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Systematic study of the impact ofCP-violating phases of the minimal supersymmetric standard
model on leptonic high-energy observables
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Low-energy results from measurements of leptonic dipole moments are used to derive constraints on the
CP-violating phases of the dimensionful parameters of the minimal supersymmetric extension of the standard
model ~MSSM!. We use these~known! bounds to investigate the impact of these phases onCP-even cross
sections at high-energye1e2 ande2e2 colliders. To that end we define two measures of the significance with
which the existence of nonvanishing phases could be deduced from the measurements of these cross sections.
We find that highly significant evidence for deviations from theCP-conserving MSSM could be obtained at the
nexte1e2 collider even if the electric dipole moment of the electron is very small or zero. We also analyze a
CP-odd final-state polarization, which can be large when two different charginos or neutralinos are produced.
Finally, we study correlations between the phase-sensitive observables.
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I. INTRODUCTION

CP violation was observed first in the neutral kaon syst
@1# and has recently been found inB-meson decays@2#. In
addition,CP violation constitutes one of the conditions for
dynamical generation of the cosmological baryon asymm
@3#. In the standard model~SM!, which contains only one
physical neutral Higgs boson and assumes neutrinos to
massless, the only source ofCP violation is the complex
phase of the quark mixing matrix@4#.1

Supersymmetry~SUSY! is now widely regarded to be th
most plausible extension of the SM; among other things
stabilizes the gauge hierarchy@6# and allows the grand uni
fication of all known gauge interactions@7#. Of course, su-
persymmetry must be~softly! broken to be phenomenolog
cally viable. In general this introduces a large number
unknown parameters, many of which can be complex@8#. In
the most general minimal supersymmetric standard mo
~MSSM! 44 phases cannot be removed by suitable rede
tions of fields and remain as ‘‘physical’’ phases in the mod
For example, they have a direct impact on the mass spe
as they enter most mass matrices in the Lagrangian.
course, one can use more specific assumptions on the
breaking terms and/or an underlying grand unified the
~GUT! to get simpler versions of the MSSM with a small
number of parameters, but the price for doing so is the l
of generality.

*Present address: PhysiKalisches Institut d. Universita¨t Bonn,
Nussallee 12, 53115 Bonn, Germany.

1The observation@5# of neutrino flavor oscillations opens the po
sibility that the neutrino mass matrix contains nontrivialCP-
violating phases, but this has not yet been confirmed experim
tally. In principle,CP could also be violated in the SM by the QC
u term, but bounds on the electric dipole moment of the neut
force uuQCDu to be&10210.
0556-2821/2004/70~1!/014010~30!/$22.50 70 0140
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CP-violating phases associated with sfermions of the fi
and, to a lesser extent, second generation and with
chargino and neutralino sector are severely constrained
bounds on the electric dipole moments of the electron, n
tron, and muon. However, as emphasized in@9–12# cancel-
lations between different diagrams allow some combinati
of these phases to be rather large even for a sfermion m
spectrum accessible at the expected center-of-mass ener
a possible next lineare1e2 collider ~LC!. Even in models
with universal boundary conditions for soft breaking mass
some very-high-energy scale, the relative phase between
supersymmetric Higgsino mass parameterm and the univer-
sal trilinear soft breaking parameterA0 can beO(1) @13#. If
universality is not assumed, the relative phase between
U(1)Y andSU(2) gaugino masses may also be large.

In the past few years a lot of effort has been devoted
analyses of the physics output that can be expected f
experiments at the LC, including a possiblee2e2 option
@14#. Work towards the design of such a device has a
made great progress. Today it is assumed that it will~ini-
tially! have a center-of-mass energyAs in the range between
500 GeV and 1 TeV, an integrated luminosity of at lea
several hundred fb21, and adjustable polarization for bot
beams. Detailed analyses@14,15# have established that spa
ticles with mass&As/2 can easily be discovered at an LC
Moreover, many of their properties~masses, spins, som
couplings! can be measured precisely.

Unfortunately, most of these analyses@15# show the dan-
gerous tendency to neglect phases, which are actually
parameters of the model and are not necessarily neglig
small. Note that both masses and couplings depend on t
phases, which will hence have a direct impact on spart
production cross sections and decays. Neglecting nonvan
ing phases when determining real parameters from exp
mental data could thus lead to wrong inputs for attempts
reconstruct the underlying theory at the unification scale.
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the other hand, the construction of sizable and experim
tally accessibleCP-violating observables is rather difficult i
most of the production channels ate1e2 colliders, as at leas
one secondary decay has to be included in the analysis
the tree level nonzeroCP-odd asymmetries can only result
the decaying particle has nonzero spin, which should b
least partly reconstructed from its decay products.

We therefore first perform a rather general analysis of
impact of nonvanishingCP-odd phases onCP-even cross
sections. We work in the framework of the MSSM with no
vanishingCP phases. We assume flavor universality for s
breaking terms associated with sfermions of the first and
ond generations, but we do not assume any specific m
for SUSY breaking. Our free parameters are specified at
typical energy scale of an LC. The basic idea of this work
to take today’s low-energy data, such as lower-mass bou
and bounds on leptonic dipole moments (de and am), as
constraints for a parameter space scan. We then use th
sulting, low-energy compatible points to check whether hig
energy experiments at an LC~in either thee1e2 or e2e2

mode! could provide additional information on phases. W
restrict ourselves to the following total, unpolarized cro
sections:

e1e2→x̃ i
0x̃ j

0, i , j 51,...,4, ~1.1a!

e1e2→x̃ i
2x̃ j

1 , i , j 51,2, ~1.1b!

e1e2→ẽi
2ẽj

1 , i , j 51,2, ~1.1c!

e2e2→ẽi
2ẽj

2 , i , j 51,2. ~1.1d!

There is a complementarity between the leptonic dip
operators and the high-energy production amplitudes. S
several diagrams involving neutralinos as well as chargi
contribute coherently to the low-energy observables, t
can only give bounds oncombinationsof phases. In contrast
high-energy observables can be used to investigate the
ferent sectors of the theory separately. As our aim is to st
the impact of low-energy compatible, nonvanishing pha
on the cross sections, we assign a significanceS( f 1f 2) to
each final state, defined as difference in production rates
tween aCP-conserving point~CPC point: real parameters, a
phases identical to zero orp! in parameter space and aCP-
violating point ~CPV point: same absolute values of para
eters, but nonvanishing phases! normalized to the statistica
error of the cross section in the CPC point. Since the ph
dependence of a given cross section might partly arise f
kinematical effects ~kinematical masses depend on t
phases!, we also introduce a second significanceS̄( f 1f 2),
where the CPV point is chosen such that the masses of
neutralinos and one chargino coincide with the CPC po
this can be achieved by adjusting the absolute values of
relevant dimensionful input parameters.

We find that these significances can be very large
some reactions of the types~1.1a! and~1.1d!, but are usually
small for Eq. ~1.1b! once the low-energy constraints ha
been taken into account. Moreover, if the absolute value
the input parameters or three chargino and neutralino ma
01401
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are kept fixed while the phases are varied randomly, ther
no visible correlation between these high-energy signific
ces andde . On the other hand, in most cases sizable hi
energy significances are strongly correlated with each o
and slightly less strongly correlated witham .

Strictly speaking these significances only measure de
tions from theCP-conserving version of the MSSM. Thes
deviations might also be explained by some extension of
MSSM without invoking new sources ofCP violation. If
some deviation from theCP-conserving MSSM is observed
a more direct probe forCP violation in the production and
decay of superparticles thus becomes important. We th
fore compute theCP-odd polarization of charginos and neu
tralinos that is normal to the production plane and find th
in all cases considered, it can be sizable for neutralino
large CP-odd polarization of charginos is possible only
large umu and small tanb. In contrast to earlier, related wor
@16,17# we emphasize a detailed semianalytical understa
ing of the observed effects, isolate the measurements
hold the most promise, and analyze the correlations betw
various phase sensitive observables.

The remainder of this paper is organized as follows.
Sec. II we briefly review the mass spectra and mixing p
terns of the sleptons, charginos, and neutralinos. This sec
also contains an overview of the relevant parameters. A
summarizing the relevant parts of the MSSM Lagrangian
Sec. III, we present in Sec. IV the analytical expressions
the SUSY contributions tode and am , and discuss briefly
possible scenarios for suppressing these leptonic dipole
ments while keeping some phases sizable. This section
discusses numerical constraints on these phases in
benchmark scenarios where selectrons as well as the lig
neutralino and chargino eigenstates can be produced at a
GeV e1e2 collider. Section V summarizes the well-know
results for total cross sections of the production chann
~1.1!. We also give results for the components of polarizat
vectors for reactions~1.1a! and~1.1b!. The significances are
introduced in Sec. VI. In Sec. VII we show the most impo
tant results of our detailed numerical analysis of the hig
energy observables. Section VIII completes our work with
brief summary of our findings and some conclusions.

II. PARTICLE MIXING

A. Slepton mixing

As mentioned in the Introduction, we will assume th
flavor mixing is negligible in the slepton sector. This ca
e.g., be motivated by the very tight experimental constra
on branching ratios for lepton flavor violating decays li
m→eg, m→3e, etc. The simplest way to satisfy thes
bounds on flavor-changing processes is to assume that
SUSY-breaking parameters in the slepton sector are the s
for the first and second generations, as is the case in m
models that attempt to describe SUSY breaking by a sm
number of parameters~which are usually defined at a high
energy scale!. The only relevant mixing in the slepton sect
0-2
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then occurs betweenSU(2) doublet sleptonsl̃ L and singlets
l̃ R . The squared mass matrixM

l̃

2
in the basis (l̃ L , l̃ R) is

given by @18#

M
l̃

2
5S Xl̃ Zl̃

Z
l̃

!
Yl̃

D . ~2.1!

The elements of this matrix are defined as

Xl̃ 5ml
21m

l̃ L

2
1

1

2
~MZ

222MW
2 !cos 2b, ~2.2a!

Yl̃ 5ml
21m

l̃ R

2
1~MW

2 2MZ
2!cos 2b, ~2.2b!

uZl̃ u5ml uAl
!1m tanbu, ~2.2c!

arg~Z
l̃

!
!5f l̃ 5arg~2Al2m! tanb!, ~2.2d!

whereml is the mass of the charged leptonl, m
l̃ L,R

2
andAl are

soft SUSY-breaking parameters, which we assume to be
same for the first and second generations,m is the Higgsino
mass parameter, and tanb is the ratio of vacuum expectatio
values of the two neutral Higgs fields. In general,m
[umueifm andAl[uAl ueifA can be complex, while all othe
parameters appearing in Eqs.~2.2! are real.

M
l̃

2
can be diagonalized by a unitary transformation

U
l̃

†M
l̃

2
Ul̃ 5diag~m

l̃ 1

2
,m

l̃ 2

2
!, ~2.3!

with the mass orderingm
l̃ 1

2
<m

l̃ 2

2
by convention. The diago

nalization matrixUl̃ can be parametrized as

Ul̃ 5S cosu l̃ 2sinu l̃ e
2 if l̃

sinu l̃ e
if l̃ cosu l̃

D , ~2.4!

where2p/2<u l̃ <p/2 and 0<f l̃ <2p. Defining

M̄
l̃

2
[

m
l̃ 2

2
1m

l̃ 1

2

2
5

Xl̃ 1Yl̃

2
, ~2.5a!

D l̃ [m
l̃ 2

2
2m

l̃ 1

2
5A~Xl̃ 2Yl̃ !

214uZl̃ u2, ~2.5b!

the slepton mass eigenvalues and mixing angles are give

m
l̃ 1,2

2
5M̄

l̃

2
7

D l̃

2
, ~2.6a!

sin 2u l̃ 522
uZl̃ u
D l̃

, cos 2u l̃ 5
Xl̃ 2Yl̃

D l̃
. ~2.6b!

Equations~2.6b! and~2.2c! show that slepton left-right mix-
ing is suppressed by the corresponding lepton mass, b
enhanced for large tanb and largeumu.
01401
he
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As sneutrinos are only present as components of l
handed superfields in the MSSM, there is no partner to m
with and the mass simply reads

mñ l

2 5m
l̃ L

2
1

1

2
cos 2bMZ

2. ~2.7!

B. Chargino mixing

The Dirac mass matrix for charginos mixes theSU(2)
gaugino w̃6 and the charged Higgsinosh̃6. In the basis
(w̃2,h̃2) it is given by @18#

MC5S M2 &MW cosb

&MW sinb m D , ~2.8!

where the soft breaking mass parameterM2 for SU(2)
gauginos is taken to be real and positive; this can
achieved without loss of generality by appropriate field
definitions. This complex mass matrix is asymmetric a
hence has to be diagonalized by a biunitary transformati

URMCUL
†5diag~mx̃

1
6,mx̃

2
6!, ~2.9!

with the mass orderingmx̃
1
6<mx̃

2
6 as convention. The mix-

ing matrices may be written as@19#

UL5S cosfL sinfLe2 ibL

2sinfLeibL cosfL
D , ~2.10a!

UR5S eig1 0

0 eig2
D S cosfR sinfRe2 ibR

2sinfReibR cosfR
D ,

~2.10b!

with 2p/2<fL,R<p/2 and 0<g1,2, bL,R<2p. Here g1
and g2 denote two possible Dirac phases which have to
introduced to ensure that the mass eigenvalues ofMC are
positive and real. The parameters ofUL andUR can be de-
termined fromMC

† MC andMCMC
† , respectively. Introduc-

ing the quantity

DC5$~M2
22umu2!214MW

4 cos2~2b!14MW
2 ~M2

21umu2!

18MW
2 umucosfmM2 sin 2b%1/25mx̃

2
6

2
2mx̃

1
6

2
, ~2.11!

the squared mass eigenvalues are

mx̃
1,2
6

2
5

1

2
~M2

21umu212MW
2 7DC!, ~2.12!

while the mixing angles can be computed from

cos 2fL5
2M2

21umu212MW
2 cos 2b

DC
, ~2.13a!
0-3



CHOI, DREES, AND GAISSMAIER PHYSICAL REVIEW D70, 014010 ~2004!
sin 2fL5
22&MW

DC
~M2

2 cos2 b1umu2 sin2 b

1M2umucosfm sin 2b!1/2, ~2.13b!

cos 2fR5
2M2

21umu222MW
2 cos 2b

DC
,

~2.13c!

sin 2fR5
22&MW

DC
~M2

2 sin2 b1umu2 cos2 b

1M2umucosfm sin 2b!1/2, ~2.13d!

and the phases are

tanbL5
2umusinfm

umucosfm1cotbM2
, ~2.14a!
b

-
s
lex
t

r-
go

e

01401
tanbR5
umusinfm

umucosfm1tanbM2
, ~2.14b!

cotg15

MW
2 umucosfm sin 2b1M2~mx̃

1
6

2
2umu2!

MW
2 umusinfm sin 2b

,

~2.14c!

cotg252

umucosfm~mx̃
2
6

2
2M2

2!1MW
2 M2 sin 2b

umusinfm~mx̃
2
6

2
2M2

2!
.

~2.14d!

C. Neutralino mixing

The neutralino mass matrixMN mixes the neutral com-
ponents of both Higgsinosh̃u,d

0 with hypercharge61/2, the

U(1)Y gauginoB̃ and the neutralSU(2) gauginoW̃3 . The
mass matrix in the basis (B̃,W̃3 ,h̃d

0,h̃u
0) reads@18#
MN5S M1 0 2MZ cosb sinuW MZ sinb sinuW

0 M2 MZ cosb cosuW 2MZ sinb cosuW

2MZ cosb sinuW MZ cosb cosuW 0 2m

MZ sinb sinuW 2MZ sinb cosuW 2m 0

D . ~2.15!
ntly,
r
eive
nd

e

TheU(1)Y gaugino mass parameterM1[uM1ueif1 is in gen-
eral complex. This symmetric mass matrix is diagonalized
a unitary transformation

NTMNN5diag~mx̃
1
0,mx̃

2
0,mx̃

3
0,mx̃

4
0!; ~2.16!

i.e., thenth mass eigenstate2 is given by the complex conju
gate of thenth column ofN. Although the neutralino mas
matrix can be diagonalized analytically even for comp
parameters@20#, the general expressions are too lengthy
reproduce here. Of course, a numerical computation ofN is
straightforward. However, in order to qualitatively unde
stand mixing in the neutralino sector, a perturbative dia
nalization of the mass matrix~2.15! is often sufficient. Here
MZ is considered to be a small parameter compared touM1u,
M2 , and umu. Keeping all terms up to first order inMZ , as
well as a fewO(MZ

2) terms that will be important later, on
finds, for the masses and eigenvectors,

2When written as a row vectorx̃n
0 in the (B̃,W̃3 ,h̃d

0,h̃u
0) basis, the

mass eigenstate satisfiesMN(x̃n
0)†5mx̃

n
0(x̃n

0)T ~no sum overn!; i.e.,

it is not an eigenvector ofMN in the usual sense.
y

o

-

mx̃
1
0.uM1u1dm1 , x̃1

0.eif1/2~1,d12,d13,d14!/N1 ,

~2.17a!

mx̃
2
0.M21dm2 , x̃2

0.~d21,1,d23,d24!/N2 ,

~2.17b!

mx̃
3
0.umu, x̃3

0.
ei ~fm1p!/2

&
~d31,d32,1,1!,

~2.17c!

mx̃
4
0.umu, x̃4

0.
eifm/2

&
~d41,d42,1,21!.

~2.17d!

In Eqs. ~2.17! we have assumed the orderinguM1u,M2
,umu. If these three mass parameters are ordered differe
the eigenstates in Eqs.~2.17! are no longer labeled in orde
of increasing mass. Note that the eigenvalues do not rec
O(MZ) corrections. However, mixing between gauginos a
Higgsinos is generated at this order, andB̃-W̃3 mixing is
generated at orderMZ

2. These mixings are described by th
complex quantitiesd i j in Eqs.~2.17!; they are given by
0-4
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d1252
MZ

2 sinuW cosuW@ uM1u21M1
!M21sin~2b!~m!M1

!1M2m!#

~M2
22uM1u2!~ umu22uM1u2!

, ~2.18a!

d135
MZ sinuW~M1

! cosb1m sinb!

umu22uM1u2 , ~2.18b!

d1452
MZ sinuW~M1

! sinb1m cosb!

umu22uM1u2
, ~2.18c!

d215
MZ

2 sinuW cosuW@M2
21M1M21sin~2b!~M2m!1M1m!#

~M2
22uM1u2!~ umu22M2

2!
, ~2.18d!

d2352
MZ cosuW~M2 cosb1m sinb!

umu22M2
2 , ~2.18e!

d245
MZ cosuW~M2 sinb1m cosb!

umu22M2
2 , ~2.18f!

d315
MZ sinuW~sinb2cosb!

~ umu22uM1u2!
~M12m!!, ~2.18g!

d325
MZ cosuW~sinb2cosb!

~ umu22M2
2!

~m!2M2!, ~2.18h!

d4152
MZ sinuW~sinb1cosb!

~ umu22uM1u2!
~M11m!!, ~2.18i!

d425
MZ cosuW~sinb1cosb!

~ umu22M2
2!

~m!1M2!. ~2.18j!
,
f
E
fo
e

l

di

if

m
nd
e
-
-

and
x-
d to
eu-
ass
-

the
the

in
N1 ,N2 in Eqs. ~2.17a!, ~2.17b! are normalization constants
which differ from unity atO(MZ

2). Note that the phases o
the zeroth-order eigenstates have been factored out in
~2.17!; this gives more symmetric looking expressions
the d i j . Finally, theO(MZ

2) mass shifts of the gauginolik
states are given by

dm152
MZ

2 sin2 uW

umu22uM1u2 @ uM1u1umusin 2b cos~f11fm!#,

~2.19a!

dm252
MZ

2 cos2 uW

umu22M2
2 @M21umusin 2b cosfm#.

~2.19b!

Equations~2.18! and ~2.19! show that the expansion wil
break down ifumu2uM1u or umu2M2 becomes close toMZ
in absolute value. In other words, even if the unknown
mensionful parameters in the mass matrix~2.15! are all
@MZ , there can still be strong Higgsino-gaugino mixing
some of these parameters have similar absolute values.
01401
qs.
r

-

D. Relevant parameters

The mixing patterns in the part of the SUSY spectru
which will be relevant for the remainder of our work depe
on ten SUSY parameters~plus some SM parameters whos
values are already known accurately!. Some of these param
eters (ml̃ L

,ml̃ R
,uAl u,fA ,uM1u,f1) only enter in a single sec

tor ~sleptons and neutralinos, respectively!, while M2 ap-
pears in both the chargino and neutralino mass matrices,
umu, fm , and tanb affect all three sectors. Therefore the mi
ing patterns in the separate sectors are partly correlate
each other. In particular, choosing the parameters of the n
tralino mass matrix completely determines the chargino m
matrix as well. Moreover, increasingumu suppresses gaugino
Higgsino mixing, but enhancesl̃ L- l̃ R mixing. Finally, taking
tanb@1 again enhancesl̃ L- l̃ R mixing, but reduces the im-
pact of all phases on the physical masses.

III. INTERACTION LAGRANGIAN

In order to make our paper self-contained and to fix
notation, this section is devoted to a short collection of
relevant pieces of the interaction Lagrangian expressed
terms of physical mass eigenstates.
0-5
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A. Interactions involving SM gauge bosons

First of all, the well-known SM coupling between charg
leptons and gauge bosons is given by

Ll l̄ g,Z5e l̄gm~AmQg
a,l Pa1ZmQZ

a,l Pa!l , ~3.1!

wheree is the QED coupling constant andPa , aP$1,2%
[$R,L%, are standard chirality projection operators, defin
as

P65
16g5

2
. ~3.2!

The linear chargesQg,Z
a,l in Eq. ~3.1! are

Qg
1,l5Qg

2,l51, ~3.3a!

QZ
2,l5

21

sinuW cosuW
S sin2 uW2

1

2D , ~3.3b!

QZ
1,l52tanuW . ~3.3c!

SleptonL-R mixing does not affect the couplings betwe
sleptons and photons. Moreover, in the case of selectronsL-R
mixing can safely be neglected for high-energy applicatio
The vertices with two charged sleptons and one gauge bo
are defined via the momentum-space Lagrangian

L l̃ i l̃ jg,Z5e~AmQg
l̃ ,i j 1ZmQZ

l̃ ,i j !~ki1kj !
m l̃ i~ki ! l̃ j~kj !

!,
~3.4!

where i , j P$R,L%. The corresponding linear chargesQg,Z
l̃ ,i j

are

Qg
l̃ ,i j 5d i j , ~3.5a!

QZ
l̃ ,i j 52d i j F tanuW2

1

2 cosuW sinuW
d iL G .

~3.5b!

The couplings between physical Majorana neutralinos
the Z boson are given by

Lx̃
i
0x̃

j
0Z5

e

2 cosuW sinuW
Zmx̃ i

0gmQx̃0
a,i j Pax̃ j

0, ~3.6!

where the linear chargesQx̃0
a,i j are defined as

Qx̃0
1,i j

52~Qx̃0
i j

!!5
1

2
~N3iN3 j

! 2N4iN4 j
! ![Zi j . ~3.7!

The first equality in Eq.~3.7! follows from the Majorana
nature of the neutralinos. Of course, there is no neutral
photon coupling.

Finally, the interactions between neutral gauge bosons
charginos are given by

Lx̃
i
6x̃

j
7g,Z5ex̃ i

2gm~Qx̃6,g
a,i j PaAm1Qx̃6,Z

a,i j PaZm!x̃ j
2 ,

~3.8!
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Qx̃6,g
2,i j

5Qx̃6,g
1,i j

5d i j , ~3.9a!

Qx̃6,Z
6,i j

5
21

cosuW sinuW
@sin2 uWd i j 2~W6! i j #. ~3.9b!

The matrices (W6) i j can be obtained from the chargino mix
ing matrices via

~W6! i j 5~U6! i1~U6! j 1
! 1

1

2
~U6! i2~U6! j 2

! @1,25R,L#,

~3.10!

and read explicitly in terms of chargino mixing angles a
phases as

~W2!5S 3
4 1 1

4 cos 2fL 2 1
4 sin 2fLe2 ibL

2 1
4 sin 2fLeibL 3

4 2 1
4 cos 2fL

D ,

~3.11a!

~W1!

5S 3
4 1 1

4 cos 2fR 2 1
4 sin 2fRei ~g12bR2g2!

2 1
4 sin 2fRe2 i ~g12bR2g2! 3

4 2 1
4 cos 2fR

D.
~3.11b!

B. Slepton interactions with a chargino or neutralino

The neutralino-slepton-lepton vertices receive contrib
tions from both gauge and Yukawa interactions:

L l̃ l x̃
i
05

e

& sinuW

l̄ ~Gi j
a 1Yi j

a !Pax̃ i
0 l̃ j1H.c., ~3.12!

with

Gi j
2522 tanuWN1i~Ul̃ !2 j , ~3.13a!

Gi j
15~ tanuWN1i

! 1N2i
! !~Ul̃ !1 j , ~3.13b!

Yi j
252&YlN3i~Ul̃ !1 j , ~3.13c!

Yi j
152&YlN3i

! ~Ul̃ !2 j . ~3.13d!

Here the dimensionless, rescaled Yukawa couplingYl is
given by

Yl5
ml

&MW cosb
. ~3.14!

Note that we have to keep terms}Yl , as well as a nontrivial
sleptonic mixing matrixUl̃ , when computing leptonic dipole
moments. On the other hand, for high-energy applicationsYe

can be set to zero, which impliesYi j
650 in case of selec-

trons. In the same limitL-R mixing can be neglected, in
which case the gauge contributionsGi j

6 simplify to
0-6
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Gi j
2522 tanuWN1idR j , ~3.15a!

Gi j
15~ tanuWN1i

! 1N2i
! !dL j .

~3.15b!

The couplings between chargino, sneutrino, and lep
also receive gauge and Yukawa contributions:

Lñ f f x̃
i
65

e

sinuW
x̃ i

2Na,i P
al ñ l

!1H.c., ~3.16!

where

Na,i52daL~UR! i l 1daR~UL! i2Yl . ~3.17!

As before, the term}Ye in Eq. ~3.17! can be dropped in
collider physics applications, but it has to be kept when co
puting the leptonic dipole moments.

IV. LOW-ENERGY CONSTRAINTS

A. Experimental constraints

In this paper we are only interested in purely lepton
processes. We therefore ignore the~quite stringent! experi-
mental constraints on the electric dipole moments of the n
tron and mercury atom. The main reason for this choice
that leptonic processes suffer much less from uncertain
due to nonperturbative strong interactions. For example, R
@21# finds that different models relating electric dipole m
ments of quarks to that of the neutron or Hg atom differ
typically a factor of 2. Since large phases in the hadro
sector can be tolerated if there are cancellations between
ferent contributions, which have different hadronic mat
elements, a conservative interpretation of the experime
bounds ondn tends to give@11# significantly weaker con-
straints on model parameters than the bound on the ele
dipole moment of the electron does, even if one assu
some connection between theCP-violating phases in the
squark and slepton sectors. The onlyCP-violating ~more ex-
actly, T-violating! low-energy quantity of relevance to us
therefore the electric dipole moment of the electronde .
Given our assumption of flavor universality of the soft brea
ing terms in the slepton sector, at least as far as the first
second generations are concerned, the bound on the ele
dipole moment of the muon@22# need not be considere
separately: since (dl)SUSY}ml , all combinations of param
eters that satisfy the constraint on the SUSY contribution
de will be at least five orders of magnitude below the ma
mal allowed SUSY contribution todm .

On the other hand, our assumption of universal slepto
soft breaking terms for the first two generations also imp
@23# that the measurement@24# of the anomalous magneti
moment of the muon,am[(gm22)/2, gives atighter con-
straint on SUSY parameters than the anomalous magn
moment of the electron does. The reason is that for unive
soft breaking masses the SUSY contribution to these lept
magnetic moments is essentially proportional to the squa
mass of the lepton, and the experimental errors sat
@22,24# dam /mm

2 ,dae /me
2. The second low-energy quantit
01401
n

-

u-
is
es
f.

c
if-

al

ric
es

-
nd
tric

o
-

ic
s

tic
al
ic
d

fy

of relevance to us is therefoream . Note that the SUSY con-
tributions toam andde show very similar dependences on th
absolute values of the relevant parameters; however,de re-
ceives nonvanishing contributions only in the presence
nontrivial phases, while the contribution touamu becomes
maximal if all phases are zero orp.

The SM prediction forde is negligible. The current ex-
perimental measurement@22#

~de!expt5~0.06960.074!310226e cm, ~4.1!

can therefore directly be translated into a 2s range for the
supersymmetric contribution tode :

20.079310226e cm<~de!SUSY<0.217310226e cm.
~4.2!

The interpretation of the most recent measurement@24#
of am ,

~am!expt5~1165920866!310210, ~4.3!

is less clear. The reason is that nonperturbative hadro
terms do contribute toam , at about the 1028 level. In prin-
ciple, this contribution can be calculated from experimen
data using dispersion relations@25,26#. Unfortunately, calcu-
lations based on different data do not quite agree, altho
the discrepancy has become smaller after the recent rel
of corrected data by the CMD-2 Collaboration@27#. Using
e1e2 annihilation data as input tends to give an SM pred
tion which falls a little short of the experimental value~4.3!.
A recent analysis which includes all existinge1e2 data@28#
finds

~am!SM5~11659180.968.0!310210. ~4.4!

Adding all errors in quadrature, this gives a;2.7s discrep-
ancy. On the other hand, using data fromt decays gives@28#

~am!SM5~11659195.666.8!310210, ~4.5!

which is only ;1.4s below the measurement~4.3!. Since
even thee1e2 data lead to a less than 3s discrepancy be-
tween the prediction for and measurement ofam , we do not
want to claim evidence for a nonvanishing SUSY contrib
tion. In order to be conservative, we construct the upper li
of the ‘‘2s-allowed’’ range for (am)SUSY5(am)expt2(am)SM
by using the lower value~4.4!, reduced by two combined
standard deviations, as our estimate of (am)SM. Similarly,
the lower end of this ‘‘2s range’’ is obtained when (am)SM is
estimated by adding two standard deviations to the hig
value ~4.5!. This gives

25.7310210<~am!SUSY<47.1310210. ~4.6!

The upper bound in Eq.~4.6! constrains the SUSY paramete
space only for large values of tanb, but the lower bound is
significant also for moderate tanb.
0-7
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B. Analytical results

The supersymmetric one-loop contributions to lepton
pole moments are shown in Fig. 1. The left diagram dep
the neutralino contribution while the right one contains t
chargino contribution. Using the interaction Lagrangia
given in Sec. III we find, for the chargino contribution to th
electric dipole moment of the electron,

~de!SUSY
x̃6

5
1

96p2 (
i 51

2
2

mx̃
i
6

f 1~xi !Im~cLi
! cRi!. ~4.7!

The chargino loop contribution to the magnetic dipole m
ment of the muon is

~am!SUSY
x̃6

5
1

192p2 (
i 51

2 H 8mm

mx̃
i
6

f 1~xi !Re~cLicRi
! !

1
mm

2

mx̃
i
6

2 f 3~xi !~ ucLi u21ucRiu2!J . ~4.8!

The corresponding results for the neutralino contribut
read

~de!SUSY
x̃0

5
21

96p2 (
i 51

4

(
a51

2
1

mx̃
i
0

f 2~yia!Im~nLia
! nRia!,

~4.9!

~am!SUSY
x̃0

5
21

192p2 (
i 51

4

(
a51

2 H 4mm

mx̃
i
0

f 2~yia!Re~nLia
! nRia!

1
mm

2

mẽa

2 f 3~yia!~ unLiau21unRiau2!J . ~4.10!

FIG. 1. SUSY contributions to leptonic dipole operators.
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The variablesxi andyia are defined as

xi5

mx̃
i
6

2

mñ
2 , yia5

m
l̃ a

2

mx̃
i
0

2 , ~4.11!

and the loop functionsf i are

f 1~z!5
3z

2~z21!3 ~z224z1312 logz!, ~4.12a!

f 2~z!5
3

~z21!3 ~z22122z logz!, ~4.12b!

f 3~z!5
2z

~z21!4 ~z326z213z1216z logz!.

~4.12c!

These functions are normalized such thatf i(1)51, i
51,2,3. Finally, the coupling coefficientscAi andnAia can be
written as

cLi52
e

sinuW
~UR! i1 , ~4.13a!

cRi5
e

sinuW
Yl~UL! i2 , ~4.13b!

nLia5
e

& sinuW

@~N2i1tanuWN1i !~Ul̃ !La
!

2&YlN3i~Ul̃ !Ra
! #, ~4.13c!

nRia52
e

& sinuW

@2 tanuWN1i
! ~Ul̃ !Ra

!

1&YlN3i
! ~Ul̃ !La

! #. ~4.13d!

Our results agree with those of Refs.@11,29#; the neutralino
contribution in Ref.@12# seems to have some misprints.

The analytic expressions of Sec. II B can be used to
write both chargino contributions in terms of the loop fun
tions f i and the basic SUSY parameters:
ino
~de!SUSY
x̃6

52
me

48p2

e2

sin2 uW

tanbumuM2 sinfm

DC
(
i 51

2

~21! i
f 1~xi !

mx̃
i
6

2 , ~4.14!

~am!SUSY
x̃6

52
mm

2

96p2

e2

sin2 uW H 2(
i 51

2
f 1~xi !

mx̃
i
6

2 2
1

4
~11Ym

2 !(
i 51

2
f 3~xi !

mx̃
i
6

2 12@M2
21umu212 tanbM2umucosfm

12MW
2 cos 2b#(

i 51

2
~21! i f 1~xi !

DCmx̃
i
6

2 2
1

4
@~M2

22umu2!~12Ym
2 !12MW

2 cos 2b~11Ym
2 !#(

i 51

2
~21! i f 3~xi !

DCmx̃
i
6

2 J ,

~4.15!

where DC has been defined in Eq.~2.11!. Together with Eqs.~4.12!, these expressions explicitly show that the charg
0-8
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contributions to the leptonic dipole moments decouple like 1/mx̃6
2 for mx̃6

2
@mñ

2 and like 1/mñ
2 in the opposite limitmñ

2

@mx̃6
2 . For completeness we have included terms}Ym

2 , even though Eq.~3.14! shows thatYm
2 !1; if these terms are

neglected, (am)SUSY
x̃6

}mm
2 , as advertised earlier.

Analogous statements also hold for the neutralino contributions, but because of the more complicated nature of n
mixing, we were not able to find simple exact analytic expressions for these contributions. However, with the help
~2.17! and ~2.18! one can derive an approximate expression for the neutralino loop contribution tode :

~de!SUSY
x̃0

.2
e2me

96p2 H uAe
!1m tanbu

cos2 uWuM1u

f 2~mẽR

2 /uM1u2!2 f 2~mẽL

2 /uM1u2!

mẽL

2 2mẽR

2 sin~f12f ẽ!

1
tanb sin~fm1f1!

cos2 uWuM1mu~ umu22uM1u2!
F umu2S f 2~mẽR

2 /uM1u2!2
f 2~mẽL

2 /uM1u2!

2
D 2uM1u2S f 2~mẽR

2 /umu2!2
f 2~mẽL

2 /umu2!

2
D G

1
tanb sinfm@ umu2f 2~mẽL

2 /M2
2!2M2

2f 2~mẽL

2 /umu2!#

2 sin2 uWM2umu~ umu22M2
2! J . ~4.16!
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In the first line of Eq.~4.16! we have used an approxima
treatment of selectron mixing, which is quite sufficient f
the given purpose.3 The last line in Eq.~4.16!, which in-
volves the SU(2) gauge interactions, has a very simil
structure as the chargino loop contribution~4.14!; however,
the overall factor in front of the neutralino contribution is
times smaller than that of the chargino contribution. No
also that Eq.~4.16! does not contain contributions}sinf1,
which in our convention measures the relative phase betw
M1 and M2 ; only the phase ofM1 relative to either the
phasef ẽ in selectron mixing or to the phase ofm is relevant.

C. Numerical analysis

As well known @30–32,11,10#, the experimental bound
~4.1! on de provides stringent constraints on MSSM para
eter space. For example, the chargino contribution~4.14! to
de can be estimated to be

~de!SUSY
x̃6

;3310224 tanb sinfmS 100 GeV

mSUSY
D 2

e cm,

~4.17!

wheremSUSY stands for the relevant sparticle~sneutrino or
chargino, whichever is heavier! mass scale. The chargin
contribution by itself can therefore satisfy the experimen
constraint~4.2! only for very small phasefm and/or very
large sparticle masses. For sparticle masses not much a
100 GeV, one would need phases of order 1023 (1022) or
less in the chargino~neutralino or slepton! mass matrices; if
tanb@1, this constraint would become even stronger. S
small phases are unlikely to lead to measurable effect
high-energy collider experiments@16,17#. Alternatively one
can postulate that sparticle masses are very large@32#. Since

3The electric dipole moment is chirality violating and hence p
portional to the Yukawa coupling. Therefore slepton mixing, wh
is proportional to the Yukawa coupling, cannot be neglected.
01401
e

en

-

l
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h
in

gaugino masses are coupled to parameters in the Higgs
tor via one-loop renormalization group equations, wherea
similar coupling between first generation sfermion mas
and the Higgs sector only exists at the two-loop level@33#,
naturalness arguments favor models with large slep
masses and relatively modest gaugino masses. The esti
~4.17! indicates that first-generation slepton masses w
above 1 TeV would be required if the relevant phases
O(1). In that case these sleptons would be beyond the re
of the next lineare1e2 collider, which will have center-of-
mass energyAs&1 TeV. Moreover, since flavor-changin
neutral current~FCNC! constraints would then also indicat
very large masses for second-generation sleptons~recall that
we assume them to be exactly degenerate with the first g
eration!, a possible excess inam could not be accommodate
within the MSSM.

We therefore focus on the third possibility for satisfyin
the constraint~4.2!, where the different contributions tode
largely cancel@10,11#; that is, the neutralino contribution
must cancel the chargino contribution. Here we quant
tively analyze this possibility for three scenarios; later w
will analyze high-energy observables that are sensitive
phases within the same scenarios.

In all cases we assume that the ratio ofM2 and uM1u is
similar to that in models with gaugino mass unification at t
GUT scale, which predicts@33# uM1u.0.5M2 at the weak
scale. Similarly, we take values for the soft breaking mas
of SU(2) singlet and doublet sleptons that are consist
with the assumption of universal scalar masses at the G
scale. Recall that we assume degenerate first- and sec
generation soft breaking parameters in the slepton secto

mẽL
5mm̃L

5ml̃ L
, ~4.18a!

mẽR
5mm̃R

[ml̃ R
, ~4.18b!

Ae5Am[A. ~4.18c!

-

0-9
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TABLE I. The three scenarios studied in this paper. All dimensionful parameters are in GeV.

uM1u M2 ml̃ L
ml̃ R

uAu umu tanb f1 , fm , fA

B1 100 200 235 180 500 200 3, 6, 9, 12 P @2p, p#

B2 100 200 235 180 500 500 3, 6, 9, 12 P @2p, p#

B3 102.2 191.8 198.7 138.2 255.5 343.2 5, 10, 15, 20 P @2p, p#
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The assumption of universal scalar masses at the GUT s
implies @33# that

m
l̃ L

2 .m
l̃ R

2
10.46M2

2 ~4.19!

at the weak scale. Finally, we are interested in scena

where at leastl̃ R , l̃ L , x̃1
6 , andx̃2

0 can be pair produced at
‘‘first-stage’’ linear collider operating atAs5500 GeV.

This leads us to consider three different scenarios, wh
we call B1, B2, and B3. Scenario B1 hasumu5M2, i.e., is
characterized by strong mixing betweenSU(2) gauginos and
Higgsinos; this will occur in both the chargino and neutrali
sectors. Contrariwise, B2 hasumu2@M2

2, i.e., all Higgsino-
gaugino mixing is suppressed. In these two cases we ta
relatively large value ofuAu, which enhances sleptonL-R
mixing for small tanb; we will see shortly that this increase
the possibility of cancellations between the chargino a
neutralino contributions tode . On the other hand,ẽL-ẽR
mixing, while important for the calculation ofde , in all
cases remains negligible as far as selectron productio
high energies is concerned. Case B3, which is almost4 iden-
tical to the much-studied Snowmass ‘‘benchmark po
SPS1A’’ @34#, has intermediate gaugino-Higgsino mixing,
well as slightly reduced slepton masses. In all three case
take four different values of tanb. Moreover, we allow the
three relevant phasesf1 , fm , andfA to float freely; i.e., we
pick random values for these phases.~Recall that we work in
a phase convention whereM2 is real and positive.! These
three scenarios are summarized in Table I. Of course,
respect all relevant limits from direct searches for superp
ticles at colliders, in particular at LEP2@22#.

For simplicity and limited space of representation we o
show results for two choices of tanb53 or 12 in scenarios
B1 and B2 and for tanb510 or 20 in case B3. Results for th
other cases are qualitatively similar and can be obtained
extrapolation from these extreme cases. Note that the
merical results shown below are projections of a thr
dimensional parameter space onto two-dimensional pla
Hence it should be kept in mind that each correlation in
fx-fy plane has been obtained by scanning over the en
allowed range forfz . By far the strongest restriction o
parameter space comes fromde : at least 99.4% of all ran-
domly chosen points in a given run violate the constra

4The agreement becomes exact for the ‘‘benchmark value’’ tab
510 and vanishing phases.
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~4.2!; the success rate at large tanb is even smaller.5 In the
following we will quote upper bounds onufmu that result
from the constraint~4.2!. A similar band aroundfm5p ex-
ists for small tanb and largeumu.

Figure 2 shows allowed combinations of the phasesfm
and f1 . We observe very strong constraints onfm in sce-
nario B1, which become stronger as tanb increases. Scenario
B2 allows much larger values ofufmu, which moreover do
not decrease much with increasing tanb, while scenario B3
is intermediate between these two. This behavior can be
derstood from Eqs.~4.14! and ~4.16!. We saw that the con-
tributions involving SU(2) gauge interactions have ver
similar structure in both cases, but the chargino loop con
bution is bigger by a factor of;4 than this part of the neu
tralino contribution. The potentially most important cance
lation therefore occurs between the chargino contribut
@more exactly, the total contribution involvingSU(2) inter-
actions, which is, however, always dominated by t
chargino contribution# and the neutralino contributions in
volving U(1)Y interactions.

Scenario B1 hasumu5M2, i.e., very strong mixing be-
tween Higgsinos andSU(2) gauginos. Equation~4.16! no
longer gives an accurate estimate of the neutralino contr
tion in this limit, but we expect it to remain qualitativel
correct; note that it gives a finite answer~involving the de-
rivative of the functionf 2) in this case. In particular, the
contributions involving theSU(2) gauge coupling would be
much bigger than those involvingU(1)Y interactions if the
relevant phases had similar magnitude; in other words, a
nificant cancellation can only occur ifufmu is well below
uf1u. Furthermore, for this choice of parameters a stro
internal cancellation occurs between the two contributio
from U(1)Y interactions that grow}tanb, i.e., between the
first line and the following two lines on the right-hand sid
~RHS! of Eq. ~4.16!. As a result, we findufmu<p/30 even
for tanb53. Moreover, the dominant contribution from
U(1)Y interactions in this scenario involvesA, i.e., is inde-
pendent of tanb, whereas the contribution fromSU(2) in-
teractions increases}tanb. The upper bound onufmu there-
fore scales essentially like cotb. The importance offA in
this scenario also explains why there is almost no correla
between the allowed values offm andf1 . Moreover, in this
scenario values offm near p are excluded by the lowe
bound~4.6! on (am)SUSY.

5This indicates that rather severe fine-tuning is required@17# to
obtain the necessary cancellations if all phases are indeed inde
dent quantities. To put it differently, one faces the challenge
construct models that ‘‘naturally’’ explain the required correlatio
between these phases. We will not attempt to do this here.
0-10
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Equation~4.14! shows that increasingumu while keeping
all other parameters the same decreases the chargino c
bution to de ; according to Eq.~4.16!, it also decreases th
neutralino contributions that involveSU(2) interactions, but
it actually increasesthe neutralino contribution that is sens
tive to ẽL-ẽR mixing, i.e., the first line in Eq.~4.16!.6 Much
larger values ofufmu therefore now become possible. For t
given choice of parameters the coefficient of the neutra
contribution}sin(f12fẽ) is still about 5 times smaller tha
the coefficient of sinfm in the chargino contribution, leadin
to an upper limit of;p/4 on ufmu. Since these two coeffi
cients have the same sign, cancellations obtain only iff1
1fm and fm have opposite signs. Note that both of the
contributions are~essentially! }tanb. The upper bound on
ufmu is therefore now almost independent of tanb. However,
one needs increasingly more perfect cancellations as tb
increases; moreover, the relative importance of the phasefA
diminishes with increasing tanb, since its contribution to
ẽL-ẽR mixing is not enhanced in this limit. These two co
siderations explain why the width of the allowed band d
creases essentially like cotb for large tanb.

The increase ofumu when going from scenario B1 to B
also reduces the supersymmetric contribution toam . For
tanb53 we therefore now also find an allowed band w
fm.p; however, this band disappears at tanb;10. Note
that the phasef1 enters am mostly in the combination7

cos(f11fm). This means thatf1.0 will give positive
~negative! contributions toam if fm.0 ~p!. In other words,
for values off1 near zero theU(1)Y interactions contributes
with equal sign toam as the~usually leading! SU(2) inter-
actions do, whereasf1.p leads to a partial cancellatio
betweenU(1)Y and SU(2) contributions.fm.p therefore
remains allowed to slightly higher values of tanb if f1.p
as well.

6In principle one can therefore have large cancellations betw
chargino and neutralino contributions even forM2.umu, if M2

.mñ@uM1u, mẽR
. However, if M2 and mñ are as in scenario B1

this would require values ofmẽR
well below the direct search limi

of ;100 GeV.
7For umutanb@uAu, cos(f12f,̃).cos(f11fm) as well.

FIG. 2. Combinations offm andf1 that are allowed for at leas
onefAP@2p,p#.
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If umu is increased by another factor of;A5, chargino and
neutralino loop contributions tode can be of the same size
in which case no upper limit can be given one eitheruf1
1fmu or ufmu separately@11#, although a strong~anti!corre-
lation between these two phases still has to hold. Ifumu is
increased even further, the neutralino contribution becom
dominant. In that casefm could take any value~after scan-
ning over the other phases!, but significant absolute con
straints on the combinationf11fm would emerge that hold
even after scanning over allfA and fm . However, most
models of supersymmetry breaking prefer@33# values ofumu
that are not much larger thanM2 . We therefore do not dis-
cuss scenarios withumu@M2 any further.

Scenario B3 has a significantly smaller value ofumu than
scenario B2, although it is larger than in B1. The absol
upper bound onufmu is therefore reduced to;p/8. The al-
lowed bands in Figs. 2~d! and 2~f! are narrower than in Figs
2~b! and 2~e! due to the larger values of tanb and slightly
smaller slepton masses; both effects tend to increase
SUSY contributions tode , requiring correspondingly more
perfect cancellations. Note also that for tanb520 values of
f1 near zero giveam above the range~4.6!, i.e., in this case
neutralino and chargino contributions toam must not add
constructively. Parameter sets withfm nearp are only al-
lowed for tanb&5.

The allowed regions in the (fm ,fA)-plane are shown in
Fig. 3. Most of our scenarios haveum tanbu significantly
aboveuAu, in which case the value offA is not very impor-
tant. Even iffA is important, as in scenario B1, there is litt
correlation betweenfA andfm , sincefA only enters in the
combinationf ẽ 2f1 , and f1 is scanned in Fig. 3. In al
cases the bound onufmu is slightly weaker forfA.0 than
for fA.6p, since in the former caseA andm add~mostly!
constructively to the mixing of selectrons, thereby increas
the first line on the RHS of Eq.~4.16!.

We see from Figs. 2 and 3 that in all cases the entire ra
of values offA and f1 is allowed by thede constraint for
some combinations of the other phases. Figure 4 shows
there is little correlation between the allowed ranges of th
two phases. Indeed, thede constraint allows all combination
of these two phases, for some value offm . On the other

n

FIG. 3. Combinations offm andfA that are allowed for at leas
one value off1P@2p,p#.
0-11
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hand, in case B3 with tanb520 theam constraint~4.6! ex-
cludesuf1u&p/2; see Fig. 2~f!.

In Sec. VII C we will study correlations between low- an
high-energy observables. To that end it is instructive to
how the low-energy observables correlate with the SU
phases in the experimentally allowed region of parame
space. We saw above thatfm is tightly constrained, wherea
fA and f1 are not. SincefA does not affect high-energ
observables, the most interesting correlations are those
tween low-energy observables andf1 , after scanning over
fA andfm .

We find that there is no correlation betweende and f1
~not shown!, whereas in scenarios B2 and B3,am shows a
behavior}a cosf11b with a finite scatter; see Fig. 5. Thi
difference originates from the requirement of very stro
cancellations inde discussed above. In particular, the phas
f1 andfm have to be correlated such that the leading ter
}sin(f11fm) and}sinfm cancel each other, to an accura
determined by the size of~subleading! terms}sinfA as well
as by the experimental error onde . This completely removes
the correlation betweende and sinf1 that one might naively
expect from Eq.~4.16!. The phase-dependent neutralino lo
contributions to (am)SUSY can be read off from Eq.~4.16! by
replacingme by 2mm

2 in the overall factor and all sin by cos

FIG. 4. Combinations off1 andfA that are allowed for at leas
one value offmP@2p,p#.

FIG. 5. (am)SUSY vs f1 after scanning overfm andfA .
01401
e
Y
r
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s
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in addition, there are phase-independent contributions
comparable size. Since for our examplesfm is constrained to
be small ~or nearp!, ucosfmu.1 and one finds a cos-like
dependence ofam on f1 , as already stated. The crucial o
servation is that thef1-dependent andfm-dependent terms
do not cancel in this case, so the ‘‘naive’’ dependence ofam
on f1 survives. We note in passing that (am)SUSY50 can
usually not be achieved for a given choice of the absol
values of the SUSY parameters once we have required l
cancellations inde ; i.e., we cannot choose the phases su
that there are large cancellations in bothde and (am)SUSY. A
better measurement of, and more accurate SM prediction
am therefore has higher potential to further constrain
SUSY phases than improved measurements ofde .8

V. HIGH-ENERGY OBSERVABLES

We are now ready to analyze the impact of SUSY pha
on high-energy observables. After defining the relevant ki
matical quantities for the 2→2 processes under conside
ation, we briefly present the calculation of the correspond
unpolarized total cross sections. All these processes hav
ready been discussed in the literature: results forẽ2ẽ1 and
ẽ2ẽ2 production results can be found in@35–38# and @39#,
whereas results forx̃ i

2x̃ j
1 and x̃ i

0x̃ j
0 production results are

given in @40,36,19# and@41#. We nevertheless list our result
here in order to provide a self-contained presentation an
illustrate consistency with previous works.

A. Kinematics

The kinematical situation is illustrated by Fig. 6. The m
menta and helicities of the incoming~first! electron and pos-
itron ~second electron! are denoted byp1

m , s1 andp2
m , s2 ,

respectively. The momenta of the produced superpartic
generically labeled byb andc, are denoted byk1

m andk2
m . In

case of fermions being produced their helicities are deno
by l1 andl2 .

Working in the center of mass~c.m.! frame, we define the
z axis of the coordinate system such thatpW 1 points in the1z
direction. The event plane is then completed by the mom

8Of course, experimentally establishing a nonvanishing value
de would be of the greatest importance, since it would require ph
ics beyond the SM. However, while it would require some SUS
phase to be nonzero, it would not further reduce the allowed ran
of any one of these phases after scanning over the other two ph

FIG. 6. Kinematical situation.
0-12
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FIG. 7. Diagrams fore1e2→ẽi
2ẽj
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tum kW1 of particleb and defines the~x, z! plane of the coor-
dinate system. The scattering angleu is defined as the angl
betweenpW 1 andkW1 . The nominal range foru, which we use
when going from the differential to the total cross sectio
extends from 0 top. However, if the final state consists o
two identical particles, physicallyu has to be<p/2; we
therefore have to multiply the cross section for the prod
tion of identical particles with a factor of 1/2. Notice that o
convention implies vanishing azimuthal anglef. This defi-
nition of the ~x, z! plane is convenient since we are on
interested in total cross sections for unpolarizede6 beams.9

Of course, the phase space integration, which should be
formed in a laboratory-fixed coordinate system, still give
factor of 2p from the integration over the azimuthal angl
Explicit expressions for the momentapi

m and ki
m can be

found in Appendix A.

B. Cross section foreÀe¿\ẽi
Àẽj

¿

Figure 7 shows thes- andt-channel diagrams contributin
to selectron pair production. By introducing a dimensionle
Z boson propagator

DZ5
s

s2MZ
21 iM ZGZ

~5.1!

and bilinear chargesZi j
6

ZLL
2 511

~sin2 uW2 1
2 !2

sin2 uW cos2 uW
DZ , ZRR

2 511
sin2 uW2 1

2

cos2 uW
DZ ,

~5.2a!

ZLL
1 511

sin2 uW2 1
2

cos2 uW
DZ , ZRR

1 511
sin2 uW

cos2 uW
DZ ,

~5.2b!

ZLR
6 5ZRL

6 50, ~5.2c!

the gauge contribution to the helicity amplitudes can be w
ten as

9A nontrivial dependence on the azimuthal angle would arise o
if we considered transversely polarizede6 beams and/or were in
terested in the kinematical distribution of the decay products of
produced superparticlesb andc.
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Mi j
s1s2 ,G

5
e2

s
v̄~p2 ,s2!Zi j

a Pau~p1 ,s1!~ki2kj !
m.

~5.3!

The neutralino contribution is

M
i j

s1s2 ,x̃k
0

52 v̄~p2 ,s2!K2ak
j ! Pa~p” 12k” 11mx̃

k
0!

3Dt
kKbk

i Pbu~p1 ,s1!. ~5.4!

The coefficientsKak
i are given by

KLk
L 5

e

& cosuW sinuW

~cosuWN2k1sinuWN1k!,

~5.5a!

KRk
R 5

22e

& cosuW

N1k
! , ~5.5b!

KLk
R 5KRk

L 50, ~5.5c!

and the neutralino propagators are

Dt,u
k 5

1

~ t,u!2mx̃
k
0

2 , ~5.6!

where t5(p12k1)2 and u5(p12k2)2. By introducing a
shorthand notation for the helicity amplitudes,

^s1s2& i j 5Mi j
s1s2 ,G

1M
i j

s1s2 ,x̃k
0

, ~5.7!

and using the explicit expressions for helicity amplitud
given in Appendix B and the definition of the neutralin
functions in Eqs.~C2! we find six nonvanishing helicity am
plitudes~u is the angle between the momenta of the incid
e2 and the producedẽ2):

^11&RL522e2MLR
! ~s,t !, ~5.8a!

^22&LR52e2MRL~s,t !, ~5.8b!

^12&RR52e2lRR
1/2 sinu„NRR~s,t !1ZRR

1
…,

~5.8c!

^12&LL52e2lLL
1/2sinuZLL

1 , ~5.8d!

^21&RR52e2lRR
1/2 sinuZRR

2 , ~5.8e!

ly

e
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^21&LL52e2lLL
1/2sinu„NLL~s,t !1ZLL

2
…. ~5.8f!

Here the kinematical factorsl i j
1/2[l ẽi ẽj

1/2 are as in Eqs.~A3!.

As usual, the unpolarized cross section can be obtained
averaging over initial helicities. After integrating over th
azimuthal angle, we obtain

dsLL

d cosu
5

lLL
1/2

128ps
~ u^12&LLu21u^21&LLu2!, ~5.9a!

dsRR

d cosu
5

lRR
1/2

128ps
~ u^12&RRu21u^21&RRu2!,

~5.9b!

dsLR

d cosu
5

lLR
1/2

128ps
u^22&LRu2, ~5.9c!

dsRL

d cosu
5

lRL
1/2

128ps
u^11&RLu2. ~5.9d!

Finally, for these and all following reactions the total, unp
larized cross sections may be obtained by performing
remaining integration over the scattering angle:

s i j 5E
21

1

d cosuS ds i j

d cosu D . ~5.10!

C. Cross section foreÀeÀ\ẽi
Àẽj

À

The t- andu-channel diagrams contributing toẽi
2ẽj

2 pair
production are shown in Fig. 8. The corresponding invari
amplitude can be written as

Mi j
s1s252Kak

j Kbk
i v̄~p2 ,s2!H db,2aF p” 12k” 1

t2mx̃
k
0

2 1
p” 12k” 2

u2mx̃
k
0

2 GPa

1dabmx̃
k
0F 1

t2mx̃
k
0

2 1
1

u2mx̃
k
0

2 GPaJ u~p1 ,u1!.

~5.11!

Using the results of Appendix B, we evaluate the helic
amplitudes and find

Mi j
s1s25^s1s2& i j 52

s

2
sinul i j

1/2ds2 ,2s1
~Ks1k

i K2s1k
j Dt

k

2K2s1k
i Ks1k

j Du
k!1mx̃

k
0AsKs1k

i Ks1k
j s1ds1s2

3~Dt
k1Du

k!. ~5.12!

FIG. 8. Diagrams fore2e2→ẽi
2ẽj

2 .
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Rewriting these results in terms of neutralino functions
defined in Eqs.~C2!, we find four nonvanishing helicity am
plitudes~u is the angle between the momenta of an incid
e2 and a producedẽ2; it does not matter which initial- and
final-state particles are chosen, since the cross section i
variant underu→p2u):

^11&RR52e2@MRR
! ~s,t !1MRR

! ~s,u!#, ~5.13a!

^22&LL522e2@MLL~s,t !1MLL~s,u!#,
~5.13b!

^21&LR5e2lLR
1/2 sinuNLR~s,t !, ~5.13c!

^12&RL52e2lLR
1/2 sinuNLR~s,u!.

~5.13d!

After calculating the polarization averaged squared ma
elements and including the phase space factor, the diffe
tial cross sections are

dsLL

d cosu
5

lLL
1/2

256ps
u^22&LLu2, ~5.14a!

dsRR

d cosu
5

lRR
1/2

256ps
u^11&RRu2, ~5.14b!

dsLR

d cosu
5

lLR
1/2

128ps
~ u^21&LRu21u^12&RLu2!.

~5.14c!

Note thatsLR andsRL are not physically distinguishable i
this case, unlike fore1e2 annihilation.

D. Cross section foreÀe¿\x̃ i
Àx̃ j

¿

Figure 9 shows thes- and t-channel contributions to
x̃ i

2x̃ j
1 pair production. After a Fierz rearrangement of theñ

contribution, the invariant amplitude can be written as

Ms1s2 ;l1l2

i j 5
2e2

s
v̄~p2 ,s2!gmPau~p1 ,s2!

3Qab
i j ūi~k1 ,l1!gmPbv j~k2 ,l2!,

~5.15!

where we introduced the bilinear charges~with x5sin2 uW)

FIG. 9. Diagrams fore2e1→x̃ i
2x̃ j

1 .
0-14



-

Eq.
er

ng
s in
e

SYSTEMATIC STUDY OF THE IMPACT OFCP- . . . PHYSICAL REVIEW D 70, 014010 ~2004!
QLL
11 511

DZ~2x21!

2x~12x! S x2
3

4
2

1

4
cos 2fLD , ~5.16a!

QRR
11 511

DZ

12x S x2
3

4
2

1

4
cos 2fRD , ~5.16b!

QLR
11 511

DZ~2x21!

2x~12x! S x2
3

4
2

1

4
cos 2fRD

1
sDt

ñ

4x
~11cos 2fR!, ~5.16c!

QRL
11 511

DZ

12x S x2
3

4
2

1

4
cos 2fLD ; ~5.16d!

QLL
22 511

DZ~2x21!

2x~12x! S x2
3

4
1

1

4
cos 2fLD ,

~5.17a!

QRR
22 511

DZ

12x S x2
3

4
1

1

4
cos 2fRD , ~5.17b!

QLR
22 511

DZ~2x21!

2x~12x! S x2
3

4
1

1

4
cos 2fRD

1
sDt

ñ

4x
~12cos 2fR!, ~5.17c!

QRL
22 511

DZ

12x S x2
3

4
1

1

4
cos 2fLD ; ~5.17d!

QLL
12 5~QLL

21 !!5
DZ~2x21!

8x~12x!
sin 2fLe2 ibL, ~5.18a!

QRR
12 5~QRR

21 !!5
DZ

4~12x!
sin 2fRei ~g12bR2g2!,

~5.18b!

QLR
12 5~QLR

21 !!

5S DZ~2x21!

8x~12x!
2

sDt
ñ

4x
D sin 2fRei ~g12bR2g2!,

~5.18c!

QRL
12 5~QRL

21 !!5
DZ

4x~12x!
sin 2fLe2 ibL. ~5.18d!

Here the sneutrino propagatorDt
ñ is defined analogously to

the neutralino propagators~5.6!. Using the results of Appen
01401
dix B, we find, for a generic helicity amplitude~u is the
angle between the momenta of the incidente2 and the pro-
ducedx̃2),

^s1 ,2s1 ;l1l2& i j

5
2e2

2 (
b

Qs1b
i j $l1dl1l2

A12hbl1

2 sinu

1dl1 ,2l2
A~11bl1hbl1

!~11bl1h2bl1
!

3~cosu1l1s1!%, ~5.19!

where the kinematical quantitiesh6 are defined in Eq.~B3!.
The unpolarized cross sections can be computed from
~5.19! by averaging over initial helicities and summing ov
the final ones:

ds i j

d cosu
5

pa2

8s
l i j

1/2$@~12D i j
2 !1l i j cos2 u#Q1

i j 18m im jQ2
i j

12l i j
1/2cosuQ3

i j %, ~5.20!

where 4pa5e2, m i5mx̃ i
/As, andD i j 5m i

22m j
2. The new

quartic chargesQn
i j are given by

Q1
i j 5uQ11

i j u21uQ12
i j u21uQ21

i j u21uQ22
i j u2, ~5.21a!

Q2
i j 5Re~Q11

i j Q12
i j ! 1Q22

i j Q21
i j ! !, ~5.21b!

Q3
i j 5uQ11

i j u22uQ12
i j u22uQ21

i j u21uQ22
i j u2. ~5.21c!

E. Cross section foreÀe¿\x̃ i
0x̃ j

0

In Fig. 10 thes- andt-channel contributions tox̃ i
0x̃ j

0 pro-
duction are shown; the additional, destructively interferi
u-channel diagram is indicated by the exchanged indice
parentheses. Applying a Fierz rearrangement on both tht-
andu-channel diagrams and reordering theu-channel ampli-
tude, we obtain the invariant amplitude

Ms1s;l1l2

i j 5
2e2

s
v̄~p2 ,s2!gmPau~p1 ,s2!

3Qab
i j ū~k1 ,l1!gmPbv~k2 ,l2!. ~5.22!

Here, the bilinear chargesQab
i j are given by (x5sin2 uW)

FIG. 10. Diagrams fore2e1→x̃ i
0x̃ j

0.
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QLL
i j 5

DZ

2x~12x!
~2x21!Zi j

! 2sDu
LgLi j , ~5.23a!

QRR
i j 52

DZ

12x
Zi j 2sDu

RgRi j
! , ~5.23b!

QLR
i j 52

DZ

2x~12x!
~2x21!Zi j 1sDt

LgLi j
! ,

~5.23c!

QRL
i j 5

DZ

12x
Zi j

! 1sDt
RgRi j , ~5.23d!

with

gLi j 5
1

4x
~N2i

! 1tanuWN1i
! !~N2 j1tanuWN1 j !,

~5.24a!

gRi j5
1

12x
N1i

! N1 j . ~5.24b!

The selectron propagators are defined as

Dt,u
L,R5

1

~ t,u!2mẽL,R

2 . ~5.25!

Since this amplitude has the same structure as the ampl
for x̃ i

2x̃ j
1 production, Eq.~5.15!, we can directly translate

the result~5.19! from this calculation; we just have to replac
the bilinear charges. We can also use the result~5.20! for the
unpolarized, differential cross section, but we have to inclu
a statistical factor

ds i j

d cosu
522d i j

pa2

8s
l i j

1/2$@~12D i j
2 !1l i j cos2 u#Q1

i j

18m im jQ2
i j 12l i j

1/2cosuQ3
i j %. ~5.26!

Of course, now the bilinear charges of Eqs.~5.23! have to be
used when evaluating the quartic charges defined in E
~5.21!.

F. PN for two-fermion production

We will see in Sec. VII that some of the cross sectio
calculated in the previous subsections depend quite se
tively on theCP-violating phasesf1 and/orfm . Neverthe-
less, if measurements of these cross sections establish
viation from the CP-conserving MSSM, one will need to
measure someCP-violating asymmetries in order to con
vince oneself that the observed deviation is indeed due
nonvanishing phases, rather than due to some extensio
the MSSM. We will see that this is possible only for th
production of fermionic final states. Consider
01401
de

e

s.

s
si-

de-

to
of

e2~pW 1 ,sW1!e1~pW 2 ,sW2!→x̃1~kW1 ,s̃W1!xD j~kW2 ,s̃W2!. ~5.27!

The momentapW 1,2 andkW1,2 have been defined in Fig. 6, an
sW1,2 and s̃W1,2 are the spin vectors in the initial and final stat
respectively. ACP transformation on reaction~5.27! gives
the CP-conjugate process

CP: e1~2pW 1 ,sW1!e2~2pW 2 ,sW2!→xD i~2kW1 ,s̃W1!x̃ j~2kW2 ,s̃W2!.

~5.28!

In the center-of-mass system,pW 152pW 2 and kW152kW2 . The
initial state will therefore be self-conjugate ifsW15sW2 , in par-
ticular for unpolarized beams. Comparing reactions~5.27!
and~5.28!, one can introduce twoCP-odd asymmetries even
after summing over the spins in the final state. One can
fine a rate asymmetry for chargino production, essentia
s(x̃1

2x̃2
1)2s(x̃2

2x̃1
1), as well as an angular asymmetry fo

the production of two different neutralinos, proportional
ds(x̃ i

0x̃ j
0,u)2ds(x̃ i

0x̃ j
0,p2u). However, far from theZ

pole, both these asymmetries vanish identically at the
level. The reason is that they are odd under a combinedCPT̃

transformation, where the ‘‘naive time reversal’’T̃ reverses
the direction of all 3-momenta, but doesnot exchange initial
and final state. Quantities that are odd underCPT̃ can be
nonzero only in the presence of absorptive phases, which
come from nearly resonants-channel propagators or from
loop corrections if the kinematics allows the particles in t
loop to be on shell.

A CP-odd quantity can therefore only be nonzero in t
absence of absorptive phases if it is alsoT̃ odd. This is true
for triple products of momentum and spin vectors. In ge
eral, the spin of the final-state fermions in Eq.~5.27! can be
decomposed into three components:PL

i ,i j is the component

of s̃W i in direction of kW i , averaged over many events~with
fixed u!; PT

i ,i j is orthogonal tokW i , but liesin the event plane;

and PN
i ,i j is orthogonal tokW i and orthogonal to the even

plane. The first two of these quantities areT̃ even; however,
since

PN
i ,i j 5^ s̃W i•~pW 13kW i !&, i 51,2, ~5.29!

PN
i ,i j is indeed T̃ odd; here,^¯& denotes averaging ove

many events with fixed scattering angleu.10 We will com-
ment on the measurability of this quantity when we pres
numerical results.

The normal components of the polarizations ofx̃ i and x̃ j
can be computed using results of Ref.@42#:

10
Strictly speaking,PN

i is CP odd only for self-conjugate fina

states~any two neutralinos orx̃ i
2x̃ i

1!. However, since at the tree

level and away forms-channel resonancesT andT̃ transformations

are essentially the same, a nonvanishingPN
i in x̃ i

2x̃2
1 production

can also be considered evidence forCP violation.
0-16
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PN
i ,i j 5

22 Im$(s1s2
@^s1s2 ;11&^s1s2 ;21&!1^s1s2 ;12&1^s1s2 ;22&!#%

(s1s2
@ u^s1s2 ;11&u21u^s1s2 ;12&u21u^s1s2 ;21&u21u^s1s2 ;22&u2#

, ~5.30a!

PN
j ,i j 5

2 Im$(s1s2
@^s1s2 ;11&^s1s2 ;12&!1^s1s2 ;21&^s1s2 ;22&!#%

(s1s2
@ u^s1s2 ;11&u21u^s1s2 ;12&u21u^s1s2 ;21&u21u^s1s2 ;22&u2#

. ~5.30b!

After introducing a fourth quartic charge

Q4
i j 5Im~Q11

i j Q12
i j !

1Q22
i j Q21

i j !
! ~5.31!

and using Eq.~5.19!, Eqs.~5.30! simplify to

PN
i ,i j 5

4 sinum jl i j
1/2Q4

i j

@12D i j
2 1l i j cos2 u#Q1

i j 18m im jQ2
i j 12l i j

1/2cosuQ3
i j , ~5.32a!

PN
j ,i j 5

24 sinum il i j
1/2Q4

i j

@12D i j
2 1l i j cos2 u#Q1

i j 18m im jQ2
i j 12l i j

1/2cosuQ3
i j 52PN

i ,i j m i

m j
. ~5.32b!
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We see thatPN
i ( j ),i j vanishes both at threshold~where l i j

→0) and far above threshold~where m j ,i→0). Equations
~5.16! and ~5.17! show that all bilinear charges describin
x̃ i

2x̃ i
1 production are real. Likewise, Eqs.~5.2! and ~5.24!

show that the couplings appearing in the expressions~5.23!
of the bilinear charges for neutralino pair production are r
for final states consisting of two identical neutralinos. W
thus see thatQ4

i j and hencePN
i ( j ),i j can only be nonvanishing

for off-diagonal production modes (iÞ j ). Moreover, the
second identity in Eq.~5.32b! shows that there is only on
independentPN for each distinctx̃ i x̃ j production channel,
for a total of seven independentCP-odd observables.

G. Approximate results

The results presented in the previous sections allow
exact~tree level! calculation of the phase dependences of
selectron and neutralino production cross sections and
PN . However, it is useful to get a qualitative understand
of where one can expect strong sensitivity to the fundame
phases in the supersymmetric Lagrangian. To this end
here discuss the behavior of the relevant cross sections
polarization components using the approximate diagonal
tion of the neutralino mass matrix described by Eqs.~2.17!–
~2.19!.

We begin with the cross sections for selectron pair p
duction. All modes receiveO(MZ

0) contributions from the
exchange of theBino-like neutralino; in the case ofẽL pair
production, the exchange of theWino-like neutralino also
contributes at orderMZ

0. The ẽL
2ẽL

2 mode is the only one
which has a phase sensitivity to orderMZ

0, where the cross
section is sensitive to the relative phase betweenM1 and
01401
l

n
e
of

al
e
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-

M2 . The other cross sections show phase sensitivity onl
order MZ

2. This is due to both the exchange of heavi
Higgsino-like neutralinos which develop gaugino comp
nents atO(MZ) and due to theO(MZ

2) corrections to the
gaugino components of the gauginolike neutralinos; the
portance of these latter contributions explains why we
cluded theO(MZ

2) quantitiesd12 and d21 and included the
normalization factorsN1,2, in Eqs. ~2.17! and ~2.18!. The
O(MZ

2) shifts dm1,2 of the masses of the gauginolike ne
tralinos also affect the selectron production cross sectio
either directly ~if the physical masses are allowed to va
with the phases! or indirectly ~if physical masses are kep
fixed, in which case the absolute values of the input para
eters have to be varied along with the phases!; sinceO(MZ

2)
shifts of uM1u, M2 , andumu change the eigenstatesx̃ i

0 only at
O(MZ

3), we will ignore such indirect effects in the following
SinceẽR does not haveSU(2) interactions,s(ẽR

2ẽR
6) are at

O(MZ
2) only sensitive to the phase combinationf11fm ,

whereas the other modes are also sensitive to11 f1 andfm .
One should also bear in mind that the phase sensitivity of
diagonalẽ1ẽ2 production channels is further diluted by th
presence of larges-channel~g and Z exchange! contribu-
tions, which do not depend on any phase.

The phase dependence of the selectron production c
sections for fixed physical neutralino masses is summar
in Table II. Here we show the coefficients of the vario
phase-dependent terms that can appear, relative to the
ing ~phase-independent! contribution to this cross section

11Recall thatf2[0 in our convention.
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We have omitted numerical factors, including factors invo
ing the weak mixing angle. Nevertheless, we can draw so
conclusions from this table. First, we notice that the dep
dence on the phasefm shown in the second and third co
umns vanishes like 1/tanb for tanb@1. The reason is tha
the dependence on this phase in the neutralino mass m
could be rotated12 into the off-diagonal gaugino-Higgsin
mixing entries}cosb. However, the dependence on the re
tive phase between the two soft gaugino masses does
vary with tanb.

Second, with the exception of theẽL
2ẽL

2 mode, all phase
dependence vanishes asumu→`, but theumu dependence var
ies for different modes. In particular, the phase depende
of the diagonal modeẽR

2ẽR
1 vanishes}1/umu3 for large umu,

whereas all other cross sections receive phase-depen
contributions that only fall like 1/umu; however, for tanb
→` the umu dependence of the total phase sensitivity b
comes stronger, as can be seen in the last column. In m
cases the leading phase dependence comes from the

12This rotation does not introduce any phase in those parts off f̃ x̃
vertices that come from gauge interactions, butdoes introduce a
phase in the Yukawa contribution to these vertices. Recall that th
Yukawa contributions can be ignored when calculating cross
tions, but have to be kept when computing leptonic dipole m
ments. This explains why thefm dependence ofde and am is not
suppressed at large tanb.

TABLE II. Phase dependence of the cross sections for selec
pair production ine1e2 as well ase2e2 annihilation for fixed
physical neutralino masses. Each entry gives the dependence o
coefficient of the indicated~combination of! phase~s! on the super-
symmetric parameters relative to the leading~phase-independent!
contribution to this cross section, under the assumptionuM1u2

,M2
2!umu2. ‘‘None’’ means that the corresponding term does n

exist to O(MZ
2). The cross section forẽL

2ẽL
2 production also has

terms }cos(2f11fm) and }cos(fm2f1), but with small coeffi-
cients}sin 2bMZ

2/(umu3).

cos(fm1f1) cosfm cosf1

ẽL
2ẽL

1 sin 2b
MZ

2uM1u
M2

2umu sin 2b
MZ

2

M2umu
MZ

2uM1u
M2umu2

ẽL
2ẽR

1
sin 2b

MZ
2

uM1mu
sin 2b

MZ
2

M2umu
MZ

2M2

uM1uumu2

ẽR
2ẽR

1
sin 2b

MZ
2uM1u
umu3

none none

ẽL
2ẽL

2
sin 2b

MZ
2

M2umu
sin 2b

MZ
2

M2umu

uM1u
M2

ẽL
2ẽR

2 sin 2b
MZ

2uM1u
M2

2umu sin 2b
MZ

2

M2umu
2

MZ
2uM1u

M2umu2

ẽR
2ẽR

2
sin 2b

MZ
2

uM1mu
none none
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change of the lighter, gauginolike, neutralinos. The except
is the ẽR

2ẽR
2 mode, where the exchange of the heavi

Higgsino-like states contributes at the same order.
Clearly, theLL mode will have the strongest phase depe

dence of allẽ2ẽ2 channels@38#, and indeed of all selectron
production channels, since it already occurs atO(MZ

0), as
noted earlier. The phase-dependent terms inẽL

2ẽL
1 andẽL

2ẽR
1

production are of similar size. For our choice of paramet
the second mode is preferable, since it is accessible at lo
energies and since the cross section near threshold scale
Al, rather than likel3/2. Finally, the relative importance o
phase-sensitive and phase-insensitive terms in most sele
production cross sections does not depend strongly on
beam energy. We therefore expect the best statistical a
racy for the determination of the relevant phases when
beam energy is chosen such that the cross section bein
vestigated is maximal.

So far, we have kept the physical neutralino masses fix
which means thatuM1u, M2 , andumu have to be varied along
with the phases; we saw above that this affects the c
sections only atO(MZ

2) relative to the leading term. If in-
stead these input parameters are held fixed, the physical
tralino masses will vary atO(MZ

2). Of particular interest are
the masses of the gauginolike states, whose exchange g
much bigger contributions to the matrix elements than tha
the Higgsino-like neutralinos. The relevant mass shifts
given in Eqs.~2.19!. We see that these effects also vani
}1/tanb for large tanb. However, they only scale like 1/umu
for large umu. They will therefore dominate the total phas
dependence of theẽR

1ẽR
2 production cross section. For th

other modes, the dependence on cos(f11fm) and on cosfm
that comes from the variation of the masses of the gaug
like neutralinos is qualitatively the same as shown in Ta
II, if we ignore the factorsuM1u/M2 . A more detailed analy-
sis is therefore required to decide which source of ph
dependence dominates. However, in the case ofẽL

2ẽL
2 pro-

duction the total phase dependence is still dominated by
O(MZ

0) term fromBino–Wino interference.
We now turn to the cross sections for neutralino pair p

duction in e1e2 annihilation, s i j [s(e1e2→x̃ i
0x̃ j

0). We
first note that of the ten distinct cross sections, only fo
receiveO(MZ

0) contributions: the cross sectionss11, s12,
and s22 describing the production of two gauginolike ne
tralinos receive large contributions from selectron excha
in the t or u channel, whiles34 receives large contribution
from Z exchange in thes channel. The cross sectionss33 and
s44 describing the production of two equal Higgsino-lik
states receive nonvanishing contributions only atO(MZ

4),
whereas the cross sections for the production of o
Higgsino-like and one gauginolike state start atO(MZ

2).
Only s12 has sensitivity to some phase~in this case,f1)

at orderMZ
0. All other cross sections are sensitive to phas

only at orderMZ
2 or evenMZ

4. The strong phase sensitivity o
s12 can be traced to theQ2 term in Eq.~5.26!. It comes from
the fact@31# that the production of two Majorana fermions
P-wave suppressed near threshold if they have the same
tive CP phase, whereas any difference in this phase lead

se
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-

n
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t
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an S-wave contribution to the cross section. This effect c
be probed with optimal statistical significance rather close
threshold, in this case forAs not too much aboveuM1u
1M2 .

TheO(MZ
2) phase-dependent terms in the neutralino p

duction cross sections should be most easily observabl
the mixed ‘‘gaugino-Higgsino’’ final states, since here t
cross sections also only start atO(MZ

2), as remarked above
Note that the two Higgsino-like neutralinos are closely m
degenerate in the limitum2u@MZ

2. This makes it very diffi-
cult to experimentally distinguish between the production
x̃3

0 and x̃4
0. In the following discussion we therefore alway

sum over these two Higgsino-like states. Once this has b
done, we again find that all terms involvingfm come with a
factor sin 2b and are thus suppressed at large tanb. These
cross sections also contain terms}cos(f12fm) and
cos(2f11fm), which result from the rephasing-invarian
combinations of phases6(f12f2)2(f2,11fm) in our
conventionf250. Altogether we find the following phase
dependent terms in these two cross sections:

s1h̃[s131s14:cos~fm1f1!S sin 2buM1u
umu

,
sin 2bumM1u

s D ,

cosfmS sin 2bM2

umu
,
sin 2buM1u2M2

umus D ,

cos~f12fm!
sin 2buM1uM2

2

umus
,

cosf1S uM1uM2

umu2 ,
uM1uM2

s D , ~5.33a!

s2h̃[s231s24:cos~fm1f1!

3S sin 2buM1u
umu

,
sin 2buM1uM2

2

umus D ,

cosfmS sin 2bM2

umu
,
sin 2bumuM2

s D ,

cos~2f11fm!
sin 2buM1u2M2

umus
,

cosf1S uM1uM2

umu2 ,
uM1uM2

s D . ~5.33b!

A common factor}a2MZ
2/(umu2s), characterizing the size o

the leading phase-independent contributions, has been
01401
n
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-
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tored out. Here we have listed thes-dependent contributions
coming from the terms}Q2 separately, where present. No
that they usually have a different dependence13 on umu than
the terms that survive fors→`. We conclude from Eqs
~5.33! that s1h̃ might show a somewhat stronger overa
phase dependence in the region of parameter space allo
by low-energy data, since it depends on the potentially la
phasef11fm through terms with fewer powers ofumu in the
denominator thans2h̃ does, whereas the dependence
cosf1 is parametrically the same in both cases. This is f

tunate, since the 1h̃ mode is accessible at lower energie
Finally, note that the phase dependence of the neutra
masses affects these cross sections only atO(MZ

4).
We do not list theO(MZ

2) phase-dependent terms of th
cross sections that receiveO(MZ

0) contributions, since these
will clearly be much more difficult to measure.

The situation concerning chargino pair production
rather similar. Here both diagonal modes start atO(MZ

0), but
receive phase-dependent contributions only atO(MZ

2). In the
case of the off-diagonal mode14 both the cross section an
the phase dependence starts atO(MZ

2); indeed, the phase
dependence is very similar to that in Eq.~5.33b! with f1

→0, since theU(1)Y gaugino mass does not appear in t
chargino mass matrix.

Finally, the results for perturbative neutralino mixing ma
be applied to the polarization vector components of the n
tralinos produced ine1e2→x̃ i

0x̃ j
0 as calculated in Sec. V F

Here we only discuss the normal component as it is the o
CP-odd quantity available if neutralino decays are not
cluded explicitly. Recall that a nonvanishingPN can only
occur for final states consisting of twodifferentneutralinos.
We find that the numerators in Eqs.~5.32! receiveO(MZ

0)

contributions only for the~12! mode; in the case of the (1h̃)

and (2h̃) modes, the numerator starts atO(MZ
2), just like the

corresponding total cross sections, and hence the denom
tors in Eqs.~5.32!. In all these casesPN will therefore re-
ceive O(MZ

0) contributions. On the other hand,PN for the

h̃h̃ @or ~34!# mode vanishes toO(MZ
2); this final state is

therefore of little interest in the present context. Explicit
for ~12! production we find to O(MZ

0):15

13In some cases these threshold terms seem to grow with incr
ing umu. However, s1h̃(s2h̃) is accessible only forAs.uM1u
1umu(As.M21umu), i.e., umu2/s,1 in the physical region.

14In principle, x̃1
2x̃2

1 production is now distinguishable from
x̃1

1x̃2
2 production. However, the two cross sections differ only

the presence of an absorptive phase, i.e., after including loop
rections.

15Equations~5.32! show thatuPN
1,12u is larger thanuPN

2,12u by a
factor M2 /uM1u.2. However, we assume thatx̃1

0 is the LSP, and
hence stable~if R parity is conserved!, so that its spin cannot be
measured.
0-19
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where z5cosu. As expected for aCP-odd quantity, the
dominant dependence onf1 is through a sine function, while
the denominator~basically the differential cross section di
cussed above! contains a CP-even dependence onf1
through a cosine.

As a result of their mass degeneracy, we have to ave
PN for the mixed gaugino-Higgsino modes over the prod
tion of both Higgsino-like neutralinos. Using the event nu
bersN as weights, we obtain

PN
i ,i h̃5

Ni3PN
i ,i31Ni4PN

i ,i4

Ni31Ni4
, i 51,2. ~5.35!

This amounts to replacing the quartic charges in Eq.~5.32!
by

Qk
ih̃5Qk

i31Qk
i4. ~5.36!

The calculation of the relevant quartic chargesQ4
i h̃ to O(MZ

2)
is now straightforward, if somewhat tedious. We find t
following terms, factoring outa2MZ

2/umu2:

Q4
i h̃ :sin~f11fm!sin 2b, sinfm

sin 2buM1uM2

umu2
,

sin~f12fm!
sin 2bM2

2

umu2 , sinf1

M2

umu
, ~5.37a!

Q4
2h̃ :sin~f11fm!

sin 2buM1uM2

umu2
,

sinfm sin 2b, sin~fm12f1!
sin 2buM1u2

umu2 ,

sinf1

uM1u
umu

. ~5.37b!

The tems in Eqs.~5.37! directly correspond to terms inPN ,
up to an additional factor of uM1u/As(umu/As) for

PN
h̃,1h̃ (PN

2,2h̃), since the dependence of the leading term
the denominator in Eq.~5.32! on SUSY parameters has a
ready been factored out. As expected, the phase depend
is through sine functions here, and all terms that are sens

to fm are suppressed at large tanb. The first term inQ4
1h̃

gives rise to a contribution toPN
h̃,1h̃ that remains finite as

umu→`, but vanishes}1/tanb for large tanb. On the other
hand, in the (2h̃) mode we can measure the polarization
the lighter gauginolike neutralino, giving rise to an extra fa
01401
ge
-
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n
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ve

f
-

tor umu/As. We thus see that~as long asAs.umu1M2) the

second term in Eq.~5.37b! gives a contribution toPN
2,2h̃ that

rises with increasingumu. However, for the range ofumu of
interest to us, this term is suppressed by the stringent up
limit on usinfmu ~see Sec. IV C!; only in scenario B2 with
small tanb can it reach comparable magnitude as the l
term in Eq.~5.37b!. This last term leads to a contribution t

PN
2,2h̃ that approaches a constant for largeumu and remains

finite for large tanb. We therefore conclude that (2h̃) pro-
duction should allow a somewhat more sensitive direct pr
of CP violation than (1h̃) production. Finally, the norma
components of the polarization vectors inx̃1

6x̃2
6 production

have similar structure as Eq.~5.37b! with f1→0, but receive
additional contributions from theZ coupling to the gaugino
component of the heavy chargino statex̃2

6 .

VI. SIGNIFICANCES

Our aim in this section is to introduce objects quantifyi
the impact ofCP-odd phases on total cross sections, wh
are CP-even quantities. To this end we compare the diff
ence in counting rates between aCP-conserving point in
parameter space~CPC: all phasesf i50 or p! and aCP-
violating one~CPV: identical absolute values, butf iÞ0 and
low-energy compatible! to the statistical error at the CPC
point. This determines the significanceS with which a de-
viation from the cross section predicted for the CPC po
can be measured. It can be written as

S5
DNCPC-CPV

dNCPC
5

NCPC2NCPV

ANCPC

. ~6.1!

Since there are twoCP-conserving values~0,p! for each
phase, we have to deal with eight CPC points for each se
absolute values, and hence the same number of significa
is available for each kinematical accessible cross sect
The smallest of these evidently determines the statistical
nificance with which the presence ofCP-violating phases
can be inferred from this cross section for given values of
absolute values of all SUSY parameters. We therefore de
as our final measure of the sensitivity of a given cross sec
to phases the significance

S~ f i f j !5minnS us f i f j

CPV2s f i f j

CPCnu

As f i f j

CPCn D 3AL, ~6.2!
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wheres f i f j
is the total cross section fore2e6→ f i f j and n

51,...,8; we only include CPC points which are low-ener
compatible.16 Finally, L is the integrated luminosity, which i
expected to be different for thee1e2 ande2e2 options.

In the procedure outlined so far, the CPC and CPV po
have the same absolute values ofM1 , M2 , and m. This
means that these points will in general havedifferentphysi-
cal neutralino and chargino masses@43#. Recall that the
phase dependence of thex̃ masses is suppressed b
MZ

2/(umumx̃); see Eq.~2.19!. Nevertheless, changes of se
eral percent are possible, in particular in the neutralino s
tor. This could lead to similar changes in the cross secti
through kinematical factors~in x̃ production! or through
neutralino propagator factors~in ẽ production!. Moreover,
these masses are often more easily measurable than the
sections which are the focus of this analysis.

We therefore introduce a second set of significanceS̄
where CPC and CPV points have the same physical ma
for x̃1

0, x̃3
0, and x̃1

6 ; in the limit of largex̃ masses and fo
our choiceumu>M2.uM1u, these three masses essentia
fix uM1u, umu, andM2 , respectively. Note that we only hav
three~dimensionful! absolute values that can be adjusted
the neutralino and chargino mass matrices. We can there
not guarantee that all chargino and neutralino masses ar
same in the CPC and CPV points. However, after ensu
that these threex̃ masses are the same in both points,
remaining variation of the other threex̃ masses between th
CPC and CPV points is quite small. For technical reasons
keepuM1u, M2 , andumu fixed ~at the values listed in Table I!
for the CPC points and adjust them at the CPV points. Si
the eight CPV points have four differentx̃ mass spectra, a
given set of phases now also produces several different C
points. The new significance can thus be written as

S̄~ f i f j !5minnS us f i f j

CPVn2s f i f j

CPCnu

As f i f j

CPCn
D 3AL. ~6.3!

Our algorithm for calculating the significances can
summarized as follows.

~i! Select a CPV point. For a set of the absolute values
the relevant SUSY parameters, as listed in Table I for
three scenarios B1, B2, and B3, this amounts to rando
choosing values for the phasesfA , fm , andf1 . Repeat this
step until a point that is compatible with the low-energy co
straints has been found.

~ii ! For each process, find the low-energy allowed C
point that minimizesS( f i f j ) as defined in Eq.~6.2!. Note
that there are only eight CPC points for each scenario
B2, and B3 if tanb is kept fixed; however, this procedure

16Sinces f i f j
does not depend onfA , there are only four different

values ofs f i f j

CPCn for a given CPV point. However, occasionally bo

fA50 andfA5p have to be checked to find a CPC point that
compatible with the bound onam . Of course, the bound onde is
trivially satisfied by all CPC points.
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general selects different CPC points for different process
This completes the calculation of theS.

~iii ! Define four new CPV pointsCPVn by adjusting
uM1u, M2 , andumu such thatmx̃

1
0, mx̃

1
6, andmx̃

3
0 are the same

in pointsCPVn and CPCn .
~iv! Calculate theS̄( f i f j ) as in Eq.~6.3!.
Note thatS and S̄ only measurestatisticalsignificances.

In addition, there will be systematic uncertainties both fro
experiment and theory. We have little to say about exp
mental systematic errors, except that we hope that they
be small. A theoretical error is introduced since our cro
sections can only be predicted with finite precision. At t
tree level these cross sections are determined uniquely by
parameters listed in Table I, plus a few SM parameters
are already now known with high precision. However, e
plicit calculations forx̃1

6 pair production show that quantum
corrections can easily amount toO(10%) @44#. Some of
these corrections can be calculated unambiguously once
parameters listed in Table I are specified, but the remain
corrections can still amount to several percent. In particu
the lepton-slepton-gaugino ‘‘gauge couplings’’ depend~loga-
rithmically! on the squark mass scale@45#. The production of
Higgsino-like charginos@44# and, presumably, neutralino
also depends on the parameters appearing in third-gener
sfermion masses. These corrections will only be calcula
once the parameters of the~presumably quite heavy! squark
sector have been determined. Until this has happened, o
two processes with roughly equal significances as defi
above, the process with asmaller cross section should b
preferred, since here a given significance corresponds
larger relative variation of the cross section with the phas

VII. NUMERICAL ANALYSIS

We are now ready to present numerical results for
high-energy observables. We will first discuss the impact
the CP phases on the~CP-even! cross sections, before turn
ing to the~T-odd! normal components ofx̃ polarization vec-
tors. Finally, in Sec. VII C we will study correlations be
tween phase-sensitive quantities.

A. Cross sections

As discussed in Sec. IV C, we chose our SUSY para
eters such that selectron pair production as well as the
duction of two lighter neutralinos or charginos is possib
already at the first stage of a future lineare1e2 collider ~LC!
operating atAs5500 GeV, which is our default choice
However, in scenario B2 the Higgsino-like states are not
cessible at this energy. In this scenario we therefore t
As5800 GeV when discussing reactions where at least
x̃3

0, x̃4
0, or x̃2

6 state is produced; note that all current L
designs foresee an upgrade to at least that energy. A sim
treatment is used in scenario B3, except for thex̃1

0x̃3,4
0 final

state, which is already accessible atAs5500 GeV in this
case.

In Table III we show the maximal allowed cross sectio
for the 19 different production channels discussed in Sec
0-21
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TABLE III. Maximal values of the total cross sections~in fb! for unpolarizede6 beams, for the scenario
defined in Table I. ‘‘–’’ means that the corresponding mode is not accessible. In scenarios B2 and B3 w
summed over the production of the heavy Higgsino-like neutralinos, as described in the text. The
energy is 500 GeV in most cases, but has been raised to 800 GeV for the production ofx̃2

6 andx̃3,4
0 states in

scenarios B2 and B3, as indicated by the asterisk. Note that the charge-conjugate mode is included
distinct from the listed one.

tanb

B1 B2 B3

3 12 3 12 10 20

ẽR
2ẽR

2 378 371 398 390 513 512
ẽL

2ẽR
2 79.8 79.0 80.3 75.1 181 182

ẽL
2ẽL

2 272 261 281 270 523 378
ẽR

2ẽR
1 180 172 182 176 296 293

ẽL
2ẽR

1 106 104 96.5 94.5 168 160
ẽL

2ẽL
1 8.3 7.2 8.0 6.9 60.9 60.3

x̃1
2x̃1

1 250 212 144 126 175 170
x̃1

2x̃2
1 179 173 16.0! 7.5! 43.6! 38.7!

x̃2
2x̃2

1 – – – – 85.9! 89.4!

x̃1
0x̃1

0 201 197 236 231 271 271
x̃1

0x̃2
0 130 120 140 132 159 161

x̃1
0x̃3

0 46.8 41.2
6.4! 5.7! 20.1 19.7

x̃1
0x̃4

0 52.8 53.7
x̃2

0x̃2
0 74.6 49.6 58.5 49 76.2 68.9

x̃2
0x̃3

0 73.6 77.7
5.1! 5.2! 22.3! 21.4!

x̃2
0x̃4

0 27.1 22.8
x̃3

0x̃3
0 0.26 0.43

x̃3
0x̃4

0 36.6 36.0 – – 38.3! 38.6!

x̃4
0x̃4

0 – –
ic
es

se
d
t
a

ex
h
s

st

fte
,

e

te
ly

o
se
V

e
ed.
eat-

-

r
s of
un-
ses

p
.
ion

ffi-
ally

val-
and

tion
e
for
for our three scenarios B1, B2, and B3, and the same cho
of tanb employed in Sec. IV C. Only combinations of phas
that are allowed by the low-energy constraints onde andam
have been included in the maximization. These cross
tions have been calculated at the tree level, as describe
Secs. V B–V E. We have also ignored corrections due
initial-state radiation and beamstrahlung. These effects
often larger than the dependence onCP-violating phases;
they should therefore certainly be included in any future
perimental analysis~along with radiative corrections, whic
will likely be known well before the first LC commence
operations!. However, they are largely independent ofCP
phases and should therefore not affect our conclusions.

We saw in Secs. II C and V G that the two heavie
Higgsino-like neutralinos are close in mass ifumu.M2 and
umu2@MZ

2; the degeneracy between these states is only li
at O(MZ

2/@ umu22M2
2#) ~as well as by radiative corrections

which, however, are sizable only in the presence of largA
terms in the stop sector@46#!. Numerically, we find that the
relative difference betweenmx̃

4
0 andmx̃

3
0 ranges from 24% to

35% in scenario B1, but only from 0.2% to 3.5%~0.1% to
7.5%! in B2 ~B3!. Since the production of nearly degenera
particles is difficult to distinguish experimentally, we simp
sum over the production ofx̃3

0 and x̃4
0 in scenarios B2 and

B3; in particular, we only give results for a single process
heavy Higgsino-like neutralino pair production in the
cases. Recall that we used the same treatment in Sec.
01401
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c-
in

o
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-

,

d
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G,

Eqs.~5.33! and ~5.35!–~5.37!.
As well known@39,41#, many of our cross sections can b

enhanced by factors of a few if both beams are polariz
Moreover, the discussion of Sec. V G indicates that the gr
est sensitivity to phases comes~throughf1) from the inter-
ference ofSU(2) and U(1)Y interactions; these contribu
tions will be suppressed if one chooseseR

2 beams, sinceeR
2

is a singlet underSU(2). However, the sensitivity to othe
combinations of phases is enhanced for different choice
beam polarizations. We therefore only show results for
polarized beams, with the understanding that in many ca
the cross section~phase sensitivity! could be enhanced by u
to a factor of 4~2! if fully polarized beams were available

We see from Table III that the cross sections for select
pair production are generically bigger ate2e2 colliders than
at e1e2 colliders@37#. This difference is only partially com-
pensated by the highere1e2 luminosity; we assume*L dt
5500 ~100! fb21 for e1e2 (e2e2) collisions. We use these
relatively conservative values since we do not include e
ciency factors. These are expected to reduce the actu
available event samples by factors of a few, the precise
ues depending on both the process under consideration
the sparticle spectrum. Moreover, ate2e2 colliders the di-
agonal, chirality-conserving modes have higher cross sec
than the off-diagonal, chirality-violating mode; recall that th
latter is P-wave suppressed near threshold and vanishes
vanishing gaugino masses. Ate1e2 colliders the diagonal
0-22
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TABLE IV. The maximal significancesS of Eq. ~6.2! and S̄ of Eq. ~6.3! that can be found for choices of phases which are compat
with all low-energy constraints. The scenarios B1, B2, and B3 have been defined in Table I. Notation and calculational procedures
Table III.

tanb

B1 B2 B3

3 12 3 12 10 20

S S̄ S S̄ S S̄ S S̄ S S̄ S S̄
ẽR

2ẽR
2 3.7 17.0 0.8 5.0 2.9 1.0 0.8 0.4 0.5 1.1 0.3 0.8

ẽL
2ẽR

2 3.0 10 2.8 4.7 0.9 2.5 0.8 1.3 2.7 4.2 2.9 4.1
ẽL

2ẽL
2 61 60 61 60 59 57 59 59 90 90 136 136

ẽR
2ẽR

1 10 27 2.2 7.8 6.7 1.1 1.8 0.5 4.3 2.6 3.0 2.1
ẽL

2ẽR
1 43 68 32 39 16 16 11 12 20 23 22 24

ẽL
2ẽL

1 1.9 3.3 1.5 0.9 1.2 1.3 0.5 0.7 3.3 4.0 3.5 3.8
x̃1

2x̃1
1 0.4 0.9 ,0.1 2.5 25 1.6 2.8 0.2 1.3 0.3 0.6 0.6

x̃1
2x̃2

1 ,0.1 1.8 ,0.1 6.4 70! 70! 3.5! 3.5! 2.4! 1.7! 1.4! 2.9!

x̃2
2x̃2

1 – – – – – – – – 1.4! 1.6! 0.7! 1.5!

x̃1
0x̃2

0 41 46 34 32 81 81 92 92 100 100 94 94
x̃1

0x̃3
0 56 73 30 29

9.9! 10.5! 6.2! 6.2! 21.5 23.8 21.1 23.2
x̃1

0x̃4
0 92 104 82 89

x̃2
0x̃2

0 74 90 56 66 11 8.2 5.2 5.2 17 18 18 19
x̃2

0x̃3
0 16 37 7.0 2.9

6.0! 6.2! 2.9! 2.8! 1.9! 1.1! 3.1! 2.0!

x̃2
0x̃4

0 20 14 5.5 5.6
x̃3

0x̃3
0 6.3 5.4 8.4 9.3

x̃3
0x̃4

0 9.3 11 9.3 10 – – – – 2.4! 3.1! 2.6! 3.4!

x̃4
0x̃4

0 – – – –
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selectron production modes areP-wave suppressed; this ex
plains the rather small cross sections forẽL

1ẽL
2 production.

Finally, the selectron production cross sections are highe
scenario B3, since the selectron masses are some
smaller than in the other two cases; this effect is particula
significant forẽL

2ẽL
1 production, which is aP-wave process

quite close to threshold. The strong tanb dependence of the
maximal ẽL

2ẽL
2 production cross section in this scenario fo

lows from the fact that the region nearf15fm50 is ex-
cluded by theam constraint for tanb520; see Fig. 2~f!.

The biggest cross sections ate1e2 collisions are those for
ẽR

1ẽR
2 , x̃1

1x̃1
2 , and x̃1

0x̃1
0 production. However, the latte

leads to an invisible, and hence undetectable, final state ix̃1
0

is a stable LSP; we will therefore not analyze it any furth
The cross sections for producing two heavy charginos
neutralinos are suppressed both by phase space and by
Higgsino-like nature. However, the production of one lig
and one heavyx̃ state is possible in all three cases. Since
discussed in Sec. V G, these cross sections are nonvanis
only in the presence of gaugino-Higgsino mixing, they f
with increasingumu. However, even in scenario B2 one w
have several thousand events containing these Higgsino
states. For the other channels, typically several tens of th
sands of events will be available, meaning that the cr
sections could be measured with statistical uncertainty of
or less.

The maximal possible values of the significancesS andS̄
of Eqs. ~6.2! and ~6.3! that can be found in our three sc
narios are summarized in Table IV. TheẽL

2ẽL
2 mode shows
01401
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the strongest phase dependence of all selectron produ
channels, i.e., the highest significance, largely independen
umu and tanb; the tanb dependence ofS in scenario B3 is
due to the fact that the pointf15fm50 is excluded by the
am constraint at tanb520, but still allowed at tanb510, as
shown in Fig. 2~c!. The mixedẽL

2ẽR
1 mode is the for our

purposes most promising selectron production mode ate1e2

colliders. It would allow us to unambiguously detect~at
more than five statistical standard deviations! the presence of
CP-violating phases over much of the allowed parame
space, although the effect diminishes with increasingumu and
increasing tanb ~except in case B3, for the reason give

above!. For both these modesS and S̄ give very similar
results. Except for scenario B1 with strong Higgsino-gaug
mixing, ẽR pair production at bothe1e2 ande2e2 colliders
is much less promising, especially if the physical masses

x̃1
0, x̃1

6 , andx̃3
0 are held fixed—i.e., forS̄. All these features

can be understood from the discussion of Table II in S
V G.

The small phase sensitivity of theẽL
2ẽL

1 mode relative to
the ẽL

2ẽR
1 mode can partly be explained by the smaller cro

section of the former mode; recall that the significances sc
with the square root of the number of events. In additio
closer inspection of the matrix elements shows that in cas
ẽL

2ẽL
1 production, the terms}cosf1 and }cos(f11fm) are

suppressed by extra factors sin2 uW and sin4 uW relative to the
leading phase-independent terms; for theẽL

2ẽR
1 mode, the

corresponding relative factors are 1 and sin2 uW, respectively.
0-23
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TABLE V. Maximal absolute values ofPN
i ,i j in percent. The scattering angleu is set top/2. Notations and

conventions are as in Table III.

tanb

i B1 B2 B3

3 12 3 12 10 20

x̃1
2x̃2

1 x̃1
2 1.4 0.2 57! 5.2! 1.6! 0.9!

x̃1
0x̃2

0 x̃2
0 6.4 7.8 34 33 31 31

x̃1
0x̃3

0
x̃3

0 (h̃) 22 27 7.2! 2.4! 6.3 6.8

x̃1
0x̃4

0
x̃4

0 (h̃) 5.5 6.6

x̃2
0x̃3

0 x̃2
0 5.5 6.4 23! 7.8! 9.7! 9.9!

x̃2
0x̃4

0 x̃2
0 45 30

x̃3
0x̃4

0
x̃3

0 (h̃) 4.9 6.8 – – 1.9! 1.8!
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Turning to chargino modes, we observe that they are s
sitive to phases only in scenario B2, with largeumu, and for
small tanb. The only relevant phase here isfm . Recall from
the discussion of Sec. IV C that the maximal allowed va
of this phase scales likeumu2. This means that the maxima
deviation ofucosfmu from unity scales likeumu4. In the case
of x̃1

1x̃1
2 production the main phase sensitivity comes fro

mx̃
1
6, which gives an extra factor sin 2b/umu. Altogether the

maximalS(x̃1
1x̃1

2) therefore scales likeumu3 sin 2b; this re-
produces the numerical behavior in scenarios B2 and
with small gaugino-Higgsino mixing. A similar argumen
also holds for the mixedx̃1

2x̃2
1 mode. However, in this cas

the cross section itself vanishes in the absence of gaug
Higgsino mixing. This means that now the phase-depend
terms are of the same order inMW as the phase-independe
ones. Moreover, significant phase dependence now
comes from theZx̃1

2x̃2
1 coupling, not only from the

chargino masses. Hence both definitions of the significa
now give very similar results. Finally, the very strong tanb
dependence of these significances in case B2 is due to
fact that values offm nearp are only allowed for small tanb
in this case; see Fig. 2~b!.

In contrast to the chargino modes, some neutralino mo
are promising for all scenarios we considered. This is true
particular for the~12! mode. We saw in Sec. V G that in th
case both the total cross section and the phase depend
~on f1) already start atO(MZ

0); i.e., they arenot suppressed
for large umu or large tanb. Indeed, we find that this mod
often allows somewhat better sensitivity than the celebra
ẽL

2ẽL
2 mode. The mixed gaugino-Higgsino modes also

well, especially for not too large values ofumu. As expected
from the discussion of Eqs.~5.33!, the (1h̃) mode is some-
what more promising than the (2h̃) mode. The rather good
phase sensitivity of the~22! mode at first seems surprising
given that the phase dependence only enters atO(MZ

2),
whereas the cross section isO(MZ

0). However, closer inspec

tion of the sensitivities for the~22! and (1h̃) modes shows
that the relative factor between them is in factO(uM1u/MZ),
which is close to unity in our case. Note that the relative
large size of the~22! cross section facilitates its precise me
surements and therefore increases the significances. H
ever, as remarked at the end of Sec. VI we still consider
01401
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mixed (1h̃) final state to be more promising, since it will b
less sensitive to systematic uncertainties.

B. Polarizations

As emphasized earlier, the significancesS and S̄ strictly
speaking only measure deviations from theCP-conserving
MSSM; they do not directly measureCP violation. Direct
evidence forCP violation could come from the measureme
of the T-odd normal component ofx̃ polarization vectors
introduced in Sec. V F. The maximal possible absolute val
of these ‘‘polarization asymmetries’’ for scattering angleu
5p/2 are summarized in Table V. Recall that a nonze
asymmetry can emerge only in the production of twodiffer-
ent x̃ states and that the asymmetry will be larger for t
lighter of the two final-state particles. However, the polariz
tion can only be measured through thex̃ decay products; we
therefore do not consider the polarization ofx̃1

0, which is
probably the LSP.

We see that the chargino polarization is likely too small
be useful, except in scenario B2 with largeumu and small
tanb. Recall from the discussion at the end of Sec. V F t
this asymmetry ~for the lighter chargino! scales like
umusin 2b sinfm ; we saw in Sec. IV C that the upper boun
on usinfm u scales likeumu2. Altogether the maximal value o
PN of the lighter chargino therefore scales likeumu3. The
very rapid decrease of this polarization with increasing tab
is partly due to the explicit sin 2b dependence and partly du
to the disappearance of the band aroundfm.p; see Fig.
2~b!.

In scenarios with largeumu ~B2, B3! the x̃1
0x̃2

0 mode again
proves most sensitive toCP-violating phases. Equation
~5.34! shows that in this case a nonzeroPN already emerges
at O(MZ

0) and remains finite both for largeumu and large
tanb. This describes well the behavior seen in cases wh
the perturbative diagonalization of the neutralino mass m
trix is reliable. Moreover, recall from Table III that this mod
has a fairly high cross section. This is important, since e
for perfect~100%! analyzing power one needs nearly 10
events to detect a 10% asymmetry at the 3s level.

As expected from our earlier discussion of Eqs.~5.37!, the
mixed gaugino-Higgsino modes also have sizable asym
tries even for largeumu, the heavier (2h̃) mode being more
0-24
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promising. However, the relatively small cross sections
these modes imply that one would need a very large lu
nosity for a meaningful measurement of polarization asy
metries in these modes, except in scenario B1 with str
Wino–Higgsino mixing. Indeed, in this last case the~13! and
~24! modes are far more promising than the~12! mode.

As noted earlier, the spin of the producedx̃ particles can
only be determined on a statistical basis by~partly! recon-
structing their decays. We find it encouraging that rec
dedicated studies demonstrated sensitivity to phases in
neutralino mass matrix usingT-odd variables constructed i
e1e2→x̃1

0x̃ i
0 with x̃ i

0→x̃1
0,1,2 @47#, x̃ i

0→ t̃1
6t7

→t1t2x̃1
0 @48#, andx̃ i

0→x̃1
0Z @49#.

C. Correlations between observables

In addition to their absolute sizes, the correlations
tween various phase-sensitive quantities are also of inte
Such correlations can provide stringent tests of the MSS
since they are a consequence of the limited number of
rameters affecting these leptonic observables in the MS
Recall that all our ‘‘high-energy’’ variables~cross sections
and polarizations! depend on the phasefm ; most of them
also depend onf1 , the exception being observables relat
to chargino pair production. We saw in Sec. IV C thatfm is
tightly constrained by the ‘‘low-energy’’ observablesam and
~especially! de , while f1 in most scenarios can take an
value~for some combination of the other phases!. Moreover,
thede constraint enforces a tight correlation betweenfm and
f1 ; see Fig. 2.

In Fig. 11 we compare high- and low-energy quantiti
We see that the phase-sensitive high-energy quantities
not correlated at all withde . This is true both forT-even
variables@Fig. 11~a!# and T-odd ones@Fig. 11~b!#, in sce-
narios with strong gaugino-Higgsino mixing~a! and in sce-
narios where this mixing is suppressed~b!, and for quantities
that depend on bothf1 and fm ~a! as well as those tha
depend only onfm ~b!. This can be explained from the ob

FIG. 11. Correlations between low- and high-energy quantit
Most high-energy observables have been computed atAs
5500 GeV, except for panels~b! and ~f!, which are for As
5800 GeV. The parameter sets B1 and B2 have been define
Table I, and the significanceS is defined via Eq.~6.2!.
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servation made at the end of Sec. IV C thatde itself is not
correlated with any of the phases after scanning over
other two phases; recall that the low-energy observables
depend onfA . For example, except at the very edges of t
allowed range offm , de can still take any value within its
experimentally allowed range even afterfm is fixed; this is
due to the variation off1 andfA .

On the other hand, in some cases we do observe sig
cant correlations between high-energy observables andam .
We saw in Fig. 5 that in scenarios B2 and B3,am shows a
cos-like dependence onf1 ; in some cases~e.g., B2 at small
tanb) two separate bands ofam values exist, correspondin
to cosfm.61. However, in scenario B1,am shows very
little correlation with f1 ; see Figs. 5~a! and 5~d!. Corre-
spondingly, Fig. 11~c! shows no correlation for scenario B1
while Figs. 11~d!–11~f! show significant correlations for sce
nario B2. Comparison of panels~d! and ~e! shows that this
correlation becomes stronger at larger tanb. This is due to
the diminished role offA and the reduced width of the a
lowed band in the (fm ,f1) plane; the overall size ofuamu
also increases with increasing tanb; see Eq.~4.15!. Finally,
Fig. 11~f! shows that high-energy quantities whose on
phase sensitivity is throughfm also correlate witham . Note
in particular thatS(x̃1

1x̃2
2) is much bigger foram,0, which

corresponds tofm.p, than foram.0, which corresponds to
ufmu!1. This confirms the explanation we gave in the d
cussion of Table IV for the very strong tanb dependence of
this quantity. For this class of observables the correlat
with am also becomes stronger with increasing tanb; how-
ever, as remarked in Sec. V G, the sensitivity tofm disap-
pears}sin 2b at least.

In most cases different phase-sensitive high-energy
servables are strongly correlated with each other. This is
lustrated by Fig. 12, where we plot the two usually mo
promising significances, for theẽL

2ẽL
2 and x̃1

0x̃2
0 final states,

against each other. The simplest correlation obtains for s
nario B3 for tanb520, shown in panel~f!. In this case the
am constraint excludes values off1 near 0 as well asfm
nearp; see Fig. 2~f!. Hence the minimization in the defini
tion ~6.2! of S only goes over the single CPC pointfm50,

.

in

FIG. 12. Correlations between the significances, defined a
Eq. ~6.2!, for the processese2e2→ẽL

2ẽL
2 ande1e2→x̃1

0x̃2
0, both

taken atAs5500 GeV.
0-25
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f15p. The strong correlation observed in Fig. 12~f! then
follows from the fact that both significances shown here
essentially}cosf1 to leading order inMZ , as explained in
Sec. V G.

The next simplest situation obtains if bothf150 and
f15p are allowed, butfm5p is still forbidden, and tanb is
not small@panels~c!, ~d!, and~e!#. Now the minimization in
Eq. ~6.2! goes over two CPC points. Recall that this minim
zation is performedindependentlyfor the two significances
shown in Fig. 12. The upper~lower! branch connected to th
origin is populated by combinations of phases where b
minimizations pick the CPC pointf150 (f15p). These
two bands are connected by sets of points where our a
rithm picks the CPC pointf150 for S(ẽL

2ẽL
2), but chooses

the pointf15p for S(x̃1
0x̃2

0).
Figure 12~a! shows that in scenario B1 the correlatio

get weaker at smaller tanb. To understand this, recall tha
scenario B1 has strongWino–Higgsino mixing and, hence,
relatively strong dependence onfm through the combination
cos(f11fm), which depends linearly onfm when uf1u and
uf12pu are sizable. In contrast, cosfm depends only qua
dratically onfm for small ufmu and can therefore to goo
approximation be set to 1 in scenario B1; see Figs. 2~a! and
2~d!. This dependence onfm will be numerically different
for the two modes present, loosening the correlation. T
effect is important only at small tanb for two reasons. First
all contributions to our cross sections that are sensitive tofm
are suppressed by a factor sin 2b at large tanb. Second, we
saw that in scenario B1 the upper bound onufmu decreases
with tanb.

Figure 12~a! shows another new effect on the low
branch, where both significances are evaluated with the C
point f15p, fm50. The cross section forx̃1

0x̃2
0 production

in this case shows a nonmonotonous dependence on cof1.
As expected from the expansion of the result~5.26! in pow-
ers of MZ using Eqs. ~2.17!–~2.19!, this cross section
reaches its absolute minimum at cosf1511, where the
S-wave contribution vanishes. However, cosf1521 is also a
~local! minimum, the maximum being reached at cosf1
.20.8; recall that the expansion in powers ofMZ is not
reliable in this case, sinceM25umu. As a result of this non-
monotonous behavior, the cross section at cosf1.20.6 be-
comes identical to that at cosf1 521. Sinces(ẽL

2ẽL
2) does

decrease monotonically with cosf1, values of cosf1

.20.6 give rise to scenarios with very smallS(x̃1
0x̃2

0), but
sizableS(ẽL

2ẽL
2).

The comparison of Figs. 12~b! and 12~e! shows that the
correlation becomes weaker for smaller tanb also in scenario
B2. This is partly because the width of the allowed band
the (fm ,f1) plane decreases with increasing tanb; see Fig.
2. In addition, in scenario B2 with tanb53 the low-energy
constraints also allow values offm nearp. One can then find
values off1 not far fromp wheres(x̃1

0x̃2
0) for CPV points

with ufmu!1 is very close to this cross section at the CP
point fm5f15p. This again leads to scenarios whe
S(x̃1

0x̃2
0) is very small, butS(ẽL

2ẽL
2) is sizable. The exis-

tence of four different allowed CPC points also explains
occurrence of additional bands in Fig. 12~b!.
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In some cases the correlations between different sign
cances are quite weak. The most extreme case we foun
shown in Fig. 13 and occurs for scenario B2 at tanb53. We
saw in Table IV that here~and only here! s(x̃1

2x̃2
1) allows a

significant probe of the phasefm , whereasS(ẽL
2ẽL

2) is al-
ways mostly determined byf1 . Moreover, Fig. 2~b! shows
that in the allowed band withfm.p, the deviation
ufm2pu becomes maximal forf1 quite close to6p. This
leads to scenarios with largeS(x̃1

2x̃2
1), but very small

S(ẽL
2ẽL

2). Conversely,uucosf1u21u can be quite large for
small ufmu, leading to scenarios withS(ẽL

2ẽL
2)@S(x̃1

2x̃2
1),

although the latter cannot be strictly zero if the former
bigger than 10. However, we saw earlier that other combi
tions of parameters do not allow meaningful probes offm
using high-energy quantities. We therefore conclude tha
most cases, significances that can be large are also f
strongly correlated.

Finally, in Fig. 14 we compare the normal component

FIG. 13. Correlation between the significances for the proces
e2e2→ẽL

2ẽL
2 ande1e2→x̃1

2x̃2
1 , both taken atAs5800 GeV, for

scenario B2 with tanb53.

FIG. 14. Correlation between the significanceS and the absolute
value of normal polarizationPN , measured at scattering angleu
5p/2, for mixed neutralino pair production atAs5500 GeV. We
considerx̃1

0x̃2
0 production for scenarios B2 and B3, but switch

the x̃1
0x̃3

0 final state for scenario B1.
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the polarization vector of the heavier neutralino in mix
neutralino pair production with the significance of the sa
mode. We considerx̃1

0x̃2
0 production in scenarios B2 and B3

but switch to x̃1
0x̃3

0 production in scenario B1, where th
final state is far more promising; see Tables IV and V. Th
figures look somewhat simpler than those in Fig. 12, si
now the existence of two allowed CPC points only leads
two bands, as compared to three in Fig. 12. Of course,
narios with a single allowed CPC point@Fig. 14~f!# again
only yield a single band. In panel~b! we again find scenario

with sizable phases, hence sizableuP
N

x̃2
0,x̃1

0x̃2
0

u, and yet vanish-

ing S(x̃1
0x̃2

0); we saw analogous behavior in Fig. 12~b!.
More importantly, Fig. 14 shows that the polarizatio

uPNu increases much more quickly as the~relevant! phasef1
is moved away from 0 orp than the significanceS does. The
reason is thatuPNu, beingT odd, has a sin-like dependenc
on f1—i.e., grows linearly withuf1u or uf12pu. In con-
trast, theT- and CP-even quantityS has a cos-like depen
dence on all phases and thus only grows}uf1u2 or uf1
2pu2 as f1 is moved away from a CPC point.T-odd ob-
servables likePN are therefore in principle better suited
probe small phases.

VIII. SUMMARY AND CONCLUSIONS

In this article we have discussed to what extent the pha
of dimensionful parameters in the SUSY Lagrangian can
determined from leptonic observables. Since we assu
universal soft breaking parameters for the first two gene
tions of sleptons and did not discuss processes involv
third-generation~s!particles, we only have to deal with thre
phases: those of the Higgsino mass parameterm, of the
U(1)Y gaugino massM1 , and of the leptonic trilinear sof
breaking parameterAl , in all cases measured relative toM2 ,
which we took to be real and positive by convention.

Our main focus was on quantities that can be measure
future high-energye1e2 and e2e2 colliders, but we first
analyzed the constraints that follow from the present m
surements of the leptonic dipole momentsde and am . We
worked in a scenario with moderately heavy sparticles;
well known, in this case sizableCP-odd phases are possib
only if neutralino and chargino loop contributions tode can-
cel to good approximation. In agreement with earlier wo
@10,11#, we found that, unlessumu@M2 ,ml̃ , the phases of
M1 andAl can take any value~for some combination of the
other phases!, whereas the phase ofm is tightly constrained,
the maximal allowed deviation from 0 orp scaling likeumu2.
Our analysis of Sec. IV also gave the perhaps surpris
result that in this case improved measurements ofde will not
significantly reduce the allowed range for any one of
three relevant phases after scanning over the other two.
is true independently of whether this measurement lead
improved upper bounds onudeu or finds a nonvanishing re
sult. On the other hand, improved measurements ofam do
have the potential to further restrict the allowed ranges
these phases; however, here improved measurements ha
be combined with improved SM predictions for the hadro
contributions toam .
01401
e

e
e
o
e-

es
e
ed
-
g

at

-

s

g

e
is
to

f
e to

Turning to high-energy observables, we first analyzed
detail the phase sensitivity of total cross sections of vari
final states. To that end we introduced ‘‘significances’’ th
determine the statistical significance with which the prese
of nontrivial phases could be determined in a given prod
tion channel. As pointed out in Ref.@38#, the cross section
for ẽL

2ẽL
2 production depends very strongly on the relati

phase betweenM1 and M2 ; we found that a deviation o
;60–90 standard deviations from the predictions of theCP-
conserving MSSM is possible in this channel. However, t
does not necessarily argue in favor of constructing ane2e2

collider, since certain neutralino production channels—
particular,x̃1

0x̃2
0 production forumu.M2—have comparable

or better sensitivity to the same phase. We also foun
somewhat lower, but still promising, sensitivity in theẽL

2ẽR
1

final state. For our choiceml̃ ;200 GeV, chargino pair pro-
duction can show significant phase dependence over the
perimentally allowed parameter space only forumu>2M2 .
Since thede constraint onfm becomes weaker for large
slepton masses, the minimal ratioumu/M2 where chargino
production channels can become useful for probingCP-
violating phases should be smaller for largerml̃ . However,
these chargino modes will be useful only if tanb is quite
small, since the relevant significances scale like sin 2b.

A deviation of any of these cross sections from the p
diction of theCP-conserving MSSM could perhaps also b
explained by some extension of the model which does
introduce newCP-odd phases. We therefore also studied
CP-odd quantity: the component of the polarization of pr
duced charginos and neutralinos that is normal to the prod
tion plane. We found that it can reach values exceeding 3
for the production of two different neutralinos; in scenari
with large umu and small tanb, the polarization vector of the
lighter chargino, produced in association with the heav
one, could have an even larger normal component. Re
studies@47,48,49# indicate that such largeCP-odd polariza-
tions might indeed lead to measurableCP-odd asymmetries
in the phase space distribution of thex̃ decay products.

Finally, we studied correlations between the vario
phase-sensitive observables. We found that the high-en
observables are essentially not correlated at all withde . This
is due to the required rather precise cancellation betw
different contributions tode ; it implies that better measure
ments ofde will not further restrict the possible ranges o
phase-sensitive high-energy quantities. However, there
some correlation between these high-energy observables
am . Moreover, most pairs of high-energy observables
quite strongly correlated with each other. This follows fro
the fact that most of them basically probe the phase ofM1 ,
given the tight constraint on the phase ofm. Within theCP-
violating MSSM the measurement of one phase sensi
high-energy observable therefore allows one to greatly c
strain the allowed range of other such quantities, ther
allowing stringent tests of the model. However, at largeumu
and small tanb the phase ofm can play an important role, in
particular in chargino production. In that case phase-sens
observables in the chargino sector correlate poorly with th
in the selectron or neutralino sector. This underscores
0-27
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importance of measuring as many phase-sensitive quan
as possible.

Total cross sections andCP-odd asymmetries offe
complementary access toCP-odd phases, since they depe
on these phases through cos-like and sin-like functions,
spectively. The former are rather insensitive to these pha
if they are small~the perhaps most likely case!. Measure-
ments of, or bounds on,CP-odd asymmetries should the
lead to better determinations or constraints on these pha
On the other hand, if some phase is nearp/2, CP-odd asym-
metries will be near maximal, which means that they are
well suited to precisely pinning down the value of this pha
precision measurements of some cross sections will t
have the edge. Of course, there is also complementarity
tween high- and low-energy observables, since only the la
are sensitive to the phase ofAl .

We conclude that measurements at high-energy collid
will be necessary to pin down the phases of dimension
parameters in the SUSY Lagrangian. Both precision m
surements ofCP-even quantities like masses and cross s
tions and searches forCP-violating asymmetries are promis
ing in certain regions of parameter space. Lineare1e2

colliders seem to be ideally suited for performing these m
surements.
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APPENDIX A: KINEMATICS

Working in the c.m. frame with total energyAs and ne-
glecting the electron mass, the first electron and posit
~second electron! momenta can be written as

p1
m5

As

2
~1,0,0,1!, ~A1a!

p2
m5

As

2
~1,0,0,21!. ~A1b!

The outgoing momenta of the produced superparticlesb and
c are

k1
m5

As

2 S 11
mb

22mc
2

s
,lbc

1/2sinu,0,lbc
1/2cosu D , ~A2a!

k2
m5

As

2 S 12
mb

22mc
2

s
,2lbc

1/2sinu,0,2lbc
1/2cosu D ,

~A2b!

wherelbc denotes the usual two-body final state kinemati
function:
01401
ies

e-
es

es.

t
;
n
e-
er

rs
l

a-
-

-

as

-

n

l

lbc5lS 1,
mb

2

s
,
mc

2

s D , ~A3a!

l~1,x,y!511x21y222~x1y1xy!.
~A3b!

Furthermore, the kinematical invariants~Mandelstam vari-
ables! are

s5~p11p2!2, ~A4a!

t5~p12k1!2, ~A4b!

u5~p22k1!2. ~A4c!

APPENDIX B: HELICITY AMPLITUDES

We calculate the relevant helicity amplitudes using t
formalism introduced in@50#.17 Using our definition of the
kinematical situation, we find the following results for th
scalar and vectorial fermionic string associated with mass
fermions:

v̄~p2 ,s2!Pau~p1 ,s1!52aAsdas1
ds1s2

, ~B1a!

v̄~p2 ,s2!gmPau~p1 ,s1!5Asdas1
ds2 ,2s1

~0,1,is1,0!,
~B1b!

where the four choices in Eq.~1b! correspond tom
50,1,2,3. In the case of neutralinos or charginos with n
negligible masses, only the vectorial string is required. It c
be written as

ūi~k1 ,l1!gmPbv j~k2 ,l2!

5
As

s
@A12hbl1

2 dl1l2
~b,l1 sinu,0,l1 cosu!

1A~11bl1hbl1
!~11bl1h2bl1

!

3dl1 ,2l2
~0,cosu,2 il1 ,2sinu!#, ~B2!

where

hbl1
5l i j

1/21bl1D i j ~B3!

and

D i j 5
mi

22mj
2

s
. ~B4!

APPENDIX C: NEUTRALINO FUNCTIONS

After introducing two effective neutralino mixing coeffi
cients

17Our convention for a momentum-dependent Weyl spinor for f
mions going in the2z direction differs by an overall sign from tha
of @50#.
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VL
j 5

N1 j

2 cosuW
1

N2 j

2 sinuW
, ~C1a!

VR
j 5

N1 j

cosuW
, ~C1b!

we define two dimensionless neutralino functions fort- or
u-channel exchanges:
y,

al

v.
,

ce

D.
,

m

-
r

r
.

Y.

01401
Mab~s,t/u!5 (
k51

4

mx̃
k
0AsVa

k Vb
k Dt,u

k , ~C2a!

Nab~s,t/u!5 (
k51

4

sVa
k Vb

k!Dt,u
k . ~C2b!

The propagatorsDt
k andDu

k have been defined in Eq.~5.6!.
Very similar neutralino functions were introduced in@37#; we
saw in Sec. V that they allow us to give very compact e
pressions for the slepton production amplitudes.
ys.

g,

s,

.

.
i-
D
,

.

k-
w
u-
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