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Sigma and hydrodynamic modes along the critical line
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Assuming a tricritical point of two-flavor QCD in the space of temperature, baryon number chemical
potential, and quark mass, we study the change of the associated soft mode along the critical line within the
Ginzburg-Landau approach and the Nambu—Jona-Lasinio model. The ordering density along the chiral critical
line is the scalar density whereas a linear combination of the scalar, baryon number, and energy densities
becomes the proper ordering density along the critical line with finite quark masses. It is shown that the critical
eigenmode shifts from the sigma-like fluctuation of the scalar density to a hydrodynamic mode at the tricritical
point, where we have two ordering densities, the scalar density and a linear combination of the baryon number
and energy densities. We argue that the appearance of the critical eigenmode with hydrodynamic character is
a logical consequence of divergent susceptibilities of the conserved densities.
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. INTRODUCTION This Z,CP will become a critical cornerstone in the QCD
phase diagram once its location is confirmed in experiments.
At high temperature and/or baryon density, the system Based on the approximate chiral symmetry, the scalar
governed by QCD will show a transition from an ordinary density is usually taken as the order parameter of the
hadronic phase to a chirally symmetric, deconfined plasm&inzburg-Landau(GL) effective potential to describe the
phas€1,2]. The main objective of the heavy-ion programs atcritical behavior at the ZP. In this description all the sin-
RHIC and at the future LHC is to create this long-soughtqyarities associated with the,@P seemingly originate from
plasma state and to study collective properties of this manysfiening of the scalar density fluctuations as the effective
body assembly3]. These two phases would have to be sepayantial becomes flat there. Especially, it might be con-

rated by a boundary with singularity if chiral symmetry ¢, 4eq that the sigma meson becomes massless as an imme-
and/or confinement of QCD were exact symmetry. In reallty,diate consequence of this critical point

dynqmical quarks Wi.th finite masses; 0 make both sym- As a basic fact, however, we should strictly distinguish
metries only approximate, and their order parameters, th ctween the chira’I critical p,oint witm=0 and the ZCP

rk condensate and the Polyakov | have nonvanishing; o . o
quark condensate and the Polyakov loop, have nonvanis ith m# 0—even within the chiral effective models. When

values everywhere in the phase diagram. Thus the plas . X o .
state may be smoothly connected with the ordinary hadronié1€ chiral symmetry is exact, the-ug plane is divided into

state, even though they would possess qualitatively differedv0 domains of the symmetric and broken phases with a
properties. boundary line. But the symmetry argument is unable to fix
Recently the strong possibility of a critical point in the the order of the singularity of this line, especially the pos-
real QCD phase diagram was suggesfée-6], based on sible existence of the tricritical poinfTCP) on this line.
model calculationg7—-14] as well as lattice QCD results Since the ZCP at finite quark mass is the remnant of this
[15-17. It is the end point of the first-order line, inferred TCP, the relation of the ZCP to the chiral symmetry is very
from the crossover behavior along the temperatdeaxis  obscure. In fact, £is not the symmetry of the underlying
and the first order transition along the axis of the baryondinteractions, but of the thermodynamic potential at this par-
number chemical potentialu), and is a genuine singular ticular isolatedpointin the T-ug phase diagrami24]. From
point with the same criticality as the,Zsing model. Its this point of view the ZCP is different than the chiral critical
location, which is sensitive to the strange quark magsis point.
expected to be within the reach of current experimental fa- The flat effective potential indicates the large fluctuation
cilities. Observable implications of this,Zcritical point  of the scalar density. At the chiral critical point, this is related
(Z,CP) in heavy ion experiments have been discussed in th® softening of the sigma meson mode, so as to form a sym-
literature[4—6,18—23 such as large fluctuations of the low- metric excitation spectrum together with the pions. On the
momentum particle distributions, and the limitations on themother hand, there is no such symmetry constraint at the
due to the finite space-time geometry of collision eventsZ,CP. Actually the scalar fluctuatiohnearly mixes with
fluctuations of baryon number density and energy density,
and therefore not only the sigma mode but also the hydrody-
*Email: hfujii@phys.c.u-tokyo.ac.jp namic mode are to be taken into account there to study the
"Email: ohtani@rarfaxp.riken.jp associated soft mode. Consequently, the fate of the sigma
Yn QCD thermodynamics this point is referred to as the criticalmeson mode at the,ZP is nontrivial.
end point(CEP. In this paper we use ,LP instead of CEP, to Recent calculations of the dynamic mode in the scalar
indicate the symmetry of the point. channel using the chiral moddl$3,25 indeed showed that
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the sigma meson is massive at thgCP. Furthermore, an- ity of the baryon number and entropy susceptibilities at the
other scalar mode with space-like momentum dispersion i&(4)CP, and that this hydrodynamic mode gives the diver-
identified as the soft mode associated with th€E in the ~ gence at the TCP approached from the broken phase and also
Nambu—Jona-LasinigNJL) model [25]. In this paper we at the ZCP. In Sec. Ill we perform the same analysis using
shall confirm the result of Re'[25:| on the more genera' the NJL model {B.S an ||IU§t-ra.t|0n. The GL -effeCUVe pOtentIal
ground using the time-dependent Ginzburg-Lan@BDGL) ~ With two orden_ng QenS|t|es are _numer'lcally constructed
approach, and extend the study to discuss the changeover §re. The flat directions at the critical points are shown and
the soft modes along the critical line in tAeug-m space (j|scussed in relatlon_t(_) the dlvergen(_:es of the susceptlb_lh-
within the TDGL approach as well as the NJL model. ties. The spe_ctral origins of these divergences are studu_ad
Our investigation is based on two fundamental observaWith the relative weight of the mode spectra, and in detail
tions about the ZCP. The first point is that the proper order- pased on.the poles and residues of the .scalar_response func-
ing density at the ZCP is a linear combination of the scalar, tion. Sections IV_and V are devoted to Q|scu35|ons and sum-
baryon number, and internal energy densifigd—26, as  mary. _InAppendlewe prove the; relatlon_between t_he sus-
mentioned above. Because of this mixing all the susceptibilicePtibility and the response function, and in Appendix B we
ties of these densities diverge with the same critical exponerftrésent the explicit formulas of the response functions in the
at the ZCP. In contrast, in the chiral critical transition, the NJL model. The results with the chiral quark model is briefly
susceptibility of the scalar density diverges with expongnt "eported in Appendix C.
of the Q4) model in the two-flavor case, while the other
susceptibilities of the baryon number and the energy have the
smaller exponent. A. Structure of the phase diagram and order parameters
The second is a consequence on the dynamics following
from the conservation of the baryon number and the energ
The fluctuations of these conserved densitiage intrinsi-
cally soft and constitute the hydrodynamic modes, whos
excitation energies vanish as the wave vectgoes to zero.
Susceptibilities of these conserved densities in turn have the
spectral contributions solely from these hydrodynamic QZQQ(T,/.LB)‘FJ d3x[a(T, ug)o?+b(T, ug)o?
modes when expressed as a sum of mode spE2&a29.

Il. GENERIC ANALYSIS

Let us briefly review the phase structure near the TCP
3{5,14,3q. It is known that the critical properties near the
TCP are described, up to logarithmic corrections, with the
E&-I-inzburg—Landau effective potential

Hence the divergence of the susceptibility of a conserved +¢(T,pug)o®—ho]

density must be accompanied by critical slowing of a hydro-

dynamic mode. The spectral contribution from this hydrody- =0T +f d3x f(T h: 1
namic mode may well be involved in the scalar susceptibility o(T: ) (T.pe . hi0), @)

through the mixing at the LP.

At an Q(4) critical point [O(4)CP] the importance of the wheref (o) denotes thénon)singular part of the effective

. : otential, andc>0. The pseudoscalar density is set to zero
hydrodynamic mode depends on which phase we start frorrgnd neglected here in the mean field approximation. The

The .hydrodynamlc mode plays no critical role in the SYM- _ iical exponents can be easily found from Ed) at the
metric phase whereas the scalar condensate makes the mix

. . . L mean field level. Along the line of the first-order transition
ing possible in the broken phase. The situation become\%li,[hin the symmetry planeh(=0), we have
more subtle at the TCP, where thé4Dcritical line shifts to Y yp '
the first-order line. Only the scalar susceptibility diverges f=ac’+bo*+ cUGECg2(U2_U§)2, 2
due to the softening of the sigma meson at the TCP if it is
approached from the symmetric phase. Otherwise, the hydravhere three minima witlr=0,* o1(T, ug) coexist(dashed
dynamic soft mode causes the divergence in the susceptibilline in Fig. 1. The baryon number and entropy densities are
ties of the baryon number and energy as well as the scaldunctions ofo? due to symmetry, and discontinuous across
one. the boundary between the symmetric phase=Q) and the
This paper is organized as follows. In the next section webroken phased= *+ ;). At the TCP, wher@a=b=0, these
briefly review generic properties of the phase diagram othree phases coalesce and the first order libe=(-2/ac)
QCD with two flavors near the TCP using the GL effective smoothly joins with the @) critical line (a=0,b>0).
potential. It is stressed that at the TCP there are two relevant Once a small explicit breaking fielet ho is exerted, the
order parameters, the scalar condensate and a conserved déx4) critical line disappears and the TCP is lifted to the
sity which is a linear combination of the baryon number andZ,CP. The line of ZCP as a function oh is determined by
entropy densities. Then we include the dynamics using théhe conditionf’=f"=f"=0 ('=d/do), which is solved
TDGL model. Writing the susceptibilities as a spectral sumfor a negativeb with a=3b?%5c, b=-¢?/5 and o
we discuss the relative weight of the spectral contributions=sgn¢h)(|h|/16)"®. Two lines of ZCP withh=0 form the
from the sigma and hydrodynamic modes. It is pointed outdge of the wing-like surface of the first order transition in
that the hydrodynamic contribution generates the discontinuthe a-b-h space, and these lines connect smoothly to the
O(4) critical line at the TCP. This wing structure is mapped
into the physical phase space of ug, and h~m (see
2Momentum density is neglected here for simplicity. Fig. ).
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able conjugate to this temperature-like field. This density has
no discontinuity in the vicinity of the critical point. Since the
boundary is two dimensional, there are two independent
temperature-like fields and correspondingly two energy-like
densities. Next the ordering density is defined as the density
whose correlations with the energy-like densities vanish at
the critical point approached from the “symmetric” phase

o~ along the temperature-like direction. The conjugate field of
— —— S this ordering density is no longer tangential to the coexist-

ence boundary. There is a single ordering density at the
Z,CP, which is in general a linear combination @f pg,
ands. Since all the susceptibilities of these densities include
the same singular fluctuation, they diverge with the same
critical exponent at the XCP.

The coexistence wing is squeezed to be one dimensional
at the TCP, where two lines of the,@P and the line of the
first order transition witth=0 merge and smoothly connect
to the single @) critical line. Thus at the TCP we have only
one energy-like density, which will be a linear combination
of pg ands. Accordingly there ardwo ordering densities
from dimensionality. The obvious one is the scalar density
related to the chiral symmetry and the othgris another
linear combination opg ands representing the Zsymmetry
of the potential at this particular point. It is sometimes useful
to construct the effective potential with two ordering densi-
ties o and ¢, which become soft at the TCP.

The same observation can be made by looking at the sus-
ceptibilities directly. There are three fieltdsa, andb in the
effective potential1). The singular parts of the correspond-
ing susceptibilities form a 3-by-3 matrix,{=h,a,b),

(b)

FIG. 1. (a) Schematic phase diagram around the TCR-io-h
space. The three critical lines are shown in bold lines and meet at 3
the origin(TCP). The curve of three-phase coexistence is drawn in 1 20 4o
a bold dashed line which ends at TCP. The two-phase coexistence Xij = Xnh 20 40° 8o (4)
surface is hatched by thin dotted lindb) The counterpart in the 45° 8% 160°
physical T-x-m space(NJL mode).

The slope of the first-order boundary can be related to thiith y,, the scalar susceptibility,
discontinuities of the densities across the boundary via the
Clapeyron-Clausius relatidf®,12],

1 5%Q 1
dT  Apg dT Ao dh  Apg Xh= = )

ar ar__ae P g V ?h 2a+12002+30c0"
dug As’' dh As’ dug Ao

with baryon number densityg and entropy densitg. The  where o takes the value at the extremum of the potential.
chiral broken phases witbr= = \/—a/2b coexist within the When the @4)CP is approached from the symmetric phase,
symmetry plandr=0, and accordingly there is no gapgg Xaa= Xpb=0. In the broken phase the situation is different.
ands across this symmetry plane. Only the scalar density The singular part of Eq(1) gives a finite contributiony,,
bifurcates as the ordering density at the4@P approached =1/(3b) as the @4)CP is approached withr®>=—a/2b
from the symmetric phase. Its correlations with the “energy-—0, although the divergent susceptibility is still the scalar
like” densities vanish{ os)=(opg)=0 because of the sym- one alone. The singular contribution tq, eventually blows
metry in o+ — o in the symmetric phase. up at the TCP approached along thelxritical line. In fact,
From the relation3) we know thato, pg, andsgenerally  the TCP may be understood as a usual critical point with the
have discontinuities across the wing because there is no reardering densityy conjugate ta, sitting on the chiral phase
son for any of these slopes to vanish ot 0. Let us boundary. When the TCP is approached from the broken
discuss the energy-like and ordering densities around thphase withb=h=0, the scalar ordering density vanishes
Z,CP [24,31]. First we introduce the “temperature-like” slowly o*=—a/3c, and y,, and x,, diverge as 14| and
field as a vector tangential to the coexistence boundary. Thet/\/|a[, respectively, whiley,, is still nonsingular. Note that
the energy-like density is defined as the thermodynamic varithe divergence ojy,, at the TCP indicates the infinities in
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the baryon number and enefggusceptibilities or, equiva- 1. Mixing between scalar and conserved densities
lently, the isothermal compressibility and specific heat, re- peyiation of the densities from the absolute equilibrium
spectively. gives rise to time evolution of the system. Here we assume

All these susceptibilities in Eq4) diverge at the ZCP,  simple phenomenological equations of motion for densities
whereo# 0. With the finite condensate we can diagonal- & and ¢ as

ize this matrix of the susceptibilities, leaving only one

singular susceptibility. The resulting eigenvalues are _ 60 ) 0}

[0,0,(1+ 402+ 160%) ], with eigenvectors'(—20,1,0), Lo(ido=="5-. Lyide=— 5" @)

Y(—403,0,1), Y(1,20,40°), respectively. For smal or h,

we see that the ordering density is approximately a lineawhereL ,(id;) andL ,(id;) are the differential operators. Ap-

combination of the densities and ¢. propriate forms ofL, andL, are unknown in this descrip-
The fluctuations of these two ordering densitiesind ¢ tion. But as a strong constraint we know that the operiator

become large near the TCP as explained above, and shoudust be consistent with the conservation of the densiand

be included as the soft degrees of freedom, especially whefescribe the hydrodynamic motion. As a typical hydrody-

we discuss the dynamic aspects. We generalize the free eR@mic evolution, we consider here the diffusion motion

sion is time irreversible. We assume propagating motion

LU(i&t)=at2/F for the scalar density, identifying this mode

1 as the sigma meson which degenerates with the propagating
Q:j d3x| ago®+boo*+col+ yole+ E(,oz—hcr—jqo) pions at the @4)CP/TCP. Other possible forms are consid-
ered below in this section. The coefficienfsA>0 are
+Q,. (6)  treated as constants here.

For small deviationsr— o+ ¢ and ¢— ¢+ ¢ from the
equilibrium values, we linearize these equations of motion
Coupling betweerr and ¢ must respect the underlying chi- with respect tor ande to obtain
ral symmetry and the simplest couplingdde. A flat direc-

tion of this potential appears at a critical point in theg (L(,(i(?t)+0m, Q0

Q Lo(id)+Q,,

Te

plane. In the case of the(@CP/TCP it is in thes direction
reflecting the symmetry while the direction will become a
linear combination of the two densities at theCP. Elimi- where(),,, = 529/5050|eq. etc. The soft eigenmodes of the

nating the density by 9Q0/d¢=yo®+¢—j=0, we recover  gystem are determined by the condition
the original form(1) of the free energy witta=aq+ yj and

4
~1=0, (8
¢

b=by— %72, up to an analytic term. — 0?+T (x5 "4 49202+ k?) 290 TN
5 : ,1=0, (9
2vo\T'AQ —iw+\q
B. Dynamics

whereyy, is the scalar susceptibility given in E(), and we
We may introduce the dynamics to the system describeghtroduced a termx(V o)%/2 in Q. The eigenmodes for smalll

by the free energy(6) phenomenologicallf32]. We have g are found asv=* w,, w4 With

seen in the previous subsection that there are two ordering

densities conjugate to the fieldlsanda at the TCP, and that wg . ) 5 N 4y%0? 5

a linear combination of these two densities will become the = 7= —(xn t4y° o) —| k+ T 1442202 q

relevant ordering density at the,&P for smallh or o. We Xh Ye

should include at least these two densities in order to de- 4

scribe the soft dynamics. Furthermore, it is known {(mein- —log Xh _ -1 (10)

linear) mode-mode coupling between the fluctuations of the ) ¢? Xﬁl+47202 A

ordering densities and othefnoncritica) hydrodynamic

modes are important in general to describe the dynamics iwherey; is the susceptibility of the density.

the critical region[32], which is beyond the scope of this  The eigenmodew, is oscillating while wy has the

work [33,34]. We will see, however, that the coupled systemdiffusion-like hydrodynamic character. The, vanishes at

of the two ordering densities in the mean field approximatiorthe Q4)CP as the critical eigenmode. Although the hydrody-

already yields a nontrivial resul26]. namic modewy is an intrinsic soft mode of the system, it
does not show the critical slowing there. When the TCP is
approached from the symmetric phase, the situation is the

3The fluctuation of the energy density is a linear combination ofsame. On the other hand, at the TCP approached from the

those of the baryon number and entropy densities. In this paper weroken phase, both frequencies slow down, reflecting the di-

sometimes use the energy susceptibility and the entropy susceptiblergence of the susceptibilities, which seems to reflect the

ity interchangeably. existence of two independent ordering densities there.
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At the Z,CP the susceptibilitieg, and x; diverge with 1 (dw
the same exponent due to the linear mixing. The propagating Xj=lim ;J - Imxj(@,a)=x;(0+1). (14
w, is a fast mode there due to the nonzero condensate 4—0

=(h/16)Y®, whereas the hydrodynamic slow moag/\g?

=—ix; ' becomes the critical modey{ '—0) associated Here the first term in the bracket originates from the poles
with the ZCP. This result is similar to the level-crossing + and the second from,.

phenomenon where the mode coupling makes the lower en- First, we note that only the diffusion-like4 pole contrib-
ergy mode lowered further. The explioif® factor of wq  utes to the susceptibility ap. This is a robust result follow-
stemming from the hydrodynamic character results in theng from the conservation of the densigy Existence of the
larger dynamic critical exponeat=4 in the mean field level, currentj such thats,¢+ V-j=0 dictates that the frequencies
which makeswy apparently slower than the, mode. In  of the modes contributing to the susceptibility must vanish
contrast, at the @)CP, the linear mixing is banned by the asq goes to zero. We can formally show that the spectrum of

underlying chiral symmetry. the ¢ response function behaves as Jin Im x;(,0)/w
o « §(w) (see Appendix A Conversely, we can state that soft-
2. Susceptibility as a spectral sum ening of the hydrodynamic mode must accompany the diver-
Inverse of the differential operatd®) with the retarded —9ence ofy;. ] o
boundary condition is the response function SQCOHd, the ratio of tha)d SpeCtral contribution to the
total in the scalar susceptibility
(o.) I'ng?
Xlw,q)= . . 2 2
[_(w+|8)2+‘1’g](_|w+|wd|) REM—U:]__X_—l (15)
. xXn ' +4yPo? :
—iw
+1 —2vyo
NG

X , goes to unity at the TCP approached from the broken phase
5 — o’ 1 2 2 and at the ZCP, which means that the leading divergence of
YO T T TAyTet kg the scalar susceptibility is also generated bydhespectrum
at these critical points. Even at thé4)CP approached from
the broken phase the, spectrum gives a finite portion of

the divergence &R<1 sincexrjl~ o2—0. This result can

which characterizes the time-dependent response of thegg ngerstood by rewriting the scalar response function as
densities to the external fieldsandj, within the linear ap-

proximation. The susceptibility is obtained in the limit of

(11)

(w=0,0—0). The response function is analytic in the upper o 1
complexw plane, a fact which allows us to generally express  Xn(®,d) = x> (,q) RINC) 00 ,
the susceptibility as a sum of the mode spef®A: 1-Qupx) (0,0 Qgpxh (w.Q)(16)
1(dw
x(0,0)= ;f — Imx(w,0), 12 where x{O(w,q)=1L(0+ie)+Q,,] and x9(w,q)

=1L, (w)+Q,.]. The denominator expresses the linear

where an ultraviolet regularization is understood if necessaryixing between the “bare’r and¢ modes through the cou-
This expression shows that the divergence at a critical poirRing {2,,* . Even though the coupling becomes smaller as
should come from an infrared enhancement of the spectrdl’® Q4)CP is approached from the broken phase, softening
function because the spectral function itself is usually inte-of the mediating “bare”s propagator provides &F factor,
grable. which results in the finite mixing of thewy mode in the
Using this expression we can examine the relative weighscalar channel. This is a simple example indicating the im-
of each mode contribution to the susceptibility. In our caseportance of the mode coupling near the critical point.
the oscillating and diffusion modes give spectral contribu- |n summary, ther and’e fluctuations mix and form two
tions as kinds of eigenmode®, andw,. We find that along the @)
critical line approached from the broken phase, the critical
o1l (de eigenmode shifts from the sigma-meson-like, to the
Xn= |lm;f M xn(@,0) diffusion-like wq mode at the TCP. In contrast, when we
a-0 approach the TCP from the symmetric phase, the scalar sus-
-1 2 2 ceptibility yy, is given completely by the criticab, spectrum
Xn 4y°o . I, ~ .
:Xh< - > 5T 55 (13)  without any mixing of thep fluctuation. At the ZCP thew,
Xp ta4yTo xn t+4yo mode becomes a fast mode whereas the whole divergence
comes from the critical softening of the&; spectrum with the
and hydrodynamic character.
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3. Cases with other types of motion

d3k

In more microscopic NJL model calculation in the later Q(T”U“’m’a)/v__yj (277)?’[E_T|n(1_n+)
section, the mode with the hydrodynamic character is pro-
vided as the mode of Landau-damping type, contrary to the
macroscopic analysis in the previous subsection, and we may
change the time evolution operator accordingly lag )
= —iw/\\J/g% More generally, the sigma mode may be 0S-where n. = (ef#E*M+1)"1, E=M2+k%, M=m-2go,
cillating or relaxing[ L ,(w)=— w?/T or —iw/T'] while the and V=27NfNC=2><2><3= 12 with N; andN,, the numbers
possible hydr_odynamic fluctuation can be _the diffusion,of flavor and color, respectively. Hee is the quark chemi-
Landau-damping  type, or sound motionL (w)  cal potential. The true thermodynamic state is determined by

= —iw/\G? —iw/\\O?, or —w?/\g?]. Furthermore, coU- the extremum conditio/do=0 and the corresponding
plln_gs with other hydrodynamlc modes, if t.hey exist, are 0grand potential i€2(T,x,m). We define the model with the
be included to describe the correct dynamic behavior of thghee-momentum cutofi and with the coupling constant
system[32—34. We stress here that our result on the criticaIgA2:2_5 which allows the TCP. In the following, all the
eigenmodes at the critical points are independent of thesgimensjonful quantities are expressed in units\of

ambiguities. The only important fact is that the operatgr Expansion of the effective potential aroumd=0 with
has a hydrodynamic character, and therefore an intrinsically, — gives rise to

soft mode of the system. In any of these choices, we find the
eigenmodes for smatj? as

1
~TIn(1-n_)]+ E(2ga)2, (20)

3

_ _ . _ _ _ o
Lo(@)=—(xp +4y%0%), Lyw)=—x;'. @17 Q(T,p,0;0)/V= vf (zw)g[k Tin(1-n3)
Note that the typical mode frequencies of the diffusion, 1
Landau-damping type, and sound-like dispersions vamish ~TIn(1—-n%)]+ >
—0 asq—0, and satisfy the spectral property following
from the conservation law

1
_ 10 2
29 J )(290’)

1
_~ |0 4.
. + 2><4| (2g0)*+
—IM——wd as 0. 18
M i Y (w)x as|gl— (18) i
¢ =Q(T,1,0,0)/V+a(T,u)(290)

FinaIIy.er note that these hydro<_jynamic modes drops out in +b(T,1)(2g0)*+ - - -, 21)
the w limit of the response function
1 do’ where the superscript 0 indicates the quantity evaluated in
x(07,0)=lim —f ——Im x(w',0) the massless limit. The first term is the nonsingular part of
00T @ —w—le the free energy in the GL description. The integidlandJ®
, are given in Appendix B. The TCP determined &y b=0
— lim 1 de o' 8(w')y=0. (19  appears al /A=0.20362 andu/A =0.49558.
ws0T) o' —w—ie As explained in Sec. Il, it is useful to introduce the effec-

tive potential with another relevant ordering density in addi-
tion to theo in studying the behavior of the quark number
susceptibility and specific heat near the TCP and ty@FZ
From the physical grand potenti@(T,«,m), we can con-
As a definite illustration, we shall study the spectral con-struct the Landau effective potential with two ordering den-
tributions of the collective modes at critical points in the NJL sities p and o in the following way: first we introduce the
model, and confirm that the result is consistent with thefree energyF(T,p,o) via
TDGL approach. We remark here that, unlike in the TDGL
approach, there are no bare bosonic modes. The bosonic
modes are dynamically generated through the interaction be-
tween the quarks and their softening causes the divergences o
at the critical points. where u=u(T,p,0) andm=m(T,p,o) are defined by in-
verting the functions

I1l. NAMBU —JONA LASINIO MODEL
WITH A TRICRITICAL POINT

F(T,p,a)/V=Q(T,u,m)/V+ pup—mo, (22)

A. Effective potential and susceptibilities

We analyze the simplest version of the NJL mofk3— _ E @(T m, o
371 £=q(i4—m)q+9[(qq)2+(qiysmq)?] in the mean P="voou T
field approximation (qg)=o= const(a vs72q)=m7=0.

The thermodynamics is described by the effective potentialhen introducing new parametegs and m, we definethe
[38] Landau-type effective potential as

Q
= v%(T,M.m)- (23
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extremum point. From this fact the divergence of the suscep-
e HEDE @) (b) (©) tibilities at a critical point is related to the appearance of a
g 0.002 particular flat direction in the GL effective potential.
In Fig. 2 we show the effective potential with two order-
o} ing densities at three critical pointg) O(4)CP with (T,u)
0.1 e =(0.3419,0.3), (b) TCP, and (c) Z,CP with (T,u,m)
0.08 =(0.1498,0.5701,0.01) in the units af. The critical insta-

% 0.06 /\ bility at these points is usually discussed using the effective
0.04 potential(20) with a single order parameter based on chi-
0.02 N ral symmetry, which is shown in the upper panels. The flat

g curvature of this potential means the divergence of the scalar
susceptibility. At the @)CP it is clear from the potential

®. 015 with two ordering densitiesd,p), or (o,s), that theo axis

< L. . A L.

@ is indeed the symmetry direction of the system. The densities

O:1 p ands depend ons? when calculated from E¢20) with
0.05 m=0. This fact is seen here as a quadratic bending of the
potential valley. Thus the fluctuation of these densities are

-01 0 0.1 weaker than that ofr, and the susceptibilities of the quark
number and the entropy have the smaller expoment
FIG. 2. Effective potentials of the NJL model at three critical At the .ZZC.P’ on the other hand, .th.e flat direction of the
points (a) O(4)CP, (b) TCP, and(c) Z,CP. The upper panels show GL potential is not paraIIe_I to Fhe axis in thea-p_ an_d oS
the potentials(20) measured from the minima as functions of a planes. The pr_o_per flat direction isliaear comblnatl_or_1_ F’f
single ordering densityr. The middle and lower panels are the the three densities af, p, ands, and all the susceptibilities
contour plots of the potential@4) with two ordering densities Of them diverge with the same exponent at th€R.

(o,p) and (o,s), respectively. It will be very instructive to introduce the GL function
with single ordering density by eliminating by 9)/dc
(T, o, m; p, ) IN=F(T,p,0)IN— up+mor =0 in favor of p, as shown in Fig. 3. The curvature at the

extremum coincides with the inverse of the quark number
=Q(T, u,M)/V+(pn—p)p—(M—m)o. susceptibility. In the case of the(@CP the curvature does
not vanish, implying finite susceptibility,,, . It takes dif-
(24 ferent values depending on from which side we approach the
. . _ equilibrium value ofp. Since theo? and o* terms of the
ThE extremum_condltlon _for the densn_uasand(r yields u ~ potential(21) disappear at the TCP andchanges witho?
=p and m=m, recovering the physical grand potential ajong the potential valleysee Fig. 2b)], the p potential
Q(T,u,m). Use of the entropy densityinstead of the quark pecomes flat on the side corresponding to the broken phase
numberp is straightforward. It is known that the effective g5 seenin Fig.®). This indicates the critical point fgr. On
potential constructed in this way must be convex and cannghe higher density side, in contrast, the curvature is nonvan-
be defined in the mixed phase. Fortunately in the NJL modekhing. At the ZCP, the potential in Fig. 8) is essentially
we can by-pass this difficulty by supplementing the unphysithe same as the potenti&20), and we may equally well
cal grand potential)(T, x,m) defined with the unstable so- choosep or s as the ordering density instead®fto describe
lutions of the gap equation, which corresponds to the nongis criticality.
convex part of the potentidd. We show the quark number susceptibiliy,,, as a func-
One can easily show that the susceptibilitigg; tion of u along the @4) critical line, across whichy,,,, is
=—(1N)#*Q1di 9j (i,j=T,u,m) are equal to the inverse discontinuous in Fig. 4. The value ®f.,. on the @4) critical
of the curvature matrix of the GL effective potential at the line approached from the broken phase grows up toward the

0.004
< FIG. 3. Effective potentials of
< the NJL model as functions of a
g} 0002} T . : single ordering density at three

critical points (a) O(4)CP, (b)
TCP, and(c) Z,CP. The dashed
ot 1 1 1 line indicates the critical density
(a) (b) (c) in each case.

0 002 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08 0.1
pIAS
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100

1 - .
Hue=—i57VitM+iny,. (27
10 2

Here we calculate the response function Wit the energy
operator in the mean field approximation instead of the en-
tropy, because the entropy has no microscopic expression as
it is defined only in equilibrium. The real-time response
function is obtained from the imaginary-time propagator
through the usual replacemeint,— gy +ie in the final ex-
pression. The static response function in the long wavelength
limit reduces to the corresponding susceptibility
limg 0 xan(0.0) = Xab - ESpeCiaIly,XﬁB:TZXTT-

The one-loop polarization$l ,,(w,q) are the response
__________________________ functions of the free quark gas with mags and contain no
0.1 ' : ' : contributions from the collective mode. In our simple NJL
' ' ) ' model, the collective mode is generated by the bubble sum
encoded in the denominator of E(4) and there are two
FIG. 4. x,,, (solid ling) along the @4) critical line approached kinds of collective motior{25]: the sigma meson mode and

from the broken phase,,,, approached from the symmetric phase the particle-hole |g-h) mode. In Ref[25] it is argued that
is shown in a dashed line. Inse;,,, Vs (1~ p)/A. the soft mode associated with the @ is not the sigma

meson but the-h motion.
The spectral functiorp,,(®,q) of the scalar response
nction[39] yields

2
XW/A

—_

WA

TCP and eventually diverges there as is described with th?
GL potential (y,,>1/b) [14]. The x7 also behaves in the u
same way. The only qualitative difference is that at the point B
=0 the x,,, is continuous across the phase boundary bePmm(@.Q)=2 1M Xmu(®,q)

cause no linear coupling withr is allowed due to the sym- 1 1
metry underp« —p. =2 |m5 m—l
B. Response functions and mode spectra _ 2 ImIy(w,q)
The spectral origin of the critical divergence can be inves- [1-2gRell (@, q)]?+[2g IM Tl @,9)]°
tigated by studying the spectral function which is obtained as (29)

the imaginary part of the response function. We discuss here

the structure of the collective eigenmode, which couples withye notice that the spectrum 2 Iy, (w,q) of the free
the relevant susceptibilities and shows softening at the critigyark gas is enhanced by the bubble-type correlation in the

cal point. o denominator.
The response functions in the NJL model are calculated as The scalar spectral functions are shownTat = 0.350
[36-39 and 0.339 near the @CP with (To/A,uc/A)

=(0.3419,0.3) in Fig. 5. One should keep in mind that the
6(w—2M) spectrum of the sigma mesongt 0 in the bro-
ken phase is hard to see in this figure. The sigma meson

Xab(194,9) =I145(i04,9) +5(i04,9)

X 1— 2911, (iq q)ZQHmb(i%,CI), spectrum is softening just above and below thd)OP (see
mm also Sec. Il D. In addition to the sigma spectrum we clearly
(a,b=u,m,B). (25 find the p-h mode spectrum in the space-like momentum

region, whose strength looks stronger in the broken phase.
Here the polarizations are defined with the imaginary—timeAS we approach the TC.:P’ as 1s Showf‘ |n.F|g. 6, b

~ ~ mode spectrum grows in the smajlregion in the broken
quark propagato(k)=1/(k+M) as

phase, while in the symmetric phase it does not show such an

enhancement.
. d3k - - We show the spectral functions of the scalar channel as
Hap(ids,q)=— f WT; trepS(K T S(k=a)T', well as the vector channétiuark number responsat the

Z,CP withm/A=0.01 in Fig. 7. In the scalar channel one
(26) )
can clearly see the two spectral peaks of the sigma meson

5 and thep-h motion in medium, respectivel25]. This spec-
whereq,=2l7T(l €Z), k=(k,ka+iw), I' is an appropriate tral structure is to be compared with that of the free quark
Dirac matrix, and the trace is taken over the flavor, color, andtase given in Appendix B. The most significant feature in
Dirac indices.I'=1 for the scalarjy, for the baryon num-  p.,is the critical enhancement in tlie~0 region provided
ber, andH for B8 with by the p-h mode, which gives rise to the divergence of the

014016-8



SIGMA AND HYDRODYNAMIC MODES ALONG THE . .. PHYSICAL REVIEW D 70, 014016 (2004

100 100 b

10

X

%

R
S
X

Pmm//\2

N
Q

LR
%%N
\\\Q\\g,&\

W

Pmm/A
2R
R
SRR
AR
Q §\\
S

0.1

R
R

7]
2
2%

0.01

0.01

(a) . 0.1

(a)
5%,
: eeesisizs
Jlosso5552>
100} Wi
100 i Sl
10F ) Bl
-l S
10 < ¥
“ g 1 .
< £
<
E 1 < 041
(ol
0.1 0.01 05
0.5
0.01
0.5
(b}
(b)

FIG. 6. Spectral functions of the scalar channel indhg plane
FIG. 5. Spectral functions of the scalar channel indhg plane 25:; the TCP(a) T/A=0.210 and(b) T/A=0.2035 with u=
near the chiral critical point T./A,u./A)=(0.3419,0.3). (a) :
T/A=0.350 andb) T/A =0.339 withy. = i fixed. easy to calculate the ratio of the spectral strength of the two
scalar susceptibility. Although the sigma meson shows thdypes of spectral contributions. In these_ Iimit_s the explicit
clear spectral peak in this model, the mode is massive due f9'™M Of the RPA scalar response functions in the broken
the explicit symmetry breaking by the current quark mass. Phase(with m=0) yields, respectively,
The spectral function of the quark number response
p..(w,q) also contains these two spectral contributions, but o) — 1
pa\s i) : Xmm(0",0)
the sigma spectrum strongly diminishesgas 0. It is worth-
while to note the fact thatll,,(0>00)=0 and
ImIT,,(0,0)*wdé(w) asq— 0, which reflects the conserva- 1
tion of the quark number. Thus the response function Xmm(0,07)= 2q “—1),
X uu(®,0) obtained in Eq(25) in the random phase approxi- 912g4M“1(0,07)
mation (RPA), too, shares the same property, and the sigma (29)
meson cannot couple to the quark number susceptikylity . . . .
atq=0. Therefore the divergence gf,,, at the 2CP must whgre funcnoﬁ (,0) is given in Append|x B. Then we can
come solely from the softening of the-h spectrum. The define the ratiR of the hydrodynamic spectrum to the total

1
— -1
294M?1(0",0)

29

same is true foypr strength of the scalar susceptibility in the NJL model as
+\ _ + + ) _ +
C. Spectral sum along the critical line R= Xmm(007) = Xmm(0™,0) - 1(07.0~1(00 )_
+ +
In the previous subsection we have identified the soft Xmn(0.07) 10,0 (30)
mode associated with,ZP as thg-h motion[25] generated

in the scalar channel whereas at th@)QP the sigma meson
mode becomes soft. Let us examine how the changeover
the soft mode from the sigma meson to fii one occurs
along the critical line. Once we noticed that the difference

between the two Iimits(mm(0+,0) and y,mm(0,07) is cag;ed Ymm(0,0) = ( _ 1) , (31
by the hydrodynamic mode spectrumd(w) asgq—0, it is 29\ 1-2gJ°

(in the other hand, these limits in the symmetric phase result
% the same value
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We note that thescalar p-h motion of the NJL model is
possible only in the medium, but always possible in the me-
dium even in the symmetric phase, where f contribu-
tion should be decoupled from the scalar susceptibility. One

which means no hydrodynamic contribution to the scalafmay ask the reason for this decoupling of héa spectrum.
Suscep“bmty there R 0) Thep -h mode must be decou- The absorption amplitude of the CO"eCtimh mode with
pled from y,min the symmetric phase. Meanwhile we know Mmomentuny by a left-handed quar (k) is proportional to
that the corresponding ratios for the susceptibilities of thea spinor producluR(k+ g)u, (k). In the symmetric phase

FIG. 7. Spectral functions of the scal@ and quark numbe(b)
response functions at the,@P with m/A =0.01.

conserved quantities are always unii=1), which can be

explicitly seen with the expressions given in Appendix B.

The ratioR (30) is shown in Fig. 8 as a function qi

this coupling must contain a helicity flip because chirality
and helicity are identical for a massless quark, and vanishes

in the g—0 limit. It is easy to show thatig(k+q)u, (k)

along the critical line. We find that even in thg4) chiral «|g|. For a massive quark in the broken phase, each of the

transition at zero baryon number densify<0) the hydro-  |eft- and right-handed states has both helicity components,

dynamic spectrum contributes to the divergence by a finite,\ 4 thusun(k + a)u: (k _.2M %0 in theg—0 limit
fraction. This contribution of the hydrodynamic spectrum in- Rk a)u (k) q '

creases toward the TCP, and eventually gives the leading
divergence at the TCP, whet¢0,0")=1°=0 but I(0",0)
#0. This behavior is completely in parallel with the TDGL | et ys discuss a little more details of the spectral contri-

approach. butions to the susceptibility, studying the the poles and the
The fact that thep-h mode gives a finite fraction of the residues of the scalar response function

divergence at the @) CP might be again unexpected from
the viewpoint of the sigma meson as the associated soft 1 1
mode there. Indeed, the sigma meson spectrum generates themm(®,q) =

total divergence when the critical point is approached from 29| 1-2g3(a) +29(4M>~ )l (w,0)
the symmetric phase. We should note here that the mixing of

the scalar fluctuation in the broken phase is the origin of the

discontinuity of the baryon number and energy susceptibili-

ties across the boundary and that only the scptarmode  near the NJL critical points. It is useful to represent the spec-
with the hydrodynamic character can couple with the fluc-tra| contributions as

tuations of these conserved quantities. Since the transitions

between the scalar and other channels is proportioni,to

the p-h spectral strength in the scalar is necessarily of order pole q)— z

1/M? so as to bring a finite contribution tg,,, and yrt. Xmm e

D. Behavior of poles and residues

(32

Ri(q)

"ot o(q) 33

014016-10
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0.2 T T T T 0.2 T T T T

FIG. 9. Scaling of the pole positions and the residues near the critical p@ntS3(4)CP: The solid line denotdso,|/|q| for t<0 and
|wp®|q] for t>0 with q=0.01. The residugR,,| 2 for t<0 and|R,, #® for t>0 is shown in a dashed line. The sigma palg
=4M? with q=0 for t<0 and (Rew,)? for t>0 in a dotted line(b) TCP: The similar plot to the @) case, but [w//|q|)? and w}, for
t<0. (c) Z,CP: (prh|/|q|)3/2>< 10, |Ry| and Rew,, are shown in solid, dashed, and dotted lines, respectively|R@R,| is also drawn in
a dash-dotted line.

with the poles corresponding to the sigma mesanrj near  where Iml(u)’=(d/du)IimI(ulq|,q)[q-0. In the broken
=2M and thep-h (ph) mode on the negative imaginary phase, the conditiorl(w,q)=0 gives the pole aswy,

axis [25]. We would obtain the susceptibility as—0 after ~ ~—i|q|1(00"), whose residueRy,~ —i|q|/M?~t~?q|.
settingw=0. As for thep-h contribution, however, we take Similarly in the symmetric phase the condition 1g(2
into account the kinematic conditidm/q|<1 for the spec- —J(0)— w%/|q|i Im1(0)' =0 fixes the pole position adpn
trum via ~—i(xmela) ¥~ (t[g)¥® with the residue Ry,
~—ilal/(xmilql)?*~t=23q|*3. Then according to Ed34)
1 (ld dw Rn@  Rm2 o] the spectral contribution is estimated to be
27) —|q © —otop(q) opy T lwpn|
(34) Ron o1 191 37
Wph |wph| t
The scalar susceptibility in this approximation is expressed
as a sum of the sigma anpth pole contributions Rpn, 4 |l _ 1 _1|Q|2/3 0 38
gl o' o T s 0 Y
R, . Rn2 g
X&°rf(0,0+)=2w—(r+l|Tow—;1;tan lm' (39 for the broken and symmetric cases, respectively,gis

—0. We note that the-h mode gives finite portion of the
divergence at the @)CP approached from the broken phase
due to the enhancement of the residue M3/ despite that
the frequencywp,~|q| shows no critical slowing. The de-
coupling of thep-h mode in the symmetric phase is correctly
described by the behavior of the pole.

In Fig. 9 we show numerical results of the poles and
residues of the scalar response funct{88) as functions of
t=|T—T.|/T. with fixed u=u.. The behavior of them can
be understood as follows.

Across the O(4)CPIn the broken phas¢l-2gJ(0) Across the TCPAt the TCP,1(0*,0)#1(007)=1°=0.
=0], the sigma pole witlq=0 locates aw,=2M on the \ypon e approach from the broken phase, L
real axis, whose residue &, ~1[MI(2M,0)]. These quan- _ 2 nn2 + . 14 v
tities scale as B, ~M~ y~Y2—{V2. In the symmetric phase . (29) 4M"1(0.0°)~t while v, ~M~1". Then the sigma

00 Xmm ' ymn P mode slows down, but cannot generate the leading diver-
(M=0), Xmm—1-29J(0)~t. The complex sigma Meson gance hecausk, /w,~t Y2 whereasy,~t 1. The fact
pole appears ab,~ \xmi/l(@,,0)~tY2 with the residue that1(0,0")~tY2 changes the scaling of thgh mode into
~1Nx:H(w,,00~t Y2 In both cases, the sigma mode wpn—t"4q| with the residue ~*?q|, which gives rise to the
gives thelappropriate strength of the divergerRbw,  correct order of the divergence
~Xmm~t

The p-h mode arises from the dependence of the func- Retl  4lq 1,1

1
N an tT/2NT' (39

tion I(w,q). Since we are interested in the behavior in the wppl
small w and g region withu=w/|g|<1, we may approxi-

mate the functiorl as The p-h mode must correspond to the critical eigenmode. On

the other hand, if the TCP is approached from the symmetric

[(w,0)=1(00")+iulml(0)’, (36) phase, thep-h mode is decoupled from the scalar suscepti-

wph
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bility and the critical sigma mode generates the total diver-drodynamic fluctuations in baryon number and entropy den-
gence. It is very interesting that the soft mode associatedities [5,18—23. The growth of the diffusive fluctuations
with the TCP is different between the symmetric and brokerwithin the finite space-time would get renewed interest
phases. [5,18].

At the Z,CP. The sigma meson mode has a finite energy The critical soft mode of the TCP is different between the
gap of order M in our model. The pole position of theeh ~ symmetric and broken phases. The sigma mode becomes the
mode can be evaluated a§,h~—ix;#|q|~t2’3|q| with its  critical eigenmode and the hydrodynamic one behaves nor-
residue~ —i|q|, which gives rise to mally if the critical point is approached from the exactly

symmetric phase. Otherwise the critical eigenmode bears the
[Rorl ., Id o hydrodynamic character and the sigma mode slows down
mtan w_ph”)(mm”t : (40) only moderately, which implies the importance of the hydro-

dynamic fluctuations near the TCP: the end point of the first

From this estimate, we see that theh mode properly ac- ©Order line sitting on the chiral phase boundary. Theoretically
counts the divergence of the scalar susceptibility at thénd also experimentally it is worthwhile to elaborate and
Z,CP, and therefore the softening of tpeh mode is the classify the dynamic critical behavior at the TCP as well as

origin of the critical divergence at the,ZP. other critical points of QC[}26,33,34,44,4b -
In the QCD thermodynamics the first order transition is

believed to occur at finite temperature in the massless three-
flavor cas€/2] and in the pure gluonic cagd], where the

In the microscopic calculation with the NJL model, we chiral symmetry and the Zcenter symmetry are exact, re-
have seen that the collectieh mode, in addition to the Spectively. As varying masses of the quarks from these two
sigma meson mode, is generated in the scalar channel afifnits, we will have critical points(line) at the edge of the
brings the spectral contributions to the channels of the confirst-order region. For example, in R¢24], a Z,CP is stud-
served quantities through the mixing whish#0. Thisp-h  ied in theT-m plane with three quark flavors of equal mass
Spectrum makes the susceptib"ities@jﬁ andXTT discon- in lattice QCD There a partlcular linear combination of the
tinuous across the @) critical line, and eventually gives rise quark condensate and the energy density is identified as a
to the critical divergences at the TCP and th€R. This role  Proper order parameter, which should be mapped to the mag-
of the p-h mode is consistent with the behavior of the hy- Netization in the Z Ising model. We expect that a hydrody-
drodynamic mode in the TDGL analysis. We remark herenamic mode related to the energy fluctuation shows critical
that thisp-h mode in the NJL model is the time-reversible slowing at this ZCP, whose spectrum may be detected in
Landau-damping type In the phenomeno|ogica| TDGL ap.the lattice QCD The dynamic critical behavior of this pOint
proach, on the other hand, we assumed the time-irreversiblé also of importance. It could be different from that of the
diffusion motion for the conserved density, which seemsZ2CP at finite ug because of no linear mixing with the
more appropriate to the nonequilibrium soft dynamics. Itbaryon number fluctuation due to the symmetgt— — pg.
would be very interesting to study how a time-irreversible Furthermore, the lines and surfaces of the QCD critical
equation of motion emerges out of the time-reversible micropoints in theT-ug-m,q-ms space are speculat¢d6]. One
scopic theory(see, e.g., Ref§40-43). can also extend the space to the isospin chaf#@l Gen-

The flat curvature of the effective potential is usually re-erally at such a critical point the proper ordering density
ferred to as the vanishing screening mass, which naivelfpeécomes a linear combination involving conserved densities.
hints the reduction of a kind of particle mass. As we ap-Since the critical eigenmode must have the hydrodynamic
proach the @)CP, the sigma meson mass actually gets recharacter in this case, the dynamic critical nature would be
duced to cause the critical divergence. However, approachinguite different from the case with, e.g., the exact chiral sym-
the Z,CP, we see that the flat curvature leads to the vanishmetry.
ing diffusion constant of the hydrodynamic md@5,26,33. Our identification of the soft modes along the critical line
In general, the potential curvature expresses the stiffness ¢ done within the mean-field approximation. Fluctuations
the System with respect to the variation of the ordering denaround the mean fields are known to become crucial for de-
sity. The dynamic quantity related to this stiffness can be thé&cribing the singular behavior at the critical points correctly.
particle mass, sound velocity, relaxation constant, or diffu-To this end we should utilize mode-coupling theory or dy-
sion constant, depending on the equation of motion of théamic renormalization group method. The mean-field analy-
critical eigenmode. sis provides a good starting point to identify an appropriate

In the Z,CP case, the linear mixing of the conserved den-séet of the slow modes.
sities in the proper ordering density dictates that the critical
eigenmode should have hydrodynamic character. We have
seen that the sigma-meson-like mode is massive and is de-
coupled from the slow dynamics. It is explicitly argued in  The fundamental points about the@P are following (1)
Ref.[33] that the remaining set of slow modes is equivalentin the absence of the chiral symmetry, the ordering density
to that of the liquid-gas critical poiri25,26. In the course of becomes alinear combination of the scalar density, the
heavy ion events passing by the @, it is important to  baryon number density and the energy density, in general,
study the observable implications of critical slowing of hy- and their susceptibilities have the same critical exponent. In

IV. DISCUSSIONS

V. SUMMARY
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describing the static property of this critical point one mayThis susceptibility is obtained as tluyglimit of the response
equally well take any of these densities as the ordering derfunction[27,28 because

sity. (2) Then the critical eigenmode must be the hydrody-

namic one which can cause the critical divergence of the

susceptibility of the conserved density. On the other hand, in,_ — &—eﬁﬂtr[&b(0,0)e*ﬁk]

the chiral transition approached from the symmetric phase, a

the exact chiral symmetry prohibits the linear mixing of the 1 R i

hydrodynamic mode in the fluctuation of the ordering den- =eﬁ9ﬂf dSJ d3x tr] ¢p(0,0)e~ FKp,(0x)e~ 1=95K]
0

sity. We have showed these points using the TDGL approach
as well as the microscopic NJL model.
We have studied the change of the critical eigenmode
along the @4) critical line. When the critical point is ap- B s -
proached from the symmetric phase, the soft mode is indeed = fo de d°X xap(—17,%)
the sigma meson mode. On the other hand, approaching from
t_he brok_e_n phase we see t_he scalar condensate_ allows the = |im Xan(1©n,9)|n=0= lim xan(0,9), (A2)
linear mixing between the sigma and hydrodynamic modes, q—0 q—0
and eventually at the TCP the hydrodynamic mode turns out
to be the critical eigenmode which generates the leadin Ada
critical divergence. Thus the shift of the critical mode fromg"helre A(;/)ve used (1_ts?f(a) formulad(dae ©
the sigma meson to the hydrodynamic mode occurs at thg J0dS€™ [dA(a)/da]e’ with a matrix-valued
TCP. And the soft mode at the TCP crucially depends orfunction A(a) and the time dependence of the operators
from which phase one is approaching the point. are defined byp(—ir)=e™¢(0)e”™ . The imaginary-
The criticality of the ZCP is given by the softening of a time correlation and the response function are introduced
hydrodynamic mode. The sigma mode remains as a fasts y.,(—i7,X)=(da(—i7.X)dp(00))c and xap(t,X)

mode due to th_e explicit breakir_rg and is deco_upled from =iH(t)<[<2>a(t.x),<?>b(0,0)]>ca respectively. Once we estab-
the soft dynamics. Based on this understanding, we shoulgky, the relation between the susceptibility and the response
study fluctuations with the hydrodynamic character, such agnction, it is easy to express the susceptibility as an integral
baryon number and entropy fluctuatiois18-23,48in lo- 4 er the spectral density

cating the Z2CP experimentally.
In the QCD thermodynamics with three quark favors, sev-
eral kinds of end points are speculated. One should keep in _ . do 21m xap(w,q)
mind that at these points the hydrodynamic mode will be- Xab=Xap(0.0—0) = I|Ln0 2 © - (A3)
come the critical eigenmode once a conserved density is lin- 4
early mixed in the ordering density and also thataperoxi-
mate symmetry of the underlying interactions does not Specifically, wheng, is conserved[R,?ﬁa]zo, we can

provide any reason for singularity in the phase diagram. freely change the position of the operafby in the trace and
the susceptibility is directly related to the equal-time corre-
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APPENDIX A: SUSCEPTIBILITY

AND RESPONSE FUNCTION In the last equality we used the fluctuation-dissipation theo-

The susceptibility of abosoni¢ density ¢, in a system rem, which relates the fluctuatio to the dissipative part
described with the grand potenti®i= —T Intr[exp(—gK)] M x of the response function. Noting the spectral condition
with K=F— 3 afd3 &, is defined as s_gn(w)lm x(w,q)=0, we c_qncludg that these two expres-

a a sions for the susceptibility coincide if and only if
5 limg_olm x(w,q)=7(w)wy. Physically this is a conse-

_ 100 Al guence of the existence of the currggtsuch thatd;¢,

Xab="y ga ob” AD - 1y..=0.
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APPENDIX B: EXPLICIT EXPRESSIONS q
. — NVAVYAVaVE
1. Response functions - 3 >
We present the explicit formulas and procedures to evalu-
ate for the one-loop polarization functions. First working in

the imaginary time formalisnj38], we derive the expres- .
sions for the polarization functions with make use of the q —
frequency sum formulas —@
1 1 (@ 4
Hiw)=T2, = =
(o) =T2 k2+M2 (k—q)2+M?2 I .

=1 [1-ny-n; n_,—nN_,
~ 4E.E,\iw—E;—E, iw+E;—E,

Nyp—Nyp  1-n_3—n.,

- 2E 4 ol 4 2E Re
i(l)|_El+E2 i(,!)|+E1+E2 ’ (Bl)
X s X s
T (i) =TS i(2ZK,—ay) : .
ow))= | —(4)= p~
! n 4 Mké-i— M? (k—q)§+ M? ®)
_ i 1-n,—np, n;—n FIG. 10. (a) Pair creation/annihilatiojuppe) and absorption/
C4E,|iw—E;—E, io+E;—E, emission(lower) processes contributing to the mode spectrum with

the detailed balancgb) Schematic analytic structure of the re-
sponse function at finite momentugqa The cut(bold line) on the
real axis with| | > 2E is due to the upper processesg@afwhile the
cut betweeno= —q andq s from the lower processes (). Theo
1-ny1—n_, Nn_;—N_» meson pole and thp-h pole on the unphysical Riemann sheet are

iw—E,—E, iw+E;—E, shown with X

Nyg—Nyp  1-n_3—ny,
iw|—E1+E2 i(l)|+El+E2

1
~E

Ny 7 Ny 1-n_;—n,;
iw|—E1+E2 i(,l)|+E1+E2

: (B2)

retarded function to the lower half plane (1 0) across

. . one of these cuts is defined b
where w,=2I#T is the bosonic Matsubara frequency, y

k=(k,—w,+in) the quark momentum  with
w,=(2n+1)aT, K=k2+k2, E,=VM2+k%, E, 1=  ImTl(w,q)
=\VM?+(k—0q)?, andn. ,=n.(E; ). Theq andk depen- II(z,9)= —f dwfz’
dences are implicit through these quantities. Then the ana- & @
lytic continuation to the real frequency is done by the re-
placement w,—qg+ie, which uniquely gives the retarded
functions with the asymptotic behavierl/q, as|qg|— . wherell'™Sz,q) is the imaginary part in the timelike or the
Since the retarded function is analytic in the upper halfspace-like region, depending on across which cut the func-
plane, we can reconstruct it from the imaginary part usingion is continued. Substituting these expressions to(#5),

+2 ImII'™sR z,q),
(B4)

—o0

the dispersion integral we can obtain the response functions with fimgjtand search
the poles on the unphysical Riemann shesee Fig. 1D
1~ ImIl,,(w',q) The one-loop polarization function in the scalar channel
Hab(qu):;f ocd(ﬁ)'m. (B3) yields

This relation is quite useful when we evaluate the polariza-

tion functions with finiteq because the imaginary part is &k 1-n,,—n_,
easier to calculate. The imaginary part comes from two My(9o,9)=v 2n)? E
physical processes in our model: thg-q creation/ !
annihilation and the mode-absorption/emission by a gaark
or an antiquarkg as shown in Fig. 10. Kinematically the +vJ
former occurs for the time-like momentum witq2=q3

—g?>4M?2. The latter is possible fay?<0, resulting in the

Landau damping. Then the complexplane has two kinds =J(|q))+(g>—4M?)I(gy+ie,q),

of cuts in the case of finitg. Analytic continuation of the (B5)

d3k ) ) )
(277)3(q —4M )I(QO'HS)
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where we have shifted the momentum las-k+q/2 and  of o, Eq.(21). The integrall® is seemingly divergent loga-
E, =M%+ (k= /2)?, and then introduce the cutoff at rithmicallyoin thoe infrared region, but is actually finite be-

. ) ) cause Fn; —n-—0 ask—0. _ _
Kimax=A“—Qq“/4 for this newk. In the second line we de-  After performing the angular integration using the delta
fined the functions) and|l, whose massless limits appear in function imposed by the on-shell condition, the imaginary
the expansion series of the NJL effective potential in termgpart of the scalar polarization fay>0 yields

v ( dkk g2—4M?

ImII 0)=—| — —————=D(0p, 2, B6

mm(qo Q) 167 |q| E2—q2/4 (QO q ) ( )

D)= 2—N,1—N_5—N,—N_g, 4M2<gP<4(M24+K3,), ®)
Go. A= Nyi—Niptn_;—n_,, @°<O0,

where g°=q3—q? and E>=M?+k?2. Due to the on-shell v (dkk

condition of the imaginary part, the quark energiesinare M p(G0.9) = 76~ Tal

set to beE; ,=qq/2= JE?—q%4 for q>>4M? and E,,

= JE?—q?/4+ q,/2 for g?<0. The lastk integration can be (q3—4E?)(E2—q?/4+ MZ)D( 3
E2—q2/4 o4

done analytically. The imaginary part fop<<O is obtained
by ImIL(—qo,q)=—ImII(qo.q).

Similarly, other polarization functions and their imaginary
parts forgy>0 are found and given below: +2M(q§—4E2)Dw(q0,q2)1, (B13)
d3k l—n+1—n,l 3
IT,,,.(q ,OI)=VJ _ d’k 1-n;;—n,
pp 0 (277-)3 El Hmﬁ(Q01Q)_MV (277)3 El
”f iﬂ(qé—wmqox (B8) a2 e
(2m) +MVJ W[(q —4E*)I(qo)
m L = aTA_ T~ = 1 L
pull0.4)= 75— lq] [E2—q%/4 o.9 My ¢ dk Kk I ;
(B9) ImHmﬁ(qo.q)=mJ To L4VE"~a7/4D(do,a%)
d3k —4uD,(0o,a%)], (B15)
Mpu(0,0) =~ 2M | -7, (a0) 610 o
B 1-ny3—ny
IT,5(do,q)=v 2m)3 E, M
M 00,0) = — s [ <5, 00,07 (B11) ok
Mo, D=~ 22— | 757 Polbo.q%);
d®k 1-n,;—n_ 1
H,Bﬂ(QOrQ):V (277_)3 JrEll 1(E2+,LL2) +§(Qg_4E2)Iw(q0)}u (B]-G)
+VJ %[((qg—4E2)(E2+M2) I o fdkk qg—4EZ+q2D ,
™ m ,u,B(quq)_ E |q| M \/m (Qan )
~E?q?+ (k- q)*)Z(do) + (0l
—4E*)T,(do)], (B12) +(d5—4E*)D,,(do .qz)] : (B17)
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FIG. 11. One-loop scalar polarization functibiy,, (at the ZCP). (a) The real part 1/(8) — Rell,,, and the imaginary part Il ,,,, are
shown in solid and dashed lines, respectively, with figéd =0.1. (b) The real part as a function ofs(q). (c) The imaginary part as a
function of (w,q).

In these expressions we introduced a function %k M[E—pu Et+u
(0) _ - "y ’
b XmT Vf (277)3 E[ T n+ T n_i,
D,(do,99)==(ny3+n_,—n_;—n,,)  (B1y)
with the sign “+” for 4 M2<q?<4(M2+k3_) and “—” d3k
fhe sig q°<4( max) (O _ (' +n"),
for q°<0. o (2,”_)3

It is known that the response functions have a nonanalytic
property at the origin of the»-q plane when thg-h mode
spectrum exists. For demonstration we show in Fig. 11 the
real and imaginary parts dfl ,,(®,q) with g/A=0.1. An
abrupt change of the real part is seen in the regign
< 0.1, which is clearly caused by theh spectrum in accord
with the dispersion relation. In thg— 0 limit, the imaginary
part becomes proportional t8é(w), which leads to the dis-
continuity of the real part ofl,,,, as mentioned in Eq19)
and shown in Fig. 11. In the case of the massless quarks, on
the other hand, the scalar channel does not couple tp-the
motion in theq— 0 limit due to the chiral symmetry. Hence
the real part is nonsingular at the origin as shown in Fig. 12.

In Appendix A it is shown that the spectral function for a
conserved density fluctuation must be proportionab tif )
asqg—0 in general. We confirm that this requirement is ful-
filled by these one-loop polarizatiois, , , 11, , I155, and
Mg

2. Susceptibilities

The susceptibilities in free quark gas with madsare
found to be

©) d’k [1
Xmm~— ¥V (27T)3 E(l*n+*n7)
M2(1-n,—n_
- ? ?'F n+ + n_ y
dk M FIG. 12. One-loop scalar polarization function with massless
XET?) = ,,f —(n'.—n"), quarks(at the TCP: (a) the real part 1/(8) — Rell,,,, and (b) the
" (2m)3 E imaginary part I, .
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d3k [/E—u\2 E+ )2 calculation, here we adopt a simple prescription following,

©_ I I Ref[13]; that th lization is alread
XTi=—v 3|l n’. + | n-|, e.g.. Re [13]; we assume at the renormalization is already
(2m) done in the vacuum and discard the vacuum polarization

term. Then the parameters are chosen so as to reproduce the
pion decay constant, the pion and sigma masses, and the
constituent quark mass in the vacuum. We found theRZ at
(B19) (Te,me)=(117.7,176.2) MeV.
Within the same level of the approximation, the scalar
These expressions coincide with the static one-loop polarizacesponse function is calculated as
tions in theq— 0 limit. Through this limiting procedure we
find that the terms containing, =dn.. /JE are related with _ 1
the p-h spectrum parts in function® andZ,, and that all Xh — g2+ m2+ %)\UZ_gZHmm’
susceptibilities, except for the scalar, must accompahy
because of their hydrodynamic nature. where the polarizatioerm is defined in EQ(26) with T’
We also notice the fact of no mixing of the scalar fluctua-=1, but whose vacuum part is removed. The four-point in-
tion with others in the massless quark ¢as=0. In the case teraction of the NJL model is replaced by the nonlocal one
of =0, the vector fluctuation does not mix with others. here. Other response functions

©_ d*k [E-p , E+u
XT,u,__ 3 - n
(2m)

T T )

(C3)

Both of these originate from the symmetries. If we write 9
down the GL effective potential, it must be invariant under =11 +1I 9 I
N _ . . Xab ab am™ 5 ~o 1. o5 - mb
o— —o and/orp— — p, respectively, and therefore any lin- —g°+tm°+ 3 o= g1y
ear mixing with other densities is impossible.
(a,b=pu.B) (C4

APPENDIX C: CHIRAL QUARK MODEL have the same structure as the NJL reé2® because we

The chiral quark model can be used to perform the sam@SSume the same scalar-type interaction between quarks.
analysis as in the NJL model In the numerical calculation with this chiral quark model

at the 2CP, we confirmed the spectral enhancement in the

1 s 1oy o N L, space-like momentum region, similar to Fig. 7, and found a
Lyq=5(0va)"— 5M b= 77 (o) +ho pole responsible for this enhancement on the negative imagi-
nary axis in the complex plane, just as in the NJL model.
+qlid—g(o+iystama)]a, (C1)  The ratioRdefined in Eq(30) also goes to unity as the,ZP

approached. Therefore our conclusion on the importance of
where ¢o=0, ¢,=m,, and m?<0. The meson mode is the hydrodynamic mode at the,@P is unaltered here.
introduced here as an elementary field with the kinetic term. We should note, however, that the semipositivity condi-
Integrating out the quark field, we obtain the effective potendion on the spectral function is violated in our numerical
tial within the mean-field approximation fer and = as result in the time-like momentum region. This is because we
replaced the term 4n.;—n., in the expression ofl,,
with —n.;—n+, to remove the divergencesee Appendix
_ 1.,, N, d3k B). This simple regularization breaks the detailed balance
Qyo(Topi0)N=—=ho+ sm°o"+ 7o _Vf 23 relation which is essential to assure thermal equilibrium.
' (2) Hence the result of the spectrum in this chiral quark model
X[E=TIn(1—n,)—TIn(1—n_)] (C2 should be interpreted with caution. The vacuum subtraction
also results in the unexpected infrared divergence of the
with E= yM?+k? andM =go. This potential is almost the quartic term —\+3g*°, in the expansion of Eq(C2)
same as that of the NJL mod&0), and this model is ex- aroundo=0. Because of this difficulty, we could not find
pected to have the same phase structure. The subtle pointtise TCP in this model with the regularization adopted here.
that the divergent vacuum quark fluctuation in the integrandn order to properly discuss the spectral structure in the chiral
of Eq. (C2) requires a regularization and renormalization.quark model we need the regularization scheme which satis-
Instead of the three momentum cutoff used in our NJL modefies the condition of thermal equilibriufii3,49.
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