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Analytic properties of the Landau gauge gluon and quark propagators
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We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical
solutions of the coupled system of renormalized Dyson-Schwinger equations and from fits to lattice data. We
find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the
transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed.
For the quark propagator we find evidence for a masslike singularity on the real timelike momentum axis, with
a mass of 350 to 500 MeV. Within the Green’s function approach that is employed, we identify a crucial term
in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.
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I. INTRODUCTION

Dynamical chiral symmetry breaking and confinement
fundamental properties of QCD. In high energy proces
such as deep inelastic scattering, quarks behave almost
selessly. However at low energies the observed hadron s
trum suggests that light quarks acquire large, dynamic
generated masses through their interaction with the ga
sector of QCD. Quarks and gluons carry color charge and
not observed as asymptotic states, occurring only inside
orless bound states, the hadrons. The mechanism for
confinement in QCD is still not understood and it is n
known whether a gauge invariant formulation even exis
However, in the framework of a quantum theory, physi
degrees of freedom are necessarily subject to a probabi
interpretation implying unitarity and positivity; the physic
part of the state space of QCD should be equipped wit
positive ~semi-!definite metric. Therefore one way to inve
tigate whether a certain degree of freedom is confined i
search for positivity violations in the spectral representat
of the corresponding propagator. Negative norm contri
tions to the spectral function signal the absence
asymptotic states from the physical part of the state spac
QCD and are thus a sufficient~though not necessary! crite-
rion for the confinement of the particle in question.

Neither confinement nor dynamical chiral symme
breaking can be accounted for at any finite order in per
bation theory. These phenomena can be explored onl
genuinely non-perturbative approaches such as those
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vided by lattice Monte Carlo simulations~see, e.g., Refs
@1,2#! and the Dyson-Schwinger, Green’s function approa
~see, e.g., Refs.@3–5#!. Both approaches have their ow
strengths and weaknesses. Lattice simulations are the onab
initio calculations available so far. They contain the full no
perturbative structure of QCD but are limited by the en
mous computational effort they require and by uncertain
in the infinite volume and continuum extrapolations that a
needed to connect with the physical world. Furthermore,
implementation of small quark masses in most lattice sim
lations is computationally very expensive and, as yet, st
of-the-art calculations use light quark masses 6–10 times
physical values, thus necessitating a further extrapolat
On the other hand, the Dyson-Schwinger equations for
propagators of QCD are continuum based and can be so
analytically in the infrared but must be truncated to obtain
closed, solvable system of equations@6–9#. Recently, a con-
certed effort has been made to combine the strengths of t
two approaches and quite definite statements on the infr
behavior of QCD have emerged@10–13#. In this work we
will apply a similar strategy to explore the analytic structu
of the propagators of QCD from solutions in the spacel
Euclidean momentum region.

This paper is organized as follows: In Sec. II we brie
review the connection between positivity and confinem
and outline the method we will use to investigate the analy
structure of the propagator in the timelike momentum regi
In the third section we investigate positivity violation in th
gluon and quark propagators which are obtained as solut
of Dyson-Schwinger equations in the truncation scheme
Refs.@10,11#. We find clear evidence for positivity violation
in the gluon propagator. The origin of these positivity viol
tions is a branch point atp250, followed by a cut along the
real timelike axis. For the quark propagator we find no po
tivity violations as long as a certain non-perturbative Dir
structure is included in the quark-gluon vertex. This Dir
structure is dictated by the Ward-Takahashi identity in QE
and is also likely to exist in QCD because of the simi
nature of the corresponding Slavnov-Taylor identity. In S
IV we seek parameterizations of the quark propagator.
investigate the ability of a number of meromorphicAnsätze
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to reproduce lattice data for the quark propagator. All the
share the property of either a dominant real pole or a pai
complex conjugate poles very close to the real momen
axis. We also show that one can reproduce both the Dys
Schwinger solutions and the lattice data by various par
eterizations with branch point singularities, rather than po
We give a summary of our results in the last section.

II. POSITIVITY AND CONFINEMENT

One of the most intricate problems in quantum field the
ries is the separation of physical and unphysical degree
freedom. In QCD this problem is directly connected with t
issue of confinement, since we are searching for the me
nism which eliminates the colored degrees of freedom fr
the physical subspace,Vphys, of the state space of QCD. I
order to ensure a probabilistic interpretation of the quant
theory,Vphys is required to be positive semi-definite, where
the total state space of QCD in covariant gauges has an
definite metric.

A possible definition of a positive definite subspac
Vphys, is given in the framework of the Kugo-Ojima confine
ment scenario@14#. Assuming the existence of a well-define
Becci-Rouet-Stora-Tyutin~BRST! charge operator,QB , the
space of physical states is defined by

Vphys5$uphys&:QBuphys&50%. ~1!

Given the assumption of a well-defined, i.e. unbroken, glo
color charge,Qa, it has been shown that the physical sta
space Vphys contains only color singlets, i.e
^physuQauphys&50 @14,15#. In Landau gauge this assump
tion, the Kugo-Ojima confinement criterion, can be tran
lated into the requirement that the ghost propagator sho
diverge more strongly than a simple pole at zero momen
@16#.

In this scenario, longitudinal gluons as well as ghosts
removed from the physical spectrum of QCD by the BR
quartet mechanism~see, e.g., Ref.@15#!. The colored states
are BRST-quartet states, consisting of two parent and
daughter states of respectively opposite ghost numbers.
latter states are BRST exact and thus BRST closed~due to
the nilpotency of the BRST transformation!. The BRST
daughters are orthogonal to all other states in the pos
definite subspace and thus do not contribute to phys
S-matrix elements. The parent states belong to the indefi
metric part of the representation space and are thus expe
to violate positivity. Members of the elementary quartet
lated to gauge fixing are the ghosts, the antighosts and
gitudinal gluons.

As the two parent states of a quartet belong to the ind
nite metric part of the complete representation space, vi
tion of positivity would provide evidence for the correctne
of the Kugo-Ojima picture. For example, positivity violatio
for transverse gluons indicates that transverse gluons
BRST parent states with gluon-ghost states as daughters
corresponding parents of opposite ghost number are glu
antighost states with a mixture of gluon-ghost-antighost
2-gluon states as daughters. A similar construction for qua
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would consider quarks as BRST parent states with qua
ghost states as daughters, and correspondingly, qu
antighost states as a second set of parents and a mixtu
quark-ghost-antighost and quark-gluon states as a se
type of daughter state. Thus an investigation of t
~non-!positivity of transverse gluons and quarks allows us
understand in more detail confinement via the BRST qua
mechanism.

In order to complete the proof of confinement in this sc
nario one must still demonstrate the appearance of a m
gap inVphys and the violation of cluster decomposition~see,
e.g., Refs.@15,17# and references therein! for colored states.
Both requirements are related to the area law in the Wil
loop and, correspondingly, to a non-vanishing string tens
in the quark-antiquark potential.

At this point we note that the basic assumption of t
Kugo-Ojima confinement scenario still seems far from be
proved: BRST symmetry is a perturbative concept and i
not clear whether the symmetry remains unbroken in n
perturbative QCD@18#. Furthermore, although clear ev
dence for a linearly rising potential between static quarks
been found in quenched lattice simulations~see Ref.@19# and
references therein!, a mathematical proof of a violation o
cluster decomposition is not at hand. Nonetheless, the Ku
Ojima confinement criterion in its Landau gauge formulati
has been tested in Dyson-Schwinger studies and in la
simulations. Both methods agree very well even on a qu
titative level and find a strongly diverging ghost propaga
at small momenta@3,10,11,20–22#.

The Kugo-Ojima scenario is one particular mechani
that ensures the probabilistic interpretation of the quant
theory. However, even if it were eventually shown not to
appropriate, it is apparent that there issome mechanism
which singles out a physical, positive semi-definite subsp
in QCD. This suggests another criterion for confineme
namelyviolation of positivity. If a certain degree of freedom
has negative norm contributions in its propagator, it can
describe a physical asymptotic state, i.e. there is no Ka¨llén-
Lehmann spectral representation for its propagator.

Within the framework of a Euclidean quantum fie
theory~which is used throughout this work! positivity is for-
mulated in terms of the Osterwalder-Schrader axiom ofre-
flection positivity@23#. ~For a thorough mathematical formu
lation of the axiom the reader is referred to Refs.@24,25#.! In
the special case of a two-point correlation function,D(x
2y), the condition of reflection positivity can be written a

E d4xd4y f̄~xW ,2x0!D~x2y! f ~yW ,y0!>0, ~2!

wheref (xW ,x0) is a complex valued test function with suppo
in $(xW ,x0):x0.0%, i.e. for positive times. After a three
dimensional Fourier transformation, this condition implies

E
0

`

dtdt8 f̄ ~ t8,pW !D„2~ t1t8!,pW …f ~ t,pW !>0. ~3!

Provided there is a region aroundt052(t1t8) where
D(t0 ,pW ),0, one can easily find a real test functionf (t)
4-2
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which peaks strongly att and t8 and thereby demonstrat
positivity violation. For the special casepW 50, the
Osterwalder-Schrader condition, Eq.~3!, can be given in
terms of the Schwinger function,D(t), defined by

D~ t !ªE d3xE d4p

~2p!4
ei (tp41xW•pW )s~p2!

5
1

pE0

`

dp4cos~ tp4!s~p4
2!>0, ~4!

wheres(p2) is a scalar function extracted from the corr
sponding propagator. For the propagator of transverse
ons,s(p2) is simply given by the renormalization functio
times the tree-level expression 1/p2 @see Eq.~14! below# and
we denote the corresponding Schwinger function byDg(t).
The quark propagator can be decomposed into a scalar a
vector part,

S~p!5: ip”sv~p2!1ss~p2!, ~5!

leaving us with two scalar functions,sv(p2) andss(p2), to
form two Schwinger functions,Dv(t) andDs(t).

Two simple examples for the analytic structure of a pro
gator in a quantum field theory are a real pole and a pai
complex conjugate poles. These highlight the paradigm
behaviors of the Schwinger function, Eq.~4!. In the follow-
ing, we always discuss the propagators and the funct
ss,v(p2) in terms of the Lorentz invariant complex mome
tum, p2. Our notation is such that positive real values,p2

.0, correspond to spacelike momenta.
~I! Real pole. The propagator of a real, massive, sca

particle has a single pole on the real timelike (p2,0) mo-
mentum axis. In this case the propagator function is given
s(p2)51/(p21m2) and it is easy to see from Eq.~4! that
the Schwinger function decays exponentially,

D~ t !;e2mt, ~6!

and is positive definite. For a bare propagator, the pole m
m, is the same as the bare mass occurring in the Lagrang
However, for an interacting particle, the pole mass can h
both tree level and dynamically generated contributions. T
real pole corresponds to the presence of a stable asymp
state associated with this propagator. This does not im
that this state corresponds to an observable physical par
provided the Kugo-Ojima scenario holds, all states belong
to a quartet representation of the BRST algebra are exclu
from the physical subspace,Vphys, which contains only col-
orless singlets. Thus two-point correlations of colored fie
may develop real poles in momentum space without con
dicting confinement@26#. In lattice calculations@1# and other
non-perturbative approaches@27#, the exponential decay in
Eq. ~6! is used to extract hadron masses and other obs
ables from the large time behavior of appropriate correlat

~II ! Complex conjugate poles.Another possible analytic
structure for a propagator is a pair of complex conjug
poles with ‘‘masses’’m5a6 ib. As has been discussed
detail in Refs.@28#, such a propagator could describe a sh
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lived excitation which decays exponentially at large timeli
distances. Furthermore, it has been argued@28# that although
causality is violated at the level of the propagators, the c
respondingS matrix remains both causal and unitary. Su
complex conjugate poles lead to oscillatory behavior in
Schwinger function,D(t). Specifically,

D~ t !;e2atcos~bt1d!. ~7!

In this case one has negative norm contributions to
Schwinger function and the effective mass,

me f f~ t !52
d ln D~ t !

dt
~8!

@defined in analogy to the real pole case, Eq.~6!#, exhibits
periodic singularities. Therefore the associated state~if there
is any! must be an element of the unphysical subspace.
der the assumption of an unbroken BRST symmetry, t
state must be a member of a BRST quartet, and the co
sponding excitation is confined.

Complex conjugate poles have been found for the ferm
propagators of QED3 @29#, QED4 ~see, e.g.,@30#!, and QCD
@13,31–35# in a variety of truncation schemes. In a numb
of these studies, the authors have discussed whether the
served positivity violations are genuine properties of t
theory related to confinement or artifacts of the truncat
schemes@29,31,36,37#. As examined in the following sec
tion, it is our contention that dominant complex conjuga
poles are indeed an artifact of the rainbow~bare vertex! trun-
cation of the quark Dyson-Schwinger equation and that
least in Landau gauge, confinement through positivity vio
tion in the quark propagator is not manifest. Complex co
jugate propagators are also known to be practicable in lig
cone dominated processes@38# and have recently bee
investigated in terms of the solution of the Bethe-Salpe
equation @39#. It has also been suggested that the glu
propagator may have such an analytic structure@28,40–42#.
This possibility has been investigated in Refs.@43,44#.

Here, a note on positivity for the propagator of a Dir
field is in order. A dispersion relation representation of
fermion propagator in Minkowski space reads

S~p!5E
0

`

ds
p” rv~s!1rs~s!

p22s1 i e
, ~9!

and positivity amounts to the requirements that fors.0

rv~s!>0 and Asrv~s!2rs~s!>0. ~10!

It is obvious that for a free Dirac field of massm one has

rv~s!5d~s2m2! and rs~s!5md~s2m2!, ~11!

and thusAsrv(s)2rs(s)50. For an interacting Dirac field
with physical asymptotic states and massm one expects
rs,v(s)50 for s,m2. For s.m2, Eq. ~10! has to be satis-
fied. This requirement is automatically fulfilled if the stron
ger constraint
4-3
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mrv~s!>rs~s! ~12!

holds.
Given the linearity of the different types of integral tran

forms relatingss,v(p2), rs,v(s), andDs,v(t) to each other,
one can conclude thatsv(p2) must be multiplied by a typica
mass scale before being compared toss(p2). Thus, positiv-
ity violations can be signaled either insv(p2) alone, or in
appropriate linear combinations ofsv(p2) and ss(p2). We
also consider the Schwinger function associated solely w
ss(p2), since it can be calculated with greater numeri
accuracy. In general, oscillatory behavior inDs(t) signals
oscillatory behavior inDv(t) as well.

Using the corresponding Schwinger functions, we c
search for possible positivity violations and investigate
analytic structure of the gluon and quark propagators
QCD. Thet dependencies of these Schwinger functions
determined by the analytic properties of the propagator, a
for large t, are dominated by the singularity closest top2

50. A complementary, direct method of determining t
analytic structure is to solve the corresponding Dys
Schwinger equation over a large region of the complex m
mentum plane. However, from a numerical point of vie
such a procedure is very expensive and is not feasible
the resources currently available to us. Furthermore, the
good evidence from an investigation of QED3 that both
methods agree very well@29#. We are thus confident that th
Fourier transformation method is able to determine the qu
tative behavior of the propagators.

To complete this discussion we note that the conversio
a tree-level pole into an algebraic branch point with expon
larger than one is also known for certain approximations
the fermion propagator of QED4 ~see, e.g., supplement S4
Ref. @45# and references therein!. This type of singularity,
(p21m2)212a/p, is related to the soft photon cloud. Th
examples discussed in this section~real poles, complex con
jugate poles, or branch cuts! will form the basis of our in-
vestigation of the analytic structure for the quark and glu
propagators.

III. SOLUTIONS OF THE PROPAGATOR DYSON-
SCHWINGER EQUATIONS OF LANDAU GAUGE QCD

In this section we present solutions of the coupled se
Dyson-Schwinger equations~DSEs! for the ghost, gluon, and
quark propagators in the Landau gauge and investigate s
of their analytic properties. In order to keep this paper s
contained, we first briefly review the DSE truncation sche
developed in Refs.@10,11# which is used to determine th
propagators for Euclidean spacelike momenta, i.e. for
p2>0. It is important to note that the behavior of the prop
gators forp2→01 is extracted analytically.

The DSEs for the quark, gluon and ghost propagators
derived from the QCD generating functional with gluon fie
configurations restricted to the first Gribov region@40#. In a
recent work it has been argued that such a prescriptio
sufficient to eliminate the effects of Gribov copies from co
relation functions@46#. Furthermore, the DSEs are not a
fected by imposing such a boundary condition on the gen
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ating functional of the gauge fixed theory because the Gri
horizon is a nodal surface for the integrand of this functio
integral. Instead, the ghost two-point function has to sati
the so-called horizon condition@9#, i.e. the ghost propagato
has to diverge more strongly than a simple pole forp2

→01. This condition~which in the Landau gauge is for
mally equivalent to the Kugo-Ojima confinement criterio
discussed in the preceding section! turns out to be enforced
by the ghost DSE@8,47,48# and is thus satisfied by the DS
solutions in the truncation scheme that we employ.

A graphical representation of the DSEs for the gho
gluon, and quark propagators is given in Fig. 1 and their
form can be found in Ref.@3#. In the Landau gauge~which is
used throughout this work!, the renormalized ghost, gluo
and quark propagators,DG(p,m), Dmn(p,m), andS(p,m),
respectively, are given in terms of scalar functions by

DG~p,m!52
G~p2,m2!

p2
, ~13!

Dmn~p,m!5S dmn2
pmpn

p2 D Z~p2,m2!

p2
, ~14!

S~p,m!5
1

2 ip”A~p2,m2!1B~p2,m2!

5: ip”sv~p2,m2!1ss~p2,m2!. ~15!

All these propagators are diagonal in their respective rep
sentations of SU(Nc), so their color structure has been su
pressed for simplicity. The dependence on the renormal
tion scale, m, is given explicitly for later use. Here
G(p2,m2) and Z(p2,m2) are the ghost and gluon dressin
functions, respectively, andA(p2,m2) andB(p2,m2) are the
vector and the scalar parts of the inverse of the quark pro
gator. The functions most relevant for our study of positiv
areZ(p2,m2)/p2, ss(p2,m2) andsv(p2,m2). Note that the
ghost propagator trivially violates reflection positivity b
cause of the way ghosts are introduced in Faddeev-Po
quantization@49#.

Two renormalization-scale-independent combinatio
built from the scalar functions representing the differe
propagators are important for further discussion: Fir
M (p2)5B(p2,m2)/A(p2,m2) denotes the renormalization
point-independent quark mass function. Second, as has
demonstrated in Ref.@6#, a non-perturbative definition of the
running coupling is possible due to the non-renormalizat
of the ghost-gluon vertex in the Landau gauge@50#. This
results in the relation

a~p2!5a~m2!G2~p2,m2!Z~p2,m2!. ~16!

In the following we investigate the full~unquenched! system
of DSEs and also thequenchedapproximation to them in
which quark loops are neglected, removing the back reac
of the quarks on the ghost and gluon system.
4-4
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FIG. 1. Diagrammatic representation of th
Dyson-Schwinger equations for the gluon, gho
and quark propagators. The wiggly, dashed, a
solid lines represent the propagation of gluon
ghosts, and quarks, respectively. A filled blob re
resents a full propagator and a circle indicates
one-particle irreducible vertex.
ho

ef

tw
ng
h
to
.
b
co

n
rm
nc
r

in
l.
th
ls

at
can

the
ca-
be

r
e

e
ct

the
at

e

E

A. Truncation scheme

Both the quenched and the unquenched systems of g
gluon, and quark DSEs have been solved numerically
Refs. @10,11# in a truncation scheme which neglects the
fects of the four-gluon interaction and employsAnsätze for
the ghost-gluon and the three-gluon vertices such that
important constraints are satisfied: the running coupli
a(p2), is independent of the renormalization point and t
anomalous dimensions of the ghost and gluon propaga
are reproduced at the one-loop level for large momenta
order to study the effects of violating gauge invariance
these truncation assumptions, the gluon DSE has been
tracted with the one-parameter family of tensors

P mn
(z)~p!5dmn2z

pmpn

p2
. ~17!

In the Landau gauge, a violation of gauge invariance ma
fests itself in the appearance of spurious longitudinal te
in the gluon equation, which in turn introduces depende
of the ghost and gluon dressing functions on the parametez.
The influence of these longitudinal terms has been exam
in Ref. @10# by varyingz and found to be surprisingly smal
Further technical details of the truncation scheme in
Yang-Mills sector are relegated to Appendix A where we a
discuss the dependence of our analysis on these details~see
also Refs.@10,11#!.
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Employing asymptotic expansions for the propagators
small momenta, the untruncated ghost and gluon DSEs
be solved analytically forp2→01 @47#. One finds simple
power laws, with exponents related as

Z~p2,m2!;~p2/m2!2k, ~18!

G~p2,m2!;~p2/m2!2k, ~19!

for the gluon and ghost dressing functions. The value of
exponentk depends somewhat on the details of the trun
tion scheme that is employed. In certain truncations it can
calculated analytically and it will depend on the parametez
@10#. The tensorP mn

(z51) projects onto the purely transvers
part of the gluon equation, and in this case the solutionk
5(932A1201)/98'0.595 has been found in Refs.@8,9#. By
varying 1<z,4, infrared solutions with exponents in th
range 0.5,k<(932A1201)/98 have been shown to conne
to numerical solutions for all momenta@10#. A recent infra-
red analysis of the ghost and gluon DSEs employing
most generalAnsatzfor the ghost-gluon vertex suggests th
the exponentk is in the range 0.5,k,1 @8# ~which is fur-
ther restricted to 0.5,k,0.7 after constraints on the valu
of the running coupling are taken into account!. A first at-
tempt to include the two-loop diagrams in the gluon DS
4-5
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also results in very similar values for the infrared expon
@51# and in Ref.@46# it has been shown that the two-loo
diagrams have no effect onk. Finally, exact renormalization
group equations have recently been employed in a com
mentary investigation@52# of the infrared behavior of the
gluon and ghost propagators with a resulting value fork in
agreement with those above. These varied investigation
indicate that the Landau gauge gluon propagator vanishe
p2→01 and predict an exponent 0.5,k,0.7.

For the subsequent discussion, it is important to note
the exponentk is very likely an irrational number. The rela
tion of the exponents in Eqs.~18! and ~19! results in an
infrared finite strong coupling independent of the value ofk;
cf. Eq. ~16!. For transverse projection, the value is given
a(0)58.915/Nc .

The DSE for the quark propagatorS(p,m) is given by

S21~p,m!5Z2~m2,L2!S0
21~p!1

g2

16p4
Z1F~m2,L2!CF

3EL

d4qgmS~q,m!Gn~q,p;m!Dmn~k,m!,

~20!

whereZ2 andZ1F are the quark wave function- and quar
gluon vertex-renormalization constants, respectively, and*L

represents a translationally invariant regularization charac
ized by a scale,L. The momentum routing isk5q2p, and
the factorCF5(Nc

221)/2Nc stems from the color trace o
the loop.

In addition to the quark and gluon propagators, Eq.~20!
involves the quark-gluon vertex,Gn(q,p;m). This vertex is,
in principle, determined by its own DSE@53# involving vari-
ous (n<5)-point correlators. However, the solution of su
higher-order DSEs is difficult even in the simplest situatio
@54# and we avoid the problem by making anAnsatz for
Gn(q,p;m). As the structure of this vertex turns out to b
crucial in our analysis of positivity violations in the qua
propagator, we explore its construction in some detail.

A reasonableAnsatz for the quark-gluon vertex has t
satisfy at least two constraints: it should guarantee the m
tiplicative renormalizability of the quark propagator in th
quark DSE, and it should at least approximately satisfy
non-Abelian Slavnov-Taylor identity. It has been shown
Ref. @11# that the construction

Gn~q,p;m!5Vn
Abel~q,p;m!W¬Abel~p2,q2,k2;m!, ~21!

with

W¬Abel~p2,q2,k2;m!5G2~k2,m2!Z̃3~m2,L2!, ~22!
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Vn
Abel~q,p;m!5Gn

CP~q,p;m!5
A~p2,m2!1A~q2,m2!

2
gn

1 i
B~p2,m2!2B~q2,m2!

p22q2
~p1q!n

1
A~p2,m2!2A~q2,m2!

2~p22q2!
~p”1q” !~p1q!n

1
A~p2,m2!2A~q2,m2!

2

3@~p22q2!gn2~p”2q” !~p1q!n#

3
p21q2

~p22q2!21~M2~p2!1M2~q2!!2
, ~23!

and Z̃3 being the ghost wave function renormalization co
stant, satisfies these requirements. Here it is assumed tha
non-Abelian part of the vertex,W¬Abel(p2,q2,k2;m), can be
factored out from the Dirac structure, and that the Dir
structure is given byGn

CP(q,p;m), the Curtis-Pennington
~CP! construction of the fermion-photon vertex in QED4
@55,56#. Note that the dressing of the longitudinal part of t
CP vertex is dictated by the Abelian Ward identity

2 ikmGm
QED~q,p;m!5S21~p,m!2S21~q,m!, ~24!

which results, among other things, in the appearance o
quark-gluon coupling term proportional to the sum of t
incoming and outgoing quark momenta,

DBnª i
B~p2,m2!2B~q2,m2!

p22q2
~p1q!n . ~25!

Such a coupling, being effectively scalar, may at first sig
appear to violate chiral symmetry, as, in contrast to the p
turbatively dominant vector coupling proportional togn , the
expression~25! commutes withg5. However, this scalar
term appears only if chiral symmetry is already dynamica
broken and is thus consistent with the chiral Ward identiti
Its existence provides significant additional~self-consistent!
enhancement of dynamical chiral symmetry breaking. Suc
scalar coupling also appears in vertices that occur in syst
atic improvements on the rainbow~bare vertex! truncation
@57–59#. This term will be important in our investigations o
positivity below.

For comparison, we also employ a construction with
bare Abelian part of the vertex given by

Vn
Abel~p,q;m!5Z2~m,L!gn . ~26!

In both cases the input from the Yang-Mills sector of t
theory, i.e. the factors from the dressed gluon propagator
the non-Abelian vertex dressing, can be combined to give
4-6
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running couplinga(k2)5g2(m)G2(k2,m2)Z(k2,m2)/4p ac-
cording to Eq.~16!. Thus we arrive at the truncated qua
DSE

S21~p,m!5Z2~m2!S0
21~p!1

Z2~m2!

3p3 E d4q
a~k2!

k2

3S dmn2
kmkn

k2 D gmS~q,m!Vn
Abel~q,p;m!.

~27!

In the quenched and unquenched calculations of the q
propagator we takea(k2) directly from the ghost and gluon
equations.

We also consider the solutions of the quark DSE in
model calculations of Refs.@60–62#. There, only the leading
gm part of the quark-gluon vertex has been employed and
combination of the gluon and vertex dressing needed in
quark DSE has been modeled phenomenologically. W
gm512/(11Nc22Nf) being the anomalous dimension of th
quark propagator, we follow the authors of Ref.@61# and use
the model

a~q2!

q2
5

p

v6
Dq2e2q2/v2

1
pgm@12exp~2q2/mt

2!#

q2
1

2
ln@e2211~11q2/LQCD

2 !2#

, ~28!

with LQCD50.234 GeV in the modified minimal subtractio
scheme, Nf54 and the parametersmt51.0 GeV, v
50.3 GeV, andD50.781 GeV2 fixed by fitting the chiral
condensate and pion decay constant. Omitting the pertu
tive logarithmic tail, we also compare with the model of R
@62#, using a purely Gaussian interaction

a~q2!

q2
5

p

v6
Dq2e2q2/v2

, ~29!

with v50.5 GeV andD51 GeV2.
Despite the fact that these models for the effective in

action were designed to be used in combination with a b
vertex, we also use them in conjunction with the CP vert
Gn

CP . By comparing the quark propagators that result fro
employing either direct input from the ghost and gluon sec
or the model forms, Eqs.~28! and~29!, we are in a position
to test whether the analytic properties of the quark propa
tor are more sensitive to the global strength of the qua
gluon interaction, to the overall shape of the~effective! run-
ning coupling, or to the details of the tensor structure of
quark-gluon vertex. First, however, we will discuss the
sults of the numerical calculations for the gluon propaga
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B. Results for the gluon propagator for Euclidean momenta

In Fig. 2 we display the numerical results for the gluo
dressing function calculated with zero~quenched! or three
~unquenched! flavors of massless quarks and transverse p
jection, z51 @cf. Eq. ~17!#, taken from Ref.@11#.1 In the
diagram in the lower panel of Fig. 2, the DSE results a
compared to results from quenched lattice Monte Ca
simulations@63#. The quenched DSE results are seen to ag
well with the lattice data. In contrast, the unquenched D
gluon propagator is significantly suppressed in the interm
diate momentum region where the screening effects
quark-antiquark pairs become important. For bothNf50 and
3, there are two qualitative properties that we can extr
from these results: the analytically calculated infrared beh
ior given by Eq.~18!, and a maximum around;1 GeV, fol-

1As can be inferred from Refs.@10,11#, changing the projection of
the gluon equation in the range 1<z,4 leads to only quantitative
changes in the gluon and ghost renormalization functions.

FIG. 2. The solutions of the quenched (Nf50) and unquenched
(Nf53) coupled DSEs for the gluon dressing function,Z(p2), are
shown. The unquenched case with three massless flavors is
pared to different fits~see text for details of the fits!. In the upper
panel these are displayed on logarithmic scales; in the lower pa
on linear scales. Results from quenched lattice calculations@63# are
given in the lower panel.
4-7
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lowed by relatively flat momentum dependence above
scale.

The behavior of the gluon dressing function in the infr
red is captured by either of the irrational functions2

ZI
ir ~p2!5wI

~p2!2k

~L I
2!2k1~p2!2k

, ~30!

ZII
ir ~p2!5wII S p2

L II
2 1p2D 2k

, ~31!

which are exact in the infrared limit@cf. Eq. ~18!# and which
play a role when it comes to the interpretation of our resu
for the gluon Schwinger function,Dg(t). The value for the
exponentk.0.595 in these fits is taken from the infrare
analysis of the DSEs. Note that fork→1, the form of Eq.
~30! becomes identical to the Gribov form proposed in Re
@40,64#. The normalization parameterswI , wII and scales
L I , L II are chosen such that the Schwinger function of
(z51, Nf53) numerical gluon propagator is reproduced
the Fourier transforms of the fits~the values of these param
eters are given below!. Our fits with these irrational func
tionsZI ,II

ir (p2) are shown in Fig. 2 and clearly reproduce t
behavior of the DSE gluon propagator for very small m
menta but deviate significantly from the dressing functions
momenta above;400 MeV.

To describe the behavior for larger momenta, we multi
the functions ZI ,II

ir (p2) by a function incorporating the
known ultraviolet behavior. To this end we note that in R
@11# the numerical running coupling has been fitted by3

afit~p2!5
a~0!

11p2/LQCD
2

1
4p

b0

p2

p21LQCD
2 S 1

ln~p2/LQCD
2 !

2
LQCD

2

p22LQCD
2 D . ~32!

In this expression the Landau pole has been subtracted a
been suggested in the framework of analytic perturba
theory @65#. The valuea(0)58.915/Nc is known from the
infrared analysis andb05(11Nc22Nf)/3. Using a MOM
~momentum subtraction! scheme and fitting only the ultra
violet behavior, a valueLQCD50.71 GeV has been given i
Ref. @11#.

Identifying L I ,II 5LQCD for simplicity, we utilize the fits

ZI ,II ~p2!5ZI ,II
ir ~p2!afit

2g~p2! ~33!

for further investigations, using the one-loop value of t
gluon anomalous dimension,g5(213Nc14Nf)/(22Nc

2From here on we shall suppress the renormalization scale de
dence~whenever possible! for concision.

3In Ref. @11# two additional parametersa and b were used with
a51.020 andb51.052. As the deviations from unity are com
pletely insignificant we have fixeda5b51 here.
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24Nf). The quality of these fits can be seen in Fig. 2. Fo
discussion of the parameters used, see below.

Employing a numerical Fourier transform routine, we c
now calculate the Schwinger function,Dg(t) @defined by Eq.
~4!#, for the numerical solutions of the gluon DSE and for t
various fits. The absolute values of the numerical Schwin
functions forNf50,3 ~using transverse projectionz51) are
displayed in Fig. 3. The spikes mark the time scales at wh
the Schwinger functions cross zero and negative norm c
tributions appear in each gluon propagator. One notes
the Schwinger function in the quenched approximation d
fers visibly from that for three flavors, despite the similari
of the corresponding gluon dressing functions for Euclide
momenta@11#. In particular, the typical time scale, marke
by the zero of the Schwinger function, decreases from 5.
4.4 GeV21. We have also explicitly checked that differe
choices for the projection of the gluon equation and ot
minor details of the truncation scheme lead only to min
quantitative alterations~see Appendix A!. All gluon
Schwinger functions we have calculated from the results
the coupled DSEs show the same qualitative behavior, t
demonstrating that neither the details of the projection in

n-

FIG. 3. The results for the absolute value of the glu
Schwinger function,Dg(t), corresponding to our numerical resul
from the DSEs are shown and compared to the fits in the infra
~upper panel! and the overall fits~lower panel!. The spikes mark the
time scales where the Schwinger functions cross zero and neg
norm contributions appear.
4-8
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gluon equation nor the feedback of~a small number of! dy-
namical quarks4 have any significant influence on the over
analytic structure of the gluon propagator.We clearly observe
positivity violations in the gluon propagator.This is the first
major result of this work.

C. Analytic structure of the gluon propagator

In the following we aim at an interpretation of our resu
in terms of the analytic structure of the gluon propagator
the timelike momentum region. As a first step we demo
strate that the infrared behavior of the gluon propagator,
the behavior forp2→01, is responsible for the non-trivia
analytic structure. To this end, in the upper panel of Fig
the numerical results for the gluon Schwinger function~with
z51, Nf53) are compared to the infrared fits, Eqs.~30! and
~31!. The fitted parameters arewI52.5, L I5400 MeV for
IR fit I, Eq. ~30!, andwII 52.7, L II 5420 MeV for IR fit II,
Eq. ~31!. As we observed earlier, the fits agree with the n
merical gluon dressing function only in the infrared mome
tum region. Nevertheless, in Fig. 3 we see that the agreem
of the numerical Schwinger function with the Fourier tran
forms of each of these fits is excellent. It appears that
details of the intermediate and large momentum behavio
the gluon propagator have little or no influence on the qu
tative analytical structure of the propagator in the ‘‘nearb
timelike momentum regime. In particular, the change in c
vature at the bump of the gluon dressing function at a sc
of ;1 GeV is not an important feature in this regard. In fa
the crucial property of the gluon propagator is that it goes
zero for vanishing momentum. This can be seen easily as
relation

05D~p50!5E d4xD~x! ~34!

@with D(p)5Z(p2)/p2] implies that the propagator functio
in coordinate space,D(x), must contain positive as well a
negative norm contributions, with equal integrated streng

For fit I @Eq. ~33!# we have used two parameter sets,wI
52.4, LQCD5500 MeV and wI52.0, LQCD5470 MeV.
The first parameter set fits the gluon renormalization fu
tion better~especially in the ultraviolet! and the second set i
optimized to fit the Schwinger function. For fit II@Eq. ~33!#
with the parameterswII 52.5 andLQCD5510 MeV both the
gluon renormalization function and the Schwinger functi
are fitted very well. As the infrared fits I and II already r
produce the gluon Schwinger function it is no surprise t
the complete fits, Eq.~33!, do even better; see the lowe
panel of Fig. 3. As already stated, for the sake of simplic
we have used only one common scale,LQCD , for the infra-
red and ultraviolet behavior.

We are now in a position to deduce the possible anal
structure of the gluon propagator. We first observe that

4The infrared (p2→01) behavior of the Yang-Mills sector o
QCD is unaffected by the appearance of chiral quarks as long a
number of flavors is small enough to be in the confining and ch
symmetry breaking phase of QCD@11#.
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cause of the infrared singularity of the ghost propagator,
expect a cut on the timelike momentum axis coming fro
the ghost-loop contribution to transverse gluons. As the gh
loop is the infrared dominant contribution in the gluon equ
tion and therefore determines the infrared behavior of
gluon propagator, it is instructive to discuss the infrared
to the gluon propagator first. The infrared fit I@Eq. ~30!#
contains a branch cut on the negativep2 axis while the de-
nominator contributes a pair of complex conjugate singula
ties at

p25L I
2e6 ip/(2k). ~35!

The discontinuity across the negativep2 axis is easily calcu-
lated. Writingp6

2 5(2r6 i e)L I
2 one obtains

lim
e→0

$DI~p1
2 !2DI~p2

2 !%5
22iv I

L I
2

sin~2pk!r2k21

112r2kcos~2pk!1r4k
,

~36!

with DI(p2)5ZI
ir (p2)/p2. This discontinuity rises from zero

at r50 to a maximum at the area of the pole locations a
then rapidly decays asr becomes larger.

In the infrared fit II @Eq. ~31!# the numerator and the
denominator conspire to produce one cut5 over p2P(0,
2L II

2 ). For the discontinuity we have@now for p6
2 5(2r

6 i e)L II
2 ]

lim
e→0

$DII ~p1
2 !2DII ~p2

2 !%5
22iv II

L II
2

sin~2pk!r2k21

~12r!2k
,

~37!

with DII (p2)5ZII
ir (p2)/p2 and for 0,r,1 only. This rap-

idly diverges asp2↓2L II
2 ~i.e. r→1) and then drops discon

tinuously to zero: there is no discontinuity forp2,2L II
2 .

Whereas the location of the singularityp252L II
2 in the

infrared fit II is independent of the value of the exponentk,
the location of the complex conjugate singularities of IR fi
as well as the magnitudes of the cuts in both fits depend ok
and therefore on the truncation scheme. Although the ex
value ofk depends on the details of the truncation, vario
methods suggest that the exponentk is in the range 0.5,k
,1 @8–10,52#. It is exactly this range which corresponds
the pair of complex conjugate singularities in IR fit I bein
located on the first Riemann sheet in the left half of t
complexp2 plane. In the limiting casek50.5, one obtains
one real pole on the negativep2 axis in both fits, and in the
other limit, k51, IR fit I corresponds to a pair of purel
imaginary poles, i.e. exactly the form proposed in Re
@28,40,64#.

he
l

5Note that we have decided to take the ratio first and then we r
it to a non-integer power. Having this non-integer for the numera
and the denominator separately would lead to two overlapp
branch cuts. However, we consider this an unnecessary comp
tion.
4-9



io
-

m
di

r

th

tiv
th
i-

o-
s

uo
th

u
s

i
fi
th
n
te

.e
ed

ha
n
o
e

lls
r
n-

it
vo
s
v
-

ry

s
it
ed
ll
d
o

or

in-
at
tive
his
on.
ta
to

the
er-

-

on
m-

tant

,

d

-
e
the

ali-
e
m-

hed
,
well

us-
tive
he
pa-
b-

the

on

on

late

ALKOFER et al. PHYSICAL REVIEW D 70, 014014 ~2004!
To discuss the analytic structure of the full fits, Eq.~33!,
we must also look at the analytic properties of the express
for the running coupling, Eq.~32!. The Landau pole at space
like p25LQCD

2 has been subtracted, so expression~32! has
singularities only on the timelike real axis. The logarith
produces a cut on this half axis, and the corresponding
continuity vanishes forp2→02, diverges atp252LQCD

2

and goes to zero forp2→`. In the fits I and II, Eq.~33!, the
running coupling@Eq. ~32!# is raised to a non-integer powe
and multiplied by the infrared fits@Eqs.~30! and~31!#. Thus,
fit I also has a pair of complex conjugate singularities, at
same locations as those in Eq.~30!. On the other hand, fit II
has no non-analyticities other than the cut on the nega
real axis. The discontinuity corresponding to the cut of
combination of the different factors in fit II is always pos
tive, vanishes forp2→02, diverges atp252LQCD

2 to 1`
and falls to zero forp2→2`.

It is interesting to note the scale at which positivity vi
lations occur. From Fig. 3 we determine that the zero cro
ing appears att'5 GeV21'1 fm. This is roughly the size
of a hadron and therefore the correct scale at which gl
screening should occur. One might speculate whether
represents an inherent, gauge invariant scale~as the locations
of propagator poles are protected by Nielsen identities@66#!,
which is generated in the renormalization process. The p
power lawZ(p2)5(p2)2k, which solves the system of DSE
in the case where the renormalization pointm is shifted to
asymptotic values, is in perfect agreement with the scale
variance of the underlying theory, corresponding to an in
nite mass gap. Thus it is obvious that we can deduce
existence of a cut from the pure power laws, but we can
extract the related scale. This scale emerges from an in
play of infrared and ultraviolet properties of the theory, i
the transition of the gluon propagator from the infrar
power law to its perturbative ultraviolet behavior.

Before concluding this subsection we comment on w
lattice Monte Carlo simulations say about positivity violatio
in the gauge boson propagator. For unquenched QCD, n
ing is known because the gluon propagator has not yet b
calculated with dynamical fermions. The pure Yang-Mi
gauge propagator has been calculated on the lattice fo
most twenty years following the pioneering work of Ma
dula and Ogilvie@67#; see, e.g., Refs.@21,22,63,68# and ref-
erences therein. However, explicit observations of positiv
violation have been elusive as statistical errors and finite
ume artefacts cloud the issue. Nevertheless, many hint
negative norm contributions in the gluon propagator ha
been reviewed in@69#. Clear measurements of positivity vio
lation have been made for the case of SU(2)@70# and for the
gluon propagator in three-dimensional Yang-Mills theo
@71#.

Summarizing, the Landau gauge gluon propagator, a
results from the solution of coupled DSEs, displays positiv
violations. This is in accordance with gluons being confin
The infrared behavior of the gluon propagator is analytica
determined to be a power law. It has been demonstrate
Ref. @8# that this behavior is stable under a broad range
possible dressings of the ghost-gluon vertex. Furtherm
strong arguments have been presented in Ref.@46# for the
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existence of power laws in generalized truncations that
clude the four-gluon interaction. The power law behavior
small Euclidean momenta induces a cut on the real nega
p2 axis, as can be seen clearly from our infrared fits. It is t
cut which causes the observed pattern of positivity violati
By fitting the gluon propagator for all Euclidean momen
and the corresponding Schwinger function we are able
describe the gluon propagator with fit II, Eq.~33!, which has
no singularities in the complexp2 plane except for a cut on
the negative real axis.

Note that this fit contains essentially two parameters:
overall magnitude which, because of renormalization prop
ties, is arbitrary,6 and the scaleLQCD . The infrared expo-
nent,k, and the anomalous dimension of the gluon,g, are
not free parameters:k is determined from the infrared prop
erties of the DSEs and the one-loop value is used forg.
Therefore, we have found a parameterization of the glu
propagator which has effectively only one physical para
eter, the scaleLQCD . Combined with the relatively simple
analytic structure of fit II, Eq.~33!, this gives us confidence
that we have succeeded in uncovering the most impor
features of the Landau gauge gluon propagator.

D. Results for the quark propagator

In Fig. 4 we display the mass function,M (p2)
5B(p2)/A(p2), and the wave function renormalization
Zf(p2)51/A(p2) ~note the superscriptf which differentiates
this function from the gluon dressing function!, of the quark
propagator in the chiral limit, obtained from the couple
quark, ghost, and gluon DSEs@11#. We show quenched (Nf
50) and unquenched (Nf53) results employing the gener
alized CP vertex, Eqs.~21!–~23!. We also display the sam
functions calculated in the quenched approximation with
bare Abelian part of the quark gluon vertex, Eq.~26!. On the
Euclidean real axis, both vertex constructions lead to qu
tatively similar but quantitatively quite different results. Th
bare vertex approximation does not give enough chiral sy
metry breaking and is clearly disfavored by recent quenc
lattice data@72,73# ~also shown in Fig. 4!. On the other hand
the results for the more elaborate vertex construction are
within the region suggested by the lattice calculations.

The quantitative difference between the DSE solutions
ing the bare vertex and the CP vertex turns into a qualita
difference for the corresponding Schwinger functions. T
Fourier transformed scalar parts of the different quark pro
gators,Ds(t), are shown in Fig. 5. Similar results are o
tained for the vector parts of the propagators,Dv(t), though
they are numerically less accurate.7 As in the case of the
gluon propagator, we plot the absolute values of

6That is, it is determined via the choice of the renormalizati
scalem and the normalization conditionG2(m2,m2)Z(m2,m2)51.

7In the chiral limit, the scalar part of the propagator,ss(p2), falls
off as 1/p4, up to logarithmic corrections, because the functi
B(p2) falls off as 1/p2, whereassv(p2) falls off as 1/p2. This
makes the Fourier transform of the scalar part easier to calcu
numerically.
4-10
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Schwinger functions on a logarithmic scale. The results
the top diagram are obtained employing the bare Abelian
of the vertex, Eq.~26!. Clearly these solutions exhibit th
oscillatory behavior of Eq.~7!, which is characteristic for a
propagator with a pair of complex conjugate ‘‘masslike’’ si
gularities. A fit of the expression in Eq.~7! to our result gives
the locations of these singularities asmsing5(209
1101i ) MeV.

A completely different picture is obtained from th
Schwinger functions constructed using the CP vertex,
~23!, as can be seen in the lower diagram of Fig. 5. Again
display results for the quenched case,Nf50, and the case o
Nf53 chiral quarks. ForNf50 we also make use of a fit t
the running coupling as described in detail in Ref.@11#; for
all practical purposes the results are almost indistinguish
from those obtained with the numericala(q2) as a solution
of the ghost-gluon DSEs. We find no traces of negative no
contributions, and in all cases, a fit of the oscillatory form
Eq. ~7! to our results indicates that there is a singular

FIG. 4. The quark mass function,M (p2), and the wave function
renormalization,Zf(p2), from quenched (Nf50) and unquenched
(Nf53 chiral quarks! DSEs @11#. Results for the generalized C
vertex, Eq.~23!, and the bare vertex construction, Eq.~26!, are
compared with quenched lattice data in the overlap@72# and Asqtad
~tadpole improved staggered! @73# formulations.
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~almost! on the real timelike axis, with an imaginary part o
at most 8% of its real part. The best fit is obtained for a r
mass singularity atmsing50.50 GeV. For both the bare an
the CP vertices, the deviation of the fits from the data
small time scales suggests that there is additional structu
the DSE solution which the simple pole fits@Eqs.~6! and~7!#
do not capture. We shall investigate this in Sec. IV.

By turning on and off the different contributions in th
vertex construction of Eq.~23!, we have identified the term
which is responsible for the qualitative differences betwe
the left and right diagrams of Fig. 5. In addition to the~domi-
nant! vector part of the vertex

SAmª
A~p2!1A~q2!

2
gm , ~38!

FIG. 5. The upper diagram displays the absolute value ofDs(t)
employing the bare vertex construction in the quark DSE. T
spikes correspond to zero crossings of the Schwinger funct
These are absent in the lower diagram where the results with
full CP vertex, Eq.~21!, are considered. The chiral limit results a
shown forNf53 andNf50, together with the fits to the Schwinge
function of the quenched DSE solution. Furthermore we compar
a calculation with only the two most important terms of the qua
gluon vertex.
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TABLE I. Results for the fermion pole masses in the chiral limit for different interactions, as extra
from the behavior of the corresponding Schwinger functions. The quark masses are given in GeV; the4

results are given in units of the UV cutoffL, and are obtained withā51.2 for the bare vertex andā
51.06 for the CP vertex. The errors are estimates of the total numerical error; the numerical error in th
of a real mass singularity is dominated by the fact that, on a logarithmic scale, the Schwinger functio
not perfect straight lines.

Bare vertex SAm1DBm term CP vertex

YM a(k2), unquenched,Nf53 0.21~1!60.10~1!i 0.48~3! 0.50~3!

YM a(k2), quenched (Nf50) 0.21~1!60.10~1!i 0.48~3! 0.50~3!

Fit A of Ref. @11#, quenched 0.209~4!60.101~2!i 0.48~3! 0.50~3!

Fit B of Ref. @11#, quenched 0.160~4!60.076~2!i 0.42~3! 0.42~3!

Maris-Tandy model@61#, Eq. ~28! 0.55~1!60.321~6!i 0.96~6! 1.1~1!

Gaussian model@62#, Eq. ~29! 0.53~1!60.167~3!i 0.83~4! 0.83~6!

Quenched QED~in units of 1023L) 1.79~6!60.43~2!i 1.51~9!
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the presence of the scalar couplingDBm , Eq. ~25!, in the
quark-gluon vertex is crucial for the substantial change in
analytic structure of the quark propagator compared to
truncation keeping only the vector part. Such a scalar te
introduces additional feedback in the scalar self-energy,
its presence considerably enhances the amount of dynam
chiral symmetry breaking generated in the quark DSE.
varying the strength of this term compared to the lead
SAm piece of the vertex, we find that a reduction of this te
by about 20% is enough to again generate positivity vio
tions corresponding to dominant complex conjugate sin
larities.

The question of positivity violation does not depend
the details of the input from the Yang-Mills~YM ! sector of
QCD. We obtain quantitatively similar results for the u
quenched case withNf53 chiral quarks, for the quenche
approximation with the running coupling taken directly fro
the Yang-Mills DSEs and for different models for the ru
ning coupling@11#.8 As a check, we also employ the mod
interactions given in Eqs.~28! and ~29!. Again we obtain
evidence for a pair of complex conjugate singularities wh
a bare vertex is used and a singularity on the real time
momentum axis once the additional scalar coupling is ta
into account.9 Our results for the pole masses obtained

8We have even arbitrarily changeda(0) from its value 2.97 in
these fits. Dynamical chiral symmetry breaking occurs fora(0)
.acrit with acrit being slightly below one. Fora(0) in the range
acrit,a(0),10 we found no evidence for positivity violatio
when the CP vertex is used.

9Note that a similar result was found in the model study of R
@43# where a Stingl-type gluon propagator model was employed
the quark DSE together with a quark-gluon vertex consisting o
of the Abelian Ball-Chiu and Curtis-Pennington type structu
@55,56#. In this study the absence of complex singularities in
quark propagator was attributed to the vanishing of the emplo
model gluon propagator at zero momentum. This interpreta
seemed to be supported by a study using the same propagator
bare vertex which also finds real poles@44#. However, the presen
study clearly demonstrates that for a sufficiently strong interac
the crucial reason for this absence of complex singularities lie
the quark-gluon vertex.
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these models are given in Table I. For the model interact
Eq. ~28! we agree with the estimate for the singularity clos
to p250 given in Ref.@74# based on a Taylor series expa
sion of the quark propagator functions, confirming that
can indeed extract the location of the first singularity via t
Schwinger functions. Finally, we checked the truncati
scheme of Ref.@75# where a model interaction with an infra
red finite coupling was employed together with a bare qua
gluon vertex. In this case we also found a pair of comp
conjugate poles as could be expected.

Another interesting property of expression~25! is its in-
sensitivity to explicit chiral symmetry breaking, i.e. a curre
quark mass. The contributions from current quark masse
the functionB(p2) are almost momentum independent a
therefore cancel quite accurately in Eq.~25!. The Schwinger
functions become steeper with increasing quark mass,
show no signs of positivity violation, even for current qua
masses as large as a few GeV. For a detailed compariso
the mass dependence of the Schwinger functionsDs(t) and
Dv(t), we scaleDv(t) by the pole mass,msing @extracted
from the exponential decay ofDs,v(t)], and plotDs(t) and
msingDv(t) as functions of the dimensionless variablemsingt
in Fig. 6. This reveals that the only mass dependence is in
curvature ofDs(t) at smallmsingt: with increasing current
quark mass the amount of curvature decreases.

How can we understand this curvature that is presen
Ds(t) but not in Dv(t)? A possible origin could be the fac
that the functionss(p2) drops off as 1/q4 in the chiral limit
while sv(q2) decreases as 1/q2. As can be seen from Eq.~6!,
a single real pole on the negative momentum axis results
pure exponential decay of the corresponding Schwin
function. However, the Schwinger function of a propaga
with two poles is

1

pE0

`

dp cos~ tp!
1

p21m2

1

p21L2

5
1

2~L22m2!
S 1

m
e2mt2

1

L
e2LtD , ~39!
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ANALYTIC PROPERTIES OF THE LANDAU GAUGE . . . PHYSICAL REVIEW D 70, 014014 ~2004!
and for L somewhat larger thanm, this could lead to the
observed curvature at smallt. This, in combination with the
fact that this curvature tends to decrease with increasing
rent quark mass, suggests that this curvature is related to
1/p2 falloff ~up to logarithmic corrections! of M (p2) in the
chiral limit. However, there are other mechanisms that co
generate such curvature as we will discuss in more deta
the next section.

Comparing the two panels of Fig. 6, we also see t
Ds(t) approachesmsingDv(t) from below for all values of
the current quark mass. In other words, we find that~within
numerical accuracy! msingDv(t).Ds(t) for all t. Based on
the constraint for the spectral decomposition, Eq.~12!, this is
what one would expect for a propagator describing a Di
field with asymptotic states. Thus, within this approach th
are no signals of positivity violation in the non-perturbati
quark propagator.

Considering these findings, we state the second majo
sult of this work:the presence of a scalar quark-gluon co

FIG. 6. The dimensionless Schwinger functionsmsingDv(t) ~a!
and Ds(t) ~b! as functions ofmsingt, where msing is the ‘‘pole
mass’’ as determined by the exponential decay of the Schwin
function for different current quark massesmm , renormalized at
m510 GeV.
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pling of sufficient strength leads to a positive definite qua
propagator with a singularity on the timelike real momentu
axis.As our quark-gluon vertex has been constructed as
Ansatz, we do not have model independent information
the relative strength of the different tensor structures in
true quark-gluon vertex. Our assumption has been that
non-Abelian corrections can be accounted for by an ove
factor multiplying an Abelian construction for the tens
structure of the vertex@see Eq.~21!#. This factorization as-
sumption has been tested in a recent investigation of
quark-gluon vertex in quenched lattice QCD and was fou
to be valid only at a qualitative level@76#. However, as yet
no definite statements can be extracted from the lattice
culations as they are performed in only two special kinem
cal situations, whereas in our calculations the vertex
probed over the whole range of momenta. Further invest
tions are necessary to determine the relative strengths o
various components of the vertex in a model independ
manner.

In QED4 however, we encounter a somewhat differe
situation. The vertex construction is more constrained tha
QCD as the longitudinal part of the CP vertex, the Ball-Ch
vertex @56#, is exact and the relative strengths of the thr
longitudinal Dirac structures in the vertex are uniquely d
termined by the Ward identity, Eq.~24!. The results for the
fermion propagator in quenched approximation@a(q2)[ā,
constant# in the chirally broken phase of quenched QED a
very similar to those of QCD. Again, we find a fermio
propagator that satisfies positivity as long as it is calcula
with a vertex obtained from the Ward identity but violat
positivity if a bare vertex is used. The Schwinger functio
are shown in Fig. 7 and the deduced~complex! pole masses
are included in Table I. Of course, it remains possible that
transverse parts of the exact vertex conspire to lead to p
tivity violation again. However, this is unlikely, in particula
in QED where one has no confinement.

er

FIG. 7. Results for two different vertex constructions in QED4.
For ease of comparison we employed two different values for

coupling, i.e.ā51.2 in the case of the bare vertex andā51.06 for
the case of the CP vertex.
4-13



ur
id
e

he
th
on
/o
a

ge
h
t o
e

iv
io
o

if
tic
on
ne
th
e

d
th
e
a

f
c
te

a
h
e

lifi

nor-

n
t
a

pa-

eri-
otic

at
mit

n,
his

ro

as

-

the
he

hic

q.

ALKOFER et al. PHYSICAL REVIEW D 70, 014014 ~2004!
IV. ANALYTIC PROPERTIES OF THE QUARK
PROPAGATOR FROM PARAMETERIZATIONS

In this section we explore the possible analytic struct
of the quark propagator in more detail. Here we also cons
the available lattice data for the quark propagator and inv
tigate whether it is possible to obtain information on t
analytic structure of the propagator by fitting these data,
DSE solutions, and the corresponding Schwinger functi
with different parameterizations of pole locations and
branch cuts. The singularity on the real momentum axis m
be accompanied by additional real singularities at lar
mass scales or by complex conjugate singularities wit
larger real part of the mass, or it may be the starting poin
a branch cut on the negative real momentum axis. In the n
two subsections we explore these possibilities.

A. Meromorphic parameterizations

The most rigorous constraint on the non-perturbat
quark propagator is that it must reduce to a free ferm
propagator at large momenta because of asymptotic freed
This entails that the propagator functionsss,v(p2)→0 for
up2u→` in all directions of the complexp2 plane@77#. Ad-
ditionally, the theory of complex functions tells us that
sv(p2) andss(p2) are not constant, they cannot be analy
over the whole complex plane: non-constant, entire functi
which are analytic at all finite points in the complex pla
are already excluded by the asymptotic properties of
propagator functions. From the truncated set of DSEs
plored in the previous section, we found the dominant~in
terms of the Schwinger function! structure to be either a
singularity on the negative realp2 axis or a pair of complex
conjugate singularities in the left half of the complexp2

plane. In both scenarios the poles are accompanied by a
tional undetermined structures which are responsible for
small time behavior ofDs(t). Guided by these results w
first consider parameterizations of the renormalized qu
propagator using the meromorphic form

S~p!5Z2
21(

j 51

nP S r j

ip”1aj1 ib j

1
r j

ip”1aj2 ib j
D , ~40!

with nP pairs of complex conjugate poles located ataj
6 ib j with residuesr j . This form includes the possibility o
complex conjugate as well as purely real poles, but enfor
neither of these from the outset. Similar simple parame
izations were considered in Ref.@39#.

In the following, we use physical constraints as well
lattice data to fix the position of the various singularities. T
only practical restriction on this procedure is in the numb
of parameters that can be pinned down. As further simp
cations, we assume that the residues,r j , of these poles are
real ~although this is not a strict requirement! and consider
only the chiral limit.

For the propagator functions,ss(p2) and sv(p2), the
form Eq. ~40! simplifies to
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sv~p2!5Z2
21(

j 51

nP 2r j~p21aj
22bj

2!

~p21aj
22bj

2!214aj
2bj

2
, ~41!

ss~p2!5Z2
21(

j 51

nP 2r jaj~p21aj
21bj

2!

~p21aj
22bj

2!214aj
2bj

2
. ~42!

In terms of these quantities, we can construct the usual re
malization point independent mass functionM (p2)
5ss(p2)/sv(p2) and the wave-function renormalizatio
Zf(p2)5@p21M2(p2)#sv(p2). In order to make contac
with lattice data~where the finite lattice spacing leads to
maximum possible momentum!, we renormalize atm2

516 GeV2.
There are various restrictions we can impose on the

rametersr j , aj and bj in the meromorphic form, Eq.~40!.
These arise from its mathematical properties, from exp
mental observables and from recent lattice data. Asympt
freedom requires that quarks behave like free particles
large momenta. Consideration of the large momentum li
of sv(p2) implies that

(
j 51

nP

r j5
1

2
. ~43!

Since we are working in the chiral limit, the mass functio
M (p2), must vanish for large spacelike real momenta. T
entails that10

(
j 51

nP

r jaj50. ~44!

Furthermore,M (p2→1`) must be real and approach ze
from above.

Asymptotically, the chiral limit mass function behaves
@78#

M ~p2! →
p2→` 2p2gm

Nc

2^q̄q&

p2F1

2
ln~p2/LQCD

2 !G12gm
, ~45!

where^q̄q& is the renormalization-point-invariant chiral con
densate. Although the logarithmic behavior of Eq.~45! can-
not be reproduced by these simple meromorphic fits,
logarithm is a slowly varying function and we estimate t
condensate by fitting the mass function with Eq.~45! over
the rangep2P(103,109) usingLQCD50.5 GeV and the ap-
propriate 1-loop value ofgm512/33 for Nf50. We then
require that this condensate extracted from our meromorp
propagator agrees with the phenomenological value^q̄q&
52@0.275(75) GeV#3.

10If we move away from the chiral limit, the right-hand side of E
~44! is replaced by the renormalized current mass.
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In order to be phenomenologically applicable, the pro
gator should reproduce the pion decay constant to a rea
able accuracy. To calculate this, we employ the approxim
tion @53#

f p
2 .Z2

Nc

4p2E0

L2

dp2p2
M ~p2!

Zf~p2!
Fsv~p2!ss~p2!

1
p2

2 S dsv~p2!

dp2
ss~p2!2sv~p2!

dss~p2!

dp2 D G , ~46!

which incorporates only the effects of the leading Dir
structure of the pion Bethe-Salpeter amplitude in the ch
limit. From a comparison of the relative sizes of the pi
Bethe-Salpeter amplitudes in model calculations@60,62#, one
concludes that this approximation should lead to an unde
timation of f p by 10–20 %.11 In our meromorphic fits we
therefore demand that Eq.~46! gives f p;0.08(3) GeV.

The Landau gauge quark propagator has been investig
on the lattice by a number of different groups using me
field- and non-perturbatively-improved clover actions@79#,
the Kogut-Susskind action@73#, the overlap formalism@72#
and the Asqtad quark action@73#. The data sets obtained i
the latter two formulations have the smallest error bars
are therefore employed in what follows. Their mass fun
tions and wave-function renormalizations have already b
shown in Fig. 4. The mass function data from the lattice h
been quadratically extrapolated@72,73# to the chiral limit,
whereas the mass dependence ofZf(p2) is very mild so no
extrapolation has been performed. While the simple extra
lation procedure that has been employed may lead to siz
errors@13#, it will prove sufficient for our purposes.

Unfortunately all of the lattice studies to date make use
the quenched approximation. Removing all internal qu
loops is a potentially drastic modification of the theory.
destroys the unitarity of theS matrix; however, it is often
assumed that these violations of unitarity are small. Stric
speaking, it is nonsensical to discuss the concept of positi
in such a situation and the lattice data discussed above
not be relied on to provide any guidance in studying posi
ity of the quark propagator. However, from our experienc
with the DSE studies of the previous section, one may exp
that quenching will not qualitatively change the momentu
dependence of the propagator~see Fig. 4!. Additionally, the
lattice data apparently still contain large finite volume effe
~especially in the wave-function renormalization! @80#, and
do not precisely constrain the asymptotic (p2→1`) behav-
ior of the propagator. For these reasons we do not directl
the lattice data~althougha posteriorix2 fits to it return very
similar parameters to those we find below!, but merely ex-
tract its three qualitative infrared features. Thus we assu
that the zero momentum values of the mass function
wave-function renormalization,M0 andZ0

f , and an approxi-

11One also knows from chiral perturbation theory that the ch
limit pion decay constant is somewhat less than the physical v
of 93 MeV.
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mate width of the region of large dynamical mass generat
vL @defined byM (vL

2)5M0/2], are robust against the effec
of quenching~within substantial errors!. With this in mind,
we require that our parametric fits are in reasonable ag
ment with the extracted values ofM0 , Z0

f andvL . That is,

M050.35~10! GeV, Z0
f 50.6~2!, vL50.7~2! GeV.

~47!

Note that^q̄q&, f p and these three parameters are obviou
not entirely unrelated.

Given the number of independent constraints we can
pose, we can reasonably expect to be able to determine
five or six parameters. This impliesnP<3 in Eq. ~40!. We
find that three paradigmatic cases satisfy the requiremen
Eqs. ~43!–~47!: three purely real poles~denoted 3R!, two
pairs of complex poles~2CC!, and a real pole plus a pair o
complex conjugate poles~1R11CC!. In order to construct
the best fits for each of these forms, we first impose
simple constraints of Eqs.~43! and~44! to reduce the numbe
of parameters to be varied. Then for each parameteriza
we randomly sample the available parameter space, c
structing a large ensemble of parameter sets that satisfy
full set of constraints. The best fit parameters and their er
are finally calculated as the mean and standard deviatio
the parameters in this ensemble.

The simplest possible parameterizations of a single
pole or a single pair of complex conjugate poles@nP51 in
Eq. ~40!# cannot satisfy the required constraints. Specifica
enforcing the perturbative asymptotic behavior@Eqs. ~43!
and ~44!# makes it impossible to satisfy any of the oth
requirements described above. Similarly, for two real po
(nP52, b15b250), the restrictions on the infrared prope
ties (f p , M0 andvL) are incompatible with a realistic quar
condensate.

As mentioned above, a satisfactory realization of the
quirements of Eqs.~43!–~47! is possible in the case of thre
real poles (nP53 andb15b25b350). The best fit param-
eters we obtain are shown in Table II and related quanti
that they result in are given in Table III. Although the prop
gator functionsss,v(p2) have poles atp2;20.2 GeV2, they
exactly cancel in the combinationsM (p2) andZf(p2). How-
ever the functionsM (p2) andZf(p2) do have poles further
in the timelike region, the first one occurring a
p2;20.75 GeV2. Also, the zeros ofZf(p2) on the real axis
may be problematic as they will necessarily produce sin
larities in the CP construction of the quark-gluon vertex;
Eq. ~23!.

In the case of two pairs of complex conjugate poles (nP
52), the best fit parameters and calculated quantities
again given in Tables II and III. BothM (p2) and Zf(p2)
exhibit unexpected behavior aroundp2;20.12 GeV2,
where they have a very sharp pole and a zero on the real
This arises becausess(p2) and sv(p2) have zeros at very
slightly differing momenta (p2520.127 GeV2 vs
20.117 GeV2) and it may be somewhat troublesome. Th
behavior, as well as the small imaginary part of the locat
of the first pair of poles, suggests forcing the first pair
poles to collapse to one real pole (nP52, b150).

l
e
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TABLE II. Best fit parameters of the three meromorphic forms: three real poles~3R!, two pairs of complex conjugate poles~2CC! and
one real pole and one pair of complex conjugate poles~1R11CC!. The parameters whose errors are replaced by an asterisk are comp
determined in terms of the other parameters through Eqs.~43! and~44!. In order to reproduce the results presented here, one should us
values that follow from Eqs.~43! and ~44! for those constrained parameters.

Parameterization r 1 a1 ~GeV! b1 ~GeV! r 2 a2 ~GeV! b2 ~GeV! r 3 a3 ~GeV!

3R 0.365~15! 0.341~25! – 1.2~8! 21.31~12! – 21.06~* ! 21.40~* !

2CC 0.360~22! 0.351~69! 0.08~5! 0.140~* ! 20.899~* ! 0.463~75! – –
1R11CC 0.354~15! 0.377~64! – 0.146~* ! 20.91~* ! 0.45~7! – –
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Redoing the fits with one real pole and one pair of co
plex conjugate poles, we come up with very similar para
eters to those of the 2CC parameterization, as listed in T
II. The corresponding propagator functions are shown in F
8. With this parameterization, the strange behavior ofM (p2)
andZf(p2) disappears andZf(p2) only has complex conju-
gate poles and zeros@Zf(p2520.4160.48i GeV2)50,
Zf(p2520.5560.69i GeV2)→`] so the longitudinal part
of the quark-gluon vertex, Eq.~23!, will not have particle-
like singularities@81#. This parameterization also contain
one parameter less than the others. Therefore we con
this to be the preferred form of the meromorphic parame
izations investigated here.

In comparing the three sets of parameterizations, i
worth remarking that the location of the~real part of the! first
pole and its residue are extremely robust. The value obta
for this constituent quark mass,m5377(64) MeV for our
best fit, is also in good agreement with a value extrac
from lattice simulations of the quark propagator using a tr
level Symanzik improved action,m5342(13) MeV @82#.
However, the constraints on the other features in the fits
less precise, especially in the case of three real poles. In
9 we compare the parameterizations given in Table II to
lattice data; overall, the agreement is quite acceptable. N
that the meromorphic fits have relatively low values ofZ0

f ;
this may change once finite volume effects are reduced in
lattice data. Also, each parameterization has a somewhat
value of f p in the chiral limit. This can be attributed on th
one hand to the approximation leading to Eq.~46!, and on
the other hand to the approximations on the lattice: the ch
extrapolation as well as the omission of dynamical qua
might lead to an underestimation off p in the lattice data
@13#.

Having determined the best parameters for three diffe
forms of our fit functions, we now examine the Fourier tran
forms of the momentum space propagator functio
ss,v(p2). Specifically, we attempt to determine whether t
sub-dominant behavior of the various parameterizations
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be determined from the Schwinger function, and, if so, ap
this to the DSE solutions of Sec. III.

Using the identity

E
0

`

dx
cos~xy!

x21c2
5

p

2c
exp~2cy! @yPR,arg~c2!Þp#,

~48!

we can directly calculate the Schwinger functions from o
parameterizations@Eqs.~41! and ~42!#:

Ds~ t !5(
i 51

nP

sgn~ai !r ie
2uai utcos~bi t !, ~49!

Dv~ t !5(
i 51

nP r ie
2uai ut

ai
21bi

2 @ uai ucos~bit !2bisin~bi t !#.

~50!

For all parameterizations, the term with the smallest m
parameterai will dominate for larget. In Fig. 10 we display
the analytic Fourier transforms of the parameterized sc
and vector propagator functions, Eqs.~49! and ~50!. For
comparison, we also include our DSE result forDs(t) em-
ploying the CP vertex. Note the qualitative difference b
tween the parameterization with two complex conjug
poles and the other two. Whereas the latter show no sig
positivity violation, in the 2CC parameterization we clear
see zero crossings of the Schwinger functions, both inDs(t)
and inDv(t) ~even a small imaginary component in the com
plex conjugate masses is detectable provided the Fou
transform can be calculated accurately to large enought).
Note thatDs(t) calculated from the meromorphic paramete
izations shows a similar amount of smallt curvature to the
DSE result, butDv(t) is linear in this region. Thus multiple
poles as explored here could explain the smallt behavior
observed in the DSE Schwinger functions.
rrors
errors.
TABLE III. Values for the various constrained quantities for the three parameterizations of Table II. E
are solely due to uncertainties in the parameterizations and do not include any additional systematic

Parameterization M0 ~GeV! Z0
f vL ~GeV! f p ~GeV! 2^q̄q&1/3 ~GeV!

3R 0.29~1! 0.55~7! 0.79~4! 0.071~3! 0.3~2!

2CC 0.33~11! 0.57~12! 0.69~27! 0.070~31! 0.3~3!

1R11CC 0.31~7! 0.52~7! 0.72~25! 0.068~23! 0.3~2!
4-16
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ANALYTIC PROPERTIES OF THE LANDAU GAUGE . . . PHYSICAL REVIEW D 70, 014014 ~2004!
We also use these analytic Fourier transforms to test
numerical Fourier transform, finding that it reproduces
analytic results down toDs,v(t);1026 where we begin to
run into accuracy problems. However, the numerical rout
we employ is clearly able to distinguish between a domin
real pole and dominant complex conjugate poles. This gi
us further confidence that our results from the DSE soluti
in the previous section are not numerical artefacts.

B. Parameterizations with branch cuts

As mentioned above, there is evidence that the Schwin
function Ds(t) is convex~with sizable curvature! at smallt.
On the other hand, the Schwinger functionDv(t) as obtained
from the DSE solution shows no such curvature. This diff
ence could be accommodated within the simple merom
phic fits of the previous subsection. However, this is c
tainly not the only possible mechanism leading to such
difference, and here we explore the consequences of al
ing for singularities with branch cuts. As can be seen fr

FIG. 8. Propagator functions for the fit using one real pole a
one pair of complex conjugate poles.
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Fig. 6, the curvature ofDs(t) depends on the current quar
mass, so we also consider the effects of explicit chiral sy
metry breaking.

Our motivation for investigating such parameterizatio
arises from considering the DSE for the quark propaga
Eq. ~27!. If the combinationa(k2)/k2 is non-analytic atk2

5(q2p)250 @in other words, ifa(0)Þ0], the integration
path necessarily passes through the external pointp. Thus, in
order to evaluate the quark propagator at arbitrary comp
momenta, one has to deform the integration contour in
DSE and solve the DSE along this deformed integrat
path. As long as there are no singularities in the other fac
of the integrand@i.e. in S(q) and Vn

Abel(q,k)], this can in
principle be done unambiguously~although it is numerically
a nontrivial task!. However, if we want to evaluate the inte
gral for a valuep at which the propagator,S(p), has a sin-
gularity, we are forced by the analytic structure ofa(k2)/k2

to include this value ofp in the integration contour ford4q.
Thus, we have a pinch singularity at this point coming fro
S(q) anda(k2)/k2; this generally leads to a branch cut, as
shown in more detail in Appendix B. We also note that t
asymptotic form of the quark propagator has perturbativ
calculable logarithmic contributions. Considering the
points, we would expect that the singularities inss,v(p2) are
branch points rather than simple poles. Thus we next atte
to parameterize the quark propagator by functions w
branch cuts using the parameterization of the strong runn
coupling, Eq.~32!, that has proven helpful in understandin
the analytic structure of the gluon propagator.

As a first try, we shall fit the inverse propagator functio
M (p2) andZf(p2) as obtained from the quark DSE with th
CP vertex. Given the close agreement of the DSE soluti
and the lattice quark propagator seen in Fig. 2, fitting
DSE solution will result in similar physical constraints
those of the previous subsection. The leading-order pertu
tive behavior is known, and we allow for one additional su
leading term, that is to be fitted to the DSE solution. Furth

d

FIG. 9. The best fit curves for the meromorphic parameteri
tions compared to the lattice data. For the details of the param
ization ofss,v(p2) by a form with a branch cut, fitted to the Asqta
data, see the next subsection.
4-17
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more, we want the parameterization to have a branch
along the negative real axis starting atp252msing

2 . Thus we
are led to fit the DSE solutions with

Zf~p2!5Z2S 12
a~p21msing

2 !

2p
1

C2

p21msing
2 1L2D ,

~51!

M ~p2!5CDCSB

a~p21msing
2 !12gm

p21msing
2 1L2

1
C4

~p21msing
2 1L2!2

1CCQMa~p21msing
2 !gm.

~52!

The parametersCDCSB and CCQM are related to the chira
condensate and the renormalized current quark mass, re
tively:

2^q̄q&5CDCSBS pgm

2 D 12gm Nc

2p2gm

, ~53!

FIG. 10. The Fourier transform of bothss(p2) ~a! andsv(p2)
~b! for the optimal parameterizations with multiple poles. In t
diagram on the left hand side we have included our DSE resul
01401
ut

ec-

mm5CCQMa~p21m2!gm'CCQMS pgm

ln~p2/LQCD
2 !

D gm

.

~54!

The renormalization constantZ2 is determined by the renor
malization conditionZf(m2)51, msing follows from the ex-
ponential decay of the Schwinger functions, and we takeL
to be equal toLQCD in the running coupling,a(x), for
which we use Eq.~32!. The remaining free parameters in th
fit, C2 and C4, are fitted to the numerical solution of th
DSE andLQCD is also varied to improve this fit.

The results are shown in Fig. 11 for several different c
rent quark masses representative of masses up to that o
bottom quark. The fitted parameters are given in the fi
section of Table IV. With only a few parameters, the fi
represent the DSE solutions very well over the entire Euc
ean region. The fitted values ofCCQM are all reasonably

.
FIG. 11. The functionsZf(p2) ~a! andM (p2) ~b! obtained from

parameterizations fitted to the numerical DSE solutions for differ
current quark masses. The solid curves are the fits@Eqs. ~51! and
~52!# and the dotted, dashed, and various dot-dashed curve ar
DSE solutions as shown in the legend@the curves forZf(p2) in the
chiral limit and formm55 MeV are almost indistinguishable#. The
fit parameters are given in Table IV.
4-18
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TABLE IV. Parameters for the various branch cut fits@Eqs. ~51!–~60!# to the Nf50 quark DSE solutions for different masses.
parameter set obtained by fitting Eqs.~55!–~57! to the Asqtad lattice data@73# is also included.

mm CDCSB C4 CCQM C2 , C̃ msing

Fitting M andZf , Eqs.~51! and ~52!; LQCD
2 50.81 GeV2

DSE, chiral 0.086 0.248 0 20.011 0.50
0.005 0.119 0.202 0.0074 20.015 0.52
0.10 0.343 0 0.16 20.067 0.78
1.0 0.36 0 1.65 20.224 2.0
4.0 0 0 6.6 20.348 5.2

Fitting ss,v , Eqs.~55!–~57!; LQCD
2 50.70 GeV2

DSE, chiral 0.086 0.234 0.0 1.27 0.50
0.005 0.10 0.234 0.0076 1.26 0.52
0.100 0.44 0 0.161 1.11 0.78

Fitting ss,v , Eqs.~55!–~57!; LQCD
2 50.50 GeV2

Lattice, chiral 0.08 0.12 0.0 1.47 0.47

Fitting A andB, Eqs.~58!–~60!; LQCD
2 50.70 GeV2

DSE, chiral 0.09 0.31 0 0.25 0.49
0.005 0.10 0.30 0.008 0.26 0.50
0.100 0.33 0 0.17 0.25 0.65
1.0 0.21 0 1.7 0.23 1.74
4.0 0 0 6.7 0.34 5.1
ut
ts

ns
s

s

-

in

n

riz
SE
ith

totic

for
iffi
dl
close to the current quark masses that were used as inp
the DSEs~small deviations are due to sub-leading effec!

and the ~fitted! chiral condensate is acceptable:2^q̄q&
5(290 MeV)3.

Despite the fact that these parameterizations fitZf(p2)
and M (p2) so well, the corresponding Schwinger functio
do not fit the Schwinger functions of the DSE solution
Clearly, the zeros ofp21M2(p2) @which determine the pole
of ss,v(p2)] will in general not occur on the negativep2 axis
when Eq.~52! is used forM (p2). Indeed, the dominant sin
gularities of the propagator functionsss,v(p2) calculated
from the parameterizations ofZf(p2) and M (p2) are a pair
of complex conjugate singularities, and the correspond
Schwinger functions clearly show oscillations12 ~see Fig.
12!. Extensive ‘‘fine-tuning’’ of the fitting form and/or the
parameters is required in order forp21M2(p2) to have its
first zero at the pole mass deduced from the Schwinger fu
tion of the DSE solution.

As a second alternative, we can directly paramete
ss,v(p2), and fit the parameters using the numerical D
solutions. Again, we want to reproduce the leading logar
mic corrections to Zf(p2) and M (p2), which can be
achieved by using the forms

12For the heavier quarks, these oscillations are numerically d
cult to detect because the Fourier transform falls off very rapi
with increasingt.
01401
in

.

g

c-

e
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Bchiral~p2!5CDCSB

a~p21msing
2 !12gm

p21msing
2 1L2

1
C4

~p21msing
2 1L2!2

, ~55!

ss~p2!5
Bchiral~p2!

p21msing
2

1
CCQMa~p21msing

2 !gm

p21msing
2

,

~56!

sv~p2!5
1

p21msing
2 S 12

a~p21msing
2 !

2p

1C̃Bchiral~p2! D . ~57!

This form has masslike singularities inss,v(p2) at p2

52msing
2 from which branch cuts extend top252`. Away

from the real axis,ss,v(p2) have no singularities~though
there is a second singularity atp252msing

2 2L2). Further-
more, this parameterization ensures the correct asymp
behavior, both forss,v(p2) and for the quark functions
M (p2) and Zf(p2). The main disadvantage of fitting
ss,v(p2) is that the analytic structure ofZf(p2) andM (p2),
and ofA(p2) andB(p2) will now become non-trivial. Again,
a delicate fine-tuning is required to obtain a good fit both
ss,v(p2) and forZf(p2), M (p2), A(p2) andB(p2).

-
y

4-19



ou

e

ar
e
bl
is
ar
tio
ly
ia

e
th

th

f

the
olu-
for
ou-
ion

se

er-

Fo

olid

ALKOFER et al. PHYSICAL REVIEW D 70, 014014 ~2004!
The parameters play a similar role to those in the previ
parameterization, with the exception ofC̃ which is deter-
mined by requiring thatZf(p2) is finite at the mass pole. Th
other parameters are fixed by fittingZf(p2), M (p2), and the
Schwinger functions. For moderately small current qu
masses, we can obtain reasonably good fits, as can be se
Fig. 13, with the corresponding parameters listed in Ta
IV. We can also fit the Asqtad lattice data quite well with th
parameterization, as shown in Fig. 9. For current qu
masses larger than a few hundred MeV, the wave func
renormalization can no longer be fitted with this relative
simple form. This is most likely related to the substant
increase in the constantC2 for heavy quarks when fitting
Zf(p2) directly ~see Table IV!.

The functionsA(p2), B(p2), M (p2) and Zf(p2) have a
singularity at p252msing

2 where a branch cut along th
negative real axis starts, and another singularity further in
timelike region atp252msing

2 2L2. In addition,M (p2) and
Zf(p2) have a pair of complex conjugate poles located at
zeros ofsv(p2), and A(p2) and B(p2) have two pairs of
complex conjugate poles at zeros ofp2sv

2(p2)1ss
2(p2).

FIG. 12. The Schwinger functionsDs(t) ~a! and Dv(t) ~b! for
the three parameterizations with branch cuts, in the chiral limit.
comparison, we have also included our DSE results.
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The Schwinger functions,Ds,v(t), are reproduced very
well ~see Fig. 12!. Notice that the parameterizations o
Zf(p2) and M (p2) fit the DSE solutions forZf(p2) and
M (p2) better than these parameterizations ofss,v(p2), while
the latter parameterizations are obviously better fits of
Schwinger functions corresponding to those same DSE s
tions. Thus we are warned that even an almost perfect fit
Euclidean momenta does not guarantee a good fit of its F
rier transform, let alone a good representation of the funct
in the entire complex plane.

Finally, we construct a parameterization of the inver
quark propagator functionsA(p2) andB(p2), such that the
propagator functionsss,v(p2) have polelike singularities on
the timelikep2 axis. For this purpose we use the paramet
ization

Z2A~p2!511
a~p21msing

2 !

2p
1

C2

p21msing
2 1L2

, ~58!

r
FIG. 13. The functionsZf(p2) ~a! andM (p2) ~b! obtained from

parameterizations ofss,v(p2), Eqs.~55!–~57!, fitted to the numeri-
cal DSE solutions for different current quark masses. The s
curves are the fits, with the fit parameters given in Table IV.
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Z2B~p2!5CDCSB

a~p21msing
2 !12gm

p21msing
2 1L2

1
C4

~p21msing
2 1L2!2

1CCQMa~p21msing
2 !gm, ~59!

with

msing5S CDCSB

a~0!12gm

L2
1

C4

L4
1CCQMa~0!gmD Y

S 11
a~0!

2p
1

C2

L2D , ~60!

and Z2 determined by the renormalization conditionA(m2)
51. The results of these fits are shown in Fig. 14, with
corresponding parameters given in Table IV. Though no
good as the direct fits ofZf(p2) and M (p2) @Eqs. ~51! and
~52!# that were made without taking into consideration t
analytic structure ofss,v(p2), these fits reproduce the DS

FIG. 14. The functionsZf(p2) ~a! andM (p2) ~b! obtained from
parameterizations ofA(p2) andB(p2), Eqs.~58!–~60!, fitted to the
numerical DSE solutions for different current quark masses.
solid curves are the fits, with the fit parameters given in Table
01401
e
s

results within about 10–20 % over a wide range of mass
By construction, the dressing functions again reduce to
perturbative forms in the ultraviolet region and the analy
structure is in agreement with the Schwinger functions c
responding to our DSE solutions. In the chiral limit,Ds(t)
corresponding to these fits shows significant curvature
small t, as can be seen from Fig. 12; for larger quark mas
this curvature decreases. In contrast,Dv(t) does not show
this curvature in agreement with our DSE results. Howev
the actual analytic structure ofss,v(p2) is rather compli-
cated. In addition to the singularity on the negative real a
at p252msing

2 where a branch cut starts, it also has a pair
complex conjugate poles at zeros ofp2A2(p2)1B2(p2).

C. Generic features of the quark propagator

The results of this section point strongly toward an an
lytical structure of the quark propagator with a domina
singularity on the real timelike axis.At present, the nature o
this singularity cannot be determined with confidence.
could be a simple pole, in which case additional poles
other types of singularities further away fromp250 are
needed in order to explain the observed behavior of
Schwinger function. However, given the structure of t
quark DSE, it is more likely that this singularity is a branc
point, and that there is a branch cut along the negative
axis starting there. Having only one branch point singular
on the negative real axis is~in principle! sufficient to repro-
duce the observed Schwinger functions. We have not
been able to distinguish between these alternatives by
merical calculations of the Schwinger functions of the DS
solutions.

Given the strong sensitivity of the Schwinger functions
the details of the propagator functions, and the fact that
dominant singularity is well into the timelike region, it i
unlikely that the sub-dominant analytic structure of the qu
propagator will be determined by Euclidean lattice simu
tions. The situation for the gluon propagator is quite diffe
ent: there, the analytic structure is highly constrained by
behavior forp2→01. By approaching the singularity atp2

50 from the spacelike region, we can gain informati
about the nature of this singularity. In contrast, the first no
analytic point of the quark propagator is~most likely! at p2

52msing
2 ,0. Thus, the behavior ofM (p2) andZf(p2), or

ss,v(p2), for p2→01 does not reveal much about the an
lytic properties of the propagator. We cannot approach
singularity without accessing the timelike region explicitl
In addition to this dominant singularity on~or very close to!
the negativep2 axis, the propagator may have other su
leading singularities further away fromp250. Within the
DSE framework one would have to solve the quark D
over a suitable region of the complex momentum plane
decide questions about the nature of the dominant singula
and about the existence of sub-leading singularities furt
from p250. However, this is numerically very demandin
and not within the scope of the present investigation. As
have seen in the previous section, the results could also
strongly influenced by the truncation of the DSEs.

e
.
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In all of the parameterizations of the preceding subs
tions a robust feature appears: the leading singularity is
~or verynear to! the real axis. The scale at which this sing
larity occurs is somewhat dependent on the constraints u
in the fits; the lattice data suggest a scale of 350 to 390 M
whilst the DSE solutions prefer a slightly larger valu
;500 MeV. Despite this slight variation, these numeric
values are somewhat intriguing and hint at a possible in
pretation in terms of a constituent quark mass.

Fits like the examples presented here might be usef
applied in hadron phenomenology pending a more con
sive investigation of the analytic properties of the qua
propagators. However, one should treat these paramete
tions with care and keep in mind that neither the fitting for
nor the parameters are unique. The same Euclidean
from lattice or DSE calculations, can be fitted quite well w
different parameterizations having distinct analytic prop
ties. The only robust feature concerning the analytic struc
is that the dominant singularity, as probed by the Schwin
function, is on~or very near! the real timelike axis.

V. SUMMARY AND CONCLUSION

In this work we have investigated the analytic structure
the propagators of Landau gauge QCD in the timelike m
mentum region using Schwinger functions, and employ
various analytic parameterizations. We summarize the m
results below.

Both lattice simulations and Dyson-Schwinger equat
calculations suggest that the gluon propagator is finite
even vanishes in the infrared. The latter behavior necess
leads to violations of reflection positivity, a sufficient~but
not necessary! condition for gluon confinement. Our numer
cal analysis of the Schwinger functions calculated from
DSE solutions confirms this behavior, finding clear eviden
of such positivity violations in the gluon propagator in a
cordance with previous results@6,11,21#. The gluon
Schwinger function possesses one zero att;1 fm, marking
the length scale above which sizable negative norm con
butions appear. We explore the detailed analytic structur
the gluon propagator in the timelike (p2,0) momentum re-
gion by constructing parameterizations that fit both
spacelike momentum behavior of the lattice calculations
DSE solutions, and the corresponding Schwinger funct
These parameterizations incorporate the power-law infra
behavior determined analytically from the coupled ghost a
gluon DSEs, and the perturbatively calculable ultravio
logarithmic behavior. The crucial feature of these parame
izations is the presence of a branch cut on the timelike m
mentum half axis which produces the observed positiv
violations. These simple parameterizations depend on~effec-
tively! only one parameter, the scaleLQCD .

In exploring the analytic structure of the quark propaga
using the same Schwinger function methods, we have fo
an unexpected sensitivity of this structure to the truncation
the quark DSE. Gauge symmetry~or, more precisely, the
relevant Slavnov-Taylor identity! requires the presence of
scalar coupling in the non-perturbative quark-gluon vert
This coupling is only present if chiral symmetry is broke
01401
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dynamically, in which case it leads to a self-consistent
hancement of the effective quark-gluon interaction. T
term is important in at least two ways: First, it is required
order that the solution of the coupled quark, gluon, and gh
DSEs generates enough dynamical chiral symmetry brea
in the quark propagator to give a phenomenologically
ceptable quark condensate@11#. More importantly for our
investigations, the scalar coupling leads to qualitat
changes in the analytic structure of the quark propagator,
hence has significant consequences for the question
~non-!positivity and the manifestation of confinement. Wh
this term is omitted~as in the commonly used rainbow trun
cation!, positivity violations consistent with complex conju
gate singularities in the quark propagator~as found in previ-
ous studies @13,31–33#! are unambiguously observed
However, when the gauge-mandated scalar coupling is
cluded, no such evidence of positivity violation is found a
the dominant analytic structure appears to be a singularity
the real, timelike (p2,0) axis. While the absence of pos
tivity violations says nothing about quark confinement~posi-
tivity violation is a sufficient but not necessary condition!, it
does tell us that confinement is probably not manifest at
level of the propagator. We also see similar behavior
~quenched! QED4. Here, a positive definite propagator is d
sirable as the electron is an observable particle.

Finally in Sec. IV, we have attempted to probe deeper i
the analytic structure of the quark propagator. We have c
structed various parameterizations and used lattice data,
solutions, and other general properties to constrain th
While an infinite variety of functional forms~we have inves-
tigated only a few that come easily to mind—construct
from real or complex conjugate poles, and branch cuts on
timelike momentum axis! would be capable of satisfying ou
constraint criteria, one robust feature emerges from
analysis: the dominant~i.e., closest top250) analytic struc-
ture occurs on~or very near to! the real, timelike half axis.
The scale of this masslike singularity, as suggested by m
morphic parameterizations of the lattice data, is 350 to 3
MeV. The DSE solution indicates a scale of about 500 Me
An accurate determination of the precise nature of this s
gularity and additional sub-dominant contributions awaits
ture improvements.
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TABLE V. Gluon fit parameters for various truncations of the system of DSEs. The results in paren
for the full QCD fit I are when the fit is optimized to reproduce fit the DSE Schwinger function; all o
parameter sets are fitted toZ(p).

Truncation Fit I Fit II
v I LQCD ~MeV! v II LQCD ~MeV!

Full QCD, a53d 2.4 ~2.0! 500 ~470! 2.5 510
Quenched QCD,a53d 2.9 550 3.2 550
Quenched QCD,a52d 2.7 410 3.0 400
Quenched QCD,a54d 3.2 560 3.6 550
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APPENDIX A: FURTHER DETAILS
OF THE DSE TRUNCATION

Since the quark-gluon vertex appears to play a signific
role in the analytic properties of the quark propagator,
have explicitly explored the effects of this part of our tru
cation scheme in the main body of the text. Here we exam
the various truncations we use in the Yang-Mills sector a
investigate reasonable modifications to highlight the ext
of both the truncation dependence and the truncation in
pendence of our results.

In this work, we have used the perturbative ghost-glu
vertex

Gm
ghost~q,p!5 iqm . ~A1!

Lerche and von Smekal@8# have investigated a large class
possible structures for this Green’s function. In particu
their results show that such variation leads to infrared beh
ior of the gluon and ghost propagators as in Eqs.~18! and
~19! with the exponentk in the range 0.5,k,0.7. In this
range the essential analytic properties that we find for
gluon propagator remain unaltered.

For the three-gluon vertex, we use@83#

Grns~q,p!5
1

Z1~m,L!

G~q2!(12a/d22a)

Z~q2!(11a)

3
G„~q2p!2

…

(12b/d22b)

Z„~q2p!2
…

(11b)
Grns

(0) ~q,p!, ~A2!

where Grns
(0) (q,p) is the perturbative form,

d529Nc /(44Nc28Nf) is the one-loop anomalous dimen
sion of the ghost propagator,Z1 is the three-gluon vertex
renormalization, and we fixa5b53d. As discussed in the
main text, this form is chosen to ensure that the runn
coupling, Eq.~16!, is renormalization point independent an
that the ghost and gluon propagators have the correct
loop anomalous dimensions~these constraints are satisfie
for arbitrary values of the parametersa andb).

Whilst no systematic study of this vertex truncation e
ists, in Ref.@83# one of us has investigated some variation
the parametersa and b. There, the gluon propagator wa
found to vanish atp2→0 independent of the choice ofa and
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b, and our conclusions about the analytic structure of
gluon propagator remain qualitatively unchanged. To inv
tigate the dependence of the gluon fit parameters (v I ,II and
LQCD) on the three-gluon vertex truncation, we have ma
fits to the quenched DSE solutions using Eq.~33! for a num-
ber of choices ofa and b. The resulting parameter sets a
shown in Table V and are seen to vary by 20%. With cert
choices of these parameters, one is able to closely match
quenched lattice data. However the original (a5b53d)
truncation gives results in adequate agreement~see Fig. 2!
with these data~which themselves are not without error bar!
and we use it exclusively in the main text.

Finally, the truncation we employ neglects the effects
the four-gluon vertex. These effects are unknown up to n
Since the ghost loop is dominant in the infrared@46# and the
one-loop diagrams dominate in the perturbative, ultravio
region, such effects are expected to be most important in
intermediate momentum regime (p2;1 GeV2). A two-
parameter model for the corresponding two-loop diagram
the coupled gluon-ghost DSEs has been explored in R
@51#; under such a variation thep2→0 behavior of the gluon
and ghost propagator remains qualitatively the same as in
results.

APPENDIX B: POLE OR BRANCH POINT
IN THE QUARK PROPAGATOR?

If the quark propagator has a non-analytic point atp2

52msing
2 where the propagator diverges, what kind of s

gularity can we expect? In order to answer this questi
consider the generic integral that appears in the right-h
side ~RHS! of the quark DSE

I ~p2!5EL

d4q
a@~q2p!2#

~q2p!2
Ku~q2,p2,q•p!ss,v~q2!.

~B1!

Assume that the running coupling,a(k2), doesnot go to
zero ask2 for k2→0. Furthermore, assume that the kern
Ku(q2,p2,q•p) has no singularities. Thus the only singula
ties in the integrand are located at (q2p)250 and atq2

52msing
2 @coming from the propagator functionss,v(q2)].

For Euclidean values ofp2, we calculate this integral by
performing the angular integral first, followed by the rad
integral:
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I ~p2!5E
0

L2

q2dq2ss,v~q2!K~q2,p2!, ~B2!

with

K~q2,p2!5E
0

p

sin2udu

3
a~q222qp cosu1p2!

q222qp cosu1p2
Ku~q2,p2,qp cosu!.

~B3!

This angular integral is well behaved for any Euclidean va
of q2 and p2 as long as the singularity ina(k2)/k2 is an
integrablesingularity, so let us assume from here on that t
is the case. If we investigate the analytic properties
K(q2,p2) for arbitrary complex values ofq2, while keeping
p2 real and positive, we discover that it has a branch cut
can be characterized byq25p2exp(if), with 0,f,2p.
Notice that if we perform the radial integral along the po
tive real q2 axis, we do not cross this branch cut: the e
points inf are not included. This is schematically depict
in Fig. 15.

Now consider the analytic continuation to complex valu
of p2. Clearly, the branch cut inK(q2,p2) will move, as
indicated in Fig. 15. This means that the integration path
Eq. ~B2! has to be deformed so as not to cross the~shifted!
branch cut stemming from the angular integration, wh
keeping the end points fixed. A possible integration path
been shown in Fig. 15, although the actual integration pat
of course not unique. The general rule for this deform
integration path is that it has to go through the pointq2

5p2, since that is where there is an opening in the circu
branch cut ofK(q2,p2). This procedure leads to a wel
defined and unambiguous analytic continuation of the
clidean DSE, and can be implemented numerically@29,84#.

Following this procedure, one can now show that a
singularity in ss,v(q2) leads~in general! to a branch point

FIG. 15. Location of the branch cuts~dotted curves! in
K(q2,p2) in the complexq2 plane, forp25x real and for a complex
value of p25x1 iy . Also shown are possible integration pat
~solid curves! from 0 to L2 that do not cross the correspondin
branch cuts.
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singularity inI (p2). This is shown in detail in Fig. 16 for the
case in whichss,v(q2) have singularities on the real timelik
axis atq252msing

2 . We have drawn two distinct radial in
tegration paths in order to calculateI (p2) for p25x2 iy .
One is obtained by continuously deforming the original in
gration path through the upper half of the complexq2 plane,
crossing the negative real axis beyondq252msing

2 ~dashed
curve!, and the other by deforming the integration path v
the lower half of the complex plane~solid curve!. Because of
the combination of~i! the singularity in ss,v(q2) at q2

52msing
2 and~ii ! the circular branch cut inK(q2,p2), these

two integration paths cannot be deformed into each ot
while keepingp2 fixed. Therefore, the obtained values
I (p2) will ~in general! be different, andI (p2) becomes a
multi-valued function with a branch-point singularity atp2

52msing
2 . The ‘‘natural’’ choice for the branch cut is alon

the negative real axis, as indicated by the wavy line in
lower panel of Fig. 16.

Returning to the specific case of the quark propagator,
note that the RHS of the quark DSE contains an integral
I (p2), whereas the LHS is one of the inverse quark pro
gator functionsA(p2) or B(p2). If sv,s(q

2) has a singular
point k252msing

2 , thenI (p2) has a branch-point singularit
at p252msing

2 , and thereforeA(p2) andB(p2) will have a
branch point atp252msing

2 . Thus, unless there are intrica
cancellations, the singularity insv,s(p2) of a self-consistent
solution is a branch-point singularity and not a simple po

FIG. 16. Two integration contours in the complexk2 plane for
the radial integral inI (p2) for p25x2 iy ~a! and the resulting ana
lytic structure forI (p2) in the complexp2 plane~b!.
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