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All-charm tetraquarks
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We investigate four-body states with only charm quarks. Working in a large but finite oscillator basis, we
present a net binding analysis to determine if the resulting states are stable against breakup into @cpair of
mesons. We find several close-lying bound states in the two models we examine.
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INTRODUCTION the bound state and do not consider four bound charmed
quarks.

The spectrum of multiquark states has been investigated Lattice methods represent another approach to many body
for three decades, but very little in the way of quantitativestates. A massive and comprehensive review of the state of
results for the spectrum of all-charm tetraquari&;?, has the art of lattice efforts by Bali1l] is worthwhile and in-
been published. Iwasaki] provides the first treatment that Structive reading. To our knowledge, however, lattice meth-
argues bound states ofc? exist and estimates their mass. ©dS have not been applied to heavy tetraquark bound states
His argument is based on a string model of hadrons to estal®f the type we examine here.
lish the plausibility ofc?c? exotics. The best value for the Most recently, for example, thg report by BaBap] of a
charm quark mass of 1.5 Gelih 1975 was used to estimate narrow state at 2.32 GeV has stimulated a large number of

the mass of the tetraquark bound state in the neighborhood élife;r;:f:sl ?rtfgrrg(n?/a?h %2?:5[;;;"(02;,[:2%2? I|(r[€:|33 d?an?wo
6 GeV(or 6.2 GeV if thed/ was used

. . . lavors of light quarks. Tetraquarks of a single heavy flavor
Some predictions concerning the existence of tetraquark gt q q 9 vy

h readv b q | Hell e ave not received similar attention although it is interesting
states have already been made. Carlson, Heller, andZJon y, ote that double charmonium production has been re-

for example, argue that a dimeson system, a bound state g teq at Bell§14] and BaBaf15] at center of mass energy
two mesons, should be possible in the limit that the twogyer 10 GeV. One motivation for the present effort is to
quarks are of infinite mass and the two antiquarks are lighteexamine whether similar experiments designed to detect all-
They note that their argument fails if one or both of thecharm tetraquarks could be theoretically motivated.
antiquarks has the same mass as the heavy quarks but do not|n the remainder of this paper, we present a pair of pa-
claim that this prohibits binding in the case where all quarksrametrized Hamiltonians that are used to approximately fit
and antiquarks are of equal mass. In a related vein, Lipkinhe low-lying charmonium spectrum. These Hamiltonians are
[3] has proposed a pentaquark state which is of particulathen employed to calculate the spectrum of all-charm tet-
interest given the recent experimental detection of theseaquarks in a quantum 4-body framework. We then present a
states. net binding analysis to determine if bound states are obtained
A number of other approaches to multiquark models existn our treatment.
in the literature. Jaff¢4], using an early version of the bag

model, made predictions for tetraquark spectroscopy of the THE HAMILTONIAN

type g%q2 with q a light quark(lighter than charm In a o o
similar vein, Schaffner-Beilich and Vischgs] give impres- The Hamiltonians we employ are nonrelativistic with in-
sive systematic treatments of charml@gstems with at least teractions inspired by the one gluon exchange potential. The
one charm quark plus lighter quajksut do not treat2c2. main difference is that we treat the coupling strengths of the

In addition to the bag model, many variants of a Wideinte_ractions as free parameters and §imply adjust_ them to
class of potential models are used to describe multiquarRchieve an acceptable fit to the low-lying charmonium sys-
states. Successful models founded upon the work of Isgem- The specific form for our Hamiltonian is
and Weinsteirj6] tended to confirm the earlier prediction of
Jaffe, and identified they(980) andf,(980) as molecular +z Y

H I
states of four quarks, for examp{see especially Isgur and i<i )
Godfrey [7]). Models in the spirit of Karl and Ericsof8]
employ a pion exchange potential to investigate hadronic
molecules, including meson-meson, meson-baryon, and
baryon-baryon systems. Stan[@j investigated the stability
of multiquark hadrons and compared the one gluon exchangehe second and third terms of the Hamiltonian serve as pro-
potential approach with the Goldstone boson exchange mogection operators. The first operator, a simple multiple of the
els of Glozmar{10] and found, for example, that the models SU(3) color Casimir operator, acts on nonsinglet color states
differed on the question of the existence of the H-dibaryonso that, with positivex, it pushes them up relative to the
However, all these models include at least one light quark ircolor singlets. The second is a simple harmonic oscillator
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TABLE |. Even orbital parity charmonium massédeV) for TABLE Il. Odd orbital parity charmonium masséMeV) for
Case 1. The column 10 presents the fit to the quoted experimen- Case 1. The column N9 presents the fit to the quoted experimen-
tal masses. Other columns present masses obtained in truncated masses. Other columns present masses obtained in truncated

spaces. spaces.
ID J Mgy N=0 N=2 N=4 N=6 N=8 N=10 ID J Mg, N=1 N=3 N=5 N=7 N=9
7:(1S) 0 2979 3537 3369 3203 3151 3092 3069 yxco(1P) 0 3415 4311 4014 3719 3542 3423
NIRY4 1 3097 4302 3466 3343 3198 3155 3097 x.(1P) 1 3511 4455 4062 3808 3638 3511
7:(2S) 0 3654 4854 4417 3995 3855 3676 h¢(1P) 1 3526 4483 4071 3825 3656 3528
Pp(2S) 1 3686 5164 4609 4327 4005 3878 x.(1P) 2 3556 4498 4076 3834 3666 3537

Hamiltonian that acts on the center of ma&M) coordi- THE COMPUTATIONAL FRAMEWORK AND RESULTS

nates so that, with positive, it pushes states of excited CM 1 solve the quantum 2-body and 4-body problems, we
motion higher in the spectrum relative to the states with purgeject a single particle basis of harmonic oscillator states and
0S harmonic oscillator CM motion. For all applications in construct Slater determinants of good total magnetic projec-
this paper we will sek and« equal to 3 GeV and 1Qunit-  tjon and good parity. We diagonalize the Hamiltonian in the
less, respectively. These values are sufficiently large to progjater determinant basis to obtain the mass spectra and wave
vide a clean separation between the low-lying states We;nctions using the Lanczos algorithihg]. Once the wave
present here, the “physical” states, and states with color nongnctions are obtained, we evaluate the total angular momen-
singlet character and/or excited CM motion. tum, J, of each eigenstate.

The tensor and spin-orbit potentials are defined by the The Lanczos method is an iterative procedure that obtains
following relationships. The orbital angular momentum re-he eigenvectors and eigenvalues of a symmetric matrix. We
ferred to in the spin-orbit interaction is the relative orbital -hoose a trial vectoty;) (with bo=0) to begin the iteration,
angular momentum, which is outlined below. The *” appearing in the Lanczos
algorithm simply reflects the overall phase uncertainty of any
quantum state and has no consequences for any observable

1 . . . . . "
Viens= [ S-S~ 38,75, 7] quantity. By our convention we take the positive root,
| 77n+l>: H|Xn>_ bn|anl>
Vo= |_3S 2) an={(7n+1/xn)

|77r,1+1>:|77n+1>_an|)(n>

The other parameter values in the Hamiltonian will be speci-
fied with each of the two fits.

We realize that our Hamiltonian admits van der Waals
interactions in a multiquark system. WillgyL6] has esti-
mated the long-range contribution of these forces to behave
asR™7 whereR is the separation of two color singlet sub-
systems. An earlier work by Greenberg and LipkiiY] es-  This algorithm produces a tri-diagonal matrix that is unitarily
timates a different power law dependence that is inconsistergquivalent to the original matrix. The Lanczos method is
with experimental data. Working in the limited spaces thatcomputationally efficient since it minimally requires only
we employ, we hope that such long-range forces do not aftwo vectors to be stored simultaneously, and it is easily op-
fect our conclusions. timized to run in a parallel computational architecture.

bni1= £ [( 71l mhs )12

|77r,1+1>
|Xn+1>: b
n+1

TABLE lll. 2- and 4-body “free particle” spectra with computed correction for Case 1.

N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10
Lowest 2-body free particle specttieV)
3940 4580 3568 4023 3406 3761 3315 3606 3256 3503 3215
Lowest 4-body free particle spect(ileV)
8840 9480 7979 8488 7538 7966 7261 7632 7070 7397 6929
AM[TEEN1280 (e
960 960 471 525 402 375 287 303 258 230 208
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TABLE IV. Case 1 even parity tetraquarks mass spectra, uncor- Method of tetraquark net binding analysis

rected via Eq(4). Since our basis space is comprised of harmonic oscillator

full,N,1280 states, our spectrum will exhibit an appearance of being
ccce bound, but this is not sufficient to conclude that a solution
J N=0 N=2 N=4 N=6 N=8 N=10 actually corresponds to a physically bound state. Qualita-
7422 7139 6760 6615 6448 6367 tively, we may view each 4-body state as composed of a pair
7896 7266 6887 6682 6515 6411 Of 2-body subsystems with a relative kinetic energy between
8252 7450 6995 6762 6576 6459 them. Assuming the pairs will break apart, we can identify
9615 8022 7428 7095 6869 6719 the minimum possible kinetic energy between the pairs based
on the size of the model space, N. Let us refer to this mini-
mum possible kinetic energy between the pairs as the “ki-

. etic energy penalty,” the penalty of confining two pairs of
The basis depends on two parameters. One parameter, ee particles in a finite harmonic oscillator basis. By “free

determines the dimension of the basis space. N defines trﬁartiden we mean the solution of our Hamiltonian with
maximal number of allowed oscillator excitations in a given 2-body relative interaction ternf&Eq. (1) summation terrh
many body basis state by imposing the condition thatemoved. We quantify this penalty in E¢8),

>i(2n;+1;)=<N, where the sum is over the single particle

o N - O

oscillator quanta, 8+, present in that state. The second AMLL‘@—%N'ﬁ’QzMirc':‘:—iN'm—min[Mi%ee'”'m
parameterfi(), denotes the oscillator energy which we em- n
ploy as one of our adjustable parameters fit to the charmo- free,N—n,7Q

+Mco 1. (3

nium spectrum.
This many-body computational framework has been used

free,N,2Q) indi -
in other multifermion applicationg19]. Those previous ap- M . denc_)tes the Iovx{est mass_of the |nd|ca(§db
plications also featured a derivation of an effective HamiI—SC”pl) free particle system in the basis space specified by N

tonian that we do not carry out here. Instead, we adapt thaé\nth. Note that we subtract the minimum relative kinetic

established procedures for many-body basis space enumerer]e-rgy of a pa_ir of polo_r singlet 2-body subsys_tems from the
: S ’ Sifinimum relative kinetic energy of the color singlet 4-body
tion, m_any-body Hamiltonian evaluation, and L_anczos (_j"state. This correction tends to zeroMg,, increases.
agonalization for the present effort. We pay special attention When we compute the spectrum of the full Hamiltonian in

to the treatment of the color degree of freedom. That is, wgy,o 4-body system, we will then subtract the penalty in Eq.
impose the restriction that our physical many-fermion stategs) from the results as follows:

are global color singlets with the projection method de-
scribed above. correctedN, i) _ 1 FUllLNAQ _ \ \qfreeN i 4)
We first fix our Hamiltonian and basis space parameters ccee ceee ccee

by fitting the low-lying charmonium spectra. Two fits are To b ii btract th Kineti It
obtained so we may begin to explore the sensitivity of our 0 D€ specilic, we subtract the same KInetic energy penaity

c2c? results to variations in acceptabte fits. We select a from every tetraquark mass eigenvalue of the *full” Hamil-

. . i tonian to arrive at the “corrected” mass of each state regard-
maximum N, calledN,,,,=9 (10) for our negativepositive g

. . ) X . less of its quantum numbers. The tetraquark spectrum, cor-
orbital parity 2-body states in which we fit our parameters to d . P

X ) rected via Eq.(4), will then be compared to charmonium
the lowest few experlmen'tally determined states. We therbairs from the 2-body spectrum to determine if there is net
solve the 4-body problem in a sequence of model spaces t{ymding of the 4-body state.
varying N up toN,ax. The maximum matrix dimension en-
countered in the 4-body problem was 3013 782.

For each set of Hamiltonian parameters, designated Case
1 and Case 2 below, the sensitivity of the 2-body charmo- We now present the results of our first fit to the lowest 4
nium spectrum to spaces of smaller N values indicates thagtates for each parity in the charmonium spectrum, “Case 1,”
the parameters would require adjustmerljf., is changed. in the Ny,,,=9 and 10 model spaces. We also present our

tetraquark results with the same Hamiltonian.

TABLE V. Case 1 odd parity tetraquark mass spectra, uncor- Tables | gnd Il show the even and odd orbital parity states
rected via Eq(4). of charmonium for the full space of the ., as well as
for spaces NCNp,ax- The results in truncated spaces will be

Case 1 tetraquark results

] Tull:N 1280 used in the tetraquark threshold analysis below. The experi-
ceee mental masses are taken from the Particle Data Group com-
J N=1 N=3 N=5 N=7 N=9 pilation [20]. The fit of the positive orbital parity states in
0 8247 7752 7320 7073 6876  Table | is only fair. This is due mainly to the fact that the
1 8286 7773 7343 7103 6906  delta functions are crude approximations to the short dis-
1 8329 7791 7360 7113 6917 tance interactions. This aspect of our Hamiltonians limited
2 8355 7800 7369 7123 6926  our ability to simultaneously fit both the 1S and 2S splittings

of the positive orbital parity states. We decided to adjust the
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FIG. 1. (a) The J=0 states for case 1. Note that the even parity excited state is unbound. The even parity threshgldda®the odd
parity threshold isp.+ x.o. (b) The J=1 states for case 1. The two odd parity states are nearly degenerate. The even parity threshold is
n.+J/y, and the odd parity threshold ig.+ x.1. (€) The J=2 states for case 1. Note that the slopes of the thresholds are nearly parallel
to the bound state slopes. The even parity thresholdJig/2 and the odd parity threshold ig.+ xc»-

delta functions to fit thd/ ¢ and then.(2S) masses in order consistency, we will use our calculatet spectra, rather

to represent states with a range of radial excitations at ththan experimental states, to determine breakup thresholds for
4-body level. The root mean squai@MS) mass difference our tetraquark states.

between the N:-10 results and the experimental masses is Table Il presents the lowest “free particle” spectra for
106 MeV for all four states, but falls to 54 MeV if one in the first row of masses, the lowest free particle spectra for
ignores they(2S). The RMS mass difference for the=N\d c?c? in the second row, and the kinetic energy penalty com-
negative orbital parity results in Table 1l is 10.4 MeV, an puted via Eq(3) in the third row.

excellent fit. If one uses all 8 states from both parities, the The parameters of the Case 1 Hamiltonian are a
overall RMS mass difference is 75.3 MeV. For comparison, &= 59.4 MeV fm, m=1490 MeV, B,=—1.8 MeVfn?, B,
recent relativistic constituent quark model based upon a co=0.3 MeVfn?, w=7=0.24 MeVfn?, and we seto
variant constraint dynamics approdé@t] provides an RMS =487.5 MeV fni 1. The quark mass is 1490 MeV arid)
mass difference of 19.8 MeV for these same 8 states. For 1280 MeV.
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TABLE VI. Even parity charmonium massésleV) for Case 2. TABLE VII. Odd parity charmonium masséMeV) for Case 2.
The column N=10 presents the fit to the quoted experimental The column N=9 presents the fit to the quoted experimental
masses. Other columns present masses obtained in truncated spaceasses. Other columns present masses obtained in truncated spaces.

ID J Mg, N=0 N=2 N=4 N=6 N=8 N=10 ID J Mg N=1 N=3 N=5 N=7 N=9

7(1S) 0 2979 4024 3352 3187 3152 3089 3074 xo(1P) O 3415 4250 3982 3704 3536 3422
Uy 1 3097 4024 3442 3320 3198 3155 3105 y(1P) 1 3511 4384 4028 3788 3625 3503
7.(2S) 0 3654 4637 4301 3884 3783 3602 h,(1P) 1 3526 4417 4039 3808 3647 3523
#(2S) 1 3686 5053 4545 4268 3943 3822 x(1P) 2 3556 4440 4046 3822 3662 3537

Table IV (V) shows the uncorrected evdndd parity
spectrum forc?c?. The corrected spectra, along with their

corresponding breakup thresholds, are plotted in Fig~1 improved Hamiltonians since the underlying logic for the

1(%;?;\1'3 taken in the net bindina calculation to Conserveminimum threshold is designed for asymptotically separated
, o 9 and convergedcc subsystems. In an expanded treatment
parity and total J. In addition, we allow for the tetraquark

o . ith Hamiltonians that produce better descriptions of the ex-
system to organize into the two energetically most favore(é/

cc subsystems subject to the limitation of the total tetraquar erimentalcc states, we would hope to obtain smooth be-
y J quark,avior of both the tetraquark aret spectra with increasing

ngrli”eegocgu?ulz?tﬁs ae\;(aa:ﬁ?rig tﬁ; 8 nst;(sgtp :S: f(]; 210\':'\151:)?5 |stax_ This would yield greater confidence in the predictions,
' Particularly for the tetraquark masses.

V. We find the most stringent threshold. We easily see tha
breakup into two odd orbital parityc states is unfavorable.
Then we take the minimum mass of twg.(1S) particles
that, taken together, have the same total oscillator quanta as Given the number of adjustable parameters in the Hamil-
the N=10 tetraquark state. We add the= and N=10 tonian, multiple RMS mass difference minima could be ob-
7:(1S) masses from Table I, the N2 and N=8 masses, tained from different fits. In order to explore the sensitivity
and the N=4 and N=6 masses, and simply choose the mini- of our results to allowable variations in our Hamiltonian and
mum of these three combinations, the=M and N=6 basis space parameters, we carried out a second fit to the
masses in this case. This minimum is then subtracted frorfowest 8 states of thec spectra. The Case 2 parameters for
the corrected 3 0 state to estimate the net binding. the Hamiltonian are  Bo=—1.2 MeVn?, B
It is apparent that the three lowest states of even parity ir=0.45 MeV fn?, w=0.225 MeV fn?, 2=0.30 MeV fn?,
Table IV and all the listed negative parity states in Table Vand we havei ()=1200 MeV. Note that the Coulomb-like
are bound, although the binding generally decreases in magateraction coupling and the confining strength are un-
nitude for large N. The states at=N\9, and the 2 state at changed.
N=10, would barely be bound without the kinetic energy = We present the results of a fit to the low-lying even and
correction of Eq.(4). odd orbital parity spectrum of charmonium in Tables VI and
Our main focus is on tetraquark binding relative to its VIl. The RMS mass difference for even orbital parity at
most stringent theoretical breakup threshold. Hence, in ouN,,,=10 is 87.0(62.7) MeV with (without) the #(2S). The
own analysis, we emplogc results that arise in model RMS mass difference for the odd orbital parityNyf,=9 is
spaces with N(N .. However, there is considerable sensi- 11 MeV. The RMS mass difference for all 8 states is 62.0
tivity of these cc masses to the model space dimensionMeV. Case 2 provides a better overall fit to the charmonium
Hence, the corrected tetraquark masses,at=9 (10) inthe  spectrum, but if one omits the/(2S), Case 1 yields a
odd (even parity should be used for predicting thresholdsslightly better fit. The interpretation of Tables VI-X follows
rather than taken as predictions for the masses of the althe same path as Tables I1-V for Case 1.
charm tetraquark bound states. The tetraquark binding is significantly less than Case 1.
The main import of our results lies in the appreciableLooking at the important relative S-state interaction compo-
binding energies found in the low-lying tetraquark states. nents, we observe that Case 2 has less attractive delta func-

Naturally, we would prefer to carry out this procedure in
even larger model spacdge., largerN,,,,) with suitably

Case 2 tetraquark results

TABLE VIII. 2- and 4-body free particle spectra with computed correction.

N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10

Lowest 2-body free particle specttieV)
3900 4500 3551 3977 3400 3732 3314 3587 3259 3491 3220
Lowest 4-body free particle spect(ileV)
8700 9300 7893 8370 7479 7880 7220 7567 7041 7347 6908
AM fre_e,N,lZOO (MeV)

ccee

900 900 442 493 377 352 269 284 241 215 194
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TABLE IX. Case 2 even parity tetraquarks mass spectra, uncor- TABLE X. Case 2 odd parity tetraquark mass spectra, uncor-

rected via Eq(4). rected via Eq(4).
full,N,1200 full,N,1200
ccce cece
J N=0 N=2 N=4 N=6 N=8 N=10 J N=1 N=3 N=5 N=7 N=9
0 7519 7196 6854 6700 6555 6477 0 8310 7806 7400 7154 6969
1 7870 7320 6974 6774 6624 6528 1 8363 7830 7429 7190 7004
2 8146 7458 7068 6845 6680 6573 1 8388 7843 7440 7197 7013
0 8941 7922 7315 7026 6829 6695 2 8420 7856 7454 7214 7033
8500 T——T—T—T—T——T—
(8) - I ' —HE— even parity ground state © 8500 [ o I I —H— even parity excited
o o o .
\\‘ —O— even parity excited state L . 4 even parity threshold
8000 Y - even parity threshold 8000 .\ . . —2A— odd parity excited
— I . —A— odd parity ground state — [\ .
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FIG. 2. (a) The J=0 states for case 2. The even parity threshold ig. 2and the odd parity threshold ig.+ x,. These states have less
net binding than case 1.(b) The J=1 states for case 2. The even parity thresholgis J/ ¢, and the odd parity threshold #g.+ x.1 . Note
that the odd parity states are nearly degenerate as in case 1 and that the binding is generally) [Eks.J=2 states for case 2. The even
parity threshold is 2/, and the odd parity threshold ig.+ xco-
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tion strengths and a less repulsive tensor term. The decreaspredict ate*e™ facilities. Indeed, lwasakj22] originally
tetraquark binding may well be correlated with tBestate  proposed measuring the recoil-mass spectrum in coincidence
properties of our effective interaction. A more extensive ex-with aJ/¢ around CM energy of 6 GeV to look for all-charm
ploration of this sensitivity is needed to establish this corretetraquark resonances. In an interesting and provocative pa-
lation. per there has been a theoretical calculation by loffe and
The “kinetic energy deficit” in Table VIII for large N is Kharzeev[23] showing that certain nonperturbative pro-
very similar to Case 1, which is expected since the deficitesses ire*e™ annihilation can explain the enhanced pro-
depends only on the basis space parameters and the quatliction ofJ/+cc at CM energies greater than 10 GeV that
mass. The uncorrected masses in Tables IX and X for thevas recently reported at Belle and BaBar. This leads us to
tetraquark are about 100 MeV higher than Case 1 resultspeculate that searching for tetraquarks may be fruitful at
which leads to the reduced binding since the decay threstEM energies higher than the direct production resonance
olds are virtually unchanged. We note that, unlike Case laround 6 GeV such that tetraquark formation could capitalize
none of the states would be boundNy,=9 or 10 if the  on additional processes similar to those examinel®8].
kinetic energy correction was omitted. The computed The lifetimes and decay products of all-charm tetraquark
masses, corrected via E@), are shown in Figs. (2)—2(c), states have not yet been computed. It is reasonable to expect

along with their corresponding thresholds. that the lifetime would be of the same order asdhé or 7,
depending on which threshold is the closest as listed in the
SUMMARY AND CONCLUSIONS tables. In addition, if the all-charm tetraquark has a two-body

) o correlation similar tal/ ¢ in its substructure, the favored de-
We have used a parametrized Hamiltonian to compute th@ay would bee*e™ +cc. If there is a two-body correlation

spectrum of all-charm tetraquark states. After fitting the low-gjmijar 1o . in the substructure, then the decay would be
estcc states with two different parameter sets and performy, e qominantly hadronic and more difficult to detect and the
ing a net binding analysis, we obtain bound tetraquark Stateéxpected lifetime would be much shorter.

with both sets of parameters. For example, the lowest tet- | 5 further extension of this work, we intend to employ a
raquark state with=30 in the positive parity spectrum ha; a Hamiltonian with broader phenomenological succEa4]
mass below the threshold of twg(1S) masses computed in  hat includes relativistic kinematics effects as well as a treat-

our framework. _ o _ _ ment of negative frequency states.
A simple extrapolation of the binding energies might lead

one to suspect some states would become unbound with in-
creasing basis space si2¢,,,,. However, the trends in the
binding energies are not smooth functions of increasing N This work was supported in part by U.S. DOE Grant No.
and make extrapolation a risky proposition. FurthermoreDE-FG-02-87ER-40371, Division of High Energy and
simple extrapolation is not warranted since the HamiltoniarNuclear Physics. The authors also acknowledge valuable dis-
parameters were fit within thd,,,,=9 (10) basis spaces to cussions with J. R. Spence and Alaa Abd El-Hady, who par-
the negative(positive orbital parity experimental meson ticularly contributed to the early stages of this work. We
masses. would also like to thank Chris Quigg for pointing out the
Experimental investigations could identify the states weexistence of lwasaki's work.
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