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Low-energy results from measurements of leptonic dipole moments are used to derive constraints on the
CP-violating phases of the dimensionful parameters of the minimal supersymmetric extension of the standard
model (MSSM). We use thesé¢known) bounds to investigate the impact of these phase€®Bieven cross
sections at high-energy e~ ande” e~ colliders. To that end we define two measures of the significance with
which the existence of nonvanishing phases could be deduced from the measurements of these cross sections.
We find that highly significant evidence for deviations from @f-conserving MSSM could be obtained at the
nexte e~ collider even if the electric dipole moment of the electron is very small or zero. We also analyze a
CP-odd final-state polarization, which can be large when two different charginos or neutralinos are produced.
Finally, we study correlations between the phase-sensitive observables.
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[. INTRODUCTION CP-violating phases associated with sfermions of the first
and, to a lesser extent, second generation and with the

CP violation was observed first in the neutral kaon systenchargino and neutralino sector are severely constrained by
[1] and has recently been found Bymeson decayf2]. In  bounds on the electric dipole moments of the electron, neu-
addition, CP violation constitutes one of the conditions for a tron, and muon. However, as emphasized9r12] cancel-
dynamical generation of the cosmological baryon asymmetrjations between different diagrams allow some combinations
[3]. In the standard mod€iSM), which contains only one of these phases to be rather large even for a sfermion mass
physical neutral Higgs boson and assumes neutrinos to kepectrum accessible at the expected center-of-mass energy of
massless, the only source QP violation is the complex a possible next lineae™e™ collider (LC). Even in models
phase of the quark mixing matrp4].* with universal boundary conditions for soft breaking mass at

SupersymmetrySUSY) is now widely regarded to be the some very-high-energy scale, the relative phase between the
mosf[_plau5|ble extension of the SM; among other th|ng§, ”supersymmetric Higgsino mass parameteand the univer-
stabilizes the gauge hierarch§] and allows the grand uni- o) trilinear soft breaking parametag can beO(1) [13]. If

fication of all known gauge interactiorig]. Of course, SU- niersality is not assumed, the relative phase between the
pelrlsymrr;jtrylmust béscl)ftlk)‘/.) b.rokeg to be plhenomenolljogl- tU(l)Y andSU(2) gaugino masses may also be large.
cally viable. In general this introduces a large number of "% "%

: e past few years a lot of effort has been devoted to
unknown parameters, many of which can be compfixin nalyses of the physics output that can be expected from

the most general minimal supersymmetric standard modél

(MSSM) 44 phases cannot be removed by suitable redefini€XPeriments at the LC, including a possit#ee ~ option

tions of fields and remain as “physical” phases in the model [14]: Work towards the design of such a device has also
For example, they have a direct impact on the mass spectfg@de great progress. Today it is assumed that it (i
as they enter most mass matrices in the Lagrangian. Ofally) have a center-of-mass energy in the range between
course, one can use more specific assumptions on the s&0 GeV and 1 TeV, an integrated luminosity of at least
breaking terms and/or an underlying grand unified theoryeveral hundred ftf, and adjustable polarization for both
(GUT) to get simpler versions of the MSSM with a smaller Peams. Detailed analysg$4,19 have established that spar-
number of parameters, but the price for doing so is the los§cles with mass< \/s/2 can easily be discovered at an LC.
of generality. Moreover, many of their propertiegnasses, spins, some
couplings can be measured precisely.
Unfortunately, most of these analydd$| show the dan-

*Present address: PhysiKalisches Institut d. Univardenn, ~ gerous tendency to neglect phases, which are actually free
Nussallee 12, 53115 Bonn, Germany. parameters of the model and are not necessarily negligibly

The observatiof5] of neutrino flavor oscillations opens the pos- Small. Note that both masses and couplings depend on these
sibility that the neutrino mass matrix contains nontriviaP-  phases, which will hence have a direct impact on sparticle
violating phases, but this has not yet been confirmed experimerProduction cross sections and decays. Neglecting nonvanish-
tally. In principle, CP could also be violated in the SM by the QCD ing phases when determining real parameters from experi-
# term, but bounds on the electric dipole moment of the neutrormental data could thus lead to wrong inputs for attempts to
force | fgcpl to be <1010, reconstruct the underlying theory at the unification scale. On
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the other hand, the construction of sizable and experimerare kept fixed while the phases are varied randomly, there is
tally accessibleCP-violating observables is rather difficult in no visible correlation between these high-energy significan-
most of the production channelsate™ colliders, as at least ces andd,. On the other hand, in most cases sizable high-
one secondary decay has to be included in the analysis. Adnergy significances are strongly correlated with each other
the tree level nonzer6P-odd asymmetries can only result if and slightly less strongly correlated with), .

the decaying particle has nonzero spin, which should be at sgrictly speaking these significances only measure devia-
least partly reconstructed from its decay products. tions from theCP-conserving version of the MSSM. These

_ We therefore first perform a rather general analysis of theyiations might also be explained by some extension of the
impact of nonvanishingCP-odd phases oICP-even cross 1oy without invoking new sources dEP violation. If
sections. We work in the framework of the MSSM with non- <, aviation from theP-conserving MSSM is observed,

vamshmgCP phases. .We assume fla\(or unlversa_llty for SOfta more direct probe fo€P violation in the production and
breaking terms associated with sfermions of the first and sec; . )
cay of superparticles thus becomes important. We there-

: o d
ond generations, but we do not assume any specific mOd?ore compute th€CP-odd polarization of charginos and neu-
tralinos that is normal to the production plane and find that,

for SUSY breaking. Our free parameters are specified at the
typical energy scale of an LC. The basic idea of this work is; . . ! )
to take today’s low-energy data, such as lower-mass bound® all cases con5|d.ere.d, it can be _S|zab_le for n_eutralmos; a
and bounds on leptonic dipole moment, (and a,), as large CP-odd polarization of charginos IS'pOSSIb|e only at
constraints for a parameter space scan. We then use the 18l9€ x| and small targ. In contrast to earlier, related work
sulting, low-energy compatible points to check whether high[16,1ﬂ we emphasize a detailed semianalytical understand-
energy experiments at an L@ either thee®e™ ore e~ ing of the observed effects, isolate the measurements that
mode could provide additional information on phases. Wehold the most promise, and analyze the correlations between
restrict ourselves to the following total, unpolarized crossvarious phase sensitive observables.
sections: The remainder of this paper is organized as follows. In
Sec. Il we briefly review the mass spectra and mixing pat-
efe %X, Li=1...4, (.13 terns of the sleptons, charginos, and neutralinos. This section
also contains an overview of the relevant parameters. After
e'e —Xx x;, 1,i=12 (1.1 summarizing the relevant parts of the MSSM Lagrangian in
Sec. lll, we present in Sec. IV the analytical expressions for
e'e %R, i,j=12 (1.10  the SUSY contributions tal, anda,, and discuss briefly
possible scenarios for suppressing these leptonic dipole mo-
ee —g%¢, i,j=12 (.10  ments while keeping some phases sizable. This section also
) ) __ discusses numerical constraints on these phases in three
There is a complementarity between the leptonic dipol§yenchmark scenarios where selectrons as well as the lighter
operators and the high-energy production amplitudes. SinCge \trajing and chargino eigenstates can be produced at a 500
several diagrams involving neutralinos as well as chargmo&ev ete— collider. Section V summarizes the well-known

contribute coherently to the low-energy observables, the¥esults for total cross sections of the production channels

can only give bounds ocombinationf phases. In contrast, %_1.1). We also give results for the components of polarization

high-energy observables can be used to investigate the di . L
ferent sectors of the theory separately. As our aim is to studVGCtorS for reacUon(;l.la) and(1.1h. The S|gn|f|cance§ are
troduced in Sec. VI. In Sec. VII we show the most impor-

the impact of low-energy compatible, nonvanishing phase its of detailed ical vsis of the hiah
on the cross sections, we assign a significath f,) to ~ @nt results of our detailed numerical analysis of the high-

each final state, defined as difference in production rates b&"€rgy observables. Section VIIl completes our work with a
tween aCP-conserving pointCPC point: real parameters, all Prief summary of our findings and some conclusions.
phases identical to zero at) in parameter space andGP-

violating point (CPV point: same absolute values of param-

eters, but nonvanishing phage®rmalized to the statistical Il. PARTICLE MIXING

error of the cross section in the CPC point. Since the phase
dependence of a given cross section might partly arise from
kinematical effects(kinematical masses depend on the As mentioned in the Introduction, we will assume that

phasel we also introduce a second signiﬁcargeflfz), flavor mixing is negligible in the slepton sector. This can,
where the CPV point is chosen such that the masses of tw®.d., be motivated by the very tight experimental constraints
neutralinos and one chargino coincide with the CPC pointon branching ratios for lepton flavor violating decays like
this can be achieved by adjusting the absolute values of the—ey, u—3e, etc. The simplest way to satisfy these
relevant dimensionful input parameters. bounds on flavor-changing processes is to assume that soft
We find that these significances can be very large folSUSY-breaking parameters in the slepton sector are the same
some reactions of the typ€s.1a and(1.1d, but are usually  for the first and second generations, as is the case in most
small for Eq.(1.1b once the low-energy constraints have models that attempt to describe SUSY breaking by a small
been taken into account. Moreover, if the absolute values afiumber of parametersvhich are usually defined at a high-
the input parameters or three chargino and neutralino massesergy scale The only relevant mixing in the slepton sector

A. Slepton mixing
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then occurs betweeBU(2) doublet slepton$, and singlets As sneutrinos are only present as components of left-
T.. The squared mass matriMTZ in the basis T, Tr) is handed superfields in the MSSM, there is no partner to mix

given by[18] with and the mass simply reads

Xi Zj 2 2 1 2
M72= .. 2.1) rmyl—mTLJr 5 CoS 28M35. 2.7
Z”l‘ Y|
The elements of this matrix are defined as B. Chargino mixing

, 1 The Dirac mass matrix for charginos mixes t8&J(2)

Xj=m?+ m; + E(ME—ZM\ZN)COS 28, (228  gaugino®™ and the charged Higgsinds®. In the basis
(W=, h") it is given by[18]

Yi=mi+ m|~2R+(M\2N—M§)cos 2, (2.2b M, VM, COSB

Mec= V2ZMy sinB m ’ 29

|Zi|=m| A+ w tang], (2.20

. where the soft breaking mass paramekép for SU(2)
argZy)=¢i=arg —A—p* tanp), (2.20  gauginos is taken to be real and positive; this can be
achieved without loss of generality by appropriate field re-

wherem, is the mass of the charged Ieplbrm~ andA, are definitions. This complex mass matrix is asymmetric and

soft SUSY-breaking parameters, which we assume t0 be thhence has to be diagonalized by a biunitary transformation

same for the first and second generatigunss the Higgsino
mass parameter, and tgris the ratio of vacuum expectation
values of the two neutral Higgs fields. In general,
=|u|e'®» and Aj=|A|e'?A can be complex, while all other with the mass orderingr;=<my+ as convention. The mix-

pararr;eters appearing in Eq2.2) are real. ing matrices may be wntten 5{39]
M; can be diagonalized by a unitary transformation

UrMcU/|=diag m;= =), 2.9

C . COSeh. sing e AL )10
S AL = di = . : , A
Ui MUy =diagmy ,my ), 2.3 L\ —sing ePt cose, (2.103
with the mass orderingrff rrrlz2 by convention. The diago- ez 0 COS¢R sin ¢Re—iBR
nalization matrixUj can be parametrized as Ur= 0 €72/ —singre'®’r  coseg
. (2.10b
) cosf; —singe ¢
UI: sin gl“ei‘ﬁNI Cose'l‘ ! (24) with — 7w/2< d)L R= <7/2 and Os’yl 2 BL R= <2. Here Y1
and y, denote two possible Dirac phases which have to be
where — 7/2< i< 7/2 and O< ¢7<27. Defining introduced to ensure that the mass eigenvaluedf are
positive and real. The parametersléf andUg can be de-
m +rrr| Xi+ Yo termined fromM{EM e and Mo ML, respectively. Introduc-
M-I?E 5 Lo 5 (259  ing the quantity
T ST Ny , Ac={(M3=[u|?)?+4My, co$(2) + AM(ME+|u|?)
i=m; —my =V YDEHAIZi (2.5b

. 2 2
+8M¢{| u|cose,M, sin 28} 12= me-—me., (2.1
2 1
the slepton mass eigenvalues and mixing angles are given as
the squared mass eigenvalues are

A
2 2 _ I

ml“12 My =+ X (2.6a 1

me. =S (M3+uf+2MGTa), (212
_ 1zl Xi—Yi
sin20j=—2——, CcosS2/= (2.6b
A7 A7 while the mixing angles can be computed from

Equations(2.6b and(2.29 show that slepton left-right mix- a2 2 2
ing is suppressed by the corresponding lepton mass, but is oS 2, = M+ | +2MWCOSZB’ (2.133
enhanced for large tghand large|u/. Ac
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—2v2M
sin 2¢ = A—W(Mgco§,8+|,u|23inz,8
(3
+M,|ulcosg, sin28)*? (2.13h
—M3+|u|?2—2MZ, cos 28
COS 2pr= Ag :
(2.139

v2M
Sin 2¢g= A—W(Mésinz,8+|,u|zcos’-,3
C
+My|u|cosg, sin28)Y2, (2.139
and the phases are
—|ulsing,
tanp = |u|cose, +cotBM (2143
M, 0
0 M,

My= —M; cosg sin 6y

M sinBsin Gy

TheU(1)y gaugino mass parametér; =|M|e'%1 is in gen-

eral complex. This symmetric mass matrix is diagonalized by

a unitary transformation

(2.16

T N H .
N' MyN= dmg(m;g,m;g,m;g,m;(g),

i.e., thenth mass eigenstatés given by the complex conju-

M, cos cosbyy
— M, sinB cosbyy,

PHYSICAL REVIEW Dr0, 014010(2004

|ulsing,

tanBr= |u|cosg, +tanpM,’ (2.149
2 ; 2 2
MWI,ulcos¢Msm23+M2(m;(l: | ]9
coty; = . . :
n M/ ulsing, sin23
(2.149
|,u|cos¢>u(m§:—M§)+M\2,\,Mzsin23
COt)/2=— 2

|lsing, (mg. —M3)
(2.149

C. Neutralino mixing

The neutralino mass matri¥fy mixes the neutral com-
ponents of both Higgsinosy ; with hypercharge=1/2, the
U(1)y gauginoB and the neutraBU(2) gauginoW,. The
mass matrix in the basiB(W;,h%h%) reads[18]

—MgzcosBsinfy  MzsinBsinby

Mz cosBcosfy —M;sinB cosby
(2.15
0 —p
—u 0

Myo=[My|+8my, X1=€"*"*(1,615,815,619/N1,

gate of thenth column ofN. Although the neutralino mass
matrix can be diagonalized analytically even for complex
parameterg20], the general expressions are too lengthy to
reproduce here. Of course, a numerical computatioN &f
straightforward. However, in order to qualitatively under-
stand mixing in the neutralino sector, a perturbative diago-
nalization of the mass matri2.15 is often sufficient. Here

(2.173
myo=M3+ ém;, X5= (821,183, 824) N3,

(2.17h

L el

m}g:|ﬂ| X327(531:532,1,1),

(2.179

Qih, 12

Mie=lul. Xa=——(du.001:~1).

(2.179

M is considered to be a small parameter compargiitg,
M,, and|u|. Keeping all terms up to first order iNl,, as

well as a fewO(M%) terms that will be important later, one

finds, for the masses and eigenvectors,

2When written as a row vectgf® in the B,W;,hS,h%) basis, the

mass eigenstate satisfigg(¥°) "= m;(o(}}ﬂ)T (no sum oveny; i.e.,
n
it is not an eigenvector aMy in the usual sense.

In Egs. (2.17 we have assumed the orderinlyl,|<M,
<|u|. If these three mass parameters are ordered differently,
the eigenstates in Eq&2.17) are no longer labeled in order

of increasing mass. Note that the eigenvalues do not receive
O(M3) corrections. However, mixing between gauginos and
Higgsinos is generated at this order, aBelW; mixing is
generated at orddVI%. These mixings are described by the
complex quantitiesy;; in Egs.(2.17); they are given by

014010-4



SYSTEMATIC STUDY OF THE IMPACT OFCP-. ..

PHYSICAL REVIEW D 70, 014010 (2004

MZ sin 6y, cosOy[|M 1|2+ MM, +sin(28) (w* M+ Mou)]

5 , 2.18
12 (M3= M) (|ul?=[Mq]*) 216
M sin6y(M7 cosB+ u sinB)
o P AL o
M sin 6y, (M7 sin 8+ u cosp)
N LS (2450
~ MZsin 6y, cosby[M5+MiM,+sin(28)(Mou* + M )] (2.189
2 (MZ=M [P ([ulP—M3) ’ |
M cosy(M, cosB+ u sinB)
by 2 005 , (2.18¢
|l M3
Mz cosby (M, sin B+ u cosp)
o z W g . , (2.181)
|wl*—M3
M sin 8y(sin 8—cospB) .
Say= PG (My—u’), (2.189
Mz coséy,(sinB—cosp)
_ M), (2.18h
% (lul?=M3) (M)
M sin 6,y(sin 8+ cospB)
Soim — M.+ *, 2.18i
“ Ty Mred) e
M cosfy(sing+cosB) |
T (ul- e o

D. Relevant parameters

N;,N, in Egs.(2.173, (2.17h are normalization constants,
which differ from unity atO(M2). Note that the phases of  The mixing patterns in the part of the SUSY spectrum
the zeroth-order eigenstates have been factored out in Eqghich will be relevant for the remainder of our work depend
(2.17); this gives more symmetrlc looking expressions forgn ten SUSY parameterplus some SM parameters whose
the &; . Finally, theO(M%) mass shifts of the gauginolike yalues are already known accurafelgome of these param-

states are given by

M2 sir? Oy,
omy=— WHMHHMSWZBCOE(%JF¢M)]
(2.193
M2 cog 6y
5m2=—||—2[M 2+ |pmlsin2B8 cose,].
(2.19h

Equations(2.18 and(2.19 show that the expansion will
break down if| x| —|M4| or |u| —M, becomes close t¥,

in absolute value. In other words, even if the unknown di-

mensionful parameters in the mass mat(x15 are all

eters (7, |All, ¢a,|M1|,¢1) only enter in a single sec-

tor (sleptons and neutralinos, respectiyelwhile M, ap-
pears in both the chargino and neutralino mass matrices, and
lul, ¢, , and tan3 affect all three sectors. Therefore the mix-
ing patterns in the separate sectors are partly correlated to
each other. In particular, choosing the parameters of the neu-
tralino mass matrix completely determines the chargino mass
matrix as well. Moreover, increasirig| suppresses gaugino-

Higgsino mixing, but enhancds-T mixing. Finally, taking
tanB>1 again enhancek -1z mixing, but reduces the im-
pact of all phases on the physical masses.

IIl. INTERACTION LAGRANGIAN

In order to make our paper self-contained and to fix the
notation, this section is devoted to a short collection of the

>M, there can still be strong Higgsino-gaugino mixing if relevant pieces of the interaction Lagrangian expressed in

some of these parameters have similar absolute values.

terms of physical mass eigenstates.
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A. Interactions involving SM gauge bosons with
First of all, the well-known SM coupling between charged —i_otil =5 (3.99
leptons and gauge bosons is given by Xty Sxry e '
— A a,l a,l i -1 .
Liyz=ely*(AQy P+ Z,Q77 Pl (3.1 =[S S — (W) - (3.9p

X*.Z7 cosby Sin by
wheree is the QED coupling constant ari®l,, ae{+,—} _ _ . _
={R,L}, are standard chirality projection operators, definedl he matrices{V..);; can be obtained from the chargino mix-

as ing matrices via
1+ Vs _ * 1 * _
P.= 5 (3.2 (Wi)ij_(ui)il(ui)j1+E(Ui)iZ(Ui)jZ [+,—=R,L],
(3.10
The |i h «!in Eq. (3.1
e linear charge®,z in Eq. (3.1 are and read explicitly in terms of chargino mixing angles and
Q;’"=Q;"=1, (3.339  Pphases as
| -1 ( 2 1) 3+icos2p, —isin2¢g e 'L
LS 1 (3.30 (W.)= .
Z " sinfycosby w2 “lsin2geft 2 lcos2p,
3.11
3'=—tan6y. (3.30 (3113
(W)

SleptonL-R mixing does not affect the couplings between
sleptons and photons. Moreover, in the case of selectrds
mixing can safely be neglected for high-energy applications. 2+ 2c0s 2 — 2sin2¢ge! (11 Fr™72)
The vertices with two charged sleptons and one gauge boson =

. . . 1a; —i — — 3 1
are defined via the momentum-space Lagrangian —4sin2¢pge” 117 AR772) 3 —Fcos 2R

7 2= (A, Q" +2,Qb) (ki + k4T (k)T (k) (3.11
1Tz = 8(ALQy 1 Q7 ) (Ki+ k)1 (k) T (k;)™,

(3.4 B. Slepton interactions with a chargino or neutralino
wherei,je{R,L}. The corresponding linear Chargég;i% The neutralino-slepton-lepton vertices receive contribu-
are ' tions from both gauge and Yukawa interactions:

Q)1=4;, (3.53 Liro= — TG+ Y PIT +He, (3.1
Iy, \/QSinﬁw ( ij IJ) aXilj ' ( 2)
~ 1
Lij— _ s Y~ .
Qz 5Ij tanéy 2 COSByy SiN Oy Sit |- with
3.5b - -
The couplings between physical Majorana neutralinos and N . .
the Z boson are given by Gij = (tanwN7; + N3;) (U7) 45, (3.13b
— . Y =—=v2Y,N3(U7)y; (3.130
- - - 7 =0 unal ~0 ij IN3i 1)1j»
X7 ZCOSGWSinﬂ\NZ“X' Y*Qz Paxi, (3.6 X .
Yij = —V2Y N3 (U7)y; . (3.130

where the linear charge®%;’ are defined as _ _ o
X Here the dimensionless, rescaled Yukawa couphfigis

+ij ij a1 * x given by
w0 = (Q0) =5 (NgiNg; = NNz )=Z;; . (3.7
) o . YFL. (3.19
The first equality in Eq.(3.7) follows from the Majorana V2M,y, cospB
nature of the neutralinos. Of course, there is no neutralino-
photon coupling. Note that we have to keep terme,, as well as a nontrivial
Finally, the interactions between neutral gauge bosons angleptonic mixing matrixJ7, when computing leptonic dipole
charginos are given by moments. On the other hand, for high-energy applications
) — i ] e can be set to zero, which implie&; =0 in case of selec-
/J}f}j*y,z:exi Y(Q55 ,PaPAut Qix ,PaZ)X trons. In the same limiL-R mixing can be neglected, in

(3.8 which case the gauge contributioﬁfﬁ simplify to
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Gjj = — 2 tanfyNy; ;. (3.15a  of relevance to us is therefoeg, . Note that the SUSY con-
tributions toa,, andd, show very similar dependences on the
G =(tangyN3;+N3) 8y - absolute values of the relevant parameters; howelere-

(3.15h  ceives nonvanishing contributions only in the presence of
nontrivial phases, while the contribution ta,| becomes
The couplings between chargino, sneutrino, and leptormaximal if all phases are zero ar.
also receive gauge and Yukawa contributions: The SM prediction ford, is negligible. The current ex-
perimental measuremef22]

e - a|~* -

Lot = Singg i NaiPITI+H.C, (3.19 (de) exp= (0.069+0.074 X 10 *%e cm, 4.0

where can therefore directly be translated into & eange for the
supersymmetric contribution ta, :
Ng,i= = 0aL(UR)it + 8ar(UL)i2Y - (3.1
—0.079< 10" 2% cm=(d,) 5usy=<0.217x 10" 2e cm.

As before, the termeY, in Eq. (3.17 can be dropped in (4.2
collider physics applications, but it has to be kept when com-
puting the leptonic dipole moments. The interpretation of the most recent measurenjant

ofa,,

IV. LOW-ENERGY CONSTRAINTS 10
A. Experimental constraints (@) exp= (11659208-6) 10", “3

In this paper we are only interested in purely leptonicis less clear. The reason is that nonperturbative hadronic
processes. We therefore ignore ffugiite stringent experi-  terms do contribute ta,, at about the 10° level. In prin-
mental constraints on the electric dipole moments of the neweiple, this contribution can be calculated from experimental
tron and mercury atom. The main reason for this choice iglata using dispersion relatiofi5,26. Unfortunately, calcu-
that leptonic processes suffer much less from uncertaintieigitions based on different data do not quite agree, although
due to nonperturbative strong interactions. For example, Rethe discrepancy has become smaller after the recent release
[21] finds that different models relating electric dipole mo- of corrected data by the CMD-2 Collaboratip®7]. Using
ments of quarks to that of the neutron or Hg atom differ bye* e~ annihilation data as input tends to give an SM predic-
typically a factor of 2. Since large phases in the hadroniaion which falls a little short of the experimental val(®3).
sector can be tolerated if there are cancellations between dif recent analysis which includes all existieje~ data[28]
ferent contributions, which have different hadronic matrix finds
elements, a conservative interpretation of the experimental
bou_nds ond, tends to give[11] significantly weaker con- _ (a,)su=(11659180.9- 8.0x10 1. (4.4
straints on model parameters than the bound on the electric

dipole moment of the electron does, even if one assumegqing all errors in quadrature, this gives-&.7¢ discrep-

some connection between tt@P—vioIati.ng phases in the ancy. On the other hand, using data frerdecays give$28]
squark and slepton sectors. The oflli-violating (more ex-

actly, T-violating) low-energy quantity of relevance to us is
therefore the electric dipole moment of the electrn

Given our assumption of flavor universality of the soft break- =~ .
ing terms in the slepton sector, at least as far as the first antfhich is only ~1.40 below the measuremertd.3). Since

second generations are concerned, the bound on the electR¥€N thee'e data lead to a less tharr3liscrepancy be-

dipole moment of the muofi22] need not be considered tWween the prediction for and measuremengpf we do not

separately: sinced()sysy=m;, all combinations of param- want to claim evidence for a nonvanishing SUSY contrlpu.—

eters that satisfy the constraint on the SUSY contribution td!o"- In:)rder to be conservative, we construct the upper limit

d,, will be at least five orders of magnitude below the maxi-©f the “2o-allowed” range for @,)susy= () expi~ (Bu)sm

mal allowed SUSY contribution td, . by using the 'onver valug4.4), rgduced by two qomblned
On the other hand, our assumption of universal sleptonigtandard deviations, as our estimate afsu- Similarly,

soft breaking terms for the first two generations also impliedhe lower end of this “2r range” is obtained whene(,) sy is

[23] that the measuremefi24] of the anomalous magnetic estimated by 'add'lng two standard deviations to the higher

moment of the muona,=(g,—2)/2, gives atighter con- value (4.5). This gives

straint on SUSY parameters than the anomalous magnetic

moment of the electron does. The reason is that for universal —5.7x10 1%<(a,,)sysy=47.1x10"'°. (4.6)

soft breaking masses the SUSY contribution to these leptonic

magnetic moments is essentially proportional to the squaretdihe upper bound in Eq4.6) constrains the SUSY parameter

mass of the lepton, and the experimental errors satisfgpace only for large values of t@ but the lower bound is

[22,24 5a#/mi< sa./mZ. The second low-energy quantity significant also for moderate tah

(a,)sw=(11659195.6:6.8)x 1071, 45
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The variablest; andy;, are defined as

7 2 2
PR PR m- - m;
B Xi la
L Ly ! ! X=TE yia=a~2—o, (4.11
% v Xi
FIG. 1. SUSY contributions to leptonic dipole operators. and the loop function$; are

. 3z
B. Analytical results f,(2)= m(22_42+3+ 2 logz), (4.123

The supersymmetric one-loop contributions to lepton di-
pole moments are shown in Fig. 1. The left diagram depicts 3
the neutralino contribution while the right one contains the fo(z)= m(zz—l—ZZIogz), (4.12b
chargino contribution. Using the interaction Lagrangians

given in Sec. Il we find, for the chargino contribution to the 27
electric dipole moment of the electron, fa(z2)= m(z3—622+ 3z+2+6zlogz).
(4.120
xi) Im(c;c 4.
(A= 96w 22 - fal (Clicri). (4.7 These functions are normalized such thg{1)=1, i

=1,2,3. Finally, the coupling coefficients,; andn,;, can be
The chargino loop contribution to the magnetic dipole mo-written as
ment of the muon is

CLi=— (Urdi1, (4.133
(a#)SUSY 1927722 [ Mfl(x )Re(ciCRi) sin O
mi ) ) CRi:mYI(UL)iZa (4.13b
+mN_2f3(Xi)(|CLi| +lcril?) - (4.9
Xii € ~\ %
nLiaZﬂ[(Nzithan@lei)(UﬂLa
The corresponding results for the neutralino contribution SInOw
read . —V2Y N3 (U7)Rels (4.130
~0 -1 1
- I ) * ) e
(do)dusv= gz 2 2, g {2001 (i) e (2 NG (U,
(4.9 SN w
4 2 +V2YNZ(UD)] L (4.130
')'(0 _ -1 2 Z 4m R
(8)susy= 19272 < &4 myo Fa(Yia) REN;aNRia) Our results agree with those of Refd1,29; the neutralino
contribution in Ref[12] seems to have some misprints.

m The analytic expressions of Sec. Il B can be used to re-
+ #fS(yia)(|nLia|2+|nRia|2) . (4.10  write both chargino contributions in terms of the loop func-
tions f; and the basic SUSY parameters:

~+ m. € tanp|u|M,sing f1(x)
(de))S(USY:_487T2 SI By |M|AC2 ME (—1) r’;ﬂ , (4.19
. m2  e? 2 f,(x ) 1
(aﬂ)’s‘lus\(z—%;:2 S 9w[ 21 L — YZ)Z +2[M +|M|2+2tan,8M2|,u|cos¢M
+2M6vcos2ﬂ12 L&“——[(MZ WY +2M2, cos 281 v2 ]S, LTI ]
Acm}li =1 Acm»;(r
(4.15

where A¢ has been defined in E¢2.11). Together with Egs(4.12), these expressions explicitly show that the chargino
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contributions to the leptonic dipole moments decouple |im§y for rrét>m§ and like 1m§ in the opposite Iimitm%
>m§(t. For completeness we have included term¥2, even though Eq(3.14 shows thatYi«l; if these terms are
neglected, &,)§,sv* mi, as advertised earlier.

Analogous statements also hold for the neutralino contributions, but because of the more complicated nature of neutralino

mixing, we were not able to find simple exact analytic expressions for these contributions. However, with the help of Egs.
(2.17 and(2.18 one can derive an approximate expression for the neutralino loop contributiyn to

e2m, [ |Az+ wtang| T2(ME /M) = fo(mE /|M4[?)

X ; _
(de)Susv= "~ g2 coZ Gy M 4] =~ - sin( ¢~ o)
L R
i fo(me /|M 42 fo(me /| w2
tangsin(¢,+ ¢1) Ll f(mg M) 2( eLl ) VT f(mg ol - 2( eL|M|)
cos OwIM 1| (| w]?=[M4[?) R 2 | T2 eI 2

tanB sin, [ | ul?fo(mg IM3) —M3fo(mg /] u]?)]

T .
2 sin? OyM | | (| |>—M3)

(4.19

In the first line of Eq.(4.16 we have used an approximate gaugino masses are coupled to parameters in the Higgs sec-
treatment of selectron mixing, which is quite sufficient for tor via one-loop renormalization group equations, whereas a
the given purpos&.The last line in Eq.(4.16), which in-  similar coupling between first generation sfermion masses
volves the SU(2) gauge interactions, has a very similar and the Higgs sector only exists at the two-loop I€\&d],
structure as the chargino loop contributigh14); however, naturalness arguments favor models with large slepton
the overall factor in front of the neutralino contribution is 4 masses and relatively modest gaugino masses. The estimate
times smaller than that of the chargino contribution. Note(4.17) indicates that first-generation slepton masses well
also that Eq(4.16) does not contain contributiorssin ¢, above 1 TeV would be required if the relevant phases are
which in our convention measures the relative phase betweed(1). In that case these sleptons would be beyond the reach
M, and M,; only the phase oM, relative to either the of the next lineare™e™ collider, which will have center-of-
phasegz in selectron mixing or to the phase gfis relevant.  mass energy/s<1 TeV. Moreover, since flavor-changing
neutral currenfFCNCQ) constraints would then also indicate
C. Numerical analysis very large masses for second-generation sleptatall that
we assume them to be exactly degenerate with the first gen-
eration), a possible excess @, could not be accommodated
within the MSSM.
We therefore focus on the third possibility for satisfying
the constraint4.2), where the different contributions b,
. 100 GeV, 2 largely cancel[10,11]; that is, the neutralino contribution
(de)Xysy~3X% 10" 2*tanB sinqs#(—v) ecm, must cancel the chargino contribution. Here we quantita-
Msusy 4.17) tively analyze this possibility for three scenarios; later we
' will analyze high-energy observables that are sensitive to

where mgysy stands for the relevant sparticlsneutrino or ~ Phases within the same scenarios. _
chargino, whichever is heaviemass scale. The chargino In all cases we assume that the ratiohs§ and M| is
contribution by itself can therefore satisfy the experimentaSimilar to that in models with gaugino mass unification at the
constraint(4.2) only for very small phasep, and/or very ~GUT scale, which predict§33] [M|=0.5M, at the weak
large sparticle masses. For sparticle masses not much abo$éale. Similarly, we take values for the soft breaking masses
100 GeV, one would need phases of order 301072) or ~ Oof SU(2) singlet and doublet sleptons that are consistent
less in the charginéneutralino or sleptonmass matrices; if with the assumption of universal scalar masses at the GUT
tang>1, this constraint would become even stronger. Suci$cale. Recall that we assume degenerate first- and second-
small phases are unlikely to lead to measurable effects ifeneration soft breaking parameters in the slepton sector:
high-energy collider experimen{d6,17. Alternatively one

As well known [30-32,11,1Q) the experimental bound
(4.1) on d, provides stringent constraints on MSSM param-
eter space. For example, the chargino contribut®i4) to
d. can be estimated to be

can postulate that sparticle masses are very g8k Since Mg =mg, =N, (4.183
3 . . Lo Mg, =mg =mny_, (4.18p
The electric dipole moment is chirality violating and hence pro- R R R

portional to the Yukawa coupling. Therefore slepton mixing, which

is proportional to the Yukawa coupling, cannot be neglected. A=A, =A. (4.180
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TABLE |. The three scenarios studied in this paper. All dimensionful parameters are in GeV.

My M, my, ., A |l tang b1, bus DA
B1 100 200 235 180 500 200 3,6,9, 12 e [~ ]
B2 100 200 235 180 500 500 3,6,9, 12 e [—m 7]

B3 102.2 191.8 198.7 138.2 2555 343.2 5, 10, 15,20 e [, 7]

The assumption of universal scalar masses at the GUT scaig.2): the success rate at large faris even smallet.In the
implies [33] that following we will quote upper bounds ofy,| that result
from the constraint4.2). A similar band around,= 7 ex-
ists for small tanB and largeju).
mT2 :mTZ +0.46M12 (4.19 Figure 2 shows allowed combinations of the phages
L R and ¢,. We observe very strong constraints ¢p in sce-
nario B1, which become stronger as faimcreases. Scenario
B2 allows much larger values ¢f,|, which moreover do
at the weak scale. Finally, we are interested in scenariogot decrease much with increasing @nwhile scenario B3
where at leastg, T, , X5 , and¥2 can be pair produced at a IS intermediate between these two. This behavior can be un-
“first-stage” linear collider operating at/s=500 GeV. derstood from Eqs(4.14 and(4.16. We saw that the con-

This leads us to consider three different scenarios whicltlr.ibl.JltionS involvinngLi](Z) gau%e inr;[eraﬁtion_s hlave very.

. - S similar structure in both cases, but the chargino loop contri-
we call B1, B2, and B3. Scenario B1 hjs|=M,, i.e., is PN . |
characterized by strong mixing betweBhi(2) gauginos and bution is bigger by a factor of-4 than this part of the neu

[T e ) : . - _tralino contribution. The potentially most important cancel-
Higgsinos; this will occur in both the chargino and neutralino ation therefore occurs between the chargino contribution

sectors. Contrariwise, B2 hag|*>M3, i.e., all Higgsino- [more exactly, the total contribution involvingU(2) inter-
gaugino mixing is suppressed. In these two cases we takegtions, which is, however, always dominated by the

relatively large value oflA, which enhances sleptob-R  chargino contributiohand the neutralino contributions in-
mixing for small tans; we will see shortly that this increases volving U(1)y interactions.

the possibility of cancellations between the chargino and Scenario B1 hasu|=M,, i.e., very strong mixing be-
neutralino contributions tal,. On the other handg¢ -8z  tween Higgsinos an®&U(2) gauginos. Equatio4.16 no
mixing, while important for the calculation ofle, in all  longer gives an accurate estimate of the neutralino contribu-
cases remains negligible as far as selectron production &bn in this limit, but we expect it to remain qualitatively
high energies is concerned. Case B3, which is alfiden-  correct; note that it gives a finite answ@nvolving the de-
tical to the much-studied Snowmass “benchmark pointrivative of the functionf,) in this case. In particular, the
SPS1A’[34], has intermediate gaugino-Higgsino mixing, as contributions involving theSU(2) gauge coupling would be
well as slightly reduced slepton masses. In all three cases wauch bigger than those involving (1) interactions if the
take four different values of tgB Moreover, we allow the relevant phases had similar magnitude; in other words, a sig-
three relevant phasefs;, ¢,,, and¢, to float freely; i.e., we nificant cancellation can only occur fi,| is well below
pick random values for these phas@®ecall that we work in | ¢,|. Furthermore, for this choice of parameters a strong
a phase convention wheM, is real and positivg. These internal cancellation occurs between the two contributions
three scenarios are summarized in Table I. Of course, wgom U(1)y interactions that grow<tang, i.e., between the
respect all relevant limits from direct searches for superparfirst line and the following two lines on the right-hand side
ticles at colliders, in particular at LEH22]. (RHS) of Eq. (4.16). As a result, we find ¢ ,|</30 even
For simplicity and limited space of representation we onlyfor tang=3. Moreover, the dominant contribution from
show results for two choices of tg#h=3 or 12 in scenarios U(1)y interactions in this scenario involves i.e., is inde-
B1 and B2 and for tag=10 or 20 in case B3. Results for the pendent of ta, whereas the contribution frol8U(2) in-
other cases are qualitatively similar and can be obtained byeractions increasestan. The upper bound ohp,,| there-
extrapolation from these extreme cases. Note that the nyore scales essentially like ¢t The importance ofp, in
merical results shown below are projections of a threethijs scenario also explains why there is almost no correlation
dimensional parameter space onto two-dimensional planegetween the allowed values &, and ¢, . Moreover, in this

Hence it should be kept in mind that each correlation in thescenario values ofp, near 7 are excluded by the lower
¢y~ ¢y plane has been obtained by scanning over the entirgound(4_6) on (a,)sgsv-

allowed range for¢,. By far the strongest restriction on
parameter space comes frap: at least 99.4% of all ran-
domly chosen points in a given run violate the constraint 5this indicates that rather severe fine-tuning is requled to
obtain the necessary cancellations if all phases are indeed indepen-
dent quantities. To put it differently, one faces the challenge to
“The agreement becomes exact for the “benchmark valueBtan construct models that “naturally” explain the required correlations
=10 and vanishing phases. between these phases. We will not attempt to do this here.
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a: Bl,tan8 =3 b: B2, tan8 =3 ¢: B3, tang8 =10 a: Bl, tang3 =3 b: B2, tan8 =3 c: B3, tanf =10
1 T T 1 y 1 T 1 T T 1 T gj T
05} 4 o5k ‘ q 05 ' - 05 - 05 g 4
& & 1 & E 53 y
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1 1 1 1 d 1 1 1 1 I ] b & 1
-1 05 0 05 1 -1 05 0 05 1 -1 -05 0 05 1 -1 -05 0 05 1 <105 0 05 1
Sulm bulm Puf™ Sufm b/
d: Bl, tan 8 =12 e: B2, tanf =12 f: B3, tanfd =20 d: Bl, tanf3 = 12 e B2, tan@ =12
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¢y/7" ¢p/7r (ﬁ,,/ﬂ' ¢u/77 ¢u/7r ¢u/7T

FIG. 2. Combinations o, and ¢, that are allowed for at least

one ppe[—m,m].

one value of¢, e[ —,7].

FIG. 3. Combinations o, and¢, that are allowed for at least

Equation(4.14) shows that increasinfu| while keeping . .
all other parameters the same decreases the chargino contri-!f |4 is increased by another factor of/5, chargino and
bution tod,; according to Eq(4.16), it also decreases the neutralino loop contributions td, can be of the same size,
neutralino contributions that invol@U(2) interactions, but in Which case no upper limit can be given one eitheg
it actually increaseshe neutralino contribution that is sensi- + ®,| or |#,| separately11], although a strongantjcorre-
tive to®,_-8g mixing, i.e., the first line in Eq(4.16.5 Much  lation between these two phases still has to holdulfis
larger values of¢,,| therefore now become possible. For theincreased even further, the neutralino contribution becomes
given choice of parameters the coefficient of the neutralinalominant. In that case,, could take any valugafter scan-
contributionesin(¢, — ¢) is still about 5 times smaller than ning over the other phasgsbut significant absolute con-
the coefficient of sinp,, in the chargino contribution, leading straints on the combinatio#; + ¢, would emerge that hold
to an upper limit of~#/4 on |¢M|. Since these two coeffi- even after scanning over alh, and ¢,. However, most
cients have the same sign, cancellations obtain onkg,if models of supersymmetry breaking pref88] values of|y|
+ ¢, and ¢, have opposite signs. Note that both of thesethat are not much larger thavl,. We therefore do not dis-
contributions argessentially «tan. The upper bound on cuss scenarios withu|>M, any further.
|#,| is therefore now almost independent of farHowever, Scenario B3 has a significantly smaller value|of than
one needs increasingly more perfect cancellations ag tanscenario B2, although it is larger than in B1. The absolute
increases; moreover, the relative importance of the phigse upper bound onl¢,| is therefore reduced te-7/8. The al-
diminishes with increasing ta# since its contribution to lowed bands in Figs.(®) and 2f) are narrower than in Figs.
B_-Bg mixing is not enhanced in this limit. These two con- 2(b) and 2e) due to the larger values of tghand slightly
siderations explain why the width of the allowed band de-smaller slepton masses; both effects tend to increase the
creases essentially like gBtfor large targ. SUSY contributions tade, requiring correspondingly more

The increase ofu| when going from scenario B1 to B2 perfect cancellations. Note also that for 2n20 values of
also reduces the supersymmetric contributionafp. For  ¢; near zero givea, above the rangét.o), i.e., in this case
tanB=3 we therefore now also find an allowed band with neutralino and chargino contributions &, must not add
¢,=m; however, this band disappears at gn10. Note constructively. Parameter sets with), near are only al-
that the phasep; entersa, mostly in the combinatioh  lowed for tang=<5.
cos(h+¢,). This means thaty,=0 will give positive The allowed regions in thed,, ,¢,)-plane are shown in
(negative contributions toa,, if ¢,=0 (). In other words, Fig. 3. Most of our scenarios havg tang| significantly
for values of¢, near zero thé&J(1)y interactions contributes above|A|, in which case the value af, is not very impor-
with equal sign toa,, as the(usually leading SU(2) inter-  tant. Even if¢, is important, as in scenario B1, there is little
actions do, whereag,= leads to a partial cancellation correlation betweew, and¢,,, sinceg, only enters in the
betweenU(1)y and SU(2) contributions.¢, =7 therefore ~ combination¢z — 1, and ¢, is scanned in Fig. 3. In all
remains allowed to slightly higher values of t@rf ¢,~=  cases the bound dwp,| is slightly weaker for¢,=0 than
as well. for ¢po= =, since in the former cask and w add (mostly)

constructively to the mixing of selectrons, thereby increasing
the first line on the RHS of Eq4.16.
8In principle one can therefore have large cancellations between We see from Figs. 2 and 3 that in all cases the entire range
chargino and neutralino contributions even fdr,=|u|, if M,  of values of¢, and ¢, is allowed by thed, constraint for
=m;>|M,|, mg_. However, ifM, andm; are as in scenario B1, some combinations of the other phases. Figure 4 shows that
this would require values afi well below the direct search limit there is little correlation between the allowed ranges of these
of ~100 GeV. two phases. Indeed, tltg constraint allows all combinations
"For | u|tanB>|A|, cosih,— #7)=cosh,+ ¢,) as well. of these two phases, for some value @f . On the other
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in addition, there are phase-independent contributions of
comparable size. Since for our exampigsis constrained to
be small(or near), |cos¢,|=1 and one finds a cos-like

FIG. 4. Combinations of, and ¢, that are allowed for at least dependence od, on ¢;, as already stated. The crucial ob-
one value of¢, e[ —m,7]. servation is that they;-dependent and ,-dependent terms

do not cancel in this case, so the “naive” dependenceagpf

hand, in case B3 with tg8=20 thea,, constraint(4.6) ex- N ¢, survives. We note in passing thaa,sysy=0 can
cludes| ¢, |=</2; see Fig. &). usually not be achieved for a given choice of the gbsolute

In Sec. VII C we will study correlations between low- and Values of the SUSY parameters once we have required large
high-energy observables. To that end it is instructive to se§ancellations irde; i.e., we cannot choose the phases such
how the low-energy observables correlate with the Susyhat there are large cancellations in bdthand (@,)susy- A
phases in the experimentally allowed region of parameteP€lter measurement of, and more accurate SM prediction for,
space. We saw above thay, is tightly constrained, whereas 2u therefore has higher potential to further constrain the
éa and ¢, are not. Sincep, does not affect high-energy SUSY phases than improved measurements,of
observables, the most interesting correlations are those be-
tween low-energy observables agd, after scanning over V. HIGH-ENERGY OBSERVABLES
daandg,.

We find that there is no correlation betwedg and ¢
(not shown, whereas in scenarios B2 and B8, shows a
behavior«a cos¢;+b with a finite scatter; see Fig. 5. This

We are now ready to analyze the impact of SUSY phases
on high-energy observables. After defining the relevant kine-
matical quantities for the 22 processes under consider-
ation, we briefly present the calculation of the corresponding

d|ﬁerencg orlgmatgs from the requwement of very Strongunpolarized total cross sections. All these processes have al-
cancellations ird, discussed above. In particular, the phasesready been discussed in the literature: result&fa and
¢1.aﬂd ¢, have to b_e correlated such that the leading term%f—éf production results can be found [85—3§ and[39],
gestlgr(ﬁl':edaﬂ)bart]geoc:'Ine(/)ggcak)rllggiji]agctgr?rt:;ir,sf anaa;ccghacy whereas results fog; }‘(r and 3‘(,05(10 production results are

b trl1 « yrim nltz I rrur IThi m Ilt qlﬁAr va given in[40,36,19 and[41]. We nevertheless list our results
?hse é/orrglztigr? bet?/veide acr)1 dﬂgn(ﬁ tr?aioong %?g)r/}t?\ai(\)/e?ys here in order to provide a self-contained presentation and to

e L ; illustrate consistency with previous works.

expect from Eq(4.16). The phase-dependent neutralino loop y P
contrlputlons to @M;s.usv can be read off from Eq4.16) by A Kinematics
replacingm, by 2m¢ in the overall factor and all sin by cos; '

The kinematical situation is illustrated by Fig. 6. The mo-

o BL tanf =3 b B2, tanf =3 ¢ B3, tanf = 10 menta and helicities of the incomirtfirst) electron and pos-
40 ——1— 50 —1—1— itron (second electronare denoted by/', o, andp¥, o,
g S0 1= g 40r - respectively. The momenta of the produced superparticles,
% 20| 4 % % 30F PO generically labeled by andc, are denoted by} andk’ . In
S 10 banmsnnd S S 20 -// X, case of fermions being produced their helicities are denoted
s o s 1 “rosoos1 i o 0'5\1 by A, andX,.
Ter Teur T Working in the center of magg.m, frame, we define the
& B, tanf = 12 e B2, tan B = 12 £ B3, tanf = 20 z axis of the coordinate system such tpatpoints in the+z
40— 30— 50 —T—T 7 direction. The event plane is then completed by the momen-
g 30 peemr S AL o oL 1w} d 5\
(= f=3 (=3 A Y
T 20 4 % 10 \ % 30 z—f RS
$ w0} 4§ 0 s a0l s 80f course, experimentally establishing a nonvanishing value of
oL—t—1L 1 10— ob—t—t d. would be of the greatest importance, since it would require phys-
21050 05 1 -1 -05 0 05 1 -1 -05 0 05 1 . o )
e b/ i/ ics beyond the SM. However, while it would require some SUSY
phase to be nonzero, it would not further reduce the allowed ranges
FIG. 5. (@,)susy Vs ¢, after scanning ovep,, and ¢, . of any one of these phases after scanning over the other two phases.
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tum k; of particleb and defines théx, 2 plane of the coor- 0105,G6_ € —
_ _ .’ . MI2E = — ,02)ZEPu(py, K — ki)™
dinate system. The scattering anglés defined as the angle | S v(P2,02)Z] (P o)(ki—k))
betweeng,; and IZl. The nominal range fo#, which we use 5.3

when going from the differential to the total cross section
extends from O tor. However, if the final state consists of
two identical particles, physically has to be=n/2; we o102 X0 — i+ ba
therefore have to multiply the cross section for the produc- M; =~ 0(P2,02) KL P(p1— Kyt mi0)
tion of identical particles with a factor of 1/2. Notice that our
convention implies vanishing azimuthal angle This defi-
nition of the (x, 2 plane is convenient since we are only
interested in total cross sections for unpolarieédbeams’

Of course, the phase space integration, which should be per-

formed in a laboratory-fixed coordinate system, still gives a KL —

'The neutralino contribution is

X D{KlgPPu(py,ay). (5.4)

The coefficientK' , are given by

(cosOyNy+sin 6Ny,

factor of 27 from the integration over the azimuthal angle. RY)) COS6yy, Sin Oy
Explicit expressions for the momentg* and ki can be (5.5a
found in Appendix A.
KR = 2% e 5.5b
B. Cross section fore”e*—& &’ R 5 cosby, Lk (5.5

Figure 7 shows the- andt-channel diagrams contributing . .
to selectron pair production. By introducing a dimensionless Kik=Kri=0, (5.509

Z boson propagator i
and the neutralino propagators are

S
Dy=—s—— (5.9 1
z S_MZ+|M2FZ DEU:—Q_' (56)
(t,u)—mgo
and bilinear chargeg;; . _
where t=(p;—k;)? and u=(p;—k,)?. By introducing a
shorthand notation for the helicity amplitudes,
B (Sir? By—3)? B Sin? Ow— 3 yamp
Zu=ltge 6y COS HWDZ’ Zrr= 1t o2 Oy ° (o102)i= M P72 C ¢ M.‘Tl"z';‘g, (5.7
(5.23 J ij ij
and using the explicit expressions for helicity amplitudes
i o — 1 ; given in Appendix B and the definition of the neutralino
Sir Oy — 3 Sir? 6y, s Y A -
ZEL: 1+ 2 7, ;R: 1 S‘2—[)2, functions in Egs(C2) we find six nonvanishing helicity am-
cos’ Oy Cos’ fyy plitudes(@ is the angle between the momenta of the incident
(5.2b e~ and the produced™):
Zia=275.=0, (5.20 (++)rL=—2"M{R(s;), (5.89

_ 2
the gauge contribution to the helicity amplitudes can be writ- (== )Ir=2€Mpgy(s1), (5.8

ten as i
(+—)rr= —€°ARaSINO(NRR(S,1) + Z5p),
(5.80
9A nontrivial dependence on the azimuthal angle would arise only o0 12 +
if we considered transversely polarized beams and/or were in- (+=)=—eNsinbz, (5.8d
terested in the kinematical distribution of the decay products of the o 12 _
produced superparticldsandc. (= +)rrR= —€°NRRSINOZgR, (5.89
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P & — & e* x5 er - bl
S i
bt + 8 RE + A3,
. .
S N i — | & .- % . %
FIG. 8. Dlagrams foe’e’—>ei ej . FIG. 9. Diagrams foe_e+_")?;}2r .

(=) =—€\{Csin0(NL(s)+Z). (580  Rewriting these results in terms of neutralino functions as
; ; 112y 112 defined in Eqs(C2), we find four nonvanishing helicity am-
Here the kinematical factors;; =g, are as in Eqs(A3).  plitudes(@ is the angle between the momenta of an incident
As usual, the unpolarized cross sectlon can be obtained by~ and a produce@ ; it does not matter which initial- and

averaging over initial helicities. After integrating over the final-state particles are chosen, since the cross section is in-

azimuthal angle, we obtain variant underd— m— 0):

doy AL 2 2 (++)rr=26Mip(s,t)+ Mig(s,u)], (5.133
dcosd 128n5(|<+—>|_|_| +[(=+)l?, (5.9a RR RRU> RRV> M) :
dogg 1/2 (= —)=—2e[M (s, + M (su)],
dcoss 1287rs(|<+ YRR+ (= +)rr?), (5.130

5.9h

(5.99 (—+) ) r=eA2singN (s 1), (5.139
dor Aﬁg
dcosd 128vrs|<__>"RI (5.99 (+—)rL=—€°\{ESiNON R(S,U).

(5.130

dURL 1/2 ,
dcosf 12871'S|< +)rul® (5.9  After calculating the polarization averaged squared matrix

elements and including the phase space factor, the differen-
Finally, for these and all following reactions the total, unpo-tial cross sections are
larized cross sections may be obtained by performing the

remaining integration over the scattering angle: do, L2
N do, dcosh 256ns|<__>LL| (5.143
a',J=j dcosa( ) (5.10
1 d coséd g 2
S [(++ el (5.148
RRI .
C. Cross section fore"e™ —%& € dcosd 256’73
Thet- andu-channel diagrams contributing @€, pair q 2
production are shown in Fig. 8. The corresponding invariant ILR Y ol24 [+ —
amplitude can be written as dcosd 1287TS(|< Il el
(5.149
MO'lo'z__K K ( ) 5 pl pl_kZ P
] ka0 (P2:92)4 O —af (T m~20 u—m%!| ¢  Note thato, r and ok, are not physically distinguishable in
Xk Xk this case, unlike foe™e™ annihilation.

5 1 1
* a'Bm;(E t—mgo+u—m30
Xk Xk

D. Cross section fore”e*—¥; ;"

Pa] u(pliul)'

Figure 9 shows thes- and t-channel contributions to
(5.1 7((7(1-* pair production. After a Fierz rearrangement of ihe

Using the results of Appendix B, we evaluate the he“Citycontribution, the invariant amplitude can be written as

amplitudes and find 2

Mglgz;)\l)\zz Tv(pz 102) Y, PU(p1,07)

s
M= (a102)= = 5sinON|?5,, . (K, (KL, Df
V2T e ' X QUi (k1 X 1) Y*PPuj(ka M),
—KL, K} D¢ )+ o sK, K} k18,0, (5.15
k
X (D{+DY). (512 where we introduced the bilinear chargesth x=sir? 6,)
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n_, Dz&-D( 31 6 16 e %t et : %
LL= 2X(1—X) X— Z_ZCOS2¢L ) (5.163 z . L
- =0 - i ~?i
Qkb=1+ bz X— E— lcoqub (5.16h e X] X()
RRETT1-x\" 4 4 R '

FIG. 10. Diagrams foe~e* —}%;-
11:1+w X— §_£C032¢ ) dix B, we find, for a generic helicity amplitude is the
LR R S —

2X(1=x) 4 angle between the momenta of the incidentand the pro-
SD? ducedy ),
+ ——(1+cos 2g), (5.160
4x <0'1'_0'1;)\1)\2>ij
2
—e .
D 3 1 =— U N1\ a1~ 75, SING
RL=1+ _Z — ———C0S 2| |; (5.160 2 % Qopthadin, (e
1—-x 4 4
+ 0y, -,V (1+ BN ) (1 BN gy )
D,(2x—1) 3 1
2_q4, 2287 0 2 X (cosf+\q,07)}, (5.19
W=t 5a—x | ¥ 4+40052¢L)’ H

(5.173 where the kinematical quantitieg. are defined in Eq(B3).

The unpolarized cross sections can be computed from Eq.

- D, 3 1 (5.19 by averaging over initial helicities and summing over
QrRrR=1+ 7| X~ 7+ 7C0s 2r|, (5.17B  the final ones:
- dojj wa
X(1—x
SO +2)\ﬁ’2c056Q§ , (5.20
4—Xt(1—cos 2pr), (5.179
where 4ra=€?, pi=my /\s, andA ;= uf— uf. The new
5 s 1 quartic chargesginj are given by
22_14 2 (x——+ = cos 2 ) (5.179
RL 1— 4 4 L : - N - N
X 1] 1] 2 1] 2 1] 2 1] 2
Q1:|Q++| +IQU_I*+ QU [+]QY _|?, (5.213
D 2(2x—=1) . i
(Q 8X(1 X) Sin 2¢Le L, (51sa QIJ_RqQ+Jr 1* +QI] QIJ*) (521b
Qd=1QL.[*~1Q1 P~ |Q1, 2+ ]Q1 |~ (5.210

s|n 2¢Rei(71_IBR_ 72),

D
12 _ ;21 \%_ z
QRR (QRR 4(1—X)
(5.18 E. Cross section fore"e* —¥%}
In Fig. 10 thes- andt-channel contributions &y, pro-
duction are shown; the additional, destructively interfering
u-channel diagram is indicated by the exchanged indices in
)sm 2¢ge' (117 BRT72), parentheses. Applying a Fierz rearrangement on both-the
andu-channel diagrams and reordering tkehannel ampli-
(5.189  tude, we obtain the invariant amplitude

Qla=(Q%k
_(DZ(Zx—l) sD/
S\ 8x(1-x)  4x

2

Mglax N s ——v(P2,02) 7,Pu(py,07)

QR =(Q&H)*= sin2¢ e AL, (5.189

4x(1 X)
~ xQll gU(KL,\ 1) Y*PPu(ka\,). (5.22

Here the sneutrino propagatbry is defined analogously to -

the neutralino propagatot5.6). Using the results of Appen- Here, the bilinear charge®,, are given by Xx=sir? 4,)
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N D — 2 2 vatrr = ~ (L ENE (L &
Q:_JL (2X 1)Z SDtgLi'l (5233 € (pllsl)e (p2152)‘>X1(k1;sl)/\/](k2152)- (527)
2X(1—X) !
The momentagj, , and |21,2 have been defined in Fig. 6, and
i D, R S12 and”§1v2 are the spin vectors in the initial and final state,
Qrr=— mz —sD gRIJ' (5.23b respectively. ACP transformation on reactiofb.27) gives
the CP-conjugate process
Q”—D—(le)z+sD (=B, 86 (—Br &) 5(—K, )3 (=K, &
LR™ ™ 2x(1—x) ij cOLij CP: e (—p1,S1)e (—P2,5)—Xxi(—Kky,3)Xj(— K2, 55).
(5.230 (5.28
D, In the center-of-mass systerf; = — i, andk;= —Kk,. The
QiL= 1—x —Z +sDRgRij , (5.230 initial state will therefore be self-conjugatesf=s,, in par-
ticular for unpolarized beams. Comparing reactidf27)
with and(5.28), one can introduce tw@&P-odd asymmetries even

after summing over the spins in the final state. One can de-
1 fine a rate asymmetry for chargino production, essentially
Ouij= &(N;i_'—tangWNIi)(NZj+tan9WN1j)y (X1 %5 ) — (X2 X1), as well as an angular asymmetry for
(5.243 the production of two different neutralinos, proportional to
do(x?%?,0) —do (XX}, m— 6). However, far from theZ
pole, both these asymmetries vanish identically at the tree
level. The reason is that they are odd under a comb@ed

transformation, where the “naive time reversal’reverses
the direction of all 3-momenta, but doaet exchange initial
and final state. Quantities that are odd un@& T can be
1 nonzero only in the presence of absorptive phases, which can
R~ (5.25 come from nearly resonargchannel propagators or from
' (t,U)—méL " loop corrections if the kinematics allows the particles in the
' loop to be on shell.

Since this amplitude has the same structure as the amplitude A CP-odd quantity can therefore only be nonzero in the
for X, %; production, Eq.(5.15, we can directly translate absence of absorptive phases if it is alsodd. This is true
the result(5.19 from this calculation; we just have to replace for triple products of momentum and spin vectors. In gen-
the bilinear charges. We can also use the rgSuk0) for the  eral, the spin of the final-state fermions in §.27) can be
unpolarized, differential cross section, but we have to inC|Udeecomposed into three C()mp()nentﬁ'l_"J is the component

a statistical factor of 3, in direction ofk;, averaged over many eventsith
fixed 6); P} is orthogonal tck;, but liesin the event plane;

1
gRIJ N1|N1] (5-24b

The selectron propagators are defined as

do, !
dcogazz_ Bs )\1/2{[(1 A%)+\jj cog 0]QY and Py is orthogonal tok; and orthogonal to the event
N 1o - plane. The first two of these quantities areven; however,
+8uiu;Q3 +2\jj“cosfQ]}. (5.26  since
Of course, now the bilinear charges of EGs23 have to be 2 2wl .
used when evaluating the quartic charges defined in Egs. PN'=(5i-(P1xki)), 1=1.2, (5.29
(5.21).

P\ is indeedT odd; here,(---) denotes averaging over
many events with fixed scattering angde® We will com-
F. Py for two-fermion production ment on the measurability of this quantity when we present
numerical results.
The normal components of the polarizationsypfand’y;
can be computed using results of Ref2]:

We will see in Sec. VII that some of the cross sections
calculated in the previous subsections depend quite sensi-
tively on the CP-violating phasesp; and/or¢, . Neverthe-
less, if measurements of these cross sections establish a de-
viation from the CP-conserving MSSM, one will need to ,, ) .- _ _
measure some€P-violating asymmetries in order to con- Strictly speaking,P), is CP odd only for self-conjugate final
vince oneself that the observed deviation is indeed due tétates(@ny two neutralinos ok; ;). However, since at the tree
nonvanishing phases, rather than due to some extension el and away forns-channel resonancdsandT transformations
the MSSM. We will see that this is possible only for the are essentially the same, a nonvanishitigin y; x4 production
production of fermionic final states. Consider can also be considered evidence & violation.
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—21Im{Z, , [(o102;++) (o102, = +)" +(0102;+ =) + (o102, — —)"]}

PyT= : (5.30
NS, s [{a1oait )P (oo + )P (o100 — )P+ (o102 — =) ] ?
B 212, o [(o102;+ + ) (0102, + =) (o102~ + o102, — )"} (5.300
N3, (oo )P (oo + = )P+ (o102 — ) [P+ (0102 = =T '
After introducing a fourth quartic charge
Qf=m(@Q!, Q1 +Q! Q") (5.30
and using Eq(5.19, Egs.(5.30 simplify to
i 4 sinfui\i*Q}
Py'= 1—A2 coZ T 18w w OH + 2\ 12 i (5.323
[ ij+)\|1 co 9]Q1+ M|M1Q2+ )\ij C059Q3
Piji = —4singpnQd ——pji& (5.32b
N [1-A7 g co 01QY + 84 QY + 2N cosoQ]] N '
|
We see that\{"' vanishes both at thresholgvhere \;;  M,. The other cross sections show phase sensitivity only at

—0) and far above thresholtWhere u; ;—0). Equations order M2. This is due to both the exchange of heavier,
(5.16 and (5.17) show that all bilinear charges describing Higgsino-like neutralinos which develop gaugino compo-
Xi Xi production are real. Likewise, Eqé5.2) and (5.24  nents atO(M;) and due to thed(M2) corrections to the
show that the couplings appearing in the expressid83  gaugino components of the gauginolike neutralinos; the im-
of the bilinear charges for neutralino pair production are reajortance of these latter contributions explains why we in-
for final stateﬁ consisting f)(fj)Fi\J(vo identical neutral|qos: Wecluded.the-O(Mé) quantitigsélz and &,, and included the
thus see thaQ; and hence®y””™ can only be nonvanishing  pormalization factordN; ,, in Egs.(2.17) and (2.18. The
for oﬁ-d_lagonal _productlon modesi €]). Moreover, the O(M2) shifts sm, , of the masses of the gauginolike neu-
;econd identity in Eq(5.32@ _sh0w§ that ther_e is only one tralinos also affect the selectron production cross sections,
independeniPy for gach distincfy; production channel, either directly (if the physical masses are allowed to vary
for a total of seven independe@P-odd observables. . S . :

with the phasesor indirectly (if physical masses are kept

fixed, in which case the absolute values of the input param-

G. Approximate results eters have to be varied along with the phassisiceO(M?2)

shifts of|[M 4|, M, and|u| change the eigenstatg8 only at

The results presented in the previous sections allow a 3 - o . .
exact(tree leve] calculation of the phase dependences of the%(MZ)’ we will ignore such indirect effects in the following.

selectron and neutralino production cross sections and otNC€€r does not haveSU(2) interactionsp(€:8z) are at

P,. However, it is useful to get a qualitative understandingQ(M2) only sensitive to the phase combinatign + ¢, ,

of where one can expect strong sensitivity to the fundamentavhereas the other modes are also sensitivedq and ¢,, .

phases in the supersymmetric Lagrangian. To this end we®ne should also bear in mind that the phase sensitivity of the

here discuss the behavior of the relevant cross sections amiiagonal@™@~ production channels is further diluted by the

polarization components using the approximate diagonalizgaresence of large-channel(y and Z exchangg contribu-

tion of the neutralino mass matrix described by H@sl7)—  tions, which do not depend on any phase.

(2.19. The phase dependence of the selectron production cross
We begin with the cross sections for selectron pair prosections for fixed physical neutralino masses is summarized

duction. All modes receiv®@(M9) contributions from the in Table IIl. Here we show the coefficients of the various

exchange of th@ino-like neutralino; in the case &_ pair  phase-dependent terms that can appear, relative to the lead-

production, the exchange of th&fno-like neutralino also ing (phase-independentontribution to this cross section.

contributes at ordeM2. The® & mode is the only one

which has a phase sensitivity to ordd2, where the cross

section is sensitive to the relative phase betwdnand HRecall that,=0 in our convention.
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TABLE II. Phase dependence of the cross sections for selectroghange of the lighter, gauginolike, neutralinos. The exception
pair production ine*e” as well ase” e annihilation for fixed s the B:€r mode, where the exchange of the heavier,
physical neutralino masses. Each entry gives the dependence of tp-ﬁggsino-like states contributes at the same order.
coefficient of the indicatedcombination of phasés) on the super- Clearly, theLL mode will have the strongest phase depen-

symmetric parameters relative to the leadiipipase-independent e .
contribution to this cross section, under the assumpti\mﬂrﬂ2 dence of alle & channeld38], and indeed of all selectron

. . . O
<M2<|u2. “None” means that the corresponding term does notProduction channels, since it already occursOgMy), as

exist to O(M2). The cross section fdé, &, production also has noted earlier. The phase-dependent tern& i&, andg &%
terms o«<cos(2p;+¢,) and <cos(,—¢;), but with small coeffi-  production are of similar size. For our choice of parameters

cients o sin 28M3/(| /). the second mode is preferable, since it is accessible at lower
energies and since the cross section near threshold scales like
cosp,+ b1) oS¢, COS¢hy VX, rather than liken®?. Finally, the relative importance of
M2IM,| M2 M2IM phase-sensitive and phase-insensitive terms in most selectron
RGN sin 28—5— i z My roduction cross sections does not depend strongly on the
L& 2B sin28 . p p aly
Mzlul Mzl | Mz beam energy. We therefore expect the best statistical accu-
M2 M2 M2M racy for the determination of the relevant phases when the
B e Sinzg_z sin 28 z z 22 beam energy is chosen such that the cross section being in-
Ml Molul M| vestigated is maximal.
. M2|M,| So far, we have kept the physical neutralino masses fixed,
€rEr sin ZBW none none which means thatV 4|, M,, and|u| have to be varied along
with the phases; we saw above that this affects the cross
O ) M2 ) M2 M| sections only aO(M%) relative to the leading term. If in-
€ e sin ZB_leul sin 23—M2| 4 M, stead these input parameters are held fixed, the physical neu-
tralino masses will vary aD(M%). Of particular interest are
e MMy _ M2 MM, the masses of the gauginolike states, whose exchange gives
€L %R SN 28312l Sin 28 T M much bigger contributions to the matrix elements than that of
the Higgsino-like neutralinos. The relevant mass shifts are
o _ M2 given in Egs.(2.19. We see that these effects also vanish
Cr R sin ZBW none none «1/tang for large tanB. However, they only scale like [1/|

for large |u|. They will therefore dominate the total phase
We h itted ical fact including factors invol dependence of thég"é,; production cross section. For the
e have omitted numerical factors, including factors involv-
ing the weak mixing angle. Nevertheless, we can draw somOther modes, the depensje.nce on ¢gs(,) and on cow, ;
) i i . fhat comes from the variation of the masses of the gaugino-
conclusions from this table. First, we notice that the depenfye neutralinos is qualitatively the same as shown in Table

dence on the phas¢, shown in the second and third col- | ‘it \ve ignore the factor$M,|/M,. A more detailed analy-
umns vanishes like 1/tgh for tans>1. The reason is that s s therefore required to decide which source of phase
the dependence on this phase in the neutralino mass matr(%pendence dominates. However, in the casg @& pro-

cqu_ld be tr_otatejcf mtoche off-(jtﬁlggnal gguglno—Hltghgsmtln duction the total phase dependence is still dominated by the
mixing entriesxcosB. However, the dependence on the re a'O(Mg) term from Bino—Wino interference.

tive phase between the two soft gaugino masses does not . . .
. We now turn to the cross sections for neutralino pair pro-
vary with tang. . L L . Y —~0~0
Second, with the exception of tRg & mode, all phase duction in e"e" annihilation, o =o(e"e” —X;xj). We
' L ' first note that of the ten distinct cross sections, only four

dependence vanishes|ag — =, but the|u| dependence var- : 0 oo ;
ies for different modes. In particular, the phase dependencreece'veO(MZ) contributions:  the cross sections;, 01y,

of the diagonal mod@&;&; vanishes= 1/ u|? for large |u/, and o, describing the production of two gauginolike neu-
whereas all other cross sections receive phase-depend é[ﬁlmos receive large contributions from selectron exchange
S ) ) P P in‘thet or u channel, whileo 3, receives large contributions
contributions that only fall like 14|; however, for tarB . .
v the || dependence of the total phase sensitivit be_fromZexchange in the channel. The cross sections; and
M aep tal p Y a4 describing the production of two equal Higgsino-like
comes stronger, as can be seen in the last column. In moegt4

cases the leading phase dependence comes from the ates receive nonvanishing contributions onlyGi{iM),
whereas the cross sections for the production of one

Higgsino-like and one gauginolike state stariC{tM %).
Only o1, has sensitivity to some phag@ this casep,)

This rotation does not introduce any phase in those park$yf 0] . "
vertices that come from gauge interactions, boesintroduce a at orderM3. All other cross sections are sensitive to phases

2 4 e
phase in the Yukawa contribution to these vertices. Recall that the<@nly at ordemMz or evenM3. The strong phase sensitivity of

Yukawa contributions can be ignored when calculating cross sec?12 ¢an be traced to th@, term in Eq.(5.26. It comes from
tions, but have to be kept when computing leptonic dipole mo-the fact[31] that the production of two Majorana fermions is

ments. This explains why the, dependence of, anda, is not ~ P-wave suppressed near threshold if they have the same rela-
suppressed at large t@n tive CP phase, whereas any difference in this phase leads to
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an Swave contribution to the cross section. This effect cantored out. Here we have listed tBelependent contributions
be probed with optimal statistical significance rather close tawoming from the terms:Q, separately, where present. Note
threshold, in this case fok/s not too much abovdM| that they usually have a different dependéiiam || than
+M,. the terms that survive fos—. We conclude from Egs.
The O(M2) phase-dependent terms in the neutralino pro(5.33 that o,; might show a somewhat stronger overall
duction cross sections should be most easily observable iphase dependence in the region of parameter space allowed
the mixed “gaugino-Higgsino” final states, since here theby low-energy data, since it depends on the potentially large
cross sections also only start@{M3), as remarked above. phaseg;+ ¢, through terms with fewer powers il in the
Note that the two Higgsino-like neutralinos are closely masglenominator thano,;, does, whereas the dependence on
degenerate in the limitu2|>M2. This makes it very diffi- CoS¢y is parametrically the same in both cases. This is for-
cuIt to experimentally distinguish between the production oftunate, since the . mode is accessible at lower energies.
%3 and¥5. In the following discussion we therefore always Finally, note that the phase dependence of the neutralino

sum over these two Higgsino-like states. Once this has begRasses affects these cross sections oniy (& 2)-
done, we again find that all terms involving, come with a We do not list theO(M3) phase-dependent terms of the

factor sin 8 and are thus suppressed at largeaifhese  CrOSS sections that recei@ M?Y) contributions, since these
cross sections also contain termscosi;—¢,) and Wil clearly be much more difficult to measure.
cos(2p,+¢,), which result from the rephasing-invariant  The situation concerning chargino pair production is

combinations of phases-(¢;—¢2) ~(dz1+#,) in our  rather similar. Here both diagonal modes sta®é?), but
convention¢,=0. _Altogether we find the _following phase- oceive phase-dependent contributions onl@ét/@). In the
dependent terms in these two cross sections: . .
case of the off-diagonal motfeboth the cross section and
the phase dependence startsQitM3); indeed, the phase
sin2B8|M,| sin2B|uM 1|) dependence is very similar to that in E&.33D with ¢,
|| ' S ' —0, since theU(1)y gaugino mass does not appear in the
chargino mass matrix.
sin28M, sin 28| M1|2M2) Finally, the results for perturbative neutralino mixing may
' be applied to the polarization vector components of the neu-
tralinos produced ie*e” —X{X) as calculated in Sec. VF.
Here we only discuss the normal component as it is the only
sin 25|M1|M% CP-odd quantity available if neutralino decays are not in-

T1h=013+014:C08 P, + b1)

CoS¢ M(

| | | uls

cog ¢ — , - o
b= bu) |uls cluded explicitly. Recall that a nonvanishir®y can only
occur for final states consisting of twdifferent neutralinos.
MM, [M,|M We find that the numerators in E¢&.32 receiveO(MY)
1 2 1 2 . . . =
c S¢1( W ' s ) (5.338  contributions only for thé12) mode; in the case of the )

and (4h) modes, the numerator startsGtM %), just like the
corresponding total cross sections, and hence the denomina-

Toh=023t 024:C08 ¢}, + 1) tors in Egs.(5.32. In all these casePy will therefore re-
ceive O(Mg) contributions. On the other han&, for the
(sin 2B|My4| sin 2/8|M1|M§) hh [or (34)] mode vanishes t®©(M3); this final state is

|| 7 |uls ' therefore of little interest in the present context. Explicitly,

for (12 production we find to O(MY):%

sin2B8M, sin 28| u| Mz)
|l s '

Cos¢ M(

3n some cases these threshold terms seem to grow with increas-
ing |u|. However, oi(o,5) is accessible only forys>|M,]
+|u|(Vs>My+|ul), i.e.,|u|*s<1 in the physical region.
YIn principle, ;X5 production is now distinguishable from
Y1 X, production. However, the two cross sections differ only in
the presence of an absorptive phase, i.e., after including loop cor-
(5.33h rections. _ _
BEquations(5.32 show that|P§*] is larger than|P3'3 by a
factor M, /|M4|=2. However, we assume thf is the LSP, and
A common factor< a>M z/(|,u|2$) characterizing the size of hence stabléif R parity is conserved so that its spin cannot be
the leading phase-independent contributions, has been fameasured.

sin 28|M4|?M,

COS 2+ ) 12

COS¢q

IM1|M, |M1|M2)
w7 s )
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M
—4\/)\_12|—\/§1| N sing,

(Dy)2+(D})? |M1|Mzcos¢ Lo fr Z(Dbz—(Dt)Z'
- 1 12
DIDL DDy

2,12__
p212=

(5.39

(1-A% N7

where z=cosf. As expected for aCP-odd quantity, the tor |u|/\s. We thus see thafs long as\/§>|,u|+M2~) the
dominant dependence @y is through a sine function, while  ¢o.ond term in Eq(5.37h gives a contribution tcPﬁ"‘“ that
the denominatotbasically the differential cross section dis- rises with increasing|u|. However, for the range dfu| of
cussed above contains aCP-even dependence O®1  jyierest to us, this term is suppressed by the stringent upper

throAugh a Colsin;a.h , q h limit on [sing,| (see Sec. IV only in scenario B2 with

P fs ahresu_t Odt er r_nas;_ eggneracEj/, we av?]to avgragsema” tanB can it reach comparable magnitude as the last
>y for the mixed gaugino-Higgsino modes over the producC-g ., iy £q (5.37h. This last term leads to a contribution to
tion of both Higgsino-like neutralinos. Using the event num- _, ~

bersN as weights, we obtain P2 that approaches a constant for laigé and remains
N N finite for large tanB. We therefore conclude that 162 pro-
= NigPy3+N PR duction should allow a somewhat more sensitive direct probe
Py"= i=12 (5.39 =
N Nis+ Nig4 ’ o ' of CP violation than (1) production. Finally, the normal

components of the polarization vectorsigiy, production
This amounts to replacing the quartic charges in &B2  have similar structure as E¢.37h with ¢,— 0, but receive
by additional contributions from th& coupling to the gaugino
P _ component of the heavy chargino stjte.
Q' =Q+ Q" (5.36
The calculation of the relevant quartic char@ﬁ to O(M%) VI SIGNIFICANCES
is now straightforward, if somewhat tedious. We find the Our aim in this section is to introduce objects quantifying

following terms, factoring oubz2|v|§/|,,b|2: the impact ofCP-odd phases on total cross sections, which
are CP-even quantities. To this end we compare the differ-
o . _ sin2B|M4|M, ence in counting rates betweenGP-conserving point in
Qy':sin( 1+ ¢,)sin 28, 5'”¢;¢Ta parameter spacéCPC: all phasesp; =0 or =) and aCP-
violating one(CPV: identical absolute values, bi#it#0 and
) sin ZBM§ ) M, low-energy compatibleto the statistical error at the CPC
sin(¢1— ) uZ Sln¢1m: (5.378  point. This determines the significangewith which a de-
viation from the cross section predicted for the CPC point
- sin28|M;|M, can be measured. It can be written as
Q" sin(ut ) ——
' . ' sin 26| M, 2 S= ANcpccev_ Nepe Ncpv. 6.0
sing, sin2B, sin(¢,+ 2¢>1)T, ONcpc VNcpc
sing M (5.379 Since there are twdCP-conserving valueg0,7) for each
Yl phase, we have to deal with eight CPC points for each set of
absolute values, and hence the same number of significances
The tems in Eqs(5.37) directly correspond to terms iRy, is available for each kinematical accessible cross section.

up to an additional factor of[M4|/\/s(|u|/\/s) for  The smallest of these evidently determines the statistical sig-

PRflh (Pﬁ’zh), since the dependence of the leading term innlflcanqe with which the presence (ifP—quatlng phases

the denominator in Eq(5.32 on SUSY parameters has al- ¢@n be inferred from this cross section for given values of the

ready been factored out. As expected, the phase dependerfisolute values of all SUSY parameters. We therefore define

is through sine functions here, and all terms that are sensitiv@S OUr final measure of the sensitivity of a given cross section
. .1 to phases the significance

to ¢, are suppressed at large f@&nThe first term inQy

gives rise to a contribution t@',ll'lh that remains finite as | cpV cp(‘nl

|| — oo, but vanishes<1/tang for large tan3. On the other i Tt T 9, JE
hand, in the (B) mode we can measure the polarization of S(fifj)=min, »CPG XN, 6.2
ff

the lighter gauginolike neutralino, giving rise to an extra fac- ifj
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whereafifj is the total cross section f@ e~ —f;f; andn  general selects different CPC points for different processes.

=1,...,8; we only include CPC points which are low-energy This completes the calculation of ti& o
compatible'® Finally, £ is the integrated luminosity, which is (i) Define four new CPV pointsCPV, by adjusting

expected to be different for the e~ ande~ e~ options. [M4], M2, and|u| such thaimso, my =, andmyg are the same
In the procedure outlined so far, the CPC and CPV point§n points CPV, and CPG,.
have the same absolute values Mf;, M,, and u. This (iv) Calculate the?(fifj) as in Eq.(6.3).

means that these points will in general halierent physi-
cal neutralino and chargino massp&3]. Recall that the
phase dependence of thHg masses is suppressed by
M%/(|,u|m;(); see Eq.2.19. Nevertheless, changes of sev-
eral percent are possible, in particular in the neutralino se
tor. This could lead to similar changes in the cross section
through kinematical factorgin y production or through
neutralino propagator factorgn © production. Moreover,
these masses are often more easily measurable than the cr

sections which are the focus of this analysis. g ) P .
plicit calculations fory; pair production show that quantum

We therefore introducg a second set of significanﬁes corrections can easily amount ©(10%) [44]. Some of
Whej(? EEC a”‘i S’PV pomt_s r_\ave the same physical MasSS@lese corrections can be calculated unambiguously once the
for X1, x3, andy; ; in the limit of large’y masses and for

t - parameters listed in Table | are specified, but the remaining
our choice|u|=M,>|M,|, these three masses essentially ;o rections can still amount to several percent. In particular,
fix [M4], |ul, andM,, respectively. Note that we only have ,q lepton-slepton-gaugino “gauge couplings” depélogja-
three(dimensionfu] absolute values that can be adjusted i”rithmically) on the squark mass sc4#5]. The production of

the neutralino and chargino_mass matrices_. We can therefo‘rﬁ’iggsino-like charginog44] and, presumably, neutralinos
not gugrantee that all chargino _and neutralino masses are theso depends on the parameters appearing in third-generation
same in the CPC and CPV points. However, after ensuringfermion masses. These corrections will only be calculable
that t.h.ese thr_ee{ masses are the same in both points, theyce the parameters of tifpresumably quite heayysquark
remaining variation of the other thrggmasses between the gector have been determined. Until this has happened, out of
CPC and CPV points is quite small. For tec_hmca_l reasons Wgyo processes with roughly equal significances as defined
keep|M4|, M, and|u] fixed (at the values listed in Table | ghove, the process with smaller cross section should be
for the CPC points and adjust them at the CPV points. Sincgyeferred, since here a given significance corresponds to a

the eight CPV points have four differefjt mass spectra, a |arger relative variation of the cross section with the phases.
given set of phases now also produces several different CPC

points. The new significance can thus be written as

Note thatS and S only measurestatistical significances.

In addition, there will be systematic uncertainties both from
experiment and theory. We have little to say about experi-
mental systematic errors, except that we hope that they will

e small. A theoretical error is introduced since our cross
Sections can only be predicted with finite precision. At the
tree level these cross sections are determined uniquely by the
8g£ameters listed in Table I, plus a few SM parameters that
are already now known with high precision. However, ex-

VII. NUMERICAL ANALYSIS

| gf*fz'Vn_ng'f’Qw We are now ready to present numerical results for our
v P « \/Z 6.3 high-energy observables. We will first discuss the impact of
| PG the CP phases on th€CP-even cross sections, before turn-
fif] ing to the(T-odd normal components 6§ polarization vec-
tors. Finally, in Sec. VIIC we will study correlations be-

Our algorithm for calculating the significances can between phase-sensitive quantities.
summarized as follows.

(i) Select a CPV point. For a set of the absolute values of
the relevant SUSY parameters, as listed in Table | for our
three scenarios B1, B2, and B3, this amounts to randomly As discussed in Sec. IVC, we chose our SUSY param-
choosing values for the phases, ¢, , and¢;. Repeat this  eters such that selectron pair production as well as the pro-
step until a point that is compatible with the low-energy con-duction of two lighter neutralinos or charginos is possible
straints has been found. already at the first stage of a future lin@dre™ collider (LC)

(i) For each process, find the low-energy allowed CPCoperating at\/s=500 GeV, which is our default choice.
point that minimizesS(f;f;) as defined in Eq(6.2). Note  However, in scenario B2 the Higgsino-like states are not ac-
that there are only eight CPC points for each scenario Blgessible at this energy. In this scenario we therefore take
B2, and B3 if targ is kept fixed; however, this procedure in \/s=800 GeV when discussing reactions where at least one

X3 X9, or ¥, state is produced; note that all current LC
designs foresee an upgrade to at least that energy. A similar
*Sinceoy s does not depend o, , there are only four different  treatment is used in scenario B3, except for ¥{&s3 , final
values Ofofif_q‘ for a given CPV point. However, occasionally both state, which is already accessible @ﬁz 500 GeV in this
$,=0 and ¢JA= 7 have to be checked to find a CPC point that is Case.
compatible with the bound oa, . Of course, the bound od, is In Table 1ll we show the maximal allowed cross sections
trivially satisfied by all CPC points. for the 19 different production channels discussed in Sec. V,

S(fif;)=min,

A. Cross sections
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TABLE Ill. Maximal values of the total cross sectiofia fb) for unpolarizede™ beams, for the scenarios
defined in Table I. “—" means that the corresponding mode is not accessible. In scenarios B2 and B3 we have
summed over the production of the heavy Higgsino-like neutralinos, as described in the text. The beam
energy is 500 GeV in most cases, but has been raised to 800 GeV for the produ@t@r;almtﬁlj(%4 states in
scenarios B2 and B3, as indicated by the asterisk. Note that the charge-conjugate mode is included, if it is
distinct from the listed one.

B1 B2 B3

tang 3 12 3 12 10 20
BrBr 378 371 398 390 513 512
B % 79.8 79.0 80.3 75.1 181 182
B8 272 261 281 270 523 378
BrBn 180 172 182 176 296 293
B %n 106 104 96.5 94.5 168 160
CACHE 8.3 7.2 8.0 6.9 60.9 60.3
XX 250 212 144 126 175 170
X1 Xa 179 173 16.0 7.5 43.6 38.7
X2X5 - - - — 85.9 89.4
5482t 201 197 236 231 271 271
XS 130 120 140 132 159 161
~0~0

;‘i’;é gg:g ‘5";3 6.4" 5.7 20.1 19.7
xS 74.6 49.6 58.5 49 76.2 68.9
X3 73.6 77.7 .

50 — 228 5.1 5.2 22.3 21.4
%3 0.26 0.43

K5 36.6 36.0 - - 38.3 38.6"
XaX4 - -

for our three scenarios B1, B2, and B3, and the same choicdsgs.(5.33 and (5.395—(5.37).

of tanB employed in Sec. IV C. Only combinations of phases As well known[39,41], many of our cross sections can be
that are allowed by the low-energy constraintscgranda,,  enhanced by factors of a few if both beams are polarized.
have been included in the maximization. These cross sedvloreover, the discussion of Sec. V G indicates that the great-
tions have been calculated at the tree level, as described gxt sensitivity to phases coméhrough ¢,) from the inter-
Secs. VB-VE. We have also ignored corrections due tqerence ofSU(2) and U(1)y interactions; these contribu-
initial-state radiation and beamstrahlung. These effects argyns will be suppressed if one choosgs beams, sinceg

often larger than the dependence GR-violating phases; is a singlet undeSU(2). However, the sensitivity to other

they should therefore certa|_nly be_m_cluded in any futurg EX combinations of phases is enhanced for different choices of
perimental analysisalong with radiative corrections, which

will likelv be known well before the first LC. commences beam polarizations. We therefore only show results for un-
o eratio)rll,é; However. they are largely independent ©P polarized beams, with the understanding that in many cases

P ' y gely P ) the cross sectiofphase sensitivitycould be enhanced by up
phases and should therefore not affect our conclusions.

We saw in Secs. I1C and VG that the two heaviest,to a factor of 4(2) if fully polarized beams were avallable..
T ) . . We see from Table Il that the cross sections for selection
Higgsino-like neutralinos are close in masg/f|>M, and

2o M 2- . . air production are generically biggerate™ colliders than
|M|O>MM2/, thez deMggneracy beﬁweeg thesdg gtates 1S on!y lifte te*e™ colliders[37]. This difference is only partially com-
at O(M2/[|u[*~M3]) (as well as by radiative corrections, onsated by the highe e~ luminosity; we assumd £ dt
which, however, are sizable only in the presence of lakge _ g (100 fo~ L for ete™ (e e") collisions. We use these

terms in the stop sect¢46]). Numerically, we find that the  q|4tively conservative values since we do not include effi-
relative difference betweemso andmygo ranges from 24% 10 qjancy factors. These are expected to reduce the actually
35% in scenario B1, but only from 0.2% to 3.50.1% to  available event samples by factors of a few, the precise val-
7.5% in B2 (B3). Since the production of nearly degenerateues depending on both the process under consideration and
particles is difficult to distinguish experimentally, we simply the sparticle spectrum. Moreover, @te™ colliders the di-

sum over the production @fg and“)zg in scenarios B2 and agonal, chirality-conserving modes have higher cross section
B3; in particular, we only give results for a single process ofthan the off-diagonal, chirality-violating mode; recall that the
heavy Higgsino-like neutralino pair production in theselatter is P-wave suppressed near threshold and vanishes for
cases. Recall that we used the same treatment in Sec. V @anishing gaugino masses. &t e~ colliders the diagonal
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TABLE IV. The maximal significances§ of Eq. (6.2) andS of Eg. (6.3 that can be found for choices of phases which are compatible
with all low-energy constraints. The scenarios B1, B2, and B3 have been defined in Table I. Notation and calculational procedures are as in
Table 1.

B1 B2 B3
3 12 3 12 10 20

tang N S N S S S S S S S S S

Bron 3.7 17.0 0.8 5.0 2.9 1.0 0.8 0.4 0.5 1.1 0.3 0.8

B ®r 3.0 10 2.8 4.7 0.9 2.5 0.8 1.3 2.7 4.2 2.9 4.1

e 61 60 61 60 59 57 59 59 90 90 136 136

B8 10 27 2.2 7.8 6.7 1.1 1.8 0.5 4.3 2.6 3.0 21

CACH 43 68 32 39 16 16 1 12 20 23 22 24

B 1.9 3.3 1.5 0.9 1.2 1.3 0.5 0.7 3.3 4.0 35 3.8

Xix: 0.4 0.9 <0.1 25 25 1.6 2.8 0.2 1.3 0.3 0.6 0.6

XX <0.1 1.8 <0.1 6.4 70 70 3.5 3.5 2.4 1.7 1.4 2.9

Y2 Xa - - - - - - - - 14 1.6 0.7 1.5

$%5¢] 41 46 34 32 81 81 92 92 100 100 94 94

~0~0

xS 56 73 30 29

5 92 104 o go 99 105 6.2 6.2 215 23.8 21.1 23.2

xS 74 920 56 66 11 8.2 5.2 5.2 17 18 18 19

~0~0

X5 16 37 7.0 2.9 N N

258 20 " - cg 60 6.2 2.9 2.8 1.9 1.1 3.1 2.0

X3 6.3 5.4 8.4 9.3

%2 9.3 11 9.3 10 - - - - 24 3.1 2.6* 3.4*

selectron production modes aPewave suppressed; this ex- the strongest phase dependence of all selectron production
plains the rather small cross sections &i&_ production.  channels, i.e., the highest significance, largely independent of
Finally, the selectron production cross sections are highest iju| and tans; the tang dependence of in scenario B3 is
scenario B3, since the selectron masses are somewhadie to the fact that the poirk; = ¢, =0 is excluded by the
smaller than in the other two cases; this effect is particularlya# constraint at tap=20, but still allowed at tag=10, as
significant foré, & production, which is @-wave process shown in Fig. 2c). The mixed&_&; mode is the for our
quite close to threshold. The strong fawlependence of the pyrposes most promising selectron production mods' af
maximal&_€_ production cross section in this scenario fol- cglliders. It would allow us to unambiguously detett
lows from the fact that the region negn=¢,=0 is ex-  more than five statistical standard deviatiptiee presence of
cluded by thea,, constraint for taB=20; see Fig. &). CP-violating phases over much of the allowed parameter
_, The biggest crosi%’?gnonseite. collisions are those for  gpace, although the effect diminishes with increagifgand
€€, X1 X1, andxrx; production. However, the |f‘tt‘:{r increasing tam (except in case B3, for the reason given
leads to an invisible, and hence undetectable, final statp if above. For both these modeS and S give very similar

is a stable LSP; we will therefore not analyze it any further'results. Except for scenario B1 with strong Higgsino-gaugino

The cross sections for producing two heavy charginos OF ~ing. B pair broduction at botle*e— ande—e- colliders
neutralinos are suppressed both by phase space and by their 9 € PAIrP

Higgsino-like nature. However, the production of one light IS mui:h less promising, especially ift_he physical masses of
and one heavy state is possible in all three cases. Since, a¥1» X1 » andx3 are held fixed—i.e., fos. All these features
discussed in Sec. V G, these cross sections are nonvanishifgn be understood from the discussion of Table Il in Sec.
only in the presence of gaugino-Higgsino mixing, they fall V G.
with increasing|u|. However, even in scenario B2 one will ~ The small phase sensitivity of tfég 8" mode relative to
have several thousand events containing these Higgsino-likbe® &5 mode can partly be explained by the smaller cross
states. For the other channels, typically several tens of thowsection of the former mode; recall that the significances scale
sands of events will be available, meaning that the crossiith the square root of the number of events. In addition,
sections could be measured with statistical uncertainty of 1%loser inspection of the matrix elements shows that in case of
or less. B € production, the terms:cos¢, and «cos(p,+ ¢,) are
The maximal possible values of the significanGeandS  suppressed by extra factors i), and sirf 6, relative to the
of Egs. (6.2) and (6.3 that can be found in our three sce- leading phase-independent terms; for #é; mode, the
narios are summarized in Table IV. TBg®€_ mode shows corresponding relative factors are 1 and’ gy, respectively.
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TABLE V. Maximal absolute values d?}) in percent. The scattering angiés set tor/2. Notations and
conventions are as in Table lII.

[ B1 B2 B3
tang 3 12 3 12 10 20
X5 X1 1.4 0.2 57 5.2 1.6° 0.9
xS 0 6.4 7.8 34 33 31 31
BeEE 72 (R) 22 27 7.2 2.4 6.3 6.8
X1X4 %9 (R 55 6.6
b 5% 55 6.4 23 7.8 9.7 9.9
XoXa X5 45 30
XXa %2 (R) 4.9 6.8 - - 1.9 1.8

Turning to chargino modes, we observe that they are sefmixed (1h) final state to be more promising, since it will be

sitive to phases only in scenario B2, with largd, and for  |ess sensitive to systematic uncertainties.
small tang. The only relevant phase hereds, . Recall from

the discussion of Sec. IV C that the maximal allowed value
of this phase scales likgs|?. This means that the maximal .
deviation of|cos¢,| from unity scales likgx|*. In the case As emphasized earlier, the significanc@snd S strictly
of Y1 X1 production the main phase sensitivity comes fromspeaking only measure deviations from G&-conserving
M=, which gives an extra factor sirBlul. Altogether the  MSSM; they do not directly measur@P violation. Direct
maximal S(¥;%1) therefore scales likéu|? sin 2; this re- evidence foICP violation could come from the measurement

produces the numerical behavior in scenarios B2 and Bff the T'Od.d normal component Ik polquzatlon vectors
with small gaugino-Higgsino mixing. A similar argument ihtroduced in Sec. V F. The maximal possible absolute values

also holds for the mixe®; ¥; mode. However, in this case of these “polarization asymmetries” for scattering angle

the cross section itself vanishes in the absence of gauging- m/2 are summarized in Table V. Recall that a nonzero

Higgsino mixing. This means that now the phase—dependenatsymmetry can emerge only in the production of twer-

terms are of the same order hhy, as the phase-independent ‘?”t X states and that the asymmetry will be larger for the

ones. Moreover, significant phase dependence now aIs{@hterOf the two final-state particles. However, the po!arlza-
ot . fjon can only be measured through fhelecay products; we
comes from theZy;’%, coupling, not only from the

chargino masses. Hence both definitions of the significanc'feherefore do not consider the polarization f, which is

now give very similar results. Finally, the very strong fan prov?lzbsl)éeﬂ}tﬁaﬁﬁé chargino polarization is likely too small to
dependence of these significances in case B2 is due to the gihop y

fact that values of), nearr are only allowed for small taf De useful, except in scenario B2 with largel and small
S ) K y tanB. Recall from the discussion at the end of Sec. VF that
in this case; see Fig.(B).

In contrast to the chargino modes, some neutralino modet:Q's asymmetry (for the lighter charginp scales like

are promising for all scenarios we considered. This is true ir{l)"f1 l|Ssl?n2'8S||2gi;egfv|?k;av|\12lnAﬁ§CétlyYecr: tLhea%tgfirﬁgr\?;IBguor}d
particular for the(12) mode. We saw in Sec. V G that in this bu K 9

i i ika|3
case both the total cross section and the phase dependerﬁ;’iﬂ.L of th_e lighter chargmp thereforg sca_les. like|*. .The
(on ¢,) already start aD(Mg); i.e., they areot suppressed very rapid decrease of this polarization with increasing@an

for large | or large tan3. indeed, we find that this mode is partly due to the explicit sin2dependence and partly due

often allows somewhat better sensitivity than the celebratet the disappearance of the band aroufig=; see Fig.

e . . L7 (b).
€_€_mode. The mixed gaugino-Higgsino modes also do . : ~0~0 .
well, especially for not too large values pf|. As expected In scenarios with largéu| (B2, B3 the’y;¥, mode again

, . — i proves most sensitive t&CP-violating phases. Equation
from the discussion of Eqg5.33, the (1h) mode is some- (5 34 shows that in this case a nonze?q already emerges
what more promising than the (2 mode. The rather good at O(M9) and remains finite both for largl| and large
phase sensitivity of th€22) mode at first seems surprising, tang. This describes well the behavior seen in cases where
given that the phase dependence only enter©@¥3),  the perturbative diagonalization of the neutralino mass ma-
whereas the cross sectionQ$MY). However, closer inspec-  trix is reliable. Moreover, recall from Table 1l that this mode

tion of the sensitivities for thé22) and (ih) modes shows has a fairly high cross section. This is important, since even
that the relative factor between them is in faiM,|/M,), ~ for perfect(100% analyzing power one needs nearly 1000
which is close to unity in our case. Note that the relativelyevents to detect a 10% asymmetry at thel@vel.

large size of thé22) cross section facilitates its precise mea- As expected from our earlier discussion of EGs37), the
surements and therefore increases the significances. HoWrixed gaugino-Higgsino modes also have sizable asymme-
ever, as remarked at the end of Sec. VI we still consider théries even for largéu|, the heavier (2) mode being more

B. Polarizations
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FIG. 11. Correlations between low- and high-energy quantities. FIG. 12. Correlations between the significances, defined as in
Most high-energy observables have been computedat Eq. (6.2, for the processes e —% & ande’e —}x5, both
=500 GeV, except for panel§b) and (f), which are for s taken atys=500 GeV.

=800 GeV. The parameter sets B1 and B2 have been defined in ) ) _
Table I, and the significancg is defined via Eq(6.2). servation made at the end of Sec. IV C tldatitself is not

correlated with any of the phases after scanning over the

. . . fother two phases; recall that the low-energy observables also
promising. However, the relatively small cross sections o

.depend onp, . For example, except at the very edges of the

these modes imply that one would need a very large IumlI’:\IIowed range ofp, , de can still take any value within its

nosit_y fo_r a meaningful measurement of p(_)larizati(_)n asym'experimentally allowed range even afigy, is fixed; this is
metries in these modes, except in scenario B1 with stron%ue to the variation ofb, and ¢ '
Wino—Higgsino mixing. Indeed_, n this last case (18) and On the other hand iln someA(.:ases we do observe signifi-
(24) modes are f_ar more promising than tﬁjé) mpde. cant correlations between high-energy observablesagnd

As noted ear_her, the spin o_f the prodgcgcpartlcles can  we saw in Fig. 5 that in scenarios B2 and &g, shows a
only t_)e determmed on a sta.t|st|c.al basis ('W!”'y) recon- os-like dependence apy; in some casee.g., B2 at small
structing their Qecays. We find it encouraging that recen np) two separate band’s; af, values exist éorresponding
dedicated studies demonstrated sensitivity to phases in tqg L '

: . . , .10 cos¢,==*1. However, in scenario Bla, shows very
neutralino m matrix usin variabl nstr in . no . - “
eutralino mass matrix usingodd variables const Eiteg little correlation with ¢1; see Figs. &) and 3d). Corre-

ta—  ~0=0 : ~0 ~0p+p— ~0
€ e+ _:i(é)(‘ WlthNOXi:(;Xle ¢ (47, Xi—7iT spondingly, Fig. 1(c) shows no correlation for scenario B1,
—7 7 X1 [48], andyi—X:1Z [49] while Figs. 11d)—11(f) show significant correlations for sce-
nario B2. Comparison of pane(gl) and (e) shows that this
C. Correlations between observables correlation becomes stronger at larger garThis is due to

In addition to their absolute sizes, the correlations bethe diminished role ok, and the reduced width of the al-
tween various phase-sensitive quantities are also of interedewed band in the ¢, ,#,) plane; the overall size df,,|
Such correlations can provide stringent tests of the MSSMalso increases with increasing t@nsee Eq.(4.15. Finally,
since they are a consequence of the limited number of paFig. 11f) shows that high-energy quantities whose only
rameters affecting these leptonic observables in the MSSMphase sensitivity is througd,, also correlate witta,, . Note
Recall that all our “high-energy” variablegcross sections in particular thatS(; X, ) is much bigger fom, <0, which
and polarizationsdepend on the phasg,; most of them  corresponds t@,=m, than fora,>0, which corresponds to
also depend o, the exception being observables related|¢ﬂ|<1. This confirms the explanation we gave in the dis-
to chargino pair production. We saw in Sec. IVC thgtis  cussion of Table IV for the very strong tghdependence of
tightly constrained by the “low-energy” observablag and  this quantity. For this class of observables the correlation
(especially d, while ¢; in most scenarios can take any with a, also becomes stronger with increasing garmow-
value(for some combination of the other phasddoreover, ever, as remarked in Sec. VG, the sensitivitydip disap-
thed, constraint enforces a tight correlation betwegnand  pearsesin 28 at least.
¢, see Fig. 2. In most cases different phase-sensitive high-energy ob-

In Fig. 11 we compare high- and low-energy quantities.servables are strongly correlated with each other. This is il-
We see that the phase-sensitive high-energy quantities ahestrated by Fig. 12, where we plot the two usually most
not correlated at all withd,. This is true both forT-even  promising significances, for & 8 andx %3 final states,
variables[Fig. 11(a)] and T-odd ones[Fig. 11(b)], in sce- against each other. The simplest correlation obtains for sce-
narios with strong gaugino-Higgsino mixir@ and in sce- nario B3 for tanB=20, shown in paneff). In this case the
narios where this mixing is suppressé, and for quantities a, constraint excludes values af; near 0 as well asp,
that depend on botlp; and ¢, (a) as well as those that near; see Fig. ). Hence the minimization in the defini-
depend only onp,, (b). This can be explained from the ob- tion (6.2) of S only goes over the single CPC poiit, =0,
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¢,=m. The strong correlation observed in Fig.(f)2then . ' ' ' ' '
follows from the fact that both significances shown here are
essentiallyxcosg¢; to leading order inM, as explained in

Sec. VG. 60

The next simplest situation obtains if bothy=0 and . : : PR
¢, = are allowed, butp,, = 7 is still forbidden, and tagis @ Toe s n T e i s
not small[panels(c), (d), and(e)]. Now the minimization in % * [T A PP
Eq. (6.2 goes over two CPC points. Recall that this minimi- £ . 75, "2 0 ane

zation is performedndependentlyfor the two significances
shown in Fig. 12. The uppdlower) branch connected to the
origin is populated by combinations of phases where both
minimizations pick the CPC poin$,=0 (¢,=m). These
two bands are connected by sets of points where our algo-
rithm picks the CPC point,=0 for S(é_ €, ), but chooses
the point¢,= 7 for S(¥3%3).

Figure 12a) shows that in scenario B1 the correlations
get weaker at smaller tgh To understand this, recall that FIG. 13. Correlation between the significances for the processes
scenario B1 has stroryino—Higgsino mixing and, hence, a e" e —% % ande‘e —7%; %, , both taken at/s=800 GeV, for
relatively strong dependence @, through the combination scenario B2 with ta=3.
cos(p; +¢,), which depends linearly o, when|¢,| and
|p1— | are sizable. In contrast, cgs, depends only qua- In some cases the correlations between different signifi-
dratically on ¢, for small|¢,| and can therefore to good cances are quite weak. The most extreme case we found is
approximation be set to 1 in scenario B1; see Figa) @ahd  shown in Fig. 13 and occurs for scenario B2 atfe3. We
2(d). This dependence o, will be numerically different  saw in Table IV that heréand only hergo (1 X, ) allows a
for the two modes present, loosening the correlation. Thisignificant probe of the phasg,, whereasS(g_€_) is al-

N

b

Wty ,_,:z
A K]

¢
LN

effect is important only at small tagfor two reasons. First,
all contributions to our cross sections that are sensitivg,to
are suppressed by a factor sj@ at large tarB. Second, we
saw that in scenario B1 the upper bound|dgn,| decreases
with tang.

Figure 12a) shows another new effect on the lower ¢4
branch, where both significances are evaluated with the CPGitho

point ¢, =, ¢,=0. The cross section fG¢7x3 production

ways mostly determined by,. Moreover, Fig. 2o) shows
that in the allowed band with¢,=m, the deviation
|¢,,— | becomes maximal fotp; quite close to+ . This
leads to scenarios with larg&(y;x, ), but very small
S(8. 8 ). Conversely,||cos¢y|—1| can be quite large for
|¢,|, leading to scenarios witl(& 8 )>S(X1 X2 ).

ugh the latter cannot be strictly zero if the former is
bigger than 10. However, we saw earlier that other combina-

in this case shows a nonmonotonous dependence o#,CoS tigns of parameters do not allow meaningful probesgof

As expected from the expansion of the reg6I26) in pow-
ers of M, using Egs. (2.17—(2.19, this cross section
reaches its absolute minimum at efps=+1, where the
Swave contribution vanishes. However, ebs=—1 is also a
(loca) minimum, the maximum being reached at das
=—0.8; recall that the expansion in powers Mf, is not
reliable in this case, sindel,=|u|. As a result of this non-
monotonous behavior, the cross section at#es—0.6 be-
comes identical to that at cgg =—1. Sinceo(€_ €, ) does
decrease monotonically with cgg, values of cosh;
=—0.6 give rise to scenarios with very smal(}%%5), but
sizableS(é & ).

The comparison of Figs. 18) and 1Ze) shows that the
correlation becomes weaker for smaller galso in scenario

B2. This is partly because the width of the allowed band in

the (¢, ,#1) plane decreases with increasing frsee Fig.
2. In addition, in scenario B2 with tg8=3 the low-energy
constraints also allow values g, nearsr. One can then find
values of¢; not far from = whereo(%¥>%5) for CPV points

using high-energy quantities. We therefore conclude that in
most cases, significances that can be large are also fairly
strongly correlated.

Finally, in Fig. 14 we compare the normal component of

a: Bl,tan=3 b: B2, tan@=3 c: B3, tangd =10
T T T T T T T
S < 30 4= 30F e
= £ % 18 5L //_
% x 2 4= 20F. /7 E
% %15 1% BH/ -
'753 'EZ 1g : lﬁz lg
1 1 1 i 1 1 1 1 1 1

10 20 30 40 50 20 40 60 80100 20 40 60 80100

SR S(RI%3) S(ER3)

d: Bl, tanf =12 e: B2, tanf =12 f: B3, tan8 =20

— L s g P — 30 T T T T
® rd BB IR r “ 1
= RLg” 1B JERL 7
R 1z R .
= i ™ - % -/ -
. 10 BES Jsa 7]
& o 1% 1% o ]
T T I L1411

10 20 30 40 50
S(1%3)

20 40 60 80 100
S(axe)

20 40 60 80100
S

with |¢,|<1 is very close to this cross section at the CPC g, 14. Correlation between the significarand the absolute
point ¢,=¢,;=m. This again leads to scenarios whereyalue of normal polarizatio?,, measured at scattering angle

S(x¥%Y) is very small, butS(g 8,) is sizable. The exis-

= /2, for mixed neutralino pair production afs=500 GeV. We

tence of four different allowed CPC points also explains theconsideryYy5 production for scenarios B2 and B3, but switch to

occurrence of additional bands in Fig.(b2

the ¥9%3 final state for scenario B1.
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the polarization vector of the heavier neutralino in mixed Turning to high-energy observables, we first analyzed in
neutralino pair production with the significance of the samedetail the phase sensitivity of total cross sections of various
mode. We considé¢Y%2 production in scenarios B2 and B3, final states. To that end we introduced “significances” that

but switch toj((l’y(g production in scenario B1, where this determine the statistical significance with which the presence

final state is far more promising; see Tables IV and V. Thes@®f nontrivial phases could be determined in a given produc-
figures look somewhat simpler than those in Fig. 12, sincdion channel. As pointed out in Reff38], the cross section
now the existence of two allowed CPC points only leads tdor € &_ production depends very strongly on the relative
two bands, as compared to three in Fig. 12. Of course, scgphase betweeM; and M,; we found that a deviation of
narios with a single allowed CPC poiffig. 14f)] again ~60-90 standard deviations from the predictions ofClie
only yield a single band. In panéb) we again find scenarios conserving MSSM is possible in this channel. However, this

L . 12359 . does not necessarily argue in favor of constructinggaa™
with sizable phases, hence sizal®?"*2|, and yet vanish- : ) y arg : . & .
collider, since certain neutralino production channels—in

ing S(x1X2); we se|1W ?:r?aloijzushbehav;?r mhFlg.(tbl}Z ___particular,}%%2 production for|u|>M,—have comparable
Mpre Importantly, Fig. _Shows that the polarization or better sensitivity to the same phase. We also found a
[Pyl increases much more quickly as tiielevan} phasec, somewhat lower, but still promising, sensitivity in (Bgeq
is moved away from O ofr than the significancé does. The ' P 9 y E€r
final state. For our choicet~200 GeV, chargino pair pro-

reason is thatPy|, beingT odd, has a sin-like dependence , h nifi h q d h
on ¢,—i.e., grows linearly with| ;| or |é,— . In con- duction can show significant phase dependence over the ex-

trast, theT- and CP-even quantityS has a cos-like depen- Perimentally allowed parameter space only four=2M,.
dence on all phases and thus only growlp,|? or |, Since thed, constraint on¢, becomes weaker for larger
— 7|2 as ¢, is moved away from a CPC poirit-odd ob- slepton'masses, the minimal ratip|/M, where chargino
servables likePy are therefore in principle better suited to Production channels can become useful for prob®g-

probe small phases. violating phases should be smaller for larger. However,
these chargino modes will be useful only if {@ris quite
VIIl. SUMMARY AND CONCLUSIONS small, since the relevant significances scale like gin 2

A deviation of any of these cross sections from the pre-

In this article we have discussed to what extent the phasetiction of the CP-conserving MSSM could perhaps also be
of dimensionful parameters in the SUSY Lagrangian can bexplained by some extension of the model which does not
determined from leptonic observables. Since we assumeiéitroduce newCP-odd phases. We therefore also studied a
universal soft breaking parameters for the first two generacP-odd quantity: the component of the polarization of pro-
tions of sleptons and did not discuss processes involvingluced charginos and neutralinos that is normal to the produc-
third-generatior(s)particles, we only have to deal with three tion plane. We found that it can reach values exceeding 30%
phases: those of the Higgsino mass paramgieiof the  for the production of two different neutralinos; in scenarios
U(1)y gaugino masd,, and of the leptonic trilinear soft with large|u| and small targ, the polarization vector of the
breaking parametek, , in all cases measured relativeNty,, lighter chargino, produced in association with the heavier
which we took to be real and positive by convention. one, could have an even larger normal component. Recent

Our main focus was on quantities that can be measured atudies[47,48,49 indicate that such larg€P-odd polariza-
future high-energye*e™ and e"e™ colliders, but we first tions might indeed lead to measural@®-odd asymmetries
analyzed the constraints that follow from the present meain the phase space distribution of tfedecay products.
surements of the leptonic dipole momemtsanda,. We Finally, we studied correlations between the various
worked in a scenario with moderately heavy sparticles; aphase-sensitive observables. We found that the high-energy
well known, in this case sizabléP-odd phases are possible observables are essentially not correlated at all @jithThis
only if neutralino and chargino loop contributionsdg can-  is due to the required rather precise cancellation between
cel to good approximation. In agreement with earlier workdifferent contributions tal ; it implies that better measure-
[10,11], we found that, unlesfu|>M,,n7, the phases of ments ofd, will not further restrict the possible ranges of
M; andA, can take any valu€for some combination of the phase-sensitive high-energy quantities. However, there is
other phases whereas the phase gfis tightly constrained, some correlation between these high-energy observables and
the maximal allowed deviation from 0 er scaling like| u|?. a, . Moreover, most pairs of high-energy observables are
Our analysis of Sec. IV also gave the perhaps surprisinguite strongly correlated with each other. This follows from
result that in this case improved measurementb.ofill not  the fact that most of them basically probe the phas®ef
significantly reduce the allowed range for any one of thegiven the tight constraint on the phasegafWithin the CP-
three relevant phases after scanning over the other two. Thigolating MSSM the measurement of one phase sensitive
is true independently of whether this measurement leads thigh-energy observable therefore allows one to greatly con-
improved upper bounds dilg| or finds a nonvanishing re- strain the allowed range of other such quantities, thereby
sult. On the other hand, improved measurements oflo  allowing stringent tests of the model. However, at lakgle
have the potential to further restrict the allowed ranges otind small tar8 the phase of. can play an important role, in
these phases; however, here improved measurements haveptrticular in chargino production. In that case phase-sensitive
be combined with improved SM predictions for the hadronicobservables in the chargino sector correlate poorly with those
contributions toa,, . in the selectron or neutralino sector. This underscores the
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importance of measuring as many phase-sensitive quantities mﬁ mﬁ
as possible. Npec=A )
Total cross sections andCP-odd asymmetries offer

complementary access @P-odd phases, since they depend N(LX,Y)=1+X2+y2—2(x+y+XYy).

on these phases through cos-like and sin-like functions, re- o (A3b)
spectively. The former are rather insensitive to these phases

if they are small(the perhaps most likely caseMeasure- Furthermore, the kinematical invarianfsandelstam vari-
ments of, or bounds orCP-odd asymmetries should then ables are

lead to better determinations or constraints on these phases.

1,?, — (A3a)

S

On the other hand, if some phase is ne#, CP-odd asym- s=(p1+p2)?, (Ada)
metries will be near maximal, which means that they are not )
well suited to precisely pinning down the value of this phase; t=(p1—ky)%, (A4b)

precision measurements of some cross sections will then
have the edge. Of course, there is also complementarity be-
tween high- and low-energy observables, since only the latter
are sensitive to the phase Af. APPENDIX B: HELICITY AMPLITUDES

We conclude that measurements at high-energy colliders

will be necessary to pin down the phases of dimenSionfu’formalism introduced if50].}” Using our definition of the

parameters in the SUSY Lagrangian. Both precision mea;: . S . .
surements oCP-even quantities like masses and cross Seilflnemancal situation, we find the following results for the

tions and searches f@P-violating asymmetries are promis- scala}r an.d vectorial fermionic string associated with massless
S : . : _ fermions:

ing in certain regions of parameter space. Linedre

g(ljlrl(la(jne];sr]fseem to be ideally suited for performing these mea- U(P2,02)Pali(P1,01) = — a\S34s 8., (Bla

u=(pa—ky)?. (Adc)

We calculate the relevant helicity amplitudes using the
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APPENDIX A:  KINEMATICS =1 1— ”éxlghlhz(ﬁ’)\lsm 0,0\, cOS0)
Working in the c.m. frame with total energys and ne-
glecting the electron mass, the first electron and positron +\/(1"‘,3)\177&1)(1"'3)\17773)\1)
(second electrgnmomenta can be written as ) )
X 8y, -1,(0,c088,—iN1,—sind)], (B2)
Vs
pr=-(1,0,0,, (Ala)  where
5 Uﬁxl:)\ilj/z"' BN1Aj (B3)
4=-—(1,0,0-1). Alb
ps =5 ) (ALb)
The outgoing momenta of the produced superparticlaad miz— mj2
c are Ajj= s (B4)
Js mz—m?
ki=—|1+ P \M2sing,0nM2cosh |, (A2a) APPENDIX C: NEUTRALINO FUNCTIONS
After introducing two effective neutralino mixing coeffi-
2 2 .
“ Vs my— M 12 . 12 cients
k2:7 E— ,— NpeSing,0,— NS cosé |,
(A2b)

_ _ _ 0Our convention for a momentum-dependent Weyl spinor for fer-
where\ . denotes the usual two-body final state kinematicalmions going in the- z direction differs by an overall sign from that
function: of [50].
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I = ! ! _ K~k
Vi=3 CoSOy | 2 Sinfy’ (€13 M p(s:t/u) —kzl myoVSVEVEDY,,, (C2a
4
Ny N, g(s,t/u)= >, sVKVK'DE . (C2b)
Vh= —3_, (Clb) b s
COoS6yy

The propagatorﬁ)'t‘ and DE have been defined in E¢5.6).
Very similar neutralino functions were introduced 8v]; we
we define two dimensionless neutralino functions foor  saw in Sec. V that they allow us to give very compact ex-
u-channel exchanges: pressions for the slepton production amplitudes.
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