|=0.01 GeV¥ and  [7,g] the differential cross section for the procegs— 7.p
about 3.0 for|t|=1 Ge\?, indicating that the slope is not vanishes agt|—0. This is due to the coupling of the Odd-
entirely independent of eron to the proton impact factor and is not expected in our
Aremark is in order here concerning the question of thescattering process. In addition, the calculation involving the
twist of the different solutions to the BKP equation and, ing|v solution leads to a pronounced dip in the cross section
particular, of the BLV solution. This issue has been ad-y; |t|~0.07 Ge\?. Also this is due to the coupling of the

dressed 45,48 see alsd47]. The twist of the Odderon  5qqeron to the proton as was pointed oufi8], and such a
solutions is an interesting quantity from a theoretical point Ofdip is not expected iyy— 7.7
cllc-

view anq crucial for a thorough understanding of the diﬁer' In [13] a sizable difference between the BLV cross section
ent so_lutlons. Itshquld be kept in mind, however, that at .hlghand the exchange of three noninteracting glubfs] was
energiegor small Bjorkenx) the operator product expansion und in +*)p—s For real photons. the cross section is
becomes problematic and eventually breaks down; see fJP h gb P fﬂctp- 54 Ft) ' tion. that is for th
example[48]. Our results illustrate an additional problem of en ancle by a acf_o:jo ui 0 reﬁummimn, atis for the
the phenomenological aspects of the Odderon twist. A poterPLY Solution. We find a much smaller enhancement in our
tial measurement of the Odderon twist is likely to be ob-Process. In addition, when calculating our process in SPA the
scured by the effects of different but theoretically equivalent®Sults are actually smaller than for three-gluon exchange.

choices of the energy scag, at least as long as one works Therefore, it appears that ipp scattering the enhancement
in the GLLA. is caused solely by the coupling of the Odderon to the pro-

ton. In the case of virtual photoriwith Q?>=25 Ge\?) the
vp calculation in SPA gives an enhancement of the total
cross section by one order of magnitude. This means that
In [13] the procesgyp— 7.p was studied using the BLV there is an additional enhancement factor ¢a& compared
Odderon solution. The coupling of the BLV Odderon to theto the respective three-gluon calculatiaraused by the vir-
proton is more complicated than thep. impact factor, and tuality of the photon. We find approximately the same addi-
here the reduction of the four-dimensional integral over twational enhancement factor in the case of one virtual photon in
transverse momenta is not reduced to a two-dimensional oneur process.
One therefore has to make use of the saddle point approxi- In Sec. Il C we found that for our process the saddle
mation for a numerical calculation of the cross section. Thepoint approximation significantly underestimates the cross
quality of the saddle point approximation is difficult to assesssection. As the convolution of the Odderon wave function
in that process. A comparison with our process can be helpfukith the y 7. impact factor in the case of photon-proton scat-
in this respect, since there we can compare the SPA with thiering was calculated in saddle point approximation too, it is
exact results and are hence able to trace the effects of th@ausible to expect that using the full numerical calculation
approximation. In our calculations we have used kinematicaalso in that process would lead to an additional enhancement
parameters similar to those §13], and we can therefore that is approximately the square root of the one found here,
hope that our results can give us an idea of what the effectise. by about a factor of 2 for the total cross section. We
of the exact calculation iyp— n.p can be. should point out, however, that it is by no means clear that
Before we discuss possible implications of our results forthe saddle point approximation also underestimates the
the processyp— 7.p we want to point out some general Odderon-proton coupling. Instead, also a completely differ-

G. Comparison with photon-proton scattering
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ent behavior of the full 4-dimensional integral is conceiv- All previous phenomenological studies of the BLV Odd-
able. It would be important to study this problem in more eron solution were done for processes involving protons. As
detail and to determine at least the direction of the effect o result of the complicated Odderon-proton coupling, the nu-

the saddle point approximation in that coupling. merical effort for an exact calculation of the cross section is
prohibitively large in these cases. These processes have
IV. CONCLUSIONS AND OUTLOOK therefore been studied in the saddle point approximation. In

our process a considerable simplification occurs due to the

We have studied the quasidiffractive procegd)y(*) : .
— n.7. at high energies which is mediated by the exchangec';pec.:IaI structurt_a of the/. impact factor and an exact nu-
of an Odderon. This process is considered to be the theoret'i]jer'cal calculation becomgs possible. We ha\{e used our ex-
cally cleanest probe of the Odderon in perturbative QCDaCt results to test the quality of the saddle point approxima-

since it does not involve the uncertainties typically assocjtion in our process. We find that for realistic values of the

ated with the coupling of the Odderon to a proton. We havekinematical p.arameters the saddle point_approximation fails
taken into account the effects of resummation of large loga@nd underestimates the actual cross section by about an order
rithms of the energy by using the BLV Odderon solution.of magnitude. We have identified the origin of this large
This is the only solution of the BKP equation which couplesdeviation and have indicated possible implications of our
in leading order to they», impact factor. result for processes in which the BLV Odderon solution is
We have investigated in detail the effect of resummationcoupled to a proton.
in this process by comparing our results to the exchange of Finally, we would like to point out that also other final
three noninteracting gluons which is the simplest possiblestates can be produced via Odderon exchange in quasidif-
model for a perturbative Odderon. For real photons we findractive photon-photon scattering. An interesting example
that resummation strongly enhances the differential crosamong them is the single-inclusive procesg— 7.X which
section at smallt|, but leads to a faster decrease with in- can be treated in a similar way as the process discussed in the
creasing|t|. The total cross section is consequently onlypresent paper. In that process, however, the situation is simi-
slightly enhanced due to resummation. The enhancement dyg to the processes in which the BLV Odderon is coupled to
to resummation is more pronounced when one considers Vi proton. The coupling of the BLV Odderon to th impact
tual photons. We find a logarithmic decrease of the crosgactor does not allow one to reduce the four-dimensional
section with the energy in agreement with the intercept of thentegral over transverse momenta to a two-dimensional one.
BLV solution being exactly 1. We have discussed in detailan exact numerical evaluation of the integral is therefore not
the effects of different possible choices for the energy scalgeasible and again one has to make use of the saddle point
So Which is undetermined in leading logarithmic approxima- approximation. In the light of our results, however, it seems
tion. We have inVeStigated this Uncertainty and find that thQ|ke|y that also here that approximation gives On|y a rela-
cross section is rather sensitive to the choice of the energyyely poor estimate of the actual cross section. Despite this
scale, in particular in the case of virtual photons when thejjfficulty it would be very interesting to study the effects of
ScaleSO can natura“y involve also the Virtuality of the phO— resummation also |W7—> ncx and in related processes in-

tons. . volving tensor mesons in more detail since they might offer a
We have estimated the expected event rates for the preyood chance to observe the Odderon.

cessyy— 7.7, at a future Linear Collider foe*e™ scatter-

ing as well as for a photon collider option. In both cases the

observation of_the Oddgron in this process appears feasible, ACKNOWLEDGMENTS

but more detailed studies accounting for detector cuts and

tagging efficiencies will be required to obtain a conclusive We would like to thank O. Nachtmann and G. P. Vacca for
assessment of this process. helpful discussions.
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