PHYSICAL REVIEW D 70, 014014 (2004

Analytic properties of the Landau gauge gluon and quark propagators
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We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical
solutions of the coupled system of renormalized Dyson-Schwinger equations and from fits to lattice data. We
find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the
transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed.
For the quark propagator we find evidence for a masslike singularity on the real timelike momentum axis, with
a mass of 350 to 500 MeV. Within the Green'’s function approach that is employed, we identify a crucial term
in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.
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[. INTRODUCTION vided by lattice Monte Carlo simulationsee, e.g., Refs.
[1,2]) and the Dyson-Schwinger, Green’s function approach
Dynamical chiral symmetry breaking and confinement aresee, e.9., Refs[3-5]). Both approaches have their own
fundamental properties of QCD. In high energy processe§tréngths and weaknesses. Lattice simulations are theabnly
such as deep inelastic scattering, quarks behave almost mduitio calculations available so far. They contain the full non-

selessly. However at low energies the observed hadron Speg_erturbatlve structure of QCD but are limited by the enor-
t ts that light quarks acauire large. dvnamicaliiCUs computational effort they require and by uncertainties
rum suggests that ignt g N ge, dy ¥n the infinite volume and continuum extrapolations that are

9%eeded to connect with the physical world. Furthermore, the
sector of QCD. Quarks and gluons carry color charge and argnplementation of small quark masses in most lattice simu-

not observed as asymptotic states, occurring only inside colations is computationally very expensive and, as yet, state-
orless bound states, the hadrons. The mechanism for sugf-the-art calculations use light quark masses 6—10 times the
confinement in QCD is still not understood and it is notphysical values, thus necessitating a further extrapolation.
known whether a gauge invariant formulation even existsOn the other hand, the Dyson-Schwinger equations for the
However, in the framework of a quantum theory, physicalPropagators of QCD are continuum based and can be solved
degrees of freedom are necessarily subject to a probab”is»[@qalytlcally in the infrared but must be truncated to obtain a

int tation imolvi itarit d itivity: the physical closed, solvable system of equatic[ﬁs—Q]. Recently, a con-
g‘a?tr%;etﬁéogtégpsﬁzgeu2} aglgDar;h 0%?; I tl)\g )équi[e)ppedy?/:/(i:ti erted effort has been made to combine the strengths of these

" ) L : . wo approaches and quite definite statements on the infrared
positive (semijdefinite metric. Therefore one way to inves- behavior of QCD have emergdd0—13. In this work we
tigate whether a certain degree of freedom is confined is tq apply a similar strategy to explore the analytic structure

search for positivity violations in the spectral representationsf the propagators of QCD from solutions in the spacelike
of the corresponding propagator. Negative norm contribugyclidean momentum region.
tions to the spectral function signal the absence of This paper is organized as follows: In Sec. Il we briefly
asymptotic states from the physical part of the state space eéview the connection between positivity and confinement
QCD and are thus a sufficiefthough not necessargrite-  and outline the method we will use to investigate the analytic
rion for the confinement of the particle in question. structure of the propagator in the timelike momentum region.
Neither confinement nor dynamical chiral symmetry In the third section we investigate positivity violation in the
breaking can be accounted for at any finite order in perturgluon and quark propagators which are obtained as solutions
bation theory. These phenomena can be explored only inf Dyson-Schwinger equations in the truncation scheme of
genuinely non-perturbative approaches such as those pr@&efs.[10,11]. We find clear evidence for positivity violations
in the gluon propagator. The origin of these positivity viola-
tions is a branch point gi?=0, followed by a cut along the
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to reproduce lattice data for the quark propagator. All the fitasvould consider quarks as BRST parent states with quark-
share the property of either a dominant real pole or a pair ofjhost states as daughters, and correspondingly, quark-
complex conjugate poles very close to the real momentunantighost states as a second set of parents and a mixture of
axis. We also show that one can reproduce both the Dysomguark-ghost-antighost and quark-gluon states as a second
Schwinger solutions and the lattice data by various paramtype of daughter state. Thus an investigation of the
eterizations with branch point singularities, rather than poles(non-positivity of transverse gluons and quarks allows us to

We give a summary of our results in the last section. understand in more detail confinement via the BRST quartet
mechanism.
Il. POSITIVITY AND CONFINEMENT In order to complete the proof of confinement in this sce-

nario one must still demonstrate the appearance of a mass

One of the most intricate problems in quantum field theo-gap inV,,,sand the violation of cluster decompositi¢see,
ries is the separation of physical and unphysical degrees @f.g., Refs[15,17] and references thergifor colored states.
freedom. In QCD this problem is directly connected with theBoth requirements are related to the area law in the Wilson
issue of confinement, since we are searching for the mech#sop and, correspondingly, to a non-vanishing string tension
nism which eliminates the colored degrees of freedom fromin the quark-antiquark potential.
the physical subspac#),s, of the state space of QCD. In At this point we note that the basic assumption of the
order to ensure a probabilistic interpretation of the quantuniKugo-Ojima confinement scenario still seems far from being
theory,V,nysis required to be positive semi-definite, whereasproved: BRST symmetry is a perturbative concept and it is
the total state space of QCD in covariant gauges has an imot clear whether the symmetry remains unbroken in non-
definite metric. perturbative QCD[18]. Furthermore, although clear evi-

A possible definition of a positive definite subspace,dence for a linearly rising potential between static quarks has
Vonys: is given in the framework of the Kugo-Ojima confine- been found in quenched lattice simulatideee Ref[19] and
ment scenarip14]. Assuming the existence of a well-defined references therejna mathematical proof of a violation of
Becci-Rouet-Stora-TyutitBRST) charge operatoiQg, the  cluster decomposition is not at hand. Nonetheless, the Kugo-

space of physical states is defined by Ojima confinement criterion in its Landau gauge formulation
has been tested in Dyson-Schwinger studies and in lattice
Vphys={|phyS)IQB|phy5>=0}- (1) simulations. Both methods agree very well even on a quan-

titative level and find a strongly diverging ghost propagator

Given the assumption of a well-defined, i.e. unbroken, globaft Small moment43,10,11,20-2p , ,
color chargeQ?, it has been shown that the physical state  The Kugo-Ojima scenario is one particular mechanism
space Vyns contains only color singlets, i.e. that ensures the proba_bl_hstlc interpretation of the quantum
(phydQ?|phys =0 [14,15. In Landau gauge this assump- theory. Howeye_r, even if it were eventua_tlly shown no; to be
tion, the Kugo-Ojima confinement criterion, can be trans-2PPropriate, it is apparent that there ssme mechanism
lated into the requirement that the ghost propagator shoulhich singles out a physical, positive semi-definite subspace
diverge more strongly than a simple pole at zero momentunf? QCD- This suggests another criterion for confinement,
[16]. namelywo_latlon of positivity I_f a certain degree of fre_zedom
In this scenario, longitudinal gluons as well as ghosts ard!@S Neégative norm contributions in its propagator, it cannot
removed from the physical spectrum of QCD by the BRrsTdescribe a physical asymptotic state, i.e. there is nileKa
quartet mechanisrnsee, e.g., Refl15]). The colored states Lehmann spectral representation for its propagator.
are BRST-quartet states, consisting of two parent and two Within the framework of a Euclidean quantum field
daughter states of respectively opposite ghost numbers. THBeOrY (which is used throughout this workositivity is for-
latter states are BRST exact and thus BRST cldsieg to mulqted in Fgrms of the Osterwalder-Schrader _axmnneef
the nilpotency of the BRST transformatjonThe BRST flef:uon p03|t|V|_ty[23]. (For athprough mathematical formu-
daughters are orthogonal to all other states in the positividtion of the axiom the reader is referred to R¢£s,25.) In
definite subspace and thus do not contribute to physicdf® Special case of a two-point correlation functidn(x
Smatrix elements. The parent states belong to the indefinite ¥), the condition of reflection positivity can be written as
metric part of the representation space and are thus expected
to violate positiv_ity. Members of the eIement.ary quartet re- f d“xd“yT(f,—xO)A(x—y)f(ﬁ,yo)BO, 2
lated to gauge fixing are the ghosts, the antighosts and lon-
itudinal gluons. - . . .
’ l,JAds tﬁegtvL\Jlg psarent states of a quartet belong to the indefiwherﬁf(x'x(’) is a complex valued test function with support
nite metric part of the complete representation space, viold {(X.X0):Xo>0}, i.e. for positive times. After a three-
tion of pos|t|v|ty would provide evidence for the Correctnessdlmen5|0nal Fourier tranSformatlon, this condition |mp||eS
of the Kugo-Ojima picture. For example, positivity violation .
for transverse gluons indicates that transverse gluons are f dtdt’ f(t’,p)A(— (t+1"),p)f(t,p)=0. (3)
BRST parent states with gluon-ghost states as daughters. The 0
corresponding parents of opposite ghost number are gluon- ) )
antighost states with a mixture of gluon-ghost-antighost androvided there is a region arounig=—(t+t’) where
2-gluon states as daughters. A similar construction for quarka (to,p) <0, one can easily find a real test functid(t)
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which peaks strongly at andt’ and thereby demonstrate lived excitation which decays exponentially at large timelike
positivity violation. For the special case=0, the distances. Furthermore, it has been argjd] that although
Osterwalder-Schrader condition, E€B), can be given in causality is violated at the level of the propagators, the cor-

terms of the Schwinger functior(t), defined by respondingS matrix remains both causal and unitary. Such
complex conjugate poles lead to oscillatory behavior in the

dp . .- Schwinger functionA(t). Specifically,
A(t)::J d3xJ ——— e/ tPatX-P)r(p2)
(2m)*

A(t)~e 3'cogbt+ 8). (7
1 (= : . -
:_f dpscogtp,) o(p3)=0, (4y In this case one has negative norm contributions to the
mJo Schwinger function and the effective mass,
where o(p?) is a scalar function extracted from the corre- dinA(t)
sponding propagator. For the propagator of transverse glu- Me () = — T dt ®)

ons, o(p?) is simply given by the renormalization function

times the tree-level expressiorpi/[see Eq(14) below] and  [defined in analogy to the real pole case, E&)], exhibits
we denote the corresponding Schwinger functiondgyt).  periodic singularities. Therefore the associated giftbere
The quark propagator can be decomposed into a scalar andsiany) must be an element of the unphysical subspace. Un-
vector part, der the assumption of an unbroken BRST symmetry, this
L ) ) state must be a member of a BRST quartet, and the corre-
S(p)=:ipa,(p%) + os(p°), (3 sponding excitation is confined.
. : : 2 5 Complex conjugate poles have been found for the fermion
leaving us Wlth.tWO scalar_ functions;,(p“) ando4(p°), to propagators of QED[29], QED, (see, e.g.{30]), and QCD
form two Schwinger functionsd,(t) andA(t). [13,31-35 in a variety of truncation schemes. In a number

Two simple examples for the analytic structure of a ProPa¢ these studies, the authors have discussed whether the ob-
gator in a quantum field theory are a real pole and a pair o erved positivity violations are genuine properties of the

complex conjugate poles. These highlight the parad|gmat|{heory related to confinement or artifacts of the truncation

behaviors of the S_chwinger function, E@). In the follow- . schemeq29,31,36,37. As examined in the following sec-
g, er _alv;/ays d'?CtESSLthe E)rqpaga_ltorts and Ithe fur‘Ct'onﬁon, it is our contention that dominant complex conjugate
fsyv(p 2) 'g ermst 9[. e orer;] Ztk:mt/anant' comp FX nl"no;gen- poles are indeed an artifact of the rainbtvare vertextrun-

um, p=. Lur notation Is such that positive real values, — cation of the qguark Dyson-Schwinger equation and that, at

>0|’ clgrrelspo?th(r)] spacelike momfenta. | . | least in Landau gauge, confinement through positivity viola-
(.) eal pole The propagator of a real, massive, scalalijgn in the guark propagator is not manifest. Complex con-
particle has a single pole on the real timelikg?4<0) mo-

X ) A jugate propagators are also known to be practicable in light-
mer12tum aX|§. In t2h|s case '.[he propagator function is given b one dominated processé88] and have recently been
o(p)=1/(p°+m°) and it is easy to see from E@) that investigated in terms of the solution of the Bethe-Salpeter
the Schwinger function decays exponentially, equation[39]. It has also been suggested that the gluon
propagator may have such an analytic strucf@@&40-42.
This possibility has been investigated in R¢#3,44).

Here, a note on positivity for the propagator of a Dirac
eld is in order. A dispersion relation representation of a
ermion propagator in Minkowski space reads

A)~e ™, (6)

m, is the same as the bare mass occurring in the Lagrangia

However, for an interacting particle, the pole mass can hav

both tree level and dynamically generated contributions. The

real pole corresponds to the presence of a stable asymptotic S(p)= f“dSDpU(S)ers(S) )

state associated with this propagator. This does not imply 0 p2—s+ie '

that this state corresponds to an observable physical particle:

provided the Kugo-Ojima scenario holds, all states belongingind positivity amounts to the requirements thatgor0

to a quartet representation of the BRST algebra are excluded

from thg physical subspacb’p.hys, which _contains only cql— p,(s)=0 and \/ng(S)—pS(S)ZO_ (10

orless singlets. Thus two-point correlations of colored fields

may develop real poles in momentum space without contrakt is obvious that for a free Dirac field of massone has

dicting confinemenf26]. In lattice calculation$1] and other

non-perturbative approach¢a7], the exponential decay in p,(S)=8(s—m?) and pg(s)=mds(s—m?), (12

EqQ. (6) is used to extract hadron masses and other observ-

ables from the large time behavior of appropriate correlatorsand thusy/sp,(s) — ps(s)=0. For an interacting Dirac field
(Il Complex conjugate poleg&nother possible analytic with physical asymptotic states and massone expects

structure for a propagator is a pair of complex conjugateps,(s)=0 for s<m?. Fors>m?, Eq.(10) has to be satis-

poles with “masses’'m=axib. As has been discussed in fied. This requirement is automatically fulfilled if the stron-

detail in Refs[28], such a propagator could describe a shortger constraint

and is positive definite. For a bare propagator, the pole masE
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Mp,(s)=ps(S) (12)  ating functional of the gauge fixed theory because the Gribov
horizon is a nodal surface for the integrand of this functional
holds. integral. Instead, the ghost two-point function has to satisfy
Given the linearity of the different types of integral trans- the so-called horizon conditid®], i.e. the ghost propagator
forms relatingo ,(p?), ps.(S), andAg,(t) to each other, has to diverge more strongly than a simple pole for
one can conclude that,(p?) must be multiplied by a typical —0". This condition(which in the Landau gauge is for-
mass scale before being comparedrt¢p?). Thus, positiv- mally equivalent to the Kugo-Ojima confinement criterion
ity violations can be signaled either in,(p?) alone, or in  discussed in the preceding seclidarns out to be enforced
appropriate linear combinations Ofu(pz) and O-S(pz)_ We by the ghOSt DSES,47,48 and is thus satisfied by the DSE
also consider the Schwinger function associated solely witgolutions in the truncation scheme that we employ.
o4(p?), since it can be calculated with greater numerical A graphical representation of the DSEs for the ghost,
accuracy. In general, oscillatory behavior An(t) signals  9luon, and quark propagators is given in Fig. 1 and their full
oscillatory behavior im,(t) as well. form can be found in Ref3]. In the Landau gaugevhich is
Using the corresponding Schwinger functions, we car'sed throughout this wojkthe renormalized ghost, gluon

search for possible positivity violations and investigate theand quark propagatorg(p, ), D,.(p,u), andS(p,u),
analytic structure of the gluon and quark propagators oféspectively, are given in terms of scalar functions by
QCD. Thet dependencies of these Schwinger functions are
determined by the analytic properties of the propagator, and, G(p? u?)
for larget, are dominated by the singularity closest b De(pp)=——5—, (13
=0. A complementary, direct method of determining the P
analytic structure is to solve the corresponding Dyson-

Schwinger equation over a large region of the complex mo- PP, Z(p?,u?)

mentum plane. However, from a numerical point of view,  D,/(P.pu)=| 6= | — %, (14)
such a procedure is very expensive and is not feasible with P P

the resources currently available to us. Furthermore, there is

good evidence from an investigation of QEDBhat both 1

methods agree very wdlR9]. We are thus confident that the S(p,u)=— 2 2 > 2

Fourier transformation method is able to determine the quali- —IPA(P®, 1) +B(p%,u%)

tative behavior of the propagators. =ipo,(p?,u?) + oo(p2, u2). (15)

To complete this discussion we note that the conversion of
a tree-level pole Into an algebraic branch point W't.h eXPONenh | these propagators are diagonal in their respective repre-
larger thgn one is also known for certain approximations tosentations of SW{.), so their color structure has been sup-
the fermion propagator of Qﬁqgee,_e.g., supplement 8.4 n pressed for simplicity. The dependence on the renormaliza-
Rezf. [4&;:,] alnd /references therginThis type of singularity, tion scale, u, is given explicilly for later use. Here
(pe+m°) >~ “7 is related to the soft photon cloud. The 2 oy L 2> ' )
examples discussed in this secti@aal poles, complex con- G(p, %) and Z(p*,p7) are the ghost and gluon dressing

i P 2 2 2 2
jugate poles, or branch cutwill form the basis of our in- functions, respectively, and(p®, u%) andB(p~, ") are the

vestigation of the analytic structure for the quark and IuonVeCtor and the scalar parts of the inverse of the quark propa-
9 Y q 9 gator. The functions most relevant for our study of positivity

propagators. areZ(p%, u?)/p?, o4(p? u?) ando,(p? x?). Note that the
ghost propagator trivially violates reflection positivity be-
lll. SOLUTIONS OF THE PROPAGATOR DYSON- cause of the way ghosts are introduced in Faddeev-Popov
SCHWINGER EQUATIONS OF LANDAU GAUGE QCD guantization49].

Two renormalization-scale-independent combinations
[)uilt from the scalar functions representing the different
opagators are important for further discussion: First,

In this section we present solutions of the coupled set o
Dyson-Schwinger equatiot®SES9 for the ghost, gluon, and
quark propagators in the Landau gauge and investigate so o PP 5 o
of their analytic properties. In order to keep this paper self- (p%)=B(p",x°)/A(p",u") denotes the renormalization-

contained, we first briefly review the DSE truncation SChemeoomt-mdependent quark mass funct|on_. Seco_nd.,. as has been
developed in Refs[10,11] which is used to determine the demonstrated in Ref6], a non-perturbative definition of the

propagators for Euclidean spacelike momenta, i.e. for rearlunning coupling is possiblg due to the non-renormali;ation
p2=0. It is important to note that the behavior of the propa-2f the ghost-gluon vertex in the Landau gaug®]. This

gators forp?>—0" is extracted analytically. results in the relation

The DSEs for the quark, gluon and ghost propagators are 5 oo 5 o by
derived from the QCD generating functional with gluon field a(p?)=a(u)GAp,u)Z(p*,pe). (16)
configurations restricted to the first Gribov regiet0]. In a
recent work it has been argued that such a prescription ig the following we investigate the fulunquenchedsystem
sufficient to eliminate the effects of Gribov copies from cor-of DSEs and also thguenchedapproximation to them in
relation functions[46]. Furthermore, the DSEs are not af- which quark loops are neglected, removing the back reaction
fected by imposing such a boundary condition on the generef the quarks on the ghost and gluon system.
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A. Truncation scheme Employing asymptotic expansions for the propagators at

Both the quenched and the unquenched systems of ghosfnll momenta, the untrunzcateg ghost and gluon DSEs can
gluon, and quark DSEs have been solved numerically i€ Solved analytically fop®—0" [47]. One finds simple
Refs.[10,11 in a truncation scheme which neglects the ef-POWer laws, with exponents related as
fects of the four-gluon interaction and emplofasaze for
the ghost-gluon and the three-gluon vertices such that two

2 2\ _(n2/,, 2\2k
important constraints are satisfied: the running coupling, Z(p%, %)~ (P )™, (18
a(p?), is independent of the renormalization point and the
anomalous dimensions of the ghost and gluon propagators e
J Joon Propag G(p2 u?)~ (P u?) ", (19

are reproduced at the one-loop level for large momenta. In
order to study the effects of violating gauge invariance by

these truncation assumptions, the gluon DSE has been cogs; the gluon and ghost dressing functions. The value of the
tracted with the one-parameter family of tensors exponentx depends somewhat on the details of the trunca-
tion scheme that is employed. In certain truncations it can be
PO(py=5 V_gpMpV_ (17) calculated analytically and it will depend on the paraméter
r . 2 [10]. The tensorP{{") projects onto the purely transverse
part of the gluon equation, and in this case the soluton
In the Landau gauge, a violation of gauge invariance mani= (93— 1/1201)/98<0.595 has been found in Ref8,9]. By
fests itself in the appearance of spurious longitudinal termsarying 1<¢<4, infrared solutions with exponents in the
in the gluon equation, which in turn introduces dependenceange 0.5 k< (93— /1201)/98 have been shown to connect
of the ghost and gluon dressing functions on the parangeter to numerical solutions for all momenfaQ]. A recent infra-
The influence of these longitudinal terms has been examinegtd analysis of the ghost and gluon DSEs employing the
in Ref.[10] by varying¢ and found to be surprisingly small. most generalnsatzfor the ghost-gluon vertex suggests that
Further technical details of the truncation scheme in thehe exponenk is in the range 0.5 k<1 [8] (which is fur-
Yang-Mills sector are relegated to Appendix A where we alsather restricted to 08 «<<0.7 after constraints on the value
discuss the dependence of our analysis on these d&taiés of the running coupling are taken into accoumk first at-
also Refs[10,11)). tempt to include the two-loop diagrams in the gluon DSE
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also results in very similar values for the infrared exponent bel c A(p? u?) +A(g? u?)
[51] and in Ref.[46] it has been shown that the two-loop V5 ¢(a,p;u) =T (q,p;u) = 5 Yo
diagrams have no effect oa Finally, exact renormalization
group equations have recently been employed in a comple-
mentary investigatio52] of the infrared behavior of the

iB(pz,Mz)—B(qz,Mz)

gluon and ghost propagators with a resulting value«fan * p2—q? (pta),
agreement with those above. These varied investigations all
indicate that the Landau gauge gluon propagator vanishes as s 2 9 2
p?—0* and predict an exponent G:5<0.7. L AL Ak )([b+¢])(p+q)
For the subsequent discussion, it is important to note that 2(p?—q?) !
the exponenk is very likely an irrational number. The rela-
_tion of the_ exponents in _Eq§18) and (19 results in an A(p?,u?) — A(g2, 1?)
infrared finite strong coupling independent of the valuepf 2
cf. Eqg. (16). For transverse projection, the value is given by
«(0)=8.915N.. s 5
The DSE for the quark propagats(p,«) is given by XL(P*=a%)y, =~ (p=d)(p+0),]
p?+0?
2 X 2_42)24+ (M2(p2)+ M?2 2\\2' (23
S X (p,w) =Zo(u2 A2 Sy H(p) + —— Zyp(u? AP)Ce (P"= @)™+ (M(p%)+ M(q"))

1674
R andZ, beirf1_g thﬁ ghost wave functiﬂn re_nqrmalizatio(rjl (r:1on-h
stant, satisfies these requirements. Here it is assumed that the
XJ 697, 8(a,T(0,Pi1)D (ko o), non-Abelian part of theqverteX/,\FAbe'(pz,qz,k2;,u), can be
(20) factored qut f_rom the CDPirac structure, and_ that the Dirac
structure is given byl';"(q,p;u), the Curtis-Pennington
(CP) construction of the fermion-photon vertex in QED
whereZ, andZ, are the quark wave function- and quark- [55,56. Note that the dressing of Fhe Iongitgdinaj part of the
gluon vertex-renormalization constants, respectively, fhd CP vertex is dictated by the Abelian Ward identity

represents a translationally invariant regularization character- —jk TQED u)=5"1 _g1 24
ized by a scaleA. The momentum routing i&=q—p, and pLuapis) (1) @p), (24

the factorCg=(NZ—1)/2N. stems from the color trace of which results, among other things, in the appearance of a
the loop. quark-gluon coupling term proportional to the sum of the
In addition to the quark and gluon propagators, Exf) incoming and outgoing quark momenta,
involves the quark-gluon verteX;,(q,p; ). This vertex is,
in principle, determined by its own DSB3] involving vari- AB i B(p? 1?)—B(9% u?)
ous (h=5)-point correlators. However, the solution of such B,:=i p2—q? (p+a),. (29)
higher-order DSEs is difficult even in the simplest situations
[54] and we avoid the problem by making amsatzfor  Such a coupling, being effectively scalar, may at first sight
I' (q,p; ). As the structure of this vertex turns out to be appear to violate chiral symmetry, as, in contrast to the per-
crucial in our analysis of positivity violations in the quark turbatively dominant vector coupling proportional 49, the
propagator, we explore its construction in some detail. expression(25 commutes withys. However, this scalar
A reasonableAnsatzfor the quark-gluon vertex has to term appears only if chiral symmetry is already dynamically
Satisfy at least two constraints: it should guarantee the mu|br0ken and is thus consistent with the chiral Ward identities.
tiplicative renormalizability of the quark propagator in the Its existence provides significant additioriaglf-consistent
quark DSE, and it should at least approximately satisfy it€nhancement of dynamical chiral symmetry breaking. Such a

non-Abelian Slavnov-Taylor identity. It has been shown inS€@lar coupling also appears in vertices that occur in system-
Ref. [11] that the construction atic improvements on the rainboiare vertex truncation

[57-59. This term will be important in our investigations of
positivity below.

.\ —\/Abel i Abel 12 12 1,2. For comparison, we also employ a construction with a
(@ pi ) =V, A, ) WP, a7 K ), (20) bare Abelian part of the vertex given by
VAP P, ) =Zo( 1 M)y, (26)

with
In both cases the input from the Yang-Mills sector of the

3 theory, i.e. the factors from the dressed gluon propagator and
WAPeln2 02 k2 1) =G2(k?, u?)Z5(n?,A?), (220  the non-Abelian vertex dressing, can be combined to give the
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running couplinga(k?) =g?(u) G?(k?, u?) Z(k?, u?) /47 ac- I e B B
cording to Eq.(16). Thus we arrive at the truncated quark I
DSE

1 _ Nea—1 ZZ(MZ) 4 a(kz)
STH(p.u)=Za(n)S (p)+—3773 fd e

3
N
kM v Abel I i
X\ 6= = | YuS(A, )V, 77(a, P ). i ——- IR-Fit
k=)=~ IR-Fit II
‘== FitI, A=470 MeV
(27) 10'F —— Fit I, A=500 MeV -
- -+-« FitIl ]
In the quenched and unquenched calculations of the quarl T T T
2 . 10 10 10 10 10 10
propagator we take/(k) directly from the ghost and gluon 5
equations. (a) p [GeV]

We also consider the solutions of the quark DSE in the
model calculations of Ref§60—62. There, only the leading
v, part of the quark-gluon vertex has been employed and the
combination of the gluon and vertex dressing needed in the i
guark DSE has been modeled phenomenologically. With 2
Ym=12/(1IN.— 2N;) being the anomalous dimension of the
guark propagator, we follow the authors of Rgl] and use

the model ";ﬂ ~~~~~~~~~~
r lattice, N=0 T
1_ p —
- { —— DSE,N=0
algd®) 20— 202 L F f
— :_qu e i —— DSE,N=3
q @ - 1 == FitL, A=470 MeV
) -—= Fit I A=500 MeV ]
Tyml 1—exp —g%/m)] 28 ; . FitT 1
, (o) UL P T 6§ gy pgn
21I 2 (14 QAL )2 % 1 2 3 4
q E n[e - +( +q QCD) ] (b) p [GeV]

FIG. 2. The solutions of the quencheld;&0) and unquenched
with Agcp=0.234 GeV in the modified minimal subtraction (N¢=3) coupled DSEs for the gluon dressing functi@(p?), are
scheme, Ny=4 and the parameteran,=1.0 GeV, w  shown. The unquenched case with three massless flavors is com-
=0.3 GeV, andD=0.781 GeV fixed by fitting the chiral pared to different fitgsee text for details of the fitsin the upper
condensate and pion decay constant. Omitting the perturb&anel these are displayed on logarithmic scales; in the lower panel,
tive logarithmic tail, we also compare with the model of Ref. on linear scales. Results from quenched lattice calculaféBlsare
[62], using a purely Gaussian interaction given in the lower panel.

B. Results for the gluon propagator for Euclidean momenta
In Fig. 2 we display the numerical results for the gluon

o
> —Gque_qzl‘"z, (290 dressing function calculated with zefquenchedl or three
a ® (unquenchedflavors of massless quarks and transverse pro-
jection, =1 [cf. Eq. (17)], taken from Ref[11].} In the
with ©=0.5 GeV andD =1 Ge\~. diagram in the lower panel of Fig. 2, the DSE results are

Despite the fact that these models for the effective intercOmpared to results from quenched lattice Monte Carlo

action were designed to be used in combination with a barglmula_tions[63]. 'I_'he quenched DSE results are seen to agree
vertex, we also use them in conjunction with the CP vertexwe” with the lattice data. In contrast, the unquenched DSE

cp . gluon propagator is significantly suppressed in the interme-
T, By comparing thg quark propagators that result fromdia’ce momentum region where the screening effects of
employing either direct input from the ghost and gluon SeCtorquark-antiquark pairs become important. For bth-0 and

or the model forms, Eq$28) and(29), we are in a position 3 there are two qualitative properties that we can extract
to test whether the analytic properties of the quark propagarom these results: the analytically calculated infrared behav-

tor are more sensitive to the global strength of the quarkior given by Eq.(18), and a maximum around 1 GeV, fol-
gluon interaction, to the overall shape of tteffective) run- ——

ning coupling, or to the details of the tensor structure of the !As can be inferred from Ref§10,11], changing the projection of
quark-gluon vertex. First, however, we will discuss the re-the gluon equation in the rangesk' <4 leads to only quantitative
sults of the numerical calculations for the gluon propagatorchanges in the gluon and ghost renormalization functions.
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lowed by relatively flat momentum dependence above this I L L
scale. o
The behavior of the gluon dressing function in the infra- oL % f

red is captured by either of the irrational functi®ns — DSE,Ni=3
i ——— IR-FitI
(p?)%* A N IR-Fit Il

(AP)?+(p?)>’ %0

2 2K
i ) , (31)

Af +p?

Zir(pZ):WI

Ia, (0|

ZH(DZ):WH

which are exact in the infrared limjitf. Eqg. (18)] and which
play a role when it comes to the interpretation of our results
for the gluon Schwinger function)y(t). The value for the
exponentk=0.595 in these fits is taken from the infrare
analysis of the DSEs. Note that far—1, the form of Eq. LT e
(30) becomes identical to the Gribov form proposed in Refs. A
[40,64]. The normalization parameters,, w, and scales
Ay, A, are chosen such that the Schwinger function of the
(£=1, Ny=3) numerical gluon propagator is reproduced by
the Fourier transforms of the fitthe values of these param-
eters are given belowOur fits with these irrational func- <,
tions Z', (p?) are shown in Fig. 2 and clearly reproduce the < | ]
behavior of the DSE gluon propagator for very small mo- . ;
menta but deviate significantly from the dressing functions at 2| i
momenta above-400 MeV. : !
To describe the behavior for larger momenta, we multiply

d (a) \ t[1/GeV]

— DSE, N;=3
-~~~ FitI, A=470 MeV 3
; = Fit 1, A=500 MeV ]

: i it - FitII
the functions }f,,(pz) by a function incorporating the I i
known ultraviolet behavior. To this end we note that in Ref.  10°—~————=—"———F 5535
[11] the numerical running coupling has been fitted by (b) t [1/GeV]
, a(0) . p2 1 FIQ. 3. Thg results for the ab;olute value of. the gluon
aq(po) = > - > 5 Schwinger functionAy(t), corresponding to our numerical results
1+p%Agep  Bo pP+Adep \ IN(PY Adep) from the DSEs are shown and compared to the fits in the infrared
) (upper panegland the overall fit§lower panel. The spikes mark the
AQCD time scales where the Schwinger functions cross zero and negative
—_— 32
B pz_AcngD ) (32 norm contributions appear.

—4Ny). The quality of these fits can be seen in Fig. 2. For a
In this expression the Landau pole has been subtracted as hgigcussion of the parameters used, see below.
been suggested in the framework of analytic perturbation Employing a numerical Fourier transform routine, we can
theory[65]. The valuea(0)=8.915N, is known from the  now calculate the Schwinger functiofy(t) [defined by Eq.
infrared analysis angBy=(11IN.—2N¢)/3. Using a MOM  (4)], for the numerical solutions of the gluon DSE and for the
(momentum subtractionscheme and fitting only the ultra- various fits. The absolute values of the numerical Schwinger
violet behavior, a valué\ 5cp=0.71 GeV has been given in functions forN¢= 0,3 (using transverse projectiaf=1) are
Ref.[11]. displayed in Fig. 3. The spikes mark the time scales at which
Identifying A, ;; = A qcp for simplicity, we utilize the fits the Sphwinger fun.ctions cross zero and negative norm con-
tributions appear in each gluon propagator. One notes that
Z |.(p2)=Zir,,(p2)aﬁ}7(p2) (33 the Schwinger function in the quenched approximation dif-
‘ ' fers visibly from that for three flavors, despite the similarity
of the corresponding gluon dressing functions for Euclidean
momenta[11]. In particular, the typical time scale, marked
by the zero of the Schwinger function, decreases from 5.2 to
4.4 GeV !. We have also explicitly checked that different
5 o choices for the projection of the gluon equation and other
From here on we sh_aII suppres_s _the renormalization scale depeﬂﬁinor details of the truncation scheme lead only to minor
dgnce(""he”e"er possibjefor concision. _quantitative alterations(see Appendix A All gluon
In Ref. [11] two additional parameters andb were used with  gchwinger functions we have calculated from the results of
a=1.020 andb=1.052. As the deviations from unity are com- the coupled DSEs show the same qualitative behavior, thus
pletely insignificant we have fixed=b=1 here. demonstrating that neither the details of the projection in the

for further investigations, using the one-loop value of the
gluon anomalous dimension;y=(—13N.+4N;)/(22N,
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gluon equation nor the feedback @ small number 9fdy-  cause of the infrared singularity of the ghost propagator, we
namical quarkshave any significant influence on the overall expect a cut on the timelike momentum axis coming from
analytic structure of the gluon propagatdfe clearly observe the ghost-loop contribution to transverse gluons. As the ghost
positivity violations in the gluon propagatorhis is the first  loop is the infrared dominant contribution in the gluon equa-

major result of this work. tion and therefore determines the infrared behavior of the
gluon propagator, it is instructive to discuss the infrared fits
C. Analytic structure of the gluon propagator to the gluon propagator first. The infrared fif Eq. (30)]

contains a branch cut on the negatjeaxis while the de-

. In the following we aim at an interpretation of our result'_s nominator contributes a pair of complex conjugate singulari-
in terms of the analytic structure of the gluon propagator iNies at

the timelike momentum region. As a first step we demon-

strate that the infrared behavior of the gluon propagator, i.e. 2 \2g*im(26) (35)
the behavior forp>—07, is responsible for the non-trivial P ! '
analytic structure. To this end, in the upper panel of Fig.
the numerical results for the gluon Schwinger functfmith
(=1, N;=3) are compared to the infrared fits, E¢30) and
(31). The fitted parameters akg, =2.5, A;=400 MeV for _ . i
IR fit I, Eq. (30), andw,,=2.7, A, =420 MeV for IR fit Il lim (D, (p?)— D, (p? )} = —2iw sin(2mk)p=*

Eg. (31). As we observed earlier, the fits agree with the nu- " '~ P 1(p= A2 1+2p2cog2mi)+p*’
merical gluon dressing function only in the infrared momen- (36)
tum region. Nevertheless, in Fig. 3 we see that the agreement

of the numerical Schwinger function with the Fourier trans-, i, o
forms of each of these fits is excellent. It appears that th
details of the intermediate and large momentum behavior g
the gluon propagator have little or no influence on the quali- In the infrared fit Il [Eq. (31)] the numerator and the
tative analytical structure of the propagator in the “nearby” denominator conspire to broduce one Scaver p2e (0
timelike momentum regime. In particular, the change in cur-_Az) For the discontinuity we havEnow for p2 = (~ '
vature at the bump of the gluon dressing function at a scalgﬁ. ”A'Z y P P
of ~1 GeV is not an important feature in this regard. In fact—'e) il
the crucial property of the gluon propagator is that it goes to

zero for vanishing momentum. This can be seen easily as the . ’ 2y~ 2oy sin2mK)p Tt
relation E'TO{DH(F)Q_DH(F)J}— A|2| (1— )2~

3The discontinuity across the negatip axis is easily calcu-
lated. Writingp? = (—p*ie)A? one obtains

(p?)=ZI"(p?)/p?. This discontinuity rises from zero
t p=0 to a maximum at the area of the pole locations and
hen rapidly decays as becomes larger.

(37)
0=D(p:0):f d*xD(x) (34) _
with D, (p?)=2Z|(p?)/p? and for 0<p<1 only. This rap-

[with D(p) =Z(p?)/p?] implies that the propagator function idly diverges ap?| — A (i.e. p—1) and then drops discon-
in coordinate space)(x), must contain positive as well as tinuously to zero: there is no discontinuity fpf<—Af .
negative norm contributions, with equal integrated strengths. Whereas the location of the singularipf= —AZ in the

For fit | [Eq. (33)] we have used two parameter sets, infrared fit Il is independent of the value of the exponent
=2.4, Agcp=500 MeV andw,;=2.0, Aqcp=470 MeV. the location of the complex conjugate singularities of IR fit |
The first parameter set fits the gluon renormalization funcas well as the magnitudes of the cuts in both fits depend on
tion better(especially in the ultraviolg¢tand the second set is and therefore on the truncation scheme. Although the exact
optimized to fit the Schwinger function. For fit[Eq. (33)]  value of x depends on the details of the truncation, various
with the parameters; = 2.5 andA ocp=510 MeV both the methods suggest that the exponenis in the range 0.5 «
gluon renormalization function and the Schwinger function<1 [8-10,53. It is exactly this range which corresponds to
are fitted very well. As the infrared fits | and Il already re- the pair of complex conjugate singularities in IR fit | being
produce the gluon Schwinger function it is no surprise thalocated on the first Riemann sheet in the left half of the
the complete fits, Eq(33), do even better; see the lower complexp? plane. In the limiting cas&=0.5, one obtains
panel of Fig. 3. As already stated, for the sake of simplicityone real pole on the negatiye axis in both fits, and in the
we have used only one common scalg,cp, for the infra-  other limit, k<=1, IR fit | corresponds to a pair of purely
red and ultraviolet behavior. imaginary poles, i.e. exactly the form proposed in Refs.

We are now in a position to deduce the possible analyti¢28,40,64.
structure of the gluon propagator. We first observe that be-

®Note that we have decided to take the ratio first and then we raise
“The infrared p?—07) behavior of the Yang-Mills sector of it to a non-integer power. Having this non-integer for the numerator
QCD is unaffected by the appearance of chiral quarks as long as trend the denominator separately would lead to two overlapping
number of flavors is small enough to be in the confining and chirabranch cuts. However, we consider this an unnecessary complica-
symmetry breaking phase of Q1] tion.
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To discuss the analytic structure of the full fits, E§3), existence of power laws in generalized truncations that in-
we must also look at the analytic properties of the expressionlude the four-gluon interaction. The power law behavior at
for the running coupling, Eq32). The Landau pole at space- small Euclidean momenta induces a cut on the real negative
like p2=AéCD has been subtracted, so expresdi®?) has p? axis, as can be seen clearly from our infrared fits. It is this
singularities only on the timelike real axis. The logarithm cut which causes the observed pattern of positivity violation.
produces a cut on this half axis, and the corresponding disBy fitting the gluon propagator for all Euclidean momenta
continuity vanishes fop?—0~, diverges atpzz—/\éco and the corresponding Schwinger function we are able to
and goes to zero fqu?— . In the fits | and II, Eq(33), the  describe the gluon propagator with fit Il, E@3), which has
running couplingd Eq. (32)] is raised to a non-integer power o singularities in the complep® plane except for a cut on
and multiplied by the infrared fifEqgs.(30) and(31)]. Thus, ~ the negative real axis.
fit | also has a pair of complex conjugate singularities, at the Note that this fit contains essentially two parameters: the
same locations as those in H80). On the other hand, fit I overall magnitude which, because of renormalization proper-
has no non-analyticities other than the cut on the negativéies, is arbitrary, and the scale\gcp. The infrared expo-
real axis. The discontinuity corresponding to the cut of thenent, x, and the anomalous dimension of the glugn,are
combination of the different factors in fit Il is always posi- not free parameters is determined from the infrared prop-
tive, vanishes fop?—0~, diverges ap?= —AéCD to + o erties of the DSEs and the one-loop value is usedfor
and falls to zero fop?— — . Therefore, we have found a parameterization of the gluon

It is interesting to note the scale at which positivity vio- Propagator which has effectively only one physical param-
lations occur. From Fig. 3 we determine that the zero crosseter, the scale\qcp. Combined with the relatively simple
ing appears at~5 GeV l~1 fm. This is roughly the size analytic structure of fit I, EC{(33), this giVGS us confidence
of a hadron and therefore the correct scale at which gluothat we have succeeded in uncovering the most important
screening should occur. One might speculate whether thi¢atures of the Landau gauge gluon propagator.
represents an inherent, gauge invariant s@ehe locations
of propagator poles are protected by Nielsen ident[i&s),

which is generated in the renormalization process. The pure D. Resullts for the quark propagator
power lawZ(p?) = (p?)**, which solves the system of DSEs  In Fig. 4 we display the mass functionM(p2)
in the case where the renormalization pointis shifted to  =B(p?)/A(p?), and the wave function renormalization,

asymptotic values, is in perfect agreement with the scale inzf(p?)=1/A(p?) (note the superscrigitwhich differentiates
variance of the underlying theory, corresponding to an infithis function from the gluon dressing functiprof the quark
nite mass gap. Thus it is obvious that we can deduce thgropagator in the chiral limit, obtained from the coupled
existence of a cut from the pure power laws, but we cannoguark, ghost, and gluon DSE$1]. We show quenched\;
extract the related scale. This scale emerges from an intet= 0) and unquenched\;=3) results employing the gener-
play of infrared and ultraviolet properties of the theory, i.e.alized CP vertex, Eqg21)—(23). We also display the same
the transition of the gluon propagator from the infraredfunctions calculated in the quenched approximation with the
power law to its perturbative ultraviolet behavior. bare Abelian part of the quark g|uon vertex, Ej_?ﬁ) On the
Before concluding this subsection we comment on whatyclidean real axis, both vertex constructions lead to quali-
lattice Monte Carlo simulations say about positivity violation tatively similar but quantitatively quite different results. The
in the gauge boson propagator. For unquenched QCD, notliare vertex approximation does not give enough chiral sym-
ing is known because the gluon propagator has not yet beefietry breaking and is clearly disfavored by recent quenched
calculated with dynamical fermions. The pure Yang-Mills |attice datd72,73 (also shown in Fig. ¥ On the other hand,
gauge propagator has been calculated on the lattice for ajhe results for the more elaborate vertex construction are well
most twenty years following the pioneering work of Man- within the region suggested by the lattice calculations.
dula and Ogilvig[67]; see, e.g., Ref§21,22,63,68 and ref- The quantitative difference between the DSE solutions us-
erences therein. However, explicit observations of positivitying the bare vertex and the CP vertex turns into a qualitative
violation have been elusive as statistical errors and finite volgifference for the corresponding Schwinger functions. The
ume artefacts cloud the issue. Nevertheless, many hints ®ourier transformed scalar parts of the different quark propa-
negative norm contributions in the gluon propagator havgyators,A(t), are shown in Fig. 5. Similar results are ob-
been reviewed "ﬁ69] Clear measurements of pOS|t|V|ty vio- tained for the vector parts of the propagatm'§(t), though
lation have been made for the case of SU[2)] and for the  they are numerically less accurdtés in the case of the
?7“13)” propagator in three-dimensional Yang-Mills theorygluon propagator, we plot the absolute values of the
Summarizing, the Landau gauge gluon propagator, as t———
results from the solution of coupled DSEs, displays positivity 6tp4t s, it is determined via the choice of the renormalization
violations. This is in accordance with gluons being confinedscaley, and the normalization conditioB2(u2, 12)Z(u2,u2) =1.
The infrared behavior of the gluon propagator is analytically 7 the chiral limit, the scalar part of the propagatey(p?), falls
determined to be a power law. It has been demonstrated igff as 1p*, up to logarithmic corrections, because the function
Ref. [8] that this behavior is stable under a broad range oB(p?) falls off as 1p?, whereaso,(p?) falls off as 1p2. This
possible dressings of the ghost-gluon vertex. Furthermoramakes the Fourier transform of the scalar part easier to calculate
strong arguments have been presented in R] for the  numerically.
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FIG. 5. The upper diagram displays the absolute valu& £f)
employing the bare vertex construction in the quark DSE. The
spikes correspond to zero crossings of the Schwinger function.
These are absent in the lower diagram where the results with the
full CP vertex, Eq.(21), are considered. The chiral limit results are
shown forN;=3 andN;=0, together with the fits to the Schwinger
function of the quenched DSE solution. Furthermore we compare to
Schwinger functions on a logarithmic scale. The results ira calculation with only the two most important terms of the quark-
the top diagram are obtained employing the bare Abelian pagluon vertex.
of the vertex, Eq.(26). Clearly these solutions exhibit the

oscillatory behavior of Eq(7), which is characteristic for a (gimosj on the real timelike axis, with an imaginary part of
propagator with a pair of complex conjugate “masslike” sin- o¢ ot 894 of its real part. The best fit is obtained for a real
gularities. Af|t of the expression in EQ?_) to our result gives mass singularity amg;,,=0.50 GeV. For both the bare and
the locations of these singularities amnsing=(209 the CP vertices, the deviation of the fits from the data at

+101) MeV. small time scales suggests that there is additional structure in

A completely different picture is obtained from the : : .
Schwinger functions constructed using the CP vertex, Eq;[jjhoer?o?E:;tll;jrtéor:/\\;(\;hls%ghhien\%n;%;%mtﬁi];[tiér?ségg? a|(1/d(7)]

82.3)] as can lt;efse(irr]\ in the Ior\]m(ajr dlagr_ag1 of I;|g€k.]5.Aga|nfwe By turning on and off the different contributions in the
N'SE gy Le.SL: S ork quyrl\lerlcoe Ca?le’* 'lfm € ?aslft? vertex construction of Eq.23), we have identified the term
1= chiral quarks. FON, =5 We also make useé of a 1o -, yich js responsible for the qualitative differences between

the ”‘”r!‘”g coupling as described in detail i'n F.{Gm; fqr the left and right diagrams of Fig. 5. In addition to tfaemi-
all practical purposes the results are almost |nd|st|ngwshablﬁam) vector part of the vertex

from those obtained with the numerica(q?) as a solution
of the ghost-gluon DSEs. We find no traces of negative norm ’ ’

contributions, and in all cases, a fit of the oscillatory form of SA ::A(p )+AGY) y (39)
Eq. (7) to our results indicates that there is a singularity m 2 me

FIG. 4. The quark mass functiok](p?), and the wave function
renormalizationZf(p?), from quenchedN;=0) and unquenched
(N¢=3 chiral quarkg DSEs[11]. Results for the generalized CP
vertex, Eq.(23), and the bare vertex construction, Eg6), are
compared with quenched lattice data in the ovef#q] and Asqgtad
(tadpole improved staggeref73] formulations.

014014-11



ALKOFER et al. PHYSICAL REVIEW D 70, 014014 (2004

TABLE I. Results for the fermion pole masses in the chiral limit for different interactions, as extracted
from the behavior of the corresponding Schwinger functions. The quark masses are given in GeV, the QED
results are given in units of the UV cutoff, and are obtained witlh=1.2 for the bare vertex and
=1.06 for the CP vertex. The errors are estimates of the total numerical error; the numerical error in the case
of a real mass singularity is dominated by the fact that, on a logarithmic scale, the Schwinger functions are
not perfect straight lines.

Bare vertex EAM+ABH term CP vertex
YM «a(k?), unquenchedN;=3 0.21(1)*+0.102)i 0.483) 0.503)
YM «a(k?), quenched I§;=0) 0.21(1)*=0.102)i 0.483) 0.503)
Fit A of Ref. [11], quenched 0.209)*=0.1012)i 0.483) 0.503)
Fit B of Ref.[11], quenched 0.16@)+0.0742)i 0.423) 0.423)
Maris-Tandy mode[61], Eq. (28) 0.551)*0.3216)i 0.966) 1.1(1)
Gaussian moddl62], Eq. (29 0.531)*=0.1673)i 0.834) 0.836)
Quenched QEDin units of 10 3A) 1.796)*0.432)i 1.51(9)

the presence of the scalar couplidd,,, Eq. (25, in the  these models are given in Table I. For the model interaction
quark-gluon vertex is crucial for the substantial change in thé=q. (28) we agree with the estimate for the singularity closest
analytic structure of the quark propagator compared to theéo p>=0 given in Ref[74] based on a Taylor series expan-
truncation keeping only the vector part. Such a scalar terngion of the quark propagator functions, confirming that we
introduces additional feedback in the scalar self-energy, angan indeed extract the location of the first singularity via the
its presence considerably enhances the amount of dynamicgthwinger functions. Finally, we checked the truncation
chiral symmetry breaking generated in the quark DSE. BY¥scheme of Ref75] where a model interaction with an infra-
varying the strength of this term compared to the leadinge finite coupling was employed together with a bare quark-
2 A, piece of the vertex, we find that a reduction of this termgluon vertex. In this case we also found a pair of complex
by about 20% is enough to again generate positivity violatonpjugate poles as could be expected.
tions corresponding to dominant complex conjugate singu- Another interesting property of expressié®b) is its in-
larities. _ o sensitivity to explicit chiral symmetry breaking, i.e. a current
The question of positivity violation does not depend onquark mass. The contributions from current quark masses to
the details of the input from the Yang-Mill&YM) sector of  the functionB(p?) are almost momentum independent and
QCD. We obtain quantitatively similar results for the un- therefore cancel quite accurately in E85). The Schwinger
quenched case withi;=3 chiral quarks, for the quenched fynctions become steeper with increasing quark mass, but
approximation with the running coupling taken directly from show no signs of positivity violation, even for current quark
the Yang-Mills DSEs and for different models for the run- masses as large as a few GeV. For a detailed comparison of
ning coupling[11]° As a check, we also employ the model the mass dependence of the Schwinger functibg@) and
interactions given in Eqs28) and (29). Again we obtain A,(t), we scaleA,(t) by the pole massig;,q [extracted
evidence for a pair of complex conjugate singularities wheryom the exponential decay . ,(t)], and plotA(t) and
a bare vertex is used and a singularity on the real ymehke;nsingAU(t) as functions of the dimensionless variabig,, 4t
momentum axis once the additional scalar coupling is takef Fig. 6. This reveals that the only mass dependence is in the
into accounf Our results for the pole masses obtained Ncyurvature ofA((t) at smallmg;,t: with increasing current
quark mass the amount of curvature decreases.
How can we understand this curvature that is present in
8We have even arbitrarily changed(0) from its value 2.97 in A4(t) but not inA(t)? A possible origin could be the fact
these fits. Dynamical chiral symmetry breaking occurs 4¢0) that the functioms(pz) drops off as 1014 in the chiral limit
> it With agi; being slightly below one. Fow(0) in the range while o (qz) decreases asq_zl_ As can be seen from E¢p),
orir=<@(0)<10 we .found no evidence for positivity violation 5 singlev real pole on the negative momentum axis results in a
when the CP vertex is used. pure exponential decay of the corresponding Schwinger

Note that a similar result was found in the model study of Ref. i H the Schwi functi f h
[43] where a Stingl-type gluon propagator model was employed irfunC lon. However, the schwinger tunction ot a propagator

the quark DSE together with a quark-gluon vertex consisting onlyWith two poles is
of the Abelian Ball-Chiu and Curtis-Pennington type structures

[55,56]. In this study the absence of complex singularities in the

quark propagator was attributed to the vanishing of the employed 1 (o 1 1
model gluon propagator at zero momentum. This interpretation _J dpcogtp) —— ——
seemed to be supported by a study using the same propagator and a mJo p2+m? p?+A?
bare vertex which also finds real polg®t]. However, the present

study clearly demonstrates that for a sufficiently strong interaction 1 1 1
the crucial reason for this absence of complex singularities lies in = | _—eg Mm_ —eAt), (39
the quark-gluon vertex. 2(A2—m?)\m A
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(a) msingt [dimensionless] t [103/A]
——— FIG. 7. Results for two different vertex constructions in QED
| For ease of comparison we employed two different values for the
\\ coupling, i.e.«=1.2 in the case of the bare vertex amek 1.06 for
St the case of the CP vertex.
< pling of sufficient strength leads to a positive definite quark
O-1¢ ] propagator with a singularity on the timelike real momentum
P— 050 Gev axis.As our quark-gluon vertex has been constructed as an
----- chiral ; m_._ =0.5 e . . .
sing Ansatz we do not have model independent information on
m,=5MeV; m, =052 GeV the relative strength of the different tensor structures in the
------- m =0.1GeV;my =078 GeV true quark-gluon vertex. Our assumption has been that all
---- m=10GeV:m =2.0GeV non-Abelian corrections can be accounted for by an overall
—o- m=40GeV;imy =52GeV factor multiplying an Abelian construction for the tensor
00T ———— wl“ — structure of the verteksee Eq.(21)]. This factorization as-
) m,, ¢ [dimensionless] sumption has been tested in a recent investigation of the

quark-gluon vertex in quenched lattice QCD and was found
FIG. 6. The dimensionless Schwinger functiong, A, (t) (8 0 be valid only at a qualitative levgr6]. However, as yet
and A(t) (b) as functions ofmg;,gt, where mgj,q is the “pole ~ NO definite statements can be extracted from the lattice cal-
mass” as determined by the exponential decay of the Schwingegulations as they are performed in only two special kinemati-
function for different current quark masses,, renormalized at cal situations, whereas in our calculations the vertex is
#=10 GeV. probed over the whole range of momenta. Further investiga-
tions are necessary to determine the relative strengths of the

and for A somewhat larger tham, this could lead to the Various components of the vertex in a model independent
observed curvature at smallThis, in combination with the ~Manner. _
fact that this curvature tends to decrease with increasing cur- !N QED, however, we encounter a somewhat different
rent quark mass, suggests that this curvature is related to tigduation. The vertex construction is more constrained than in
:|_/p2 falloff (up to |ogarithmic Correctior)g)f M(pz) in the QCD as the Iongitudinal part of the CP vertex, the Ball-Chiu
chiral limit. However, there are other mechanisms that could/ertex[56], is exact and the relative strengths of the three
generate such curvature as we will discuss in more detail ifPngitudinal Dirac structures in the vertex are uniquely de-
the next section. termined by the Ward identity, Eq24). The results for the
Comparing the two panels of Fig. 6, we also see thafermion propagator in quenched approximatjen(q?) = a,
A(t) approachesng,gA,(t) from below for all values of constantin the chirally broken phase of quenched QED are
the current quark mass. In other words, we find tlwdthin ~ very similar to those of QCD. Again, we find a fermion
numerical accuragymgingA,(t)>A4(t) for all t. Based on propagator that satisfies positivity as long as it is calculated
the constraint for the spectral decomposition, @@), thisis  with a vertex obtained from the Ward identity but violates
what one would expect for a propagator describing a Diragositivity if a bare vertex is used. The Schwinger functions
field with asymptotic states. Thus, within this approach thereare shown in Fig. 7 and the deduc@dmpleX pole masses
are no signals of positivity violation in the non-perturbative are included in Table I. Of course, it remains possible that the
quark propagator. transverse parts of the exact vertex conspire to lead to posi-
Considering these findings, we state the second major reivity violation again. However, this is unlikely, in particular
sult of this work:the presence of a scalar quark-gluon cou- in QED where one has no confinement.
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IV. ANALYTIC PROPERTIES OF THE QUARK np 2r-(p2+a-2— b-2)
PROPAGATOR FROM PARAMETERIZATIONS o, (pH=2,> ' LT (41)
. . _ _ =1 (p*+al—b})?+4a’h?
In this section we explore the possible analytic structure
of the quark propagator in more detail. Here we also consider " or g (pP+al+b?)
the available lattice data for the quark propagator and inves- Us(pz):Z£12 : (P iV (42)
=

tigate whether it is possible to obtain information on the =1 p2+aj2—bj2)2+4afbf'

analytic structure of the propagator by fitting these data, the

DSE solutions, and the corresponding Schwinger functionsn terms of these quantities, we can construct the usual renor-

with different parameterizations of pole locations and/ormalization point independent mass functioM(p?)

branch cuts. The singularity on the real momentum axis may= US(pZ)/gv(pZ) and the wave-function renormalization

be accompanied by additional real singularities at largezf(p?)=[p?+M?(p?)]o,(p?). In order to make contact

mass scales or by complex conjugate singularities with avith lattice data(where the finite lattice spacing leads to a

larger real part of the mass, or it may be the starting point omaximum possible momentymwe renormalize atu?

a branch cut on the negative real momentum axis. In the next 16 Ge\~.

two subsections we explore these possibilities. There are various restrictions we can impose on the pa-
rametersr;, a; andb; in the meromorphic form, Eq40).
These arise from its mathematical properties, from experi-

A. Meromorphic parameterizations mental observables and from recent lattice data. Asymptotic
freedom requires that quarks behave like free particles at

The most rigorous constraint on the non-perturbativ . . e
quark propagator is that it must reduce to a free fermio?large mo”.‘e”t‘?- Consideration of the large momentum limit
ol o,(p?) implies that

propagator at large momenta because of asymptotic freedo
This entails that the propagator functiong,(p?)—0 for N
|p?|—< in all directions of the complep? plane[77]. Ad- EP o
ditionally, the theory of complex functions tells us that if =
o,(p?) ando4(p?) are not constant, they cannot be analytic

over the whole complex plane: non-constant, entire functiongince we are working in the chiral limit, the mass function,

which are analytic at all finite points in the complex plane (p?), must vanish for large spacelike real momenta. This
are already excluded by the asymptotic properties of thentails that®

propagator functions. From the truncated set of DSEs ex-

plored in the previous section, we found the dominént np

terms of the Schwinger functigrstructure to be either a > r.a=0. (44)
singularity on the negative reaf axis or a pair of complex =

conjugate singularities in the left half of the complex

plane. In both scenarios the poles are accompanied by addfurthermore M (p?>— + ) must be real and approach zero
tional undetermined structures which are responsible for thérom above.

small time behavior ofA¢(t). Guided by these results we  Asymptotically, the chiral limit mass function behaves as
first consider parameterizations of the renormalized quark78]

propagator using the meromorphic form

1

5 (43

PP 27727m _<EQ>

np . . M(p?) —
-1 rJ rJ P N 1
S(P=2; Z + . (40 ¢ Em(pz/A(ngD)

, ——+ - , 2
=1\ip+a;+ib; ip+a;—ib; P

1-ym» (45)

with np pairs of complex conjugate poles located at where(qq) is the renormalizgtion_-point-in_variant chiral con-
+ib; with residues’; . This form includes the possibility of densate. Although the logarithmic behavior of E4g) can-
complex conjugate as well as purely real poles, but enforced0t be reproduced by these simple meromorphic fits, the
neither of these from the outset. Similar simple parameterlogarithm is a slowly varying function and we estimate the
izations were considered in R¢B9]. condensate by fitting the mass function with E45) over

In the following, we use physical constraints as well asthe rangep?e (10°,1¢°) using A qcp=0.5 GeV and the ap-
lattice data to fix the position of the various singularities. ThePropriate 1-loop value ofy,,=12/33 for Ny=0. We then
only practical restriction on this procedure is in the number@quire that this condensate extracted from our meromorphic
of parameters that can be pinned down. As further simplifipropagator agrees with the phenomenological valge)
cations, we assume that the residugs, of these poles are =—[0.275(75) Ge\.
real (although this is not a strict requiremernd consider
only the chiral limit.

For the propagator functionsr,(p?) and o,(p?), the 19f we move away from the chiral limit, the right-hand side of Eq.
form Eq. (40) simplifies to (44) is replaced by the renormalized current mass.
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In order to be phenomenologically applicable, the propaimate width of the region of large dynamical mass generation,
gator should reproduce the pion decay constant to a reasoa, [defined byM (w?) =M /2], are robust against the effects
able accuracy. To calculate this, we employ the approximaef quenching(within substantial errojs With this in mind,
tion [53] we require that our parametric fits are in reasonable agree-

ment with the extracted values df, Z{) andw . That is,

2 Ne (A% zM(pz) 2 2 f
2=7,— |V dppto | o, (PR oy(p?) Mo=0.3510) GeV, Z/=0.62), w =0.72) GeV.
47cJo Z (p ) (47)
2 2 2 _
L do,(P7) 5 2dos(P7) 46)  Note that(qq), f, and these three parameters are obviously
2 2 O.S p O-U(p ) 2 1 .
dp dp not entirely unrelated.

Given the number of independent constraints we can im-
which incorporates only the effects of the leading DiracPose, we can reasonably expect to be able to determine only
structure of the pion Bethe-Salpeter amplitude in the chirafive or six parameters. This impligg,<3 in Eq. (40). We
limit. From a comparison of the relative sizes of the pionfind that three paradigmatic cases satisfy the requirements of
Bethe-Salpeter amplitudes in model calculatif$®,62, one  Egs. (43)—(47): three purely real polegdenoted 3R two
concludes that this approximation should lead to an underegairs of complex poleg2CC), and a real pole plus a pair of
timation of f by 10-20%" In our meromorphic fits we Ccomplex conjugate pole€lR+1CC). In order to construct
therefore demand that E¢6) givesf,~0.08(3) GeV. the best fits for each of these forms, we first impose the

The Landau gauge quark propagator has been investigat&imple constraints of Eq$43) and(44) to reduce the number
on the lattice by a number of different groups using meanof parameters to be varied. Then for each parameterization
field- and non-perturbatively-improved clover actigm®], we randomly sample the available parameter space, con-
the Kogut-Susskind actiof73], the overlap formalisni72]  structing a large ensemble of parameter sets that satisfy the
and the Asqtad quark actid@3]. The data sets obtained in full set of constraints. The best fit parameters and their errors
the latter two formulations have the smallest error bars andre finally calculated as the mean and standard deviation of
are therefore employed in what follows. Their mass func-the parameters in this ensemble.
tions and wave-function renormalizations have already been The simplest possible parameterizations of a single real
shown in Fig. 4. The mass function data from the lattice havéole or a single pair of complex conjugate poles=1 in
been quadratically extrapolatdd@2,73 to the chiral limit,  Ed.(40)] cannot satisfy the required constraints. Specifically,
whereas the mass dependenc&fp?) is very mild so no  enforcing the perturbative asymptotic behav|@&qgs. (43)
extrapolation has been performed. While the simple extrapoand (44)] makes it impossible to satisfy any of the other
lation procedure that has been employed may lead to sizabl@duirements described above. Similarly, for two real poles
errors[13], it will prove sufficient for our purposes. (np=2, b;=b,=0), the restrictions on the infrared proper-
Unfortunately all of the lattice studies to date make use ofies (f ., My andw ) are incompatible with a realistic quark
the quenched approximation. Removing all internal quarkcondensate.
loops is a potentially drastic modification of the theory. It As mentioned above, a satisfactory realization of the re-
destroys the unitarity of th& matrix; however, it is often quirements of Eqs43)—(47) is possible in the case of three
assumed that these violations of unitarity are small. Strictlyeal poles =3 andb,;=b,=b;=0). The best fit param-
speaking, it is nonsensical to discuss the concept of positivitgters we obtain are shown in Table Il and related quantities
in such a situation and the lattice data discussed above cathat they result in are given in Table I1l. Although the propa-
not be relied on to provide any guidance in studying positiv-gator functionsrs ,(p?) have poles ap>~ —0.2 Ge\#, they
ity of the quark propagator. However, from our experiencegxactly cancel in the combinationé(p?) andz'(p?). How-
with the DSE studies of the previous section, one may expeaver the functionsv(p?) andZ'(p?) do have poles further
that quenching will not qualitatively change the momentumin the timelike region, the first one occurring at
dependence of the propagatsee Fig. 4 Additionally, the p?~—0.75 Ge\f. Also, the zeros oZ'(p?) on the real axis
lattice data apparently still contain large finite volume effectsmay be problematic as they will necessarily produce singu-
(especially in the wave-function renormalizatidi80], and larities in the CP construction of the quark-gluon vertex; cf.
do not precisely constrain the asymptoti’ -~ + ) behav-  Eq. (23).
ior of the propagator. For these reasons we do not directly fit In the case of two pairs of complex conjugate poles (
the lattice datdalthougha posterioriy? fits to it return very ~ =2), the best fit parameters and calculated quantities are
similar parameters to those we find bejowut merely ex- again given in Tables Il and Ill. BottM(p?) and Z'(p?)
tract its three qualitative infrared features. Thus we assumexhibit unexpected behavior aroung®~—0.12 GeV,
that the zero momentum values of the mass function anwhere they have a very sharp pole and a zero on the real axis.
wave-function renormalizatioM y andZ{;, and an approxi- This arises because(p?) and o,(p®) have zeros at very
slightly  differing momenta [?°=—0.127 GeV vs
—0.117 GeV) and it may be somewhat troublesome. This
Yone also knows from chiral perturbation theory that the chiralbehavior, as well as the small imaginary part of the location
limit pion decay constant is somewhat less than the physical valuéf the first pair of poles, suggests forcing the first pair of
of 93 MeV. poles to collapse to one real poleg=2, b;=0).
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TABLE Il. Best fit parameters of the three meromorphic forms: three real g8/Rs two pairs of complex conjugate polédCC) and
one real pole and one pair of complex conjugate pal&st1CC). The parameters whose errors are replaced by an asterisk are completely
determined in terms of the other parameters through @&s.and(44). In order to reproduce the results presented here, one should use the
values that follow from Eqs(43) and(44) for those constrained parameters.

Parameterization ry a; (GeV) b, (GeV) roy a, (GeV) b, (GeV) rs as (Gev)
3R 0.36%15) 0.34125) - 1.28) —-1.31(12) - —1.06*) —1.40*)
2CC 0.36022) 0.35169) 0.085) 0.14Q*) —0.899*) 0.46375) - -
1R+1CC 0.35415  0.37764) - 0.146*) —-0.91(*) 0.457) - -

Redoing the fits with one real pole and one pair of com-be determined from the Schwinger function, and, if so, apply
plex conjugate poles, we come up with very similar param-his to the DSE solutions of Sec. IlI.
eters to those of the 2CC parameterization, as listed in Table Using the identity
[I. The corresponding propagator functions are shown in Fig.
8. With this parameterization, the strange behavid¥igp?) »  CcogXy)
and Zf(p?) disappears and'(p?) only has complex conju- J X———
gate poles and zero$Z'(p?=—0.41+0.48 Ge\?)=0, 0 X'+C
Z'(p?=—-0.55+0.69 Ge\?)—x] so the longitudinal part (48)
of the quark-gluon vertex, Eq23), will not have particle-
like singularities[81]. This parameterization also contains
one parameter less than the others. Therefore we consid
this to be the preferred form of the meromorphic parameter-

= 55 exp—cy) [yeR,argc?) # 7],

we can directly calculate the Schwinger functions from our
BgrameterizationEEqs. (41) and (421

S . . np
izations investigated here. _ ~lajlt

In comparing the three sets of parameterizations, it is AS(t)_izl sgriay)rie icogbit), (49)
worth remarking that the location of thieeal part of thefirst
pole and its residue are extremely robust. The value obtained np Clalt
for this constituent quark masm=377(64) MeV for our A= fi [|a;|cog bjt) — b;sin(b;t)]

. . . . v P 2 2 1 1 1 I '

best fit, is also in good agreement with a value extracted i=1 atb;
from lattice simulations of the quark propagator using a tree- (50

level Symanzik improved actionn=342(13) MeV [82].
However, the constraints on the other features in the fits arEBor all parameterizations, the term with the smallest mass
less precise, especially in the case of three real poles. In Fiparameter; will dominate for larget. In Fig. 10 we display
9 we compare the parameterizations given in Table |l to thehe analytic Fourier transforms of the parameterized scalar
lattice data; overall, the agreement is quite acceptable. Notand vector propagator functions, Eq€9) and (50). For
that the meromorphic fits have relatively low vaIuesZ(éf', comparison, we also include our DSE result foyg(t) em-
this may change once finite volume effects are reduced in thploying the CP vertex. Note the qualitative difference be-
lattice data. Also, each parameterization has a somewhat lotween the parameterization with two complex conjugate
value of f _ in the chiral limit. This can be attributed on the poles and the other two. Whereas the latter show no sign of
one hand to the approximation leading to E46), and on  positivity violation, in the 2CC parameterization we clearly
the other hand to the approximations on the lattice: the chiradee zero crossings of the Schwinger functions, both ft)
extrapolation as well as the omission of dynamical quark&nd inA,(t) (even a small imaginary component in the com-
might lead to an underestimation 6f in the lattice data plex conjugate masses is detectable provided the Fourier
[13]. transform can be calculated accurately to large endjgh
Having determined the best parameters for three differenilote thatA4(t) calculated from the meromorphic parameter-
forms of our fit functions, we now examine the Fourier trans-izations shows a similar amount of smalturvature to the
forms of the momentum space propagator functiondDSE result, butA (t) is linear in this region. Thus multiple
asyv(pz). Specifically, we attempt to determine whether thepoles as explored here could explain the smabehavior
sub-dominant behavior of the various parameterizations caabserved in the DSE Schwinger functions.

TABLE lll. Values for the various constrained quantities for the three parameterizations of Table Il. Errors
are solely due to uncertainties in the parameterizations and do not include any additional systematic errors.

Parameterization M, (GeV) Zg w, (GeV) f . (GeV) _<aq>1/3 (GeV)
3R 0.291) 0.557) 0.794) 0.0713) 0.32)
2CC 0.3311) 0.5712 0.6927) 0.07Q031) 0.303)
1R+1CC 0.317) 0.527) 0.7225) 0.06823) 0.32)
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FIG. 9. The best fit curves for the meromorphic parameteriza-
tions compared to the lattice data. For the details of the parameter-

or ization of o—syv(pz) by a form with a branch cut, fitted to the Asqgtad
I data, see the next subsection.

4,
I Fig. 6, the curvature oA (t) depends on the current quark

mass, so we also consider the effects of explicit chiral sym-
metry breaking.

C ] Our motivation for investigating such parameterizations
Y. N 4 arises from considering the DSE for the quark propagator,
Eq. (27). If the combinationa(k?)/k? is non-analytic ak?

-4 “. . =(q—p)?=0 [in other words, ifa(0)+ 0], the integration
i . T path necessarily passes through the external oifhus, in
6 "‘ T order to evaluate the quark propagator at arbitrary complex
T momenta, one has to deform the integration contour in the
23 2 -1 0 1 2 3 DSE and solve the DSE along this deformed integration
(b) p’ [GeV] path. As long as there are no singularities in the other factors

of the integrandi.e. in S(q) and Vﬁbe'(q,k)], this can in
FIG. 8. Propagator functions for the fit using one real pole andprinciple be done unambiguousiglthough it is numerically
one pair of complex conjugate poles. a nontrivial task However, if we want to evaluate the inte-
gral for a valuep at which the propagato&(p), has a sin-
We also use these analytic Fourier transforms to test ougularity, we are forced by the analytic structureck?)/k?
numerical Fourier transform, finding that it reproduces thel0 include this value op in the integration contour fod“q.
analytic results down tm&s,v(t)fle‘G where we begin to Thus, we ha\Z/e a2p|th singularity at this point coming from
run into accuracy problems. However, the numerical routine(4) an.da(k K th.'s. generally_leads to a branch cut, as is
we employ is clearly able to distinguish between a dominan?hOWn In more detail in Appendix B. We also note that. the
real pole and dominant complex conjugate poles. This giveg‘SymptOtIC form of the quark propagator has perturbatively

us further confidence that our results from the DSE solutiongalcmable logarithmic _contributions. Considering these

in the previous section are not numerical artefacts points, we would expect that the singularitie&ﬁgv(pz) are
P ' branch points rather than simple poles. Thus we next attempt

to parameterize the quark propagator by functions with
branch cuts using the parameterization of the strong running
coupling, Eq.(32), that has proven helpful in understanding
As mentioned above, there is evidence that the Schwingehe analytic structure of the gluon propagator.

function A(t) is convex(with sizable curvatuneat smallt. As a first try, we shall fit the inverse propagator functions
On the other hand, the Schwinger functitp(t) as obtained M (p?) andZ'(p?) as obtained from the quark DSE with the
from the DSE solution shows no such curvature. This differ-CP vertex. Given the close agreement of the DSE solutions
ence could be accommodated within the simple meromorand the lattice quark propagator seen in Fig. 2, fitting the
phic fits of the previous subsection. However, this is cer-DSE solution will result in similar physical constraints to
tainly not the only possible mechanism leading to such ahose of the previous subsection. The leading-order perturba-
difference, and here we explore the consequences of allowive behavior is known, and we allow for one additional sub-
ing for singularities with branch cuts. As can be seen fromleading term, that is to be fitted to the DSE solution. Further-

B. Parameterizations with branch cuts
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FIG. 11. The function€’(p?) (a) andM (p?) (b) obtained from
diagram on the left hand side we have included our DSE results. parameterizations fitted to the numerical DSE solutions for different

current quark masses. The solid curves are thd Higs. (51) and

more, we want the parameterization to have a branch cub2] and the dotted, dashed, and various dot-dashed curve are the

along the negative real axis startingo&t= — mgmg. Thus we
are led to fit the DSE solutions with

a(p?+m3;,g)
fro2y_ _ g
Z(p)=2Z,| 1 oy
a(p?+ms,)tm
M(p?)=C
(p DCSB p2+m§mg+/\2
Cy
(p2+m§mg+/\2)2

The parameter€pcsg and Ccqy are related to the chiral
condensate and the renormalized current quark mass, resp

tively:

—(qa)= CDCSB(

p2+m

2

777m> 1= m

27T27m

+A2)’
(51)

2, .2
+Ceoma(p+mgj,g) ™.

(52

(53

ec-

m,=Ccoma(p?+m?)"m=~Ccqy

014014-18

DSE solutions as shown in the legefitle curves foZ'(p?) in the
chiral limit and form,=5 MeV are almost indistinguishafjleThe
fit parameters are given in Table IV.

Ym
TYm

In(p?/Adcp)

(54)

The renormalization constai, is determined by the renor-
malization conditiorz(u?) =1, Mg, g follows from the ex-
ponential decay of the Schwinger functions, and we tAke
to be equal toAqcp in the running coupling,a(x), for
which we use Eq(32). The remaining free parameters in this
fit, C, and C,, are fitted to the numerical solution of the
DSE andA ¢p is also varied to improve this fit.

The results are shown in Fig. 11 for several different cur-
rent quark masses representative of masses up to that of the
bottom quark. The fitted parameters are given in the first
section of Table IV. With only a few parameters, the fits
represent the DSE solutions very well over the entire Euclid-
ean region. The fitted values @cqy are all reasonably
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TABLE IV. Parameters for the various branch cut figgs. (51)—(60)] to the Ny=0 quark DSE solutions for different masses. A
parameter set obtained by fitting EqS5)—(57) to the Asqtad lattice datigr3] is also included.

m, Cocse Cy Ccowm C,, c Msing

Fitting M andZ", Egs.(51) and(52); A3cp=0.81 GeV

DSE, chiral 0.086 0.248 0 —0.011 0.50
0.005 0.119 0.202 0.0074 —0.015 0.52
0.10 0.343 0 0.16 —0.067 0.78
1.0 0.36 0 1.65 —0.224 2.0
4.0 0 0 6.6 —0.348 5.2

Fitting o, , EQs.(55—(57); A5cp=0.70 GeV

DSE, chiral 0.086 0.234 0.0 1.27 0.50
0.005 0.10 0.234 0.0076 1.26 0.52
0.100 0.44 0 0.161 111 0.78

Fitting o, , EQs.(55—(57); A5cp=0.50 GeV

Lattice, chiral 0.08 0.12 0.0 1.47 0.47

Fitting A andB, Egs.(58)—(60); A5cp=0.70 GeV

DSE, chiral 0.09 0.31 0 0.25 0.49

0.005 0.10 0.30 0.008 0.26 0.50

0.100 0.33 0 0.17 0.25 0.65

1.0 0.21 0 1.7 0.23 1.74

4.0 0 0 6.7 0.34 5.1
close to the current quark masses that were used as input in a(p?+ mgmg)1—ym

the DSEs(small deviations are due to sub-leading effects B pira/(p?) =Cpcsg

and the (fitted) chiral condensate is acceptable:(ﬁq)
=(290 MeV)’. C,

2 2
p“+ msmg+A

Despite the fact that these parameterization< f{p?) + , (55
and M (p?) so well, the corresponding Schwinger functions (P2 mg g+ A%)?
do not fit the Schwinger functions of the DSE solutions.
Clearly, the zeros ap?+ M?(p?) [which determine the poles o Beniral(P%) Ceoma(p?+mZ;, )7
of a5, (p?)] will in general not occur on the negatiyg axis os(P9) = 02+ m2 + 02+ m2 ’
when Eq.(52) is used forM (p2). Indeed, the dominant sin- sing sing (56)
gularities of the propagator functionss,v(pz) calculated
from the parameterizations @ (p?) and M (p?) are a pair 1 a(p?+m? )
of complex conjugate singularities, and the corresponding a,(p?) = > ( - > kL
Schwinger functions clearly show oscillatidAssee Fig. P+ meing 7
12). Extensive “fine-tuning” of the fitting form and/or the
parameters is required in order fpf+M?(p?) to have its +E3|3cmra|(p2))- (57)
first zero at the pole mass deduced from the Schwinger func-
tion of the DSE solution. This form has masslike singularities i ,(p?) at p?
As a second alternative, we can directly parameterize_ _ Sm from which branch cuts extend p)z_—oo Away

Uslv(tp ). aAnd fit the par?rtneters t:jsmg ttﬁelnudmen(ial D?]Efrom the real axis osu(pz) have no singularitiesthough
f;zcu I(?(r)]rsrect?:r:r; \{[szva?pnz) Oar: dprl?/l (L;)CZ()e v?/h?ci lr(l:gnogt;’:g "Mihere is a second singularity pt=—m2 .~ A2). Further- _
. _ ' more, this parameterization ensures the correct asymptotic

achieved by using the forms behavior, both foro,(p?) and for the quark functions
M(p?) and Zf(p?). The main disadvantage of fitting
0s,(p?) is that the analytic structure & (p?) andM(p?),

2For the heavier quarks, these oscillations are numerically diffi-and of A(p?) andB(p?) will now become non-trivial. Again,
cult to detect because the Fourier transform falls off very rapidlya delicate fine-tuning is required to obtain a good fit both for
with increasingt. os,(p?) and forz'(p?), M(p?), A(p?) andB(p?).
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FIG. 12. The Schwinger functions(t) (a) andA,(t) (b) for FIG. 13. The functionZ'(p?) (a) andM (p?) (b) obtained from
the thre_e paramer:erlzatllong W|Ithdbr(;':1nch (|:3ustsE in thlet chiral limit. Forparameterizations Ofs,u(pz): Egs.(55)—(57), fitted to the numeri-
comparison, we have aiso Included our resufts. cal DSE solutions for different current quark masses. The solid

The parameters play a similar role to those in the previou§urves are the fits, with the fit parameters given in Table IV.
parameterization, with the exception &f which is deter- ) ,
mined by requiring thaZ'(p?) is finite at the mass pole. The ~ 1he Schwinger functionsis,(t), are reproduced very
other parameters are fixed by fittiZd(p2), M(p2), and the erll 2(see Fig. %2 -Notlce that the .paramet(?nzéatlons of
Schwinger functions. For moderately small current quarké (pz) and M(p?) fit the DSE solutions forZ (2p ) and
masses, we can obtain reasonably good fits, as can be seer{P”) better than these parameterizationggf(p°), while
Fig. 13, with the corresponding parameters listed in Tabidhe latter parameterizations are obviously better fits of the

IV. We can also fit the Asqtad lattice data quite well with this Schwinger functions corresponding to those same DSE solu-
parameterization, as shown in Fig. 9. For current quarl@'ons- Thus we are warned that even an almost perfect fit for

masses larger than a few hundred MeV, the wave functioﬁ_uclidean momenta does not guarantee a good fit of its Fou-
renormalization can no longer be fitted with this relatively fi€r transform, let alone a good representation of the function
simple form. This is most likely related to the substantialin the entire complex plane.

increase in the constai@, for heavy quarks when fitting Finally, we construct a parameterization of the inverse
Z'(p?) directly (see Table IV. quark propagator function&(p?) andB(p?), such that the

The functionsA(p?), B(p?), M(p?) andZf(p?) have a propagator functions-syu(pz) have polelike singularities on

singularity at p2=—m§mg where a branch cut along the f[he timelikep” axis. For this purpose we use the parameter-

negative real axis starts, and another singularity further in thation
timelike region ap?= —m;,,— A In addition,M(p?) and

Z'(p?) have a pair of complex conjugate poles located at the a(p?+m2 ) c
zeros of o, (p?), and A(p?) and B(p?) have two pairs of Z,A(p?) =1+ 5 =+ — 22 >, (58
complex conjugate poles at zerospfio?(p?) + o2(p?). m P+ MGing+ A
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results within about 10-20 % over a wide range of masses.
By construction, the dressing functions again reduce to the
perturbative forms in the ultraviolet region and the analytic
structure is in agreement with the Schwinger functions cor-
responding to our DSE solutions. In the chiral limi(t)
corresponding to these fits shows significant curvature at
smallt, as can be seen from Fig. 12; for larger quark masses
this curvature decreases. In contrasi(t) does not show
this curvature in agreement with our DSE results. However,
the actual analytic structure ofsvv(pz) is rather compli-
cated. In addition to the singularity on the negative real axis
atp?=— §mg where a branch cut starts, it also has a pair of
complex conjugate poles at zerospfA2(p?) + B2(p?).

C. Generic features of the quark propagator

The results of this section point strongly toward an ana-
Iytical structure of the quark propagator with a dominant
singularity on the real timelike axi#\t present, the nature of
this singularity cannot be determined with confidence. It
could be a simple pole, in which case additional poles or
other types of singularities further away fropf=0 are
needed in order to explain the observed behavior of the
Schwinger function. However, given the structure of the
quark DSE, it is more likely that this singularity is a branch
point, and that there is a branch cut along the negative real
axis starting there. Having only one branch point singularity
on the negative real axis {& principle) sufficient to repro-
duce the observed Schwinger functions. We have not yet
been able to distinguish between these alternatives by nu-
merical calculations of the Schwinger functions of the DSE
solutions.

Given the strong sensitivity of the Schwinger functions to
the details of the propagator functions, and the fact that the

numerical DSE solutions for different current quark masses. Thélominant singularity is well into the timelike region, it is
solid curves are the fits, with the fit parameters given in Table IVv. unlikely that the sub-dominant analytic structure of the quark

2 2 1-
a(p +msing) Ym C4

Z,B(p?)=Cpcsp

p2+m§ing+A2 (p2+m§ing+A2)2
+CCQMa(p2+m§ing)ymv (59
with
a(0)"m C,
Msing= CDCSBT+P+CCQMQ(O)ym
a(O) Cz
( IS5+ 12 (60)

andZ, determined by the renormalization conditiéiu?)

propagator will be determined by Euclidean lattice simula-
tions. The situation for the gluon propagator is quite differ-
ent: there, the analytic structure is highly constrained by the
behavior forp?>—0*. By approaching the singularity @

=0 from the spacelike region, we can gain information
about the nature of this singularity. In contrast, the first non-
analytic point of the quark propagator (isost likely) at p?
=—m%;,,<0. Thus, the behavior d¥l(p?) andz(p?), or
0s,(p?), for p2—0" does not reveal much about the ana-
lytic properties of the propagator. We cannot approach the
singularity without accessing the timelike region explicitly.
In addition to this dominant singularity dior very close tp

the negativep? axis, the propagator may have other sub-
leading singularities further away frop?=0. Within the
DSE framework one would have to solve the quark DSE
over a suitable region of the complex momentum plane to
decide questions about the nature of the dominant singularity

=1. The results of these fits are shown in Fig. 14, with theand about the existence of sub-leading singularities further
corresponding parameters given in Table IV. Though not afom p2=0. However, this is numerically very demanding

good as the direct fits af(p?) and M (p?) [Egs.(51) and

and not within the scope of the present investigation. As we

(52)] that were made without taking into consideration thehave seen in the previous section, the results could also be
analytic structure obs,v(pz), these fits reproduce the DSE strongly influenced by the truncation of the DSEs.
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In all of the parameterizations of the preceding subsecdynamically, in which case it leads to a self-consistent en-
tions a robust feature appears: the leading singularity is ohancement of the effective quark-gluon interaction. This
(or very near tg the real axis. The scale at which this singu- term is important in at least two ways: First, it is required in
larity occurs is somewhat dependent on the constraints useatder that the solution of the coupled quark, gluon, and ghost
in the fits; the lattice data suggest a scale of 350 to 390 Me\MDSESs generates enough dynamical chiral symmetry breaking
whilst the DSE solutions prefer a slightly larger valuein the quark propagator to give a phenomenologically ac-
~500 MeV. Despite this slight variation, these numericalceptable quark condensaf&l]. More importantly for our
values are somewhat intriguing and hint at a possible interinvestigations, the scalar coupling leads to qualitative
pretation in terms of a constituent quark mass. changes in the analytic structure of the quark propagator, and

Fits like the examples presented here might be usefulljhence has significant consequences for the questions of
applied in hadron phenomenology pending a more concluétnon-positivity and the manifestation of confinement. When
sive investigation of the analytic properties of the quarkthis term is omittedas in the commonly used rainbow trun-
propagators. However, one should treat these parameterizeation), positivity violations consistent with complex conju-
tions with care and keep in mind that neither the fitting formsgate singularities in the quark propagatas found in previ-
nor the parameters are unique. The same Euclidean datays studies[13,31-33) are unambiguously observed.
from lattice or DSE calculations, can be fitted quite well with However, when the gauge-mandated scalar coupling is in-
different parameterizations having distinct analytic proper<cluded, no such evidence of positivity violation is found and
ties. The only robust feature concerning the analytic structur¢he dominant analytic structure appears to be a singularity on
is that the dominant singularity, as probed by the Schwingethe real, timelike p><0) axis. While the absence of posi-

function, is on(or very neay the real timelike axis. tivity violations says nothing about quark confineméusi-
tivity violation is a sufficient but not necessary conditipit
V. SUMMARY AND CONCLUSION does tell us that confinement is probably not manifest at the

) ) ) ) level of the propagator. We also see similar behavior in

In this work we have investigated the analytic structure Of(quencheﬁQED4. Here, a positive definite propagator is de-
the propagators of Landau gauge QCD in the timelike mogjraple as the electron is an observable particle.
mentum region using Schwinger functions, and employing  Finally in Sec. IV, we have attempted to probe deeper into
various analytic parameterizations. We summarize the maighe analytic structure of the quark propagator. We have con-
results below. _ _ _structed various parameterizations and used lattice data, DSE

Both lattice simulations and Dyson-Schwinger equationsp|ytions, and other general properties to constrain them.
calculations suggest that the gluon propagator is finite O{yhjle an infinite variety of functional forméve have inves-
even vanishes in the infrared. The latter behavior necessariltygated only a few that come easily to mind—constructed
leads to violations of reflection positivity, a sufficie@ut  fqm real or complex conjugate poles, and branch cuts on the
not necessapycondition for gluon confinement. Our numeri- timelike momentum axiswould be capable of satisfying our
cal analysis of the Schwinger functions calculated from the;gnstraint criteria, one robust feature emerges from our
DSE solutions confirms this behavior, finding clear eVidenceanaIysis: the dominarit.e., closest tp?=0) analytic struc-
of such positivity violations in the gluon propagator in ac- yyre occurs or(or very near to the real, timelike half axis.
cordance with previous result46,11,21. The gluon  The scale of this masslike singularity, as suggested by mero-
Schwinger function possesses one zero-at fm, marking  morphic parameterizations of the lattice data, is 350 to 390
the length scale above which sizable negative norm contrijev. The DSE solution indicates a scale of about 500 MeV.
butions appear. We explore the detailed analytic structure oAp accurate determination of the precise nature of this sin-

the gluon propagator in the timelik@{<0) momentum re- gy jarity and additional sub-dominant contributions awaits fu-
gion by constructing parameterizations that fit both they,re improvements.

spacelike momentum behavior of the lattice calculations and
DSE solutions, and the corresponding Schwinger function.
These parameterizations incorporate the power-law infrared
behavior determined analytically from the coupled ghost and
gluon DSEs, and the perturbatively calculable ultraviolet We are grateful to P. van Baal, P. Bowman, H. Gies, C.
logarithmic behavior. The crucial feature of these parameterRoberts, D. Shirkov, |. Solovtsov, O. Solovtsova, P. Tandy,
izations is the presence of a branch cut on the timelike moA. Williams, J.B. Zhang, and D. Zwanziger for many helpful
mentum half axis which produces the observed positivityhints and enlightening discussions. W.D. thanks the members
violations. These simple parameterizations depenteiac-  of the Institute for Theoretical Physics of the University of
tively) only one parameter, the scale,cp. Tubingen for their hospitality during his visits. We thank the

In exploring the analytic structure of the quark propagatorECT* for the support of the workshop “Aspects of Confine-
using the same Schwinger function methods, we have founthent and Non-Perturbative QCD” at Trento where the re-
an unexpected sensitivity of this structure to the truncation ofearch presented here was outlined. This work has been sup-
the quark DSE. Gauge symmettgr, more precisely, the ported by the DFG under contracts Al 279/3-3, Al 279/3-4,
relevant Slavnov-Taylor identijyrequires the presence of a Gi 328/1-2, and GRK683European graduate school Basel-
scalar coupling in the non-perturbative quark-gluon vertexTubingen and by the U.S. Department of Energy contract
This coupling is only present if chiral symmetry is broken DE-FG03-97ER41014, and benefited from computer re-
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TABLE V. Gluon fit parameters for various truncations of the system of DSEs. The results in parentheses
for the full QCD fit | are when the fit is optimized to reproduce fit the DSE Schwinger function; all other
parameter sets are fitted Z{p).

Truncation Fit | Fit 1l
o, Agcp (MeV) o), Agcp (MeV)
Full QCD,a=36 2.4(2.0 500 (470 2.5 510
Quenched QCDa=36 2.9 550 3.2 550
Quenched QCDa=24 2.7 410 3.0 400
Quenched QCDa=4§ 3.2 560 3.6 550

sources provided by the National Energy Research Scientifib, and our conclusions about the analytic structure of the

Computing Center. gluon propagator remain qualitatively unchanged. To inves-
tigate the dependence of the gluon fit parameters,(and

APPENDIX A: FURTHER DETAILS Agcp) on the three-gluon vertex truncation, we have made
OF THE DSE TRUNCATION fits to the quenched DSE solutions using E2B) for a num-

) .. ber of choices ofa andb. The resulting parameter sets are
Since the quark-gluon vertex appears to play a significan§yown in Table V and are seen to vary by 20%. With certain
role in the analytic properties of the quark propagator, Wesnojces of these parameters, one is able to closely match the
have explicitly explored the effects of this part of our trun- 4 enched lattice data. However the original=(b=36)
cation scheme in the main body of the text. Here we examingncation gives results in adequate agreenieee Fig. 2

the various truncations we use in the Yang-Mills sector andyjth these datawhich themselves are not without error bars
investigate reasonable modifications to highlight the extentnq we use it exclusively in the main text.

of both the truncation dependence and the truncation inde- Finally, the truncation we employ neglects the effects of

penden_ce of our results. _ the four-gluon vertex. These effects are unknown up to now.
In this work, we have used the perturbative ghost-gluongince the ghost loop is dominant in the infrafdé] and the
vertex one-loop diagrams dominate in the perturbative, ultraviolet
thost(q p)=iq (A1) _region, sych effects are expec_ted to be most important in the
z ’ p intermediate momentum regimepi~1 Ge\?). A two-

Lerche and von Smek#8] have investigated a large class of Parameter model for the corresponding two-loop diagrams in
possible structures for this Green’s function. In particularth® coupled gluon-ghost DSEs has been explored in Ref.
their results show that such variation leads to infrared beha51]; under such a variation the’—0 behavior of the gluon

ior of the gluon and ghost propagators as in Ed$) and and ghost propagator remains qualitatively the same as in our
(19) with the exponent in the range 0.5 x<0.7. In this  "esults.

range the essential analytic properties that we find for the

gluon propagator remain unaltered. APPENDIX B: POLE OR BRANCH POINT
For the three-gluon vertex, we UE&3] IN THE QUARK PROPAGATOR?
1 G(ghtemE If the quark propagator has a non-analytic pointpat
I'po(9,p)= Zy(wA)  z(gp)ra = —mgmg where the propagator diverges, what kind of sin-
gularity can we expect? In order to answer this question,
G((q— p)?)(L-blo-2b) consider the generic integral that appears in the right-hand

Z((q—p)»H*o 11;E:Ov)a(q,p), (A2)  side(RHS) of the quark DSE

where  T'®)) (qp) is the perturbative  form, , AL al(g—p)?] ) ,
5=—9N./(44N.—8Ny) is the one-loop anomalous dimen- (P )=f d"g—————Ky(a%,p".q-p) o, (q°).
sion of the ghost propagatoz, is the three-gluon vertex (9=p) (B1)

renormalization, and we fia=b=345. As discussed in the

main text, this form is chosen to ensure that the running

coupling, Eq.(16), is renormalization point independent and Assume that the running coupling(k?), doesnot go to

that the ghost and gluon propagators have the correct on&ero ask® for k?>—0. Furthermore, assume that the kernel

loop anomalous dimensionshese constraints are satisfied K ,(g?,p?,g-p) has no singularities. Thus the only singulari-

for arbitrary values of the parametaasandb). ties in the integrand are located ajp)?=0 and atqg?
Whilst no systematic study of this vertex truncation ex-= —mgmg [coming from the propagator functicxmsyv(qz)].

ists, in Ref[83] one of us has investigated some variation of For Euclidean values op?, we calculate this integral by

the parameters and b. There, the gluon propagator was performing the angular integral first, followed by the radial

found to vanish ap?— 0 independent of the choice afand  integral:
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FIG. 15. Location of the branch cut&dotted curves in
K(g?,p?) in the complexg? plane, forp?=x real and for a complex
value of p?=x+iy. Also shown are possible integration paths
(solid curve$ from 0 to A2 that do not cross the corresponding
branch cuts.

)4
2 A2 o 2 2 .2 Mg
I(p )=f0 q°dqgos,(a9)K(q%,p7), (B2)
with
(b)
K(g?2,p?) = fwsinzedﬁ FIG. 16. Two integration contours in the complkeX% plane for
' 0 the radial integral irl (p?) for p?=x—iy (a) and the resulting ana-

, ) lytic structure forl(p?) in the complexp? plane(b).
a(gq°—2qpcosé+p)
K4(q2,p?,qpcosé).

q°—2qp cosb+ p?
singularity inl (p?). This is shown in detail in Fig. 16 for the
case in WhiChrS'v(qz) have singularities on the real timelike

This angular integral is well behaved for any Euclidean valuedXis atq’=—mg;,,. We have drawn two distinct radial in-
of g2 and p? as long as the singularity ir(k?)/k? is an  tegration paths in order to calculatép?) for p?=x—iy.
integrablesingularity, so let us assume from here on that thisOne is obtained by continuously deforming the original inte-
is the case. If we investigate the analytic properties ofgration path through the upper half of the comptgxplane,
K(q?p?) for arbitrary complex values af?, while keeping  crossing the negative real axis beyogt= —m3;, (dashed
p? real and positive, we discover that it has a branch cut thaturve, and the other by deforming the integration path via
can be characterized bg?=pZexp(¢), with 0<p<27. the lower half of the complex plar(golid curve. Because of
Notice that if we perform the radial integral along the posi-the combination of(i) the singularity in gsvv(q2) at g°

tive real g~ axis, we do not cross this branch cut: the end:_mging and(ii) the circular branch cut i (q2,p?), these

points in ¢ are not included. This is schematically depictedyq integration paths cannot be deformed into each other
in Fig. 15. , o while keepingp? fixed. Therefore, the obtained values of
Ngw consider the analytic contlnugtlozn to _complex valuesl(pz) will (in general be different, and (p2?) becomes a
.Of p. CIe_arIy, the branch cut i (q”,p ).W'" MOVE, 85— multi-valued function with a branch-point singularity pf
indicated in Fig. 15. This means that the integration path in 2 B y . .
Eq. (B2) has to be deformed so as not to cross (stafted =~ Msing- The natu.ral chch for the branch cut 1S alpng
branch cut stemming from the angular integration, whilethe negative rea] axis, as indicated by the wavy line in the
keeping the end points fixed. A possible integration path ha!ower panel of Fig. 16.
been shown in Fig. 15, although the actual integration path is Returning to the specific case of the quark propagator, we
of course not unique. The general rule for this deformedote that the RHS of the quark DSE contains an integral like
integration path is that it has to go through the paift | (P?), whereas the LHS is one of the inverse quark propa-
=p?, since that is where there is an opening in the circulagator functionsA(p®) or B(p?). If o, <(q%) has a singular
branch cut ofK (g2 p?). This procedure leads to a well- Pointk?=—mZ ., thenl(p®) has a branch-point singularity
defined and unambiguous analytic continuation of the Euat p?= —mgmg, and therefored(p?) andB(p?) will have a
clidean DSE, and can be implemented numericg2l,84). branch point ap®= —mﬁmg. Thus, unless there are intricate
Following this procedure, one can now show that anycancellations, the singularity ior, {(p?) of a self-consistent

singularity in os,v(qz) leads(in general to a branch point solution is a branch-point singularity and not a simple pole.

(B3)
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