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All-charm tetraquarks

Richard J. Lloyd and James P. Vary
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

~Received 5 November 2003; published 27 July 2004!

We investigate four-body states with only charm quarks. Working in a large but finite oscillator basis, we
present a net binding analysis to determine if the resulting states are stable against breakup into a pair ofcc̄
mesons. We find several close-lying bound states in the two models we examine.
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INTRODUCTION

The spectrum of multiquark states has been investiga
for three decades, but very little in the way of quantitati
results for the spectrum of all-charm tetraquarks,c2c̄2, has
been published. Iwasaki@1# provides the first treatment tha
argues bound states ofc2c̄2 exist and estimates their mas
His argument is based on a string model of hadrons to es
lish the plausibility ofc2c̄2 exotics. The best value for th
charm quark mass of 1.5 GeV~in 1975! was used to estimat
the mass of the tetraquark bound state in the neighborhoo
6 GeV ~or 6.2 GeV if theJ/c was used!.

Some predictions concerning the existence of tetraqu
states have already been made. Carlson, Heller, and Tjon@2#,
for example, argue that a dimeson system, a bound sta
two mesons, should be possible in the limit that the t
quarks are of infinite mass and the two antiquarks are ligh
They note that their argument fails if one or both of t
antiquarks has the same mass as the heavy quarks but d
claim that this prohibits binding in the case where all qua
and antiquarks are of equal mass. In a related vein, Lip
@3# has proposed a pentaquark state which is of partic
interest given the recent experimental detection of th
states.

A number of other approaches to multiquark models e
in the literature. Jaffe@4#, using an early version of the ba
model, made predictions for tetraquark spectroscopy of
type q2q̄2 with q a light quark~lighter than charm!. In a
similar vein, Schaffner-Beilich and Vischer@5# give impres-
sive systematic treatments of charmlets~systems with at leas
one charm quark plus lighter quarks! but do not treatc2c̄2.

In addition to the bag model, many variants of a wi
class of potential models are used to describe multiqu
states. Successful models founded upon the work of Is
and Weinstein@6# tended to confirm the earlier prediction o
Jaffe, and identified thea0(980) andf 0(980) as molecular
states of four quarks, for example~see especially Isgur an
Godfrey @7#!. Models in the spirit of Karl and Ericson@8#
employ a pion exchange potential to investigate hadro
molecules, including meson-meson, meson-baryon,
baryon-baryon systems. Stancu@9# investigated the stability
of multiquark hadrons and compared the one gluon excha
potential approach with the Goldstone boson exchange m
els of Glozman@10# and found, for example, that the mode
differed on the question of the existence of the H-dibary
However, all these models include at least one light quar
0556-2821/2004/70~1!/014009~7!/$22.50 70 0140
d

b-

of

rk

of
o
r.

not
s
in
ar
e

t

e

rk
ur

ic
d

ge
d-

.
in

the bound state and do not consider four bound charm
quarks.

Lattice methods represent another approach to many b
states. A massive and comprehensive review of the stat
the art of lattice efforts by Bali@11# is worthwhile and in-
structive reading. To our knowledge, however, lattice me
ods have not been applied to heavy tetraquark bound s
of the type we examine here.

Most recently, for example, the report by BaBar@12# of a
narrow state at 2.32 GeV has stimulated a large numbe
theoretical efforts~see Barnes, Close, and Lipkin@13# and
references therein! with tetraquark states that include tw
flavors of light quarks. Tetraquarks of a single heavy flav
have not received similar attention although it is interest
to note that double charmonium production has been
ported at Belle@14# and BaBar@15# at center of mass energ
over 10 GeV. One motivation for the present effort is
examine whether similar experiments designed to detect
charm tetraquarks could be theoretically motivated.

In the remainder of this paper, we present a pair of
rametrized Hamiltonians that are used to approximately
the low-lying charmonium spectrum. These Hamiltonians
then employed to calculate the spectrum of all-charm
raquarks in a quantum 4-body framework. We then prese
net binding analysis to determine if bound states are obta
in our treatment.

THE HAMILTONIAN

The Hamiltonians we employ are nonrelativistic with i
teractions inspired by the one gluon exchange potential.
main difference is that we treat the coupling strengths of
interactions as free parameters and simply adjust them
achieve an acceptable fit to the low-lying charmonium s
tem. The specific form for our Hamiltonian is

H5Trel1
1

2
klW 21aS Hcm2

3

2
\V D1(

i , j
lW i•lW jF a

r i j
2sr i j

1b0d3~r i j !S501b1d3~r i j !S512vVtens2hVsoG . ~1!

The second and third terms of the Hamiltonian serve as p
jection operators. The first operator, a simple multiple of
SU~3! color Casimir operator, acts on nonsinglet color sta
so that, with positivek, it pushes them up relative to th
color singlets. The second is a simple harmonic oscilla
©2004 The American Physical Society09-1



ur
in

ro
w
on

th
e

ta

c

al

a
b-

te
a
a

we
and
jec-
he
ave

en-

ins
We

ny
vable

ily
is

ly
op-

n
ca

9
7

n-
cated

R. J. LLOYD AND J. P. VARY PHYSICAL REVIEW D70, 014009 ~2004!
Hamiltonian that acts on the center of mass~CM! coordi-
nates so that, with positivea, it pushes states of excited CM
motion higher in the spectrum relative to the states with p
0S harmonic oscillator CM motion. For all applications
this paper we will setk anda equal to 3 GeV and 10~unit-
less!, respectively. These values are sufficiently large to p
vide a clean separation between the low-lying states
present here, the ‘‘physical’’ states, and states with color n
singlet character and/or excited CM motion.

The tensor and spin-orbit potentials are defined by
following relationships. The orbital angular momentum r
ferred to in the spin-orbit interaction is the relative orbi
angular momentum,

Vtens5
1

r 3 @SW 1"SW 223SW 1"r̂ SW 2"r̂ #

Vso5
lW"SW

r 3 . ~2!

The other parameter values in the Hamiltonian will be spe
fied with each of the two fits.

We realize that our Hamiltonian admits van der Wa
interactions in a multiquark system. Willey@16# has esti-
mated the long-range contribution of these forces to beh
as R27 whereR is the separation of two color singlet su
systems. An earlier work by Greenberg and Lipkin@17# es-
timates a different power law dependence that is inconsis
with experimental data. Working in the limited spaces th
we employ, we hope that such long-range forces do not
fect our conclusions.

TABLE I. Even orbital parity charmonium masses~MeV! for
Case 1. The column N510 presents the fit to the quoted experime
tal masses. Other columns present masses obtained in trun
spaces.

ID J Mexp N50 N52 N54 N56 N58 N510

hc(1S) 0 2979 3537 3369 3203 3151 3092 306
J/c 1 3097 4302 3466 3343 3198 3155 309
hc(2S) 0 3654 4854 4417 3995 3855 3676
c(2S) 1 3686 5164 4609 4327 4005 3878
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THE COMPUTATIONAL FRAMEWORK AND RESULTS

To solve the quantum 2-body and 4-body problems,
select a single particle basis of harmonic oscillator states
construct Slater determinants of good total magnetic pro
tion and good parity. We diagonalize the Hamiltonian in t
Slater determinant basis to obtain the mass spectra and w
functions using the Lanczos algorithm@18#. Once the wave
functions are obtained, we evaluate the total angular mom
tum, J, of each eigenstate.

The Lanczos method is an iterative procedure that obta
the eigenvectors and eigenvalues of a symmetric matrix.
choose a trial vector,ux1& ~with b050) to begin the iteration,
which is outlined below. The ‘‘6’’ appearing in the Lanczos
algorithm simply reflects the overall phase uncertainty of a
quantum state and has no consequences for any obser
quantity. By our convention we take the positive root,

uhn11&5Huxn&2bnuxn21&

an5^hn11uxn&

uhn118 &5uhn11&2anuxn&

bn1156@^hn118 uhn118 &#1/2

uxn11&5
uhn118 &
bn11

.

This algorithm produces a tri-diagonal matrix that is unitar
equivalent to the original matrix. The Lanczos method
computationally efficient since it minimally requires on
two vectors to be stored simultaneously, and it is easily
timized to run in a parallel computational architecture.

-
ted

TABLE II. Odd orbital parity charmonium masses~MeV! for
Case 1. The column N59 presents the fit to the quoted experime
tal masses. Other columns present masses obtained in trun
spaces.

ID J Mexp N51 N53 N55 N57 N59

xc0(1P) 0 3415 4311 4014 3719 3542 3423
xc1(1P) 1 3511 4455 4062 3808 3638 3511
hc(1P) 1 3526 4483 4071 3825 3656 3528
xc2(1P) 2 3556 4498 4076 3834 3666 3537
15

29
TABLE III. 2- and 4-body ‘‘free particle’’ spectra with computed correction for Case 1.

N50 N51 N52 N53 N54 N55 N56 N57 N58 N59 N510

Lowest 2-body free particle spectra~MeV!

3940 4580 3568 4023 3406 3761 3315 3606 3256 3503 32
Lowest 4-body free particle spectra~MeV!

8840 9480 7979 8488 7538 7966 7261 7632 7070 7397 69

DMcccc
f ree,N,1280 ~MeV!

960 960 471 525 402 375 287 303 258 230 208
9-2
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ALL-CHARM TETRAQUARKS PHYSICAL REVIEW D 70, 014009 ~2004!
The basis depends on two parameters. One paramete
determines the dimension of the basis space. N defines
maximal number of allowed oscillator excitations in a giv
many body basis state by imposing the condition t
( i(2ni1 l i)<N, where the sum is over the single partic
oscillator quanta, 2n1 l , present in that state. The seco
parameter,\V, denotes the oscillator energy which we em
ploy as one of our adjustable parameters fit to the char
nium spectrum.

This many-body computational framework has been u
in other multifermion applications@19#. Those previous ap
plications also featured a derivation of an effective Ham
tonian that we do not carry out here. Instead, we adapt
established procedures for many-body basis space enum
tion, many-body Hamiltonian evaluation, and Lanczos
agonalization for the present effort. We pay special atten
to the treatment of the color degree of freedom. That is,
impose the restriction that our physical many-fermion sta
are global color singlets with the projection method d
scribed above.

We first fix our Hamiltonian and basis space parame
by fitting the low-lying charmonium spectra. Two fits a
obtained so we may begin to explore the sensitivity of o
c2c̄2 results to variations in acceptablecc̄ fits. We select a
maximum N, calledNmax59 ~10! for our negative~positive!
orbital parity 2-body states in which we fit our parameters
the lowest few experimentally determined states. We t
solve the 4-body problem in a sequence of model space
varying N up toNmax. The maximum matrix dimension en
countered in the 4-body problem was 3 013 782.

For each set of Hamiltonian parameters, designated C
1 and Case 2 below, the sensitivity of the 2-body charm
nium spectrum to spaces of smaller N values indicates
the parameters would require adjustment ifNmax is changed.

TABLE IV. Case 1 even parity tetraquarks mass spectra, un
rected via Eq.~4!.

Mcccc
f ull ,N,1280

J N50 N52 N54 N56 N58 N510
0 7422 7139 6760 6615 6448 6367
1 7896 7266 6887 6682 6515 6411
2 8252 7450 6995 6762 6576 6459
0 9615 8022 7428 7095 6869 6719

TABLE V. Case 1 odd parity tetraquark mass spectra, unc
rected via Eq.~4!.

Mcccc
f ull ,N,1280

J N51 N53 N55 N57 N59
0 8247 7752 7320 7073 6876
1 8286 7773 7343 7103 6906
1 8329 7791 7360 7113 6917
2 8355 7800 7369 7123 6926
01400
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Method of tetraquark net binding analysis

Since our basis space is comprised of harmonic oscilla
states, our spectrum will exhibit an appearance of be
bound, but this is not sufficient to conclude that a soluti
actually corresponds to a physically bound state. Qual
tively, we may view each 4-body state as composed of a
of 2-body subsystems with a relative kinetic energy betwe
them. Assuming the pairs will break apart, we can ident
the minimum possible kinetic energy between the pairs ba
on the size of the model space, N. Let us refer to this m
mum possible kinetic energy between the pairs as the ‘
netic energy penalty,’’ the penalty of confining two pairs
free particles in a finite harmonic oscillator basis. By ‘‘fre
particle’’ we mean the solution of our Hamiltonian wit
2-body relative interaction terms@Eq. ~1! summation term#
removed. We quantify this penalty in Eq.~3!,

DMcccc
f ree,N,\V

5Mcccc
f ree,N,\V

2min
n

@Mcc̄
f ree,n,\V

1Mcc̄
f ree,N2n,\V#. ~3!

M f ree,N,\V denotes the lowest mass of the indicated~sub-
script! free particle system in the basis space specified b
and\V. Note that we subtract the minimum relative kinet
energy of a pair of color singlet 2-body subsystems from
minimum relative kinetic energy of the color singlet 4-bod
state. This correction tends to zero asNmax increases.

When we compute the spectrum of the full Hamiltonian
the 4-body system, we will then subtract the penalty in E
~3! from the results as follows:

Mcccc
corrected,N,\V

5Mcccc
f ull ,N,\V

2DMcccc
f ree,N,\V . ~4!

To be specific, we subtract the same kinetic energy pen
from every tetraquark mass eigenvalue of the ‘‘full’’ Hami
tonian to arrive at the ‘‘corrected’’ mass of each state rega
less of its quantum numbers. The tetraquark spectrum,
rected via Eq.~4!, will then be compared to charmonium
pairs from the 2-body spectrum to determine if there is
binding of the 4-body state.

Case 1 tetraquark results

We now present the results of our first fit to the lowes
states for each parity in the charmonium spectrum, ‘‘Case
in the Nmax59 and 10 model spaces. We also present
tetraquark results with the same Hamiltonian.

Tables I and II show the even and odd orbital parity sta
of charmonium for the full space of the fit,Nmax, as well as
for spaces N,Nmax. The results in truncated spaces will b
used in the tetraquark threshold analysis below. The exp
mental masses are taken from the Particle Data Group c
pilation @20#. The fit of the positive orbital parity states i
Table I is only fair. This is due mainly to the fact that th
delta functions are crude approximations to the short d
tance interactions. This aspect of our Hamiltonians limit
our ability to simultaneously fit both the 1S and 2S splittin
of the positive orbital parity states. We decided to adjust

r-

r-
9-3
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FIG. 1. ~a! The J50 states for case 1. Note that the even parity excited state is unbound. The even parity threshold is 2hc , and the odd
parity threshold ishc1xc0 . ~b! The J51 states for case 1. The two odd parity states are nearly degenerate. The even parity thre
hc1J/c, and the odd parity threshold ishc1xc1 . ~c! The J52 states for case 1. Note that the slopes of the thresholds are nearly pa
to the bound state slopes. The even parity threshold is 2J/c, and the odd parity threshold ishc1xc2 .
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delta functions to fit theJ/c and thehc(2S) masses in orde
to represent states with a range of radial excitations at
4-body level. The root mean square~RMS! mass difference
between the N510 results and the experimental masses
106 MeV for all four states, but falls to 54 MeV if on
ignores thec(2S). The RMS mass difference for the N59
negative orbital parity results in Table II is 10.4 MeV, a
excellent fit. If one uses all 8 states from both parities,
overall RMS mass difference is 75.3 MeV. For comparison
recent relativistic constituent quark model based upon a
variant constraint dynamics approach@21# provides an RMS
mass difference of 19.8 MeV for these same 8 states.
01400
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consistency, we will use our calculatedcc̄ spectra, rather
than experimental states, to determine breakup threshold
our tetraquark states.

Table III presents the lowest ‘‘free particle’’ spectra forcc̄
in the first row of masses, the lowest free particle spectra
c2c̄2 in the second row, and the kinetic energy penalty co
puted via Eq.~3! in the third row.

The parameters of the Case 1 Hamiltonian are
559.4 MeV fm, m51490 MeV, b0521.8 MeV fm3, b1
50.3 MeV fm3, v5h50.24 MeV fm3, and we set s
5487.5 MeV fm21. The quark mass is 1490 MeV and\V
51280 MeV.
9-4
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ALL-CHARM TETRAQUARKS PHYSICAL REVIEW D 70, 014009 ~2004!
Table IV ~V! shows the uncorrected even~odd! parity
spectrum forc2c̄2. The corrected spectra, along with the
corresponding breakup thresholds, are plotted in Figs. 1~a!–
1~c! vs N.

Care is taken in the net binding calculation to conse
parity and total J. In addition, we allow for the tetraqua
system to organize into the two energetically most favo
cc̄ subsystems subject to the limitation of the total tetraqu
oscillator quanta available. As an example of how this
carried out, let us examine the J50 state at N510 in Table
IV. We find the most stringent threshold. We easily see t
breakup into two odd orbital paritycc̄ states is unfavorable
Then we take the minimum mass of twohc(1S) particles
that, taken together, have the same total oscillator quant
the N510 tetraquark state. We add the N50 and N510
hc(1S) masses from Table I, the N52 and N58 masses,
and the N54 and N56 masses, and simply choose the mi
mum of these three combinations, the N54 and N56
masses in this case. This minimum is then subtracted f
the corrected J50 state to estimate the net binding.

It is apparent that the three lowest states of even parit
Table IV and all the listed negative parity states in Table
are bound, although the binding generally decreases in m
nitude for large N. The states at N59, and the J52 state at
N510, would barely be bound without the kinetic ener
correction of Eq.~4!.

Our main focus is on tetraquark binding relative to
most stringent theoretical breakup threshold. Hence, in
own analysis, we employcc̄ results that arise in mode
spaces with N,Nmax. However, there is considerable sen
tivity of these cc̄ masses to the model space dimensi
Hence, the corrected tetraquark masses atNmax59 ~10! in the
odd ~even! parity should be used for predicting threshol
rather than taken as predictions for the masses of the
charm tetraquark bound states.

The main import of our results lies in the appreciab
binding energies found in the low-lying tetraquark states

TABLE VI. Even parity charmonium masses~MeV! for Case 2.
The column N510 presents the fit to the quoted experimen
masses. Other columns present masses obtained in truncated s

ID J Mexp N50 N52 N54 N56 N58 N510

hc(1S) 0 2979 4024 3352 3187 3152 3089 307
J/c 1 3097 4024 3442 3320 3198 3155 310
hc(2S) 0 3654 4637 4301 3884 3783 3602
c(2S) 1 3686 5053 4545 4268 3943 3822
01400
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Naturally, we would prefer to carry out this procedure
even larger model spaces~i.e., largerNmax) with suitably
improved Hamiltonians since the underlying logic for th
minimum threshold is designed for asymptotically separa
and convergedcc̄ subsystems. In an expanded treatme
with Hamiltonians that produce better descriptions of the
perimentalcc̄ states, we would hope to obtain smooth b
havior of both the tetraquark andcc̄ spectra with increasing
Nmax. This would yield greater confidence in the prediction
particularly for the tetraquark masses.

Case 2 tetraquark results

Given the number of adjustable parameters in the Ham
tonian, multiple RMS mass difference minima could be o
tained from different fits. In order to explore the sensitivi
of our results to allowable variations in our Hamiltonian a
basis space parameters, we carried out a second fit to
lowest 8 states of thecc̄ spectra. The Case 2 parameters
the Hamiltonian are b0521.2 MeV fm3, b1
50.45 MeV fm3, v50.225 MeV fm3, h50.30 MeV fm3,
and we have\V51200 MeV. Note that the Coulomb-like
interaction coupling and the confining strength are u
changed.

We present the results of a fit to the low-lying even a
odd orbital parity spectrum of charmonium in Tables VI a
VII. The RMS mass difference for even orbital parity
Nmax510 is 87.0~62.7! MeV with ~without! thec(2S). The
RMS mass difference for the odd orbital parity atNmax59 is
11 MeV. The RMS mass difference for all 8 states is 62
MeV. Case 2 provides a better overall fit to the charmoni
spectrum, but if one omits thec(2S), Case 1 yields a
slightly better fit. The interpretation of Tables VI–X follow
the same path as Tables I–V for Case 1.

The tetraquark binding is significantly less than Case
Looking at the important relative S-state interaction comp
nents, we observe that Case 2 has less attractive delta f

l
ces.

TABLE VII. Odd parity charmonium masses~MeV! for Case 2.
The column N59 presents the fit to the quoted experimen
masses. Other columns present masses obtained in truncated s

ID J Mexp N51 N53 N55 N57 N59

xc0(1P) 0 3415 4250 3982 3704 3536 3422
xc1(1P) 1 3511 4384 4028 3788 3625 3503
hc(1P) 1 3526 4417 4039 3808 3647 3523
xc2(1P) 2 3556 4440 4046 3822 3662 3537
20

08

4

TABLE VIII. 2- and 4-body free particle spectra with computed correction.

N50 N51 N52 N53 N54 N55 N56 N57 N58 N59 N510

Lowest 2-body free particle spectra~MeV!

3900 4500 3551 3977 3400 3732 3314 3587 3259 3491 32
Lowest 4-body free particle spectra~MeV!

8700 9300 7893 8370 7479 7880 7220 7567 7041 7347 69

DMcccc
f ree,N,1200 ~MeV!

900 900 442 493 377 352 269 284 241 215 19
9-5
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TABLE IX. Case 2 even parity tetraquarks mass spectra, un
rected via Eq.~4!.

Mcccc
f ull ,N,1200

J N50 N52 N54 N56 N58 N510
0 7519 7196 6854 6700 6555 6477
1 7870 7320 6974 6774 6624 6528
2 8146 7458 7068 6845 6680 6573
0 8941 7922 7315 7026 6829 6695
01400
r- TABLE X. Case 2 odd parity tetraquark mass spectra, unc
rected via Eq.~4!.

Mcccc
f ull ,N,1200

J N51 N53 N55 N57 N59
0 8310 7806 7400 7154 6969
1 8363 7830 7429 7190 7004
1 8388 7843 7440 7197 7013
2 8420 7856 7454 7214 7033
s

n

FIG. 2. ~a! The J50 states for case 2. The even parity threshold is 2hc , and the odd parity threshold ishc1xco . These states have les
net binding than case 1.~b! The J51 states for case 2. The even parity threshold ishc1J/c, and the odd parity threshold ishc1xc1 . Note
that the odd parity states are nearly degenerate as in case 1 and that the binding is generally less.~c! The J52 states for case 2. The eve
parity threshold is 2J/c, and the odd parity threshold ishc1xc2 .
9-6
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ALL-CHARM TETRAQUARKS PHYSICAL REVIEW D 70, 014009 ~2004!
tion strengths and a less repulsive tensor term. The decre
tetraquark binding may well be correlated with theS-state
properties of our effective interaction. A more extensive e
ploration of this sensitivity is needed to establish this cor
lation.

The ‘‘kinetic energy deficit’’ in Table VIII for large N is
very similar to Case 1, which is expected since the defi
depends only on the basis space parameters and the q
mass. The uncorrected masses in Tables IX and X for
tetraquark are about 100 MeV higher than Case 1 res
which leads to the reduced binding since the decay thre
olds are virtually unchanged. We note that, unlike Case
none of the states would be bound atNmax59 or 10 if the
kinetic energy correction was omitted. The comput
masses, corrected via Eq.~4!, are shown in Figs. 2~a!–2~c!,
along with their corresponding thresholds.

SUMMARY AND CONCLUSIONS

We have used a parametrized Hamiltonian to compute
spectrum of all-charm tetraquark states. After fitting the lo
estcc̄ states with two different parameter sets and perfo
ing a net binding analysis, we obtain bound tetraquark st
with both sets of parameters. For example, the lowest
raquark state with J50 in the positive parity spectrum has
mass below the threshold of twohc(1S) masses computed i
our framework.

A simple extrapolation of the binding energies might le
one to suspect some states would become unbound wit
creasing basis space size,Nmax. However, the trends in the
binding energies are not smooth functions of increasing
and make extrapolation a risky proposition. Furthermo
simple extrapolation is not warranted since the Hamilton
parameters were fit within theNmax59 ~10! basis spaces to
the negative~positive! orbital parity experimental meso
masses.

Experimental investigations could identify the states
o
,’’
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predict at e1e2 facilities. Indeed, Iwasaki@22# originally
proposed measuring the recoil-mass spectrum in coincide
with aJ/c around CM energy of 6 GeV to look for all-charm
tetraquark resonances. In an interesting and provocative
per there has been a theoretical calculation by Ioffe a
Kharzeev @23# showing that certain nonperturbative pr
cesses ine1e2 annihilation can explain the enhanced pr
duction ofJ/c1cc̄ at CM energies greater than 10 GeV th
was recently reported at Belle and BaBar. This leads us
speculate that searching for tetraquarks may be fruitfu
CM energies higher than the direct production resona
around 6 GeV such that tetraquark formation could capita
on additional processes similar to those examined in@23#.

The lifetimes and decay products of all-charm tetraqu
states have not yet been computed. It is reasonable to ex
that the lifetime would be of the same order as theJ/c or hc
depending on which threshold is the closest as listed in
tables. In addition, if the all-charm tetraquark has a two-bo
correlation similar toJ/c in its substructure, the favored de
cay would bee1e21cc̄. If there is a two-body correlation
similar to hc in the substructure, then the decay would
predominantly hadronic and more difficult to detect and
expected lifetime would be much shorter.

In a further extension of this work, we intend to employ
Hamiltonian with broader phenomenological success@24#
that includes relativistic kinematics effects as well as a tre
ment of negative frequency states.
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