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Sigma and hydrodynamic modes along the critical line
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Assuming a tricritical point of two-flavor QCD in the space of temperature, baryon number chemical
potential, and quark mass, we study the change of the associated soft mode along the critical line within the
Ginzburg-Landau approach and the Nambu–Jona-Lasinio model. The ordering density along the chiral critical
line is the scalar density whereas a linear combination of the scalar, baryon number, and energy densities
becomes the proper ordering density along the critical line with finite quark masses. It is shown that the critical
eigenmode shifts from the sigma-like fluctuation of the scalar density to a hydrodynamic mode at the tricritical
point, where we have two ordering densities, the scalar density and a linear combination of the baryon number
and energy densities. We argue that the appearance of the critical eigenmode with hydrodynamic character is
a logical consequence of divergent susceptibilities of the conserved densities.
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I. INTRODUCTION

At high temperature and/or baryon density, the syst
governed by QCD will show a transition from an ordina
hadronic phase to a chirally symmetric, deconfined plas
phase@1,2#. The main objective of the heavy-ion programs
RHIC and at the future LHC is to create this long-soug
plasma state and to study collective properties of this ma
body assembly@3#. These two phases would have to be se
rated by a boundary with singularity if chiral symmet
and/or confinement of QCD were exact symmetry. In real
dynamical quarks with finite massesmÞ0 make both sym-
metries only approximate, and their order parameters,
quark condensate and the Polyakov loop, have nonvanis
values everywhere in the phase diagram. Thus the pla
state may be smoothly connected with the ordinary hadro
state, even though they would possess qualitatively diffe
properties.

Recently the strong possibility of a critical point in th
real QCD phase diagram was suggested@4–6#, based on
model calculations@7–14# as well as lattice QCD result
@15–17#. It is the end point of the first-order line, inferre
from the crossover behavior along the temperature~T! axis
and the first order transition along the axis of the bary
number chemical potential (mB), and is a genuine singula
point with the same criticality as the Z2 Ising model. Its
location, which is sensitive to the strange quark massms , is
expected to be within the reach of current experimental
cilities. Observable implications of this Z2 critical point1

(Z2CP) in heavy ion experiments have been discussed in
literature@4–6,18–23# such as large fluctuations of the low
momentum particle distributions, and the limitations on th
due to the finite space-time geometry of collision even

*Email: hfujii@phys.c.u-tokyo.ac.jp
†Email: ohtani@rarfaxp.riken.jp
1In QCD thermodynamics this point is referred to as the criti

end point ~CEP!. In this paper we use Z2CP instead of CEP, to
indicate the symmetry of the point.
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This Z2CP will become a critical cornerstone in the QC
phase diagram once its location is confirmed in experime

Based on the approximate chiral symmetry, the sca
density is usually taken as the order parameter of
Ginzburg-Landau~GL! effective potential to describe th
critical behavior at the Z2CP. In this description all the sin
gularities associated with the Z2CP seemingly originate from
softening of the scalar density fluctuations as the effec
potential becomes flat there. Especially, it might be co
cluded that the sigma meson becomes massless as an im
diate consequence of this critical point.

As a basic fact, however, we should strictly distingui
between the chiral critical point withm50 and the Z2CP
with mÞ0—even within the chiral effective models. Whe
the chiral symmetry is exact, theT-mB plane is divided into
two domains of the symmetric and broken phases with
boundary line. But the symmetry argument is unable to
the order of the singularity of this line, especially the po
sible existence of the tricritical point~TCP! on this line.
Since the Z2CP at finite quark mass is the remnant of th
TCP, the relation of the Z2CP to the chiral symmetry is very
obscure. In fact, Z2 is not the symmetry of the underlyin
interactions, but of the thermodynamic potential at this p
ticular isolatedpoint in the T-mB phase diagram@24#. From
this point of view the Z2CP is different than the chiral critica
point.

The flat effective potential indicates the large fluctuati
of the scalar density. At the chiral critical point, this is relat
to softening of the sigma meson mode, so as to form a s
metric excitation spectrum together with the pions. On
other hand, there is no such symmetry constraint at
Z2CP. Actually the scalar fluctuationlinearly mixes with
fluctuations of baryon number density and energy dens
and therefore not only the sigma mode but also the hydro
namic mode are to be taken into account there to study
associated soft mode. Consequently, the fate of the si
meson mode at the Z2CP is nontrivial.

Recent calculations of the dynamic mode in the sca
channel using the chiral models@13,25# indeed showed tha

l
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the sigma meson is massive at the Z2CP. Furthermore, an
other scalar mode with space-like momentum dispersio
identified as the soft mode associated with the Z2CP in the
Nambu–Jona-Lasinio~NJL! model @25#. In this paper we
shall confirm the result of Ref.@25# on the more genera
ground using the time-dependent Ginzburg-Landau~TDGL!
approach, and extend the study to discuss the changeov
the soft modes along the critical line in theT-mB-m space
within the TDGL approach as well as the NJL model.

Our investigation is based on two fundamental obser
tions about the Z2CP. The first point is that the proper orde
ing density at the Z2CP is a linear combination of the scala
baryon number, and internal energy densities@24–26#, as
mentioned above. Because of this mixing all the susceptib
ties of these densities diverge with the same critical expon
at the Z2CP. In contrast, in the chiral critical transition, th
susceptibility of the scalar density diverges with exponeng
of the O~4! model in the two-flavor case, while the oth
susceptibilities of the baryon number and the energy have
smaller exponenta.

The second is a consequence on the dynamics follow
from the conservation of the baryon number and the ene
The fluctuations of these conserved densities2 are intrinsi-
cally soft and constitute the hydrodynamic modes, wh
excitation energies vanish as the wave vectorq goes to zero.
Susceptibilities of these conserved densities in turn have
spectral contributions solely from these hydrodynam
modes when expressed as a sum of mode spectra@26–29#.
Hence the divergence of the susceptibility of a conser
density must be accompanied by critical slowing of a hyd
dynamic mode. The spectral contribution from this hydrod
namic mode may well be involved in the scalar susceptibi
through the mixing at the Z2CP.

At an O~4! critical point @O~4!CP# the importance of the
hydrodynamic mode depends on which phase we start fr
The hydrodynamic mode plays no critical role in the sy
metric phase whereas the scalar condensate makes the
ing possible in the broken phase. The situation becom
more subtle at the TCP, where the O~4! critical line shifts to
the first-order line. Only the scalar susceptibility diverg
due to the softening of the sigma meson at the TCP if i
approached from the symmetric phase. Otherwise, the hy
dynamic soft mode causes the divergence in the suscept
ties of the baryon number and energy as well as the sc
one.

This paper is organized as follows. In the next section
briefly review generic properties of the phase diagram
QCD with two flavors near the TCP using the GL effecti
potential. It is stressed that at the TCP there are two rele
order parameters, the scalar condensate and a conserved
sity which is a linear combination of the baryon number a
entropy densities. Then we include the dynamics using
TDGL model. Writing the susceptibilities as a spectral su
we discuss the relative weight of the spectral contributio
from the sigma and hydrodynamic modes. It is pointed
that the hydrodynamic contribution generates the discont

2Momentum density is neglected here for simplicity.
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ity of the baryon number and entropy susceptibilities at
O~4!CP, and that this hydrodynamic mode gives the div
gence at the TCP approached from the broken phase and
at the Z2CP. In Sec. III we perform the same analysis usi
the NJL model as an illustration. The GL effective potent
with two ordering densities are numerically construct
there. The flat directions at the critical points are shown a
discussed in relation to the divergences of the suscepti
ties. The spectral origins of these divergences are stu
with the relative weight of the mode spectra, and in de
based on the poles and residues of the scalar response
tion. Sections IV and V are devoted to discussions and s
mary. In Appendix A we prove the relation between the s
ceptibility and the response function, and in Appendix B w
present the explicit formulas of the response functions in
NJL model. The results with the chiral quark model is brie
reported in Appendix C.

II. GENERIC ANALYSIS

A. Structure of the phase diagram and order parameters

Let us briefly review the phase structure near the T
@5,14,30#. It is known that the critical properties near th
TCP are described, up to logarithmic corrections, with
Ginzburg-Landau effective potential

V5V0~T,mB!1E d3x@a~T,mB!s21b~T,mB!s4

1c~T,mB!s62hs#

[V0~T,mB!1E d3x f~T,mB ,h;s!, ~1!

where f (V0) denotes the~non!singular part of the effective
potential, andc.0. The pseudoscalar density is set to ze
and neglected here in the mean field approximation. T
critical exponents can be easily found from Eq.~1! at the
mean field level. Along the line of the first-order transitio
within the symmetry plane (h50), we have

f 5as21bs41cs6[cs2~s22s1
2!2, ~2!

where three minima withs50,6s1(T,mB) coexist~dashed
line in Fig. 1!. The baryon number and entropy densities a
functions ofs2 due to symmetry, and discontinuous acro
the boundary between the symmetric phase (s50) and the
broken phase (s56s1). At the TCP, wherea5b50, these
three phases coalesce and the first order line (b522Aac)
smoothly joins with the O~4! critical line (a50,b.0).

Once a small explicit breaking field2hs is exerted, the
O~4! critical line disappears and the TCP is lifted to th
Z2CP. The line of Z2CP as a function ofh is determined by
the condition f 85 f 95 f-50 (8[]/]s), which is solved
for a negative b with a53b2/5c, b52s2/5, and s
5sgn(h)(uhu/16)1/5. Two lines of Z2CP with h:0 form the
edge of the wing-like surface of the first order transition
the a-b-h space, and these lines connect smoothly to
O~4! critical line at the TCP. This wing structure is mappe
into the physical phase space ofT, mB , and h;m ~see
Fig. 1!.
6-2
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SIGMA AND HYDRODYNAMIC MODES ALONG THE . . . PHYSICAL REVIEW D 70, 014016 ~2004!
The slope of the first-order boundary can be related to
discontinuities of the densities across the boundary via
Clapeyron-Clausius relation@9,12#,

dT

dmB
52

DrB

Ds
,

dT

dh
52

Ds

Ds
,

dh

dmB
52

DrB

Ds
~3!

with baryon number densityrB and entropy densitys. The
chiral broken phases withs56A2a/2b coexist within the
symmetry planeh50, and accordingly there is no gap inrB
ands across this symmetry plane. Only the scalar densits
bifurcates as the ordering density at the O~4!CP approached
from the symmetric phase. Its correlations with the ‘‘energ
like’’ densities vanisĥ ss&5^srB&50 because of the sym
metry in s↔2s in the symmetric phase.

From the relation~3! we know thats, rB , ands generally
have discontinuities across the wing because there is no
son for any of these slopes to vanish oncehÞ0. Let us
discuss the energy-like and ordering densities around
Z2CP @24,31#. First we introduce the ‘‘temperature-like
field as a vector tangential to the coexistence boundary. T
the energy-like density is defined as the thermodynamic v

FIG. 1. ~a! Schematic phase diagram around the TCP ina-b-h
space. The three critical lines are shown in bold lines and mee
the origin~TCP!. The curve of three-phase coexistence is drawn
a bold dashed line which ends at TCP. The two-phase coexist
surface is hatched by thin dotted lines.~b! The counterpart in the
physicalT-m-m space~NJL model!.
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able conjugate to this temperature-like field. This density
no discontinuity in the vicinity of the critical point. Since th
boundary is two dimensional, there are two independ
temperature-like fields and correspondingly two energy-l
densities. Next the ordering density is defined as the den
whose correlations with the energy-like densities vanish
the critical point approached from the ‘‘symmetric’’ phas
along the temperature-like direction. The conjugate field
this ordering density is no longer tangential to the coex
ence boundary. There is a single ordering density at
Z2CP, which is in general a linear combination ofs, rB ,
ands. Since all the susceptibilities of these densities inclu
the same singular fluctuation, they diverge with the sa
critical exponent at the Z2CP.

The coexistence wing is squeezed to be one dimensi
at the TCP, where two lines of the Z2CP and the line of the
first order transition withh50 merge and smoothly connec
to the single O~4! critical line. Thus at the TCP we have onl
one energy-like density, which will be a linear combinatio
of rB and s. Accordingly there aretwo ordering densities
from dimensionality. The obvious one is the scalar densitys
related to the chiral symmetry and the otherw is another
linear combination ofrB ands representing the Z2 symmetry
of the potential at this particular point. It is sometimes use
to construct the effective potential with two ordering den
ties s andw, which become soft at the TCP.

The same observation can be made by looking at the
ceptibilities directly. There are three fieldsh, a, andb in the
effective potential~1!. The singular parts of the correspon
ing susceptibilities form a 3-by-3 matrix (i , j 5h,a,b),

x i j 5xhS 1 2s 4s3

2s 4s2 8s4

4s3 8s4 16s6
D ~4!

with xh the scalar susceptibility,

xh52
1

V

]2V

]2h
5

1

2a112bs2130cs4
, ~5!

where s takes the value at the extremum of the potent
When the O~4!CP is approached from the symmetric pha
xaa5xbb50. In the broken phase the situation is differe
The singular part of Eq.~1! gives a finite contributionxaa
51/(3b) as the O~4!CP is approached withs252a/2b
→0, although the divergent susceptibility is still the sca
one alone. The singular contribution toxaa eventually blows
up at the TCP approached along the O~4! critical line. In fact,
the TCP may be understood as a usual critical point with
ordering densityw conjugate toa, sitting on the chiral phase
boundary. When the TCP is approached from the bro
phase withb5h50, the scalar ordering density vanish
slowly s452a/3c, and xh and xaa diverge as 1/uau and
1/Auau, respectively, whilexbb is still nonsingular. Note that
the divergence ofxaa at the TCP indicates the infinities i

at
n
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H. FUJII AND M. OHTANI PHYSICAL REVIEW D 70, 014016 ~2004!
the baryon number and energy3 susceptibilities or, equiva
lently, the isothermal compressibility and specific heat,
spectively.

All these susceptibilities in Eq.~4! diverge at the Z2CP,
wheresÞ0. With the finite condensates we can diagonal-
ize this matrix of the susceptibilities, leaving only on
singular susceptibility. The resulting eigenvalues a
@0,0,(114s2116s6)xh#, with eigenvectors t(22s,1,0),
t(24s3,0,1), t(1,2s,4s3), respectively. For smalls or h,
we see that the ordering density is approximately a lin
combination of the densitiess andw.

The fluctuations of these two ordering densitiess andw
become large near the TCP as explained above, and sh
be included as the soft degrees of freedom, especially w
we discuss the dynamic aspects. We generalize the free
ergy so as to have two ordering densities

V5E d3xS a0s21b0s41cs61gs2w1
1

2
w22hs2 j w D

1V0 . ~6!

Coupling betweens andw must respect the underlying ch
ral symmetry and the simplest coupling iss2w. A flat direc-
tion of this potential appears at a critical point in thes-w
plane. In the case of the O~4!CP/TCP it is in thes direction
reflecting the symmetry while the direction will become
linear combination of the two densities at the Z2CP. Elimi-
nating the densityw by ]V/]w5gs21w2 j 50, we recover
the original form~1! of the free energy witha5a01g j and
b5b02 1

2 g2, up to an analytic term.

B. Dynamics

We may introduce the dynamics to the system descri
by the free energy~6! phenomenologically@32#. We have
seen in the previous subsection that there are two orde
densities conjugate to the fieldsh anda at the TCP, and tha
a linear combination of these two densities will become t
relevant ordering density at the Z2CP for smallh or s. We
should include at least these two densities in order to
scribe the soft dynamics. Furthermore, it is known that~non-
linear! mode-mode coupling between the fluctuations of
ordering densities and other~noncritical! hydrodynamic
modes are important in general to describe the dynamic
the critical region@32#, which is beyond the scope of thi
work @33,34#. We will see, however, that the coupled syste
of the two ordering densities in the mean field approximat
already yields a nontrivial result@26#.

3The fluctuation of the energy density is a linear combination
those of the baryon number and entropy densities. In this pape
sometimes use the energy susceptibility and the entropy suscep
ity interchangeably.
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1. Mixing between scalar and conserved densities

Deviation of the densities from the absolute equilibriu
gives rise to time evolution of the system. Here we assu
simple phenomenological equations of motion for densit
s andw as

Ls~ i ] t!s52
dV

ds
, Lw~ i ] t!w52

dV

dw
, ~7!

whereLs( i ] t) andLw( i ] t) are the differential operators. Ap
propriate forms ofLs and Lw are unknown in this descrip
tion. But as a strong constraint we know that the operatorLw

must be consistent with the conservation of the densityw and
describe the hydrodynamic motion. As a typical hydrod
namic evolution, we consider here the diffusion moti
Lw( i ] t)52] t /lq2 with wave vectorq. Note that the diffu-
sion is time irreversible. We assume propagating mot
Ls( i ] t)5] t

2/G for the scalar density, identifying this mod
as the sigma meson which degenerates with the propaga
pions at the O~4!CP/TCP. Other possible forms are consi
ered below in this section. The coefficientsG,l.0 are
treated as constants here.

For small deviationss→s1s̃ and w→w1w̃ from the
equilibrium values, we linearize these equations of mot
with respect tos̃ and w̃ to obtain

S Ls~ i ] t!1Vss Vsw

Vsw Lw~ i ] t!1Vww
D S s̃

w̃
D 50, ~8!

whereVss5d2V/dsdsueq, etc. The soft eigenmodes of th
system are determined by the condition

U2v21G~xh
2114g2s21kq2! 2gsAGlq2

2gsAGlq2 2 iv1lq2 U50, ~9!

wherexh is the scalar susceptibility given in Eq.~5!, and we
introduced a termk(¹s)2/2 in V. The eigenmodes for sma
q are found asv56vo ,vd with

2
vo

2

G
52~xh

2114g2s2!2S k1
l

G

4g2s2

xh
2114g2s2D q2,

2 ivd

lq2
52

xh
21

xh
2114g2s2

[2x j
21 , ~10!

wherex j is the susceptibility of the densityw.
The eigenmodevo is oscillating while vd has the

diffusion-like hydrodynamic character. Thevo vanishes at
the O~4!CP as the critical eigenmode. Although the hydrod
namic modevd is an intrinsic soft mode of the system,
does not show the critical slowing there. When the TCP
approached from the symmetric phase, the situation is
same. On the other hand, at the TCP approached from
broken phase, both frequencies slow down, reflecting the
vergence of the susceptibilities, which seems to reflect
existence of two independent ordering densities there.
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il-
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At the Z2CP the susceptibilitiesxh and x j diverge with
the same exponent due to the linear mixing. The propaga
vo is a fast mode there due to the nonzero condensats
5(h/16)1/5, whereas the hydrodynamic slow modevd /lq2

52 ix j
21 becomes the critical mode (x j

21→0) associated
with the Z2CP. This result is similar to the level-crossin
phenomenon where the mode coupling makes the lower
ergy mode lowered further. The explicitq2 factor of vd
stemming from the hydrodynamic character results in
larger dynamic critical exponentz54 in the mean field level,
which makesvd apparently slower than thevo mode. In
contrast, at the O~4!CP, the linear mixing is banned by th
underlying chiral symmetry.

2. Susceptibility as a spectral sum

Inverse of the differential operator~9! with the retarded
boundary condition is the response function

x~v,q!5
Glq2

@2~v1 i«!21vo
2#~2 iv1uvdu!

3S 2 iv

lq2
11 22gs

22gs
2v2

G
1xh

2114g2s21kq2
D ,

~11!

which characterizes the time-dependent response of t
densities to the external fieldsh and j, within the linear ap-
proximation. The susceptibility is obtained in the limit o
(v50,q→0). The response function is analytic in the upp
complex-v plane, a fact which allows us to generally expre
the susceptibility as a sum of the mode spectra@27#:

x~0,q!5
1

pE dv

v
Im x~v,q!, ~12!

where an ultraviolet regularization is understood if necess
This expression shows that the divergence at a critical p
should come from an infrared enhancement of the spec
function because the spectral function itself is usually in
grable.

Using this expression we can examine the relative we
of each mode contribution to the susceptibility. In our ca
the oscillating and diffusion modes give spectral contrib
tions as

xh5 lim
q→0

1

pE dv

v
Im xh~v,q!

5xhS xh
21

xh
2114g2s2

1
4g2s2

xh
2114g2s2D ~13!

and
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x j5 lim
q→0

1

pE dv

v
Im x j~v,q!5x j~011!. ~14!

Here the first term in the bracket originates from the po
6vo and the second fromvd .

First, we note that only the diffusion-likevd pole contrib-
utes to the susceptibility ofw. This is a robust result follow-
ing from the conservation of the densityw. Existence of the
currentj such that] tw1¹• j50 dictates that the frequencie
of the modes contributing to thew susceptibility must vanish
asq goes to zero. We can formally show that the spectrum
the w response function behaves as limq→0 Im x j (v,q)/v
}d(v) ~see Appendix A!. Conversely, we can state that so
ening of the hydrodynamic mode must accompany the div
gence ofx j .

Second, the ratio of thevd spectral contribution to the
total in the scalar susceptibility

R[
4g2s2

xh
2114g2s2

512x j
21 ~15!

goes to unity at the TCP approached from the broken ph
and at the Z2CP, which means that the leading divergence
the scalar susceptibility is also generated by thevd spectrum
at these critical points. Even at the O~4!CP approached from
the broken phase thevd spectrum gives a finite portion o
the divergence 0,R,1 sincexh

21;s2→0. This result can
be understood by rewriting the scalar response function

xh~v,q!5xh
(0)~v,q!

1

12Vswx j
(0)~v,q!Vswxh

(0)~v,q!
,

~16!

where xh
(0)(v,q)51/@Ls(v1 i«)1Vss# and x j

(0)(v,q)
51/@Lw(v)1Vww#. The denominator expresses the line
mixing between the ‘‘bare’’s̃ andw̃ modes through the cou
pling Vsw}s. Even though the coupling becomes smaller
the O~4!CP is approached from the broken phase, soften
of the mediating ‘‘bare’’s̃ propagator provides 1/s2 factor,
which results in the finite mixing of thevd mode in the
scalar channel. This is a simple example indicating the
portance of the mode coupling near the critical point.

In summary, thes̃ and w̃ fluctuations mix and form two
kinds of eigenmodesvo andvd . We find that along the O~4!
critical line approached from the broken phase, the criti
eigenmode shifts from the sigma-meson-likevo to the
diffusion-like vd mode at the TCP. In contrast, when w
approach the TCP from the symmetric phase, the scalar
ceptibility xh is given completely by the criticalvo spectrum
without any mixing of thew̃ fluctuation. At the Z2CP thevo
mode becomes a fast mode whereas the whole diverg
comes from the critical softening of thevd spectrum with the
hydrodynamic character.
6-5
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3. Cases with other types of motion

In more microscopic NJL model calculation in the lat
section, the mode with the hydrodynamic character is p
vided as the mode of Landau-damping type, contrary to
macroscopic analysis in the previous subsection, and we
change the time evolution operator accordingly asLw(v)
52 iv/lAq2. More generally, the sigma mode may be o
cillating or relaxing@Ls(v)52v2/G or 2 iv/G] while the
possible hydrodynamic fluctuation can be the diffusio
Landau-damping type, or sound motion@Lw(v)
52 iv/lq2,2 iv/lAq2, or 2v2/lq2]. Furthermore, cou-
plings with other hydrodynamic modes, if they exist, are
be included to describe the correct dynamic behavior of
system@32–34#. We stress here that our result on the critic
eigenmodes at the critical points are independent of th
ambiguities. The only important fact is that the operatorLw

has a hydrodynamic character, and therefore an intrinsic
soft mode of the system. In any of these choices, we find
eigenmodes for smallq2 as

Ls~v!52~xh
2114g2s2!, Lw~v!52x j

21 . ~17!

Note that the typical mode frequencies of the diffusio
Landau-damping type, and sound-like dispersions vanisv
→0 as q→0, and satisfy the spectral property followin
from the conservation law

1

p
Im

1

Lw~v!1x21
→vd~v!x as uqu→0. ~18!

Finally we note that these hydrodynamic modes drops ou
the v limit of the response function

x~01,0!5 lim
v→0

1

pE dv8

v82v2 i e
Im x~v8,0!

5 lim
v→0

1

pE dv8

v82v2 i e
v8d~v8!x50. ~19!

III. NAMBU –JONA LASINIO MODEL
WITH A TRICRITICAL POINT

As a definite illustration, we shall study the spectral co
tributions of the collective modes at critical points in the N
model, and confirm that the result is consistent with
TDGL approach. We remark here that, unlike in the TDG
approach, there are no bare bosonic modes. The bos
modes are dynamically generated through the interaction
tween the quarks and their softening causes the diverge
at the critical points.

A. Effective potential and susceptibilities

We analyze the simplest version of the NJL model@35–
37# L5q̄( i ]”2m)q1g@(q̄q)21(qīg5taq)2# in the mean
field approximation (̂qq&5s5const,̂ q̄ig5taq&5p50.
The thermodynamics is described by the effective poten
@38#
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V~T,m,m;s!/V52nE d3k

~2p!3 @E2T ln~12n1!

2T ln~12n2!#1
1

4g
~2gs!2, ~20!

where n65(eb(E7m)11)21, E5AM21k2, M5m22gs,
andn52NfNc523233512 with Nf andNc the numbers
of flavor and color, respectively. Herem is the quark chemi-
cal potential. The true thermodynamic state is determined
the extremum condition]V/]s50 and the corresponding
grand potential isV(T,m,m). We define the model with the
three-momentum cutoffL and with the coupling constan
gL252.5 which allows the TCP. In the following, all th
dimensionful quantities are expressed in units ofL.

Expansion of the effective potential arounds50 with
m50 gives rise to

V~T,m,0;s!/V52nE d3k

~2p!3
@k2T ln~12n1

0 !

2T ln~12n2
0 !#1

1

2 S 1

2g
2J0D ~2gs!2

1
1

234
I 0~2gs!41•••

5V~T,m,0;0!/V1a~T,m!~2gs!2

1b~T,m!~2gs!41•••, ~21!

where the superscript 0 indicates the quantity evaluated
the massless limit. The first term is the nonsingular part
the free energy in the GL description. The integralsI 0 andJ0

are given in Appendix B. The TCP determined bya5b50
appears atTt /L50.20362 andm t /L50.49558.

As explained in Sec. II, it is useful to introduce the effe
tive potential with another relevant ordering density in ad
tion to thes in studying the behavior of the quark numb
susceptibility and specific heat near the TCP and the Z2CP.
From the physical grand potentialV(T,m,m), we can con-
struct the Landau effective potential with two ordering de
sities r and s in the following way: first we introduce the
free energyF(T,r,s) via

F~T,r,s!/V5V~T,m̄,m̄!/V1m̄r2m̄s, ~22!

where m̄5m̄(T,r,s) and m̄5m̄(T,r,s) are defined by in-
verting the functions

r52
1

V

]V

]m
~T,m,m!, s5

1

V

]V

]m
~T,m,m!. ~23!

Then introducing new parametersm and m, we define the
Landau-type effective potential as
6-6
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SIGMA AND HYDRODYNAMIC MODES ALONG THE . . . PHYSICAL REVIEW D 70, 014016 ~2004!
Ṽ~T,m,m;r,s!/V5F~T,r,s!/V2mr1ms

5V~T,m̄,m̄!/V1~m̄2m!r2~m̄2m!s.

~24!

The extremum condition for the densitiesr ands yields m

5m̄ and m5m̄, recovering the physical grand potenti
V(T,m,m). Use of the entropy densitys instead of the quark
numberr is straightforward. It is known that the effectiv
potential constructed in this way must be convex and can
be defined in the mixed phase. Fortunately in the NJL mo
we can by-pass this difficulty by supplementing the unphy
cal grand potentialV(T,m,m) defined with the unstable so
lutions of the gap equation, which corresponds to the n
convex part of the potentialṼ.

One can easily show that the susceptibilitiesx i j
52(1/V)]2V/] i ] j ( i , j 5T,m,m) are equal to the invers
of the curvature matrix of the GL effective potential at t

FIG. 2. Effective potentials of the NJL model at three critic
points ~a! O~4!CP, ~b! TCP, and~c! Z2CP. The upper panels show
the potentials~20! measured from the minima as functions of
single ordering densitys. The middle and lower panels are th
contour plots of the potentials~24! with two ordering densities
(s,r) and (s,s), respectively.
01401
ot
el
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extremum point. From this fact the divergence of the susc
tibilities at a critical point is related to the appearance o
particular flat direction in the GL effective potential.

In Fig. 2 we show the effective potential with two orde
ing densities at three critical points~a! O~4!CP with (T,m)
5(0.3419,0.3), ~b! TCP, and ~c! Z2CP with (T,m,m)
5(0.1498,0.5701,0.01) in the units ofL. The critical insta-
bility at these points is usually discussed using the effec
potential~20! with a single order parameters based on chi-
ral symmetry, which is shown in the upper panels. The
curvature of this potential means the divergence of the sc
susceptibility. At the O~4!CP it is clear from the potentia
with two ordering densities (s,r), or (s,s), that thes axis
is indeed the symmetry direction of the system. The densi
r and s depend ons2 when calculated from Eq.~20! with
m50. This fact is seen here as a quadratic bending of
potential valley. Thus the fluctuation of these densities
weaker than that ofs, and the susceptibilities of the quar
number and the entropy have the smaller exponenta.

At the Z2CP, on the other hand, the flat direction of th
GL potential is not parallel to thes axis in thes-r ands-s
planes. The proper flat direction is alinear combination of
the three densities ofs, r, ands, and all the susceptibilities
of them diverge with the same exponent at the Z2CP.

It will be very instructive to introduce the GL function
with single ordering density by eliminatings by ]Ṽ/]s
50 in favor of r, as shown in Fig. 3. The curvature at th
extremum coincides with the inverse of the quark num
susceptibility. In the case of the O~4!CP the curvature doe
not vanish, implying finite susceptibilityxmm . It takes dif-
ferent values depending on from which side we approach
equilibrium value ofr. Since thes2 and s4 terms of the
potential~21! disappear at the TCP andr changes withs2

along the potential valley@see Fig. 2~b!#, the r potential
becomes flat on the side corresponding to the broken ph
as seen in Fig. 3~b!. This indicates the critical point forr. On
the higher density side, in contrast, the curvature is nonv
ishing. At the Z2CP, the potential in Fig. 3~c! is essentially
the same as the potential~20!, and we may equally well
chooser or s as the ordering density instead ofs to describe
this criticality.

We show the quark number susceptibilityxmm as a func-
tion of m along the O~4! critical line, across whichxmm is
discontinuous in Fig. 4. The value ofxmm on the O~4! critical
line approached from the broken phase grows up toward
FIG. 3. Effective potentials of
the NJL model as functions of a
single ordering densityr at three
critical points ~a! O~4!CP, ~b!
TCP, and~c! Z2CP. The dashed
line indicates the critical density
in each case.
6-7
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H. FUJII AND M. OHTANI PHYSICAL REVIEW D 70, 014016 ~2004!
TCP and eventually diverges there as is described with
GL potential (xmm}1/b) @14#. The xTT also behaves in the
same way. The only qualitative difference is that at the po
m50 the xmm is continuous across the phase boundary
cause no linear coupling withs is allowed due to the sym
metry underr↔2r.

B. Response functions and mode spectra

The spectral origin of the critical divergence can be inv
tigated by studying the spectral function which is obtained
the imaginary part of the response function. We discuss h
the structure of the collective eigenmode, which couples w
the relevant susceptibilities and shows softening at the c
cal point.

The response functions in the NJL model are calculate
@36–38#

xab~ iq4 ,q!5Pab~ iq4 ,q!1Pam~ iq4 ,q!

3
1

122gPmm~ iq4 ,q!
2gPmb~ iq4 ,q!,

~a,b5m,m,b!. ~25!

Here the polarizations are defined with the imaginary-ti
quark propagatorS( k̃)51/(k”̃1M ) as

Pab~ iq4 ,q!52E d3k

~2p!3 T(
n

trfcDS~ k̃!GS~ k̃2q!G8,

~26!

whereq452lpT( l PZ), k̃5(k,k41 im), G is an appropriate
Dirac matrix, and the trace is taken over the flavor, color, a
Dirac indices.G51 for the scalar,ig4 for the baryon num-
ber, andHMF for b with

FIG. 4. xmm ~solid line! along the O~4! critical line approached
from the broken phase.xmm approached from the symmetric pha
is shown in a dashed line. Inset:xmm vs (m t2m)/L.
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HMF52 i
1

2
g i¹Ji1M1 img4 . ~27!

Here we calculate the response function withHMF the energy
operator in the mean field approximation instead of the
tropy, because the entropy has no microscopic expressio
it is defined only in equilibrium. The real-time respon
function is obtained from the imaginary-time propaga
through the usual replacementiq4→q01 i e in the final ex-
pression. The static response function in the long wavelen
limit reduces to the corresponding susceptibil
limq→0 xab(0,q)5xab . Especially,xbb5T2xTT .

The one-loop polarizationsPab(v,q) are the response
functions of the free quark gas with massM, and contain no
contributions from the collective mode. In our simple NJ
model, the collective mode is generated by the bubble s
encoded in the denominator of Eq.~24! and there are two
kinds of collective motion@25#: the sigma meson mode an
the particle-hole (p-h) mode. In Ref.@25# it is argued that
the soft mode associated with the Z2CP is not the sigma
meson but thep-h motion.

The spectral functionrmm(v,q) of the scalar respons
function @39# yields

rmm~v,q!52 Imxmm~v,q!

52 Im
1

2g S 1

122gPmm~v,q!
21D

5
2 ImPmm~v,q!

@122g RePmm~v,q!#21@2g Im Pmm~v,q!#2
.

~28!

We notice that the spectrum 2 ImPmm(v,q) of the free
quark gas is enhanced by the bubble-type correlation in
denominator.

The scalar spectral functions are shown atT/L50.350
and 0.339 near the O~4!CP with (Tc /L,mc /L)
5(0.3419,0.3) in Fig. 5. One should keep in mind that t
d(v22M ) spectrum of the sigma meson atq50 in the bro-
ken phase is hard to see in this figure. The sigma me
spectrum is softening just above and below the O~4!CP ~see
also Sec. III D!. In addition to the sigma spectrum we clear
find the p-h mode spectrum in the space-like momentu
region, whose strength looks stronger in the broken ph
As we approach the TCP, as is shown in Fig. 6, thisp-h
mode spectrum grows in the smallq region in the broken
phase, while in the symmetric phase it does not show suc
enhancement.

We show the spectral functions of the scalar channe
well as the vector channel~quark number response! at the
Z2CP with m/L50.01 in Fig. 7. In the scalar channel on
can clearly see the two spectral peaks of the sigma me
and thep-h motion in medium, respectively@25#. This spec-
tral structure is to be compared with that of the free qu
case given in Appendix B. The most significant feature
rmm is the critical enhancement in thev;0 region provided
by the p-h mode, which gives rise to the divergence of t
6-8
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SIGMA AND HYDRODYNAMIC MODES ALONG THE . . . PHYSICAL REVIEW D 70, 014016 ~2004!
scalar susceptibility. Although the sigma meson shows
clear spectral peak in this model, the mode is massive du
the explicit symmetry breaking by the current quark mas

The spectral function of the quark number respon
rmm(v,q) also contains these two spectral contributions,
the sigma spectrum strongly diminishes asq→0. It is worth-
while to note the fact that Pmm(v.0,0)50 and
Im Pmm(v,0)}vd(v) asq→0, which reflects the conserva
tion of the quark number. Thus the response funct
xmm(v,q) obtained in Eq.~25! in the random phase approx
mation ~RPA!, too, shares the same property, and the sig
meson cannot couple to the quark number susceptibilityxmm
at q50. Therefore the divergence ofxmm at the Z2CP must
come solely from the softening of thep-h spectrum. The
same is true forxTT .

C. Spectral sum along the critical line

In the previous subsection we have identified the s
mode associated with Z2CP as thep-h motion@25# generated
in the scalar channel whereas at the O~4!CP the sigma meson
mode becomes soft. Let us examine how the changeove
the soft mode from the sigma meson to thep-h one occurs
along the critical line. Once we noticed that the differen
between the two limitsxmm(01,0) andxmm(0,01) is caused
by the hydrodynamic mode spectrumvd(v) as q→0, it is

FIG. 5. Spectral functions of the scalar channel in thev-q plane
near the chiral critical point (Tc /L,mc /L)5(0.3419,0.3). ~a!
T/L50.350 and~b! T/L50.339 withm5mc fixed.
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easy to calculate the ratio of the spectral strength of the
types of spectral contributions. In these limits the expli
form of the RPA scalar response functions in the brok
phase~with m50) yields, respectively,

xmm~01,0!5
1

2g S 1

2g4M2I ~01,0!
21D ,

xmm~0,01!5
1

2g S 1

2g4M2I ~0,01!
21D ,

~29!

where functionI (v,q) is given in Appendix B. Then we can
define the ratioR of the hydrodynamic spectrum to the tot
strength of the scalar susceptibility in the NJL model as

R[
xmm~0,01!2xmm~01,0!

xmm~0,01!
5

I ~01,0!2I ~0,01!

I ~01,0!
.

~30!

On the other hand, these limits in the symmetric phase re
in the same value

xmm~0,0!5
1

2g S 1

122gJ0
21D , ~31!

FIG. 6. Spectral functions of the scalar channel in thev-q plane
near the TCP.~a! T/L50.210 and~b! T/L50.2035 withm5m t

fixed.
6-9
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H. FUJII AND M. OHTANI PHYSICAL REVIEW D 70, 014016 ~2004!
which means no hydrodynamic contribution to the sca
susceptibility there (R50). The p-h mode must be decou
pled fromxmm in the symmetric phase. Meanwhile we kno
that the corresponding ratios for the susceptibilities of
conserved quantities are always unity (R51), which can be
explicitly seen with the expressions given in Appendix B.

The ratioR ~30! is shown in Fig. 8 as a function ofm
along the critical line. We find that even in the O~4! chiral
transition at zero baryon number density (m50) the hydro-
dynamic spectrum contributes to the divergence by a fi
fraction. This contribution of the hydrodynamic spectrum
creases toward the TCP, and eventually gives the lea
divergence at the TCP, whereI (0,01)5I 050 but I (01,0)
Þ0. This behavior is completely in parallel with the TDG
approach.

The fact that thep-h mode gives a finite fraction of the
divergence at the O~4!CP might be again unexpected fro
the viewpoint of the sigma meson as the associated
mode there. Indeed, the sigma meson spectrum generate
total divergence when the critical point is approached fr
the symmetric phase. We should note here that the mixin
the scalar fluctuation in the broken phase is the origin of
discontinuity of the baryon number and energy susceptib
ties across the boundary and that only the scalarp-h mode
with the hydrodynamic character can couple with the flu
tuations of these conserved quantities. Since the transit
between the scalar and other channels is proportional toM,
the p-h spectral strength in the scalar is necessarily of or
1/M2 so as to bring a finite contribution toxmm andxTT .

FIG. 7. Spectral functions of the scalar~a! and quark number~b!
response functions at the Z2CP with m/L50.01.
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We note that thescalar p-h motion of the NJL model is
possible only in the medium, but always possible in the m
dium even in the symmetric phase, where thep-h contribu-
tion should be decoupled from the scalar susceptibility. O
may ask the reason for this decoupling of thep-h spectrum.
The absorption amplitude of the collectivep-h mode with
momentumq by a left-handed quarkqL(k) is proportional to
a spinor productūR(k1q)uL(k). In the symmetric phase
this coupling must contain a helicity flip because chiral
and helicity are identical for a massless quark, and vanis
in the q→0 limit. It is easy to show thatūR(k1q)uL(k)
}uqu. For a massive quark in the broken phase, each of
left- and right-handed states has both helicity compone
and thusūR(k1q)uL(k)→2MÞ0 in theq→0 limit.

D. Behavior of poles and residues

Let us discuss a little more details of the spectral con
butions to the susceptibility, studying the the poles and
residues of the scalar response function

xmm~v,q!5
1

2gS 1

122gJ~q!12g~4M22q2!I ~v,q!
21D

~32!

near the NJL critical points. It is useful to represent the sp
tral contributions as

xmm
pole~v,q!5 (

i 56s,ph

Ri~q!

2v1v i~q!
~33!

FIG. 8. Ratio~30! of the spectral contribution along the chira
critical line approached from the broken phase.R→1 toward the
TCP.
6-10
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FIG. 9. Scaling of the pole positions and the residues near the critical points.~a! O~4!CP: The solid line denotesuvphu/uqu for t,0 and
uvphu3/uqu for t.0 with q50.01. The residueuRphu22 for t,0 and uRphu22/3 for t.0 is shown in a dashed line. The sigma polevs

2

54M2 with q50 for t,0 and (Revs)2 for t.0 in a dotted line.~b! TCP: The similar plot to the O~4! case, but (uvphu/uqu)2 andvs
4 for

t,0. ~c! Z2CP: (uvphu/uqu)3/2310, uRphu and Revs are shown in solid, dashed, and dotted lines, respectively. TheuReRsu is also drawn in
a dash-dotted line.
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with the poles corresponding to the sigma meson (6s) near
62M and thep-h (ph) mode on the negative imaginar
axis @25#. We would obtain the susceptibility asq→0 after
settingv50. As for thep-h contribution, however, we take
into account the kinematic conditionuv/qu,1 for the spec-
trum via

1

2pE2uqu

uqu dv

v
2 Im

Rph~q!

2v1vph~q!
5

Rph

vph

2

p
tan21

uqu
uvphu

.

~34!

The scalar susceptibility in this approximation is expres
as a sum of the sigma andp-h pole contributions

xmm
pole~0,01!52

Rs

vs
1 lim

q→0

Rph

vph

2

p
tan21

uqu
uvphu

. ~35!

In Fig. 9 we show numerical results of the poles a
residues of the scalar response function~32! as functions of
t5uT2Tcu/Tc with fixed m5mc . The behavior of them can
be understood as follows.

Across the O(4)CP. In the broken phase@122gJ(0)
50#, the sigma pole withq50 locates atvs52M on the
real axis, whose residue isRs;1/@MI (2M ,0)#. These quan-
tities scale as 1/Rs;M;xmm

21/2;t1/2. In the symmetric phase
(M50), xmm

21;122gJ(0);t. The complex sigma meso

pole appears atvs;Axmm
21/I (vs ,0);t1/2 with the residue

;1/Axmm
21 I (vs ,0);t21/2. In both cases, the sigma mod

gives the appropriate strength of the divergenceR/vs

;xmm;t21.
The p-h mode arises from thev dependence of the func

tion I (v,q). Since we are interested in the behavior in t
small v and q region with u[v/uqu,1, we may approxi-
mate the functionI as

I ~v,q!5I ~0,01!1 iu Im I ~0!8, ~36!
01401
d

where ImI (u)85(d/du)Im I (uuqu,q)uq50 . In the broken
phase, the conditionI (v,q)50 gives the pole asvph
;2 i uquI (0,01), whose residueRph;2 i uqu/M2;t21uqu.
Similarly in the symmetric phase the condition 1/(2g)
2J(0)2v3/uqu i Im I (0)850 fixes the pole position asvph

;2 i (xmm
21 uqu)1/3;(tuqu)1/3 with the residue Rph

;2 i uqu/(xmm
21 uqu)2/3;t22/3uqu1/3. Then according to Eq.~34!

the spectral contribution is estimated to be

Rph

vph
tan21

uqu
uvphu

;
1

t
, ~37!

Rph

vph
tan21

uqu
vph

;
1

t
tan21

uqu2/3

t1/3
→0 ~38!

for the broken and symmetric cases, respectively, asuqu
→0. We note that thep-h mode gives finite portion of the
divergence at the O~4!CP approached from the broken pha
due to the enhancement of the residue by 1/M2, despite that
the frequencyvph;uqu shows no critical slowing. The de
coupling of thep-h mode in the symmetric phase is correct
described by the behavior of the pole.

Across the TCP. At the TCP,I (01,0)ÞI (0,01)5I 050.
When we approach from the broken phasexmm

21

5(2g)24M2I (0,01);t while vs;M;t1/4. Then the sigma
mode slows down, but cannot generate the leading di
gence becauseRs /vs;t21/2 whereasxmm;t21. The fact
that I (0,01);t1/2 changes the scaling of thep-h mode into
vph;t1/2uqu with the residuet21/2uqu, which gives rise to the
correct order of the divergence

uRphu
uvphu

tan21
uqu
vph

;
1

t
tan21

1

t1/2
;

1

t
. ~39!

Thep-h mode must correspond to the critical eigenmode.
the other hand, if the TCP is approached from the symme
phase, thep-h mode is decoupled from the scalar suscep
6-11



e
te
e

rg

th

e

a
o

e

y-
r

le
p
ib

m
I
le
ro

e
e
p
re
hi
is

s
en
th
ffu
th

n
ica
a
d

in
n

y-

en-

st

he
s the
nor-
ly
the
wn
o-
rst
lly

nd
as

is
ree-

-
two

ss
he
s a
ag-
-

ical
in

nt
e

e

cal

ity
ies.
mic
be
m-

e
ns
de-
tly.
y-
ly-

ate

sity
e
ral,
. In

H. FUJII AND M. OHTANI PHYSICAL REVIEW D 70, 014016 ~2004!
bility and the critical sigma mode generates the total div
gence. It is very interesting that the soft mode associa
with the TCP is different between the symmetric and brok
phases.

At the Z2CP. The sigma meson mode has a finite ene
gap of order 2M in our model. The pole position of thep-h
mode can be evaluated asvph;2 ixmm

21 uqu;t2/3uqu with its
residue;2 i uqu, which gives rise to

uRphu
uvphu

tan21
uqu
vph

;xmm;t22/3. ~40!

From this estimate, we see that thep-h mode properly ac-
counts the divergence of the scalar susceptibility at
Z2CP, and therefore the softening of thep-h mode is the
origin of the critical divergence at the Z2CP.

IV. DISCUSSIONS

In the microscopic calculation with the NJL model, w
have seen that the collectivep-h mode, in addition to the
sigma meson mode, is generated in the scalar channel
brings the spectral contributions to the channels of the c
served quantities through the mixing whenMÞ0. This p-h
spectrum makes the susceptibilities ofxmm andxTT discon-
tinuous across the O~4! critical line, and eventually gives ris
to the critical divergences at the TCP and the Z2CP. This role
of the p-h mode is consistent with the behavior of the h
drodynamic mode in the TDGL analysis. We remark he
that thisp-h mode in the NJL model is the time-reversib
Landau-damping type. In the phenomenological TDGL a
proach, on the other hand, we assumed the time-irrevers
diffusion motion for the conserved density, which see
more appropriate to the nonequilibrium soft dynamics.
would be very interesting to study how a time-irreversib
equation of motion emerges out of the time-reversible mic
scopic theory~see, e.g., Refs.@40–43#!.

The flat curvature of the effective potential is usually r
ferred to as the vanishing screening mass, which naiv
hints the reduction of a kind of particle mass. As we a
proach the O~4!CP, the sigma meson mass actually gets
duced to cause the critical divergence. However, approac
the Z2CP, we see that the flat curvature leads to the van
ing diffusion constant of the hydrodynamic mode@25,26,33#.
In general, the potential curvature expresses the stiffnes
the system with respect to the variation of the ordering d
sity. The dynamic quantity related to this stiffness can be
particle mass, sound velocity, relaxation constant, or di
sion constant, depending on the equation of motion of
critical eigenmode.

In the Z2CP case, the linear mixing of the conserved de
sities in the proper ordering density dictates that the crit
eigenmode should have hydrodynamic character. We h
seen that the sigma-meson-like mode is massive and is
coupled from the slow dynamics. It is explicitly argued
Ref. @33# that the remaining set of slow modes is equivale
to that of the liquid-gas critical point@25,26#. In the course of
heavy ion events passing by the Z2CP, it is important to
study the observable implications of critical slowing of h
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drodynamic fluctuations in baryon number and entropy d
sities @5,18–23#. The growth of the diffusive fluctuations
within the finite space-time would get renewed intere
@5,18#.

The critical soft mode of the TCP is different between t
symmetric and broken phases. The sigma mode become
critical eigenmode and the hydrodynamic one behaves
mally if the critical point is approached from the exact
symmetric phase. Otherwise the critical eigenmode bears
hydrodynamic character and the sigma mode slows do
only moderately, which implies the importance of the hydr
dynamic fluctuations near the TCP: the end point of the fi
order line sitting on the chiral phase boundary. Theoretica
and also experimentally it is worthwhile to elaborate a
classify the dynamic critical behavior at the TCP as well
other critical points of QCD@26,33,34,44,45#.

In the QCD thermodynamics the first order transition
believed to occur at finite temperature in the massless th
flavor case@2# and in the pure gluonic case@1#, where the
chiral symmetry and the Z3 center symmetry are exact, re
spectively. As varying masses of the quarks from these
limits, we will have critical points~line! at the edge of the
first-order region. For example, in Ref.@24#, a Z2CP is stud-
ied in theT-m plane with three quark flavors of equal ma
in lattice QCD. There a particular linear combination of t
quark condensate and the energy density is identified a
proper order parameter, which should be mapped to the m
netization in the Z2 Ising model. We expect that a hydrody
namic mode related to the energy fluctuation shows crit
slowing at this Z2CP, whose spectrum may be detected
the lattice QCD. The dynamic critical behavior of this poi
is also of importance. It could be different from that of th
Z2CP at finite mB because of no linear mixing with th
baryon number fluctuation due to the symmetryrB↔2rB .
Furthermore, the lines and surfaces of the QCD criti
points in theT-mB-mud-ms space are speculated@46#. One
can also extend the space to the isospin channel@47#. Gen-
erally at such a critical point the proper ordering dens
becomes a linear combination involving conserved densit
Since the critical eigenmode must have the hydrodyna
character in this case, the dynamic critical nature would
quite different from the case with, e.g., the exact chiral sy
metry.

Our identification of the soft modes along the critical lin
is done within the mean-field approximation. Fluctuatio
around the mean fields are known to become crucial for
scribing the singular behavior at the critical points correc
To this end we should utilize mode-coupling theory or d
namic renormalization group method. The mean-field ana
sis provides a good starting point to identify an appropri
set of the slow modes.

V. SUMMARY

The fundamental points about the Z2CP are following.~1!
In the absence of the chiral symmetry, the ordering den
becomes alinear combination of the scalar density, th
baryon number density and the energy density, in gene
and their susceptibilities have the same critical exponent
6-12
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describing the static property of this critical point one m
equally well take any of these densities as the ordering d
sity. ~2! Then the critical eigenmode must be the hydrod
namic one which can cause the critical divergence of
susceptibility of the conserved density. On the other hand
the chiral transition approached from the symmetric pha
the exact chiral symmetry prohibits the linear mixing of t
hydrodynamic mode in the fluctuation of the ordering de
sity. We have showed these points using the TDGL appro
as well as the microscopic NJL model.

We have studied the change of the critical eigenmo
along the O~4! critical line. When the critical point is ap
proached from the symmetric phase, the soft mode is ind
the sigma meson mode. On the other hand, approaching
the broken phase we see the scalar condensate allow
linear mixing between the sigma and hydrodynamic mod
and eventually at the TCP the hydrodynamic mode turns
to be the critical eigenmode which generates the lead
critical divergence. Thus the shift of the critical mode fro
the sigma meson to the hydrodynamic mode occurs at
TCP. And the soft mode at the TCP crucially depends
from which phase one is approaching the point.

The criticality of the Z2CP is given by the softening of
hydrodynamic mode. The sigma mode remains as a
mode due to the explicit breakingm and is decoupled from
the soft dynamics. Based on this understanding, we sh
study fluctuations with the hydrodynamic character, such
baryon number and entropy fluctuations@5,18–23,48# in lo-
cating the Z2CP experimentally.

In the QCD thermodynamics with three quark favors, s
eral kinds of end points are speculated. One should kee
mind that at these points the hydrodynamic mode will b
come the critical eigenmode once a conserved density is
early mixed in the ordering density and also that theapproxi-
mate symmetry of the underlying interactions does n
provide any reason for singularity in the phase diagram.
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APPENDIX A: SUSCEPTIBILITY
AND RESPONSE FUNCTION

The susceptibility of a~bosonic! densityfa in a system
described with the grand potentialV52T ln tr@exp(2bK̂)#
with K̂5Ĥ2(aa*d3x f̂a is defined as

xab[2
1

V

]2V

]a ]b
. ~A1!
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This susceptibility is obtained as theq limit of the response
function @27,28# because

xab5
]

]a
ebVtr@f̂b~0,0!e2bK̂#

5ebVbE
0

1

dsE d3x tr@f̂b~0,0!e2sbK̂f̂a~0,x!e2(12s)bK̂#

2bVfafb

5E
0

b

dtE d3x xab
. ~2 i t,x!

5 lim
q→0

xab
. ~ ivn ,q!un505 lim

q→0
xab~0,q!, ~A2!

where we used the formula (d/da)eA(a)

5*0
1dsesA(a)@dA(a)/da#e(12s)A(a) with a matrix-valued

function A(a) and the time dependence of the operat
are defined byf̂(2 i t)5etK̂f̂(0)e2tK̂. The imaginary-
time correlation and the response function are introdu
as xab

. (2 i t,x)5^f̂a(2 i t,x)f̂b(0,0)&c and xab(t,x)

5 iu(t)^@f̂a(t,x),f̂b(0,0)#&c , respectively. Once we estab
lish the relation between the susceptibility and the respo
function, it is easy to express the susceptibility as an integ
over the spectral density

xab5xab~0,q→0!5 lim
q→0

E dv

2p

2 Imxab~v,q!

v
. ~A3!

Specifically, whenfa is conserved,@K̂,f̂a#50, we can
freely change the position of the operatorf̂a in the trace and
the susceptibility is directly related to the equal-time cor
lation functionS via @27,28#

xab5bE d3x^f̂b~0,0!f̂a~0,x!&c

5bE d3xSab~0,x!5b lim
q→0

E dv

2p
Sab~v,q!

5b lim
q→0

E dv

2p

2 Imxab~v,q!

12e2bv
. ~A4!

In the last equality we used the fluctuation-dissipation th
rem, which relates the fluctuationS to the dissipative part
Im x of the response function. Noting the spectral conditi
sgn(v)Im x(v,q)>0, we conclude that these two expre
sions for the susceptibility coincide if and only
limq→0Im x(v,q)5pd(v)vx. Physically this is a conse
quence of the existence of the currentja such that] tfa
1¹• ja50.
6-13
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APPENDIX B: EXPLICIT EXPRESSIONS

1. Response functions

We present the explicit formulas and procedures to ev
ate for the one-loop polarization functions. First working
the imaginary time formalism@38#, we derive the expres
sions for the polarization functions with make use of t
frequency sum formulas

I~ iv l ![T(
n

1

k̃ E
21M2

1

~ k̃2q!E
21M2

5
21

4E1E2
S 12n112n22

iv l2E12E2
2

n212n22

iv l1E12E2

1
n112n12

iv l2E11E2
2

12n212n12

iv l1E11E2
D , ~B1!

Iv~ iv l ![T(
n

i ~2k̃42q4!
1

k̃E
21M2

1

~ k̃2q!E
21M2

5
1

4E2
F12n112n22

iv l2E12E2
1

n212n22

iv l1E12E2

1
n112n12

iv l2E11E2
1

12n212n12

iv l1E11E2
G

2
1

4E1
F12n112n22

iv l2E12E2
2

n212n22

iv l1E12E2

2
n112n12

iv l2E11E2
1

12n212n12

iv l1E11E2
G , ~B2!

where v l52lpT is the bosonic Matsubara frequenc
k̃5(k,2vn1 im) the quark momentum with
vn5(2n11)pT, k̃E

25k21 k̃4
2 , E15AM21k2, E2

5AM21(k2q)2, andn61,25n6(E1,2). Theq andk depen-
dences are implicit through these quantities. Then the a
lytic continuation to the real frequency is done by the
placementiv l→q01 i«, which uniquely gives the retarde
functions with the asymptotic behavior}1/q0 as uq0u→`.

Since the retarded function is analytic in the upper h
plane, we can reconstruct it from the imaginary part us
the dispersion integral

Pab~v,q!5
1

pE2`

`

dv8
Im Pab~v8,q!

v82v2 i«
. ~B3!

This relation is quite useful when we evaluate the polari
tion functions with finiteq because the imaginary part
easier to calculate. The imaginary part comes from t
physical processes in our model: theq-q̄ creation/
annihilation and the mode-absorption/emission by a quaq

or an antiquarkq̄ as shown in Fig. 10. Kinematically th
former occurs for the time-like momentum withq25q0

2

2q2.4M2. The latter is possible forq2,0, resulting in the
Landau damping. Then the complexv plane has two kinds
of cuts in the case of finiteq. Analytic continuation of the
01401
-

a-
-

lf
g

-

o

retarded function to the lower half plane (Imz,0) across
one of these cuts is defined by

P~z,q!5
1

pE2`

`

dv
Im P~v,q!

v2z
12 ImP tm,sp~z,q!,

~B4!

whereP tm,sp(z,q) is the imaginary part in the timelike or th
space-like region, depending on across which cut the fu
tion is continued. Substituting these expressions to Eq.~25!,
we can obtain the response functions with finiteq and search
the poles on the unphysical Riemann sheet~see Fig. 10!.

The one-loop polarization function in the scalar chan
yields

Pmm~q0 ,q!5nE d3k

~2p!3

12n112n21

E1

1nE d3k

~2p!3 ~q224M2!I~q01 i«!

[J~ uqu!1~q224M2!I ~q01 i«,q!,
~B5!

FIG. 10. ~a! Pair creation/annihilation~upper! and absorption/
emission~lower! processes contributing to the mode spectrum w
the detailed balance.~b! Schematic analytic structure of the re
sponse function at finite momentumq. The cut~bold line! on the
real axis withuvu.2E is due to the upper processes of~a! while the
cut betweenv52q andq is from the lower processes of~a!. Thes
meson pole and thep-h pole on the unphysical Riemann sheet a
shown with3.
6-14
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where we have shifted the momentum ask→k1q/2 and

E1,25AM21(k6q/2)2, and then introduce the cutoff a

kmax
2 5L22q2/4 for this newk. In the second line we de

fined the functionsJ and I, whose massless limits appear
the expansion series of the NJL effective potential in ter
ry

01401
s

of s, Eq. ~21!. The integralI 0 is seemingly divergent loga
rithmically in the infrared region, but is actually finite be
cause 12n1

0 2n2
0 →0 ask→0.

After performing the angular integration using the de
function imposed by the on-shell condition, the imagina
part of the scalar polarization forq0.0 yields
Im Pmm~q0 ,q!5
n

16pE dkk

uqu
q224M2

AE22q2/4
D~q0 ,q2!, ~B6!

D~q0 ,q2![H 22n112n222n122n21 , 4M2,q2,4~M21kmax
2 !,

n112n121n212n22 , q2,0,
~B7!
where q25q0
22q2 and E25M21k2. Due to the on-shell

condition of the imaginary part, the quark energies inn6 are
set to be E1,25q0/26AE22q2/4 for q2.4M2 and E1,2

5AE22q2/46q0/2 for q2,0. The lastk integration can be
done analytically. The imaginary part forq0,0 is obtained
by ImP(2q0 ,q)52Im P(q0 ,q).

Similarly, other polarization functions and their imagina
parts forq0.0 are found and given below:

Pmm~q0 ,q!5nE d3k

~2p!3

12n112n21

E1

1nE d3k

~2p!3 ~q0
224E2!I~q0!, ~B8!

Im Pmm~q0 ,q!5
n

16pE dk k

uqu
q0

224E2

AE22q2/4
D~q0 ,q2!,

~B9!

Pmm~q0 ,q!522MnE d3k

~2p!3Iv~q0!, ~B10!

Im Pmm~q0 ,q!52
4Mn

16p E dk k

uqu
Dv~q0 ,q2!, ~B11!

Pbb~q0 ,q!5nE d3k

~2p!3

12n112n21

E1
~E21m2!

1nE d3k

~2p!3 @„~q0
224E2!~E21m2!

2E2q21~k•q!2
…I~q0!1m~q0

2

24E2!Iv~q0!#, ~B12!
Im Pbb~q0 ,q!5
n

16pE dk k

uqu

3F ~q0
224E2!~E22q2/41m2!

AE22q2/4
D~q0 ,q2!

12m~q0
224E2!Dv~q0 ,q2!G , ~B13!

Pmb~q0 ,q!5MnE d3k

~2p!3

12n112n21

E1

1MnE d3k

~2p!3@~q224E2!I~q0!

22mIv~q0!#, ~B14!

Im Pmb(q0 ,q…5
Mn

16pE dk k

uqu @4AE22q2/4D~q0 ,q2!

24mDv~q0 ,q2!#, ~B15!

Pmb~q0 ,q!5nE d3k

~2p!3

12n112n21

E1
m

1nE d3k

~2p!3 Fm~q0
224E21q2!I~q0!

1
1

2
~q0

224E2!Iv~q0!G , ~B16!

Im Pmb~q0 ,q!5
n

16pE dk k

uqu Fm
q0

224E21q2

AE22q2/4
D~q0 ,q2!

1~q0
224E2!Dv~q0 ,q2!G . ~B17!
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FIG. 11. One-loop scalar polarization functionPmm ~at the Z2CP). ~a! The real part 1/(2g)2RePmm and the imaginary part ImPmm are
shown in solid and dashed lines, respectively, with fixedq/L50.1. ~b! The real part as a function of (v,q). ~c! The imaginary part as a
function of (v,q).
yt

th

,

e
12
a

l-

ss
In these expressions we introduced a function

Dv~q0 ,q2![6~n111n222n212n12! ~B18!

with the sign ‘‘1 ’’ for 4 M2,q2,4(M21kmax
2 ) and ‘‘2 ’’

for q2,0.
It is known that the response functions have a nonanal

property at the origin of thev-q plane when thep-h mode
spectrum exists. For demonstration we show in Fig. 11
real and imaginary parts ofPmm(v,q) with q/L50.1. An
abrupt change of the real part is seen in the regionv/L
,0.1, which is clearly caused by thep-h spectrum in accord
with the dispersion relation. In theq→0 limit, the imaginary
part becomes proportional tovd(v), which leads to the dis-
continuity of the real part ofPmm as mentioned in Eq.~19!
and shown in Fig. 11. In the case of the massless quarks
the other hand, the scalar channel does not couple to thep-h
motion in theq→0 limit due to the chiral symmetry. Henc
the real part is nonsingular at the origin as shown in Fig.

In Appendix A it is shown that the spectral function for
conserved density fluctuation must be proportional tovd(v)
asq→0 in general. We confirm that this requirement is fu
filled by these one-loop polarizationsPmm , Pmm , Pbb , and
Pmb .

2. Susceptibilities

The susceptibilities in free quark gas with massM are
found to be

xmm
(0) 5nE d3k

~2p!3F 1

E
~12n12n2!

2
M2

E2 S 12n12n2

E
1n18 1n28 D G ,

xmm
(0) 5nE d3k

~2p!3

M

E
~n18 2n28 !,
01401
ic

e

on

.

xmT
(0)5nE d3k

~2p!3

M

E FE2m

T
n18 1

E1m

T
n28 G ,

xmm
(0)52nE d3k

~2p!3
~n18 1n28 !,

FIG. 12. One-loop scalar polarization function with massle
quarks~at the TCP!: ~a! the real part 1/(2g)2RePmm and ~b! the
imaginary part ImPmm.
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xTT
(0)52nE d3k

~2p!3 F S E2m

T D 2

n18 1S E1m

T D 2

n28 G ,
xTm

(0)52nE d3k

~2p!3 FE2m

T
n18 2

E1m

T
n28 G .

~B19!

These expressions coincide with the static one-loop polar
tions in theq→0 limit. Through this limiting procedure we
find that the terms containingn68 []n6 /]E are related with
the p-h spectrum parts in functionsI and Iv , and that all
susceptibilities, except for the scalar, must accompanyn68
because of their hydrodynamic nature.

We also notice the fact of no mixing of the scalar fluctu
tion with others in the massless quark gasM50. In the case
of m50, the vector fluctuation does not mix with other
Both of these originate from the symmetries. If we wr
down the GL effective potential, it must be invariant und
s→2s and/orr→2r, respectively, and therefore any lin
ear mixing with other densities is impossible.

APPENDIX C: CHIRAL QUARK MODEL

The chiral quark model can be used to perform the sa
analysis as in the NJL model

Lxq5
1

2
~]nfa!22

1

2
m̂2fa

22
l

4!
~fa

2 !21hs

1q̄@ i ]”2g~s1 ig5tapa!#q, ~C1!

where f05s, fa5pa , and m̂2,0. The meson mode is
introduced here as an elementary field with the kinetic te
Integrating out the quark field, we obtain the effective pote
tial within the mean-field approximation fors andp as

Vxq~T,m;s!/V52hs1
1

2
m̂2s21

l

4!
s42nE d3k

~2p!3

3@E2T ln~12n1!2T ln~12n2!# ~C2!

with E5AM21k2 andM5gs. This potential is almost the
same as that of the NJL model~20!, and this model is ex-
pected to have the same phase structure. The subtle po
that the divergent vacuum quark fluctuation in the integra
of Eq. ~C2! requires a regularization and renormalizatio
Instead of the three momentum cutoff used in our NJL mo
ev

01401
a-

-

r

e

.
-

t is
d
.
l

calculation, here we adopt a simple prescription followin
e.g., Ref.@13#; we assume that the renormalization is alrea
done in the vacuum and discard the vacuum polariza
term. Then the parameters are chosen so as to reproduc
pion decay constant, the pion and sigma masses, and
constituent quark mass in the vacuum. We found the Z2CP at
(Tc ,mc)5(117.7,176.2) MeV.

Within the same level of the approximation, the sca
response function is calculated as

xh5
1

2q21m̂21 1
2 ls22g2Pmm

, ~C3!

where the polarizationPmm is defined in Eq.~26! with G
51, but whose vacuum part is removed. The four-point
teraction of the NJL model is replaced by the nonlocal o
here. Other response functions

xab5Pab1Pam

g2

2q21m̂21 1
2 ls22g2Pmm

Pmb

~a,b5m,b! ~C4!

have the same structure as the NJL result~25! because we
assume the same scalar-type interaction between quarks

In the numerical calculation with this chiral quark mod
at the Z2CP, we confirmed the spectral enhancement in
space-like momentum region, similar to Fig. 7, and found
pole responsible for this enhancement on the negative im
nary axis in the complex-v plane, just as in the NJL mode
The ratioR defined in Eq.~30! also goes to unity as the Z2CP
approached. Therefore our conclusion on the importanc
the hydrodynamic mode at the Z2CP is unaltered here.

We should note, however, that the semipositivity con
tion on the spectral function is violated in our numeric
result in the time-like momentum region. This is because
replaced the term 12n612n72 in the expression ofPmm
with 2n612n72 to remove the divergence~see Appendix
B!. This simple regularization breaks the detailed balan
relation which is essential to assure thermal equilibriu
Hence the result of the spectrum in this chiral quark mo
should be interpreted with caution. The vacuum subtract
also results in the unexpected infrared divergence of
quartic term 2l13g4I 0, in the expansion of Eq.~C2!
arounds50. Because of this difficulty, we could not fin
the TCP in this model with the regularization adopted he
In order to properly discuss the spectral structure in the ch
quark model we need the regularization scheme which sa
fies the condition of thermal equilibrium@13,49#.
ev.
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