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superconducting phase of a Namb#Jona-Lasinio—type model

D. Blaschké
Fachbereich Physik, Universitd&Rostock, D-18051 Rostock, Germany
Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

D. Eberf
Institut fur Physik, Humboldt-Universitazu Berlin, D-12489 Berlin, Germany

K. G. Klimenkd
Institute of High Energy Physics, 142281 Protvino, Moscow Region, Russia

M. K. Volkov and V. L. Yudiche¥
Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
(Received 16 March 2004; published 27 July 2004

We consider an extended Nambu—Jona-Lasinio model including lj@hdnd (qq) interactions with two
light-quark flavors in the presence of a singipiark density chemical potential. In the color superconducting
phase of the quark matter the co®lJ,(3) symmetry is spontaneously broken dowrSto,(2). If the usual
counting of Goldstone bosons would apply, five Nambu-Goldsi®it®) bosons corresponding to the five
broken color generators should appear in the mass spectrum. Unlike that expectation, we find only three
gapless diquark excitations of quark matter. One of them iISHg(2) singlet; the remaining two form an
SU,(2) (antijdoublet and have a quadratic dispersion law in the small momentum limit. These results are in
agreement with the Nielsen-Chadha theorem, according to which NG bosons in Lorentz-noninvariant systems,
having a quadratic dispersion law, must be counted differently. The origin of the abnormal number of NG
bosons is shown to be related to a nonvanishing expectation value of the color charge @perafiecting the
lack of color neutrality of the ground state. Finally, by requiring color neutrality, two massive diquarks are
argued to become massless, resulting in a normal number of five NG bosons with the usual linear dispersion
laws.
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I. INTRODUCTION the dispersion law for thed¢ massless excitations looks like
E~|pl|, thusN=n,.

It is well known that, in accordance with the Goldstone Recenﬂy, in some relativistic models describing the dy_
theorem[1,2], N Nambu-GoldstonéNG) bosons appear in  npamics of the kaon condensate in the color-flavor-locked
Lorentz-invariant systems if an internal continuous symmephase of dense quark matter, an abnormal number of NG
try groupg is spontaneously broken down to a subgrédp hosons has been revealet5s]. The same is true for models
(hereN is the number of generators in the coset sp@d€);  with a massive relativistic vector fields interaction in the
i.e., the number of NG modes is equal to the number obresence of a chemical potent{@]. Since the Lorentz in-
broken generators. However, in Lorentz-noninvariant SYSvariance is broken in this case and some of the gap|ess ex-
tems the number of NG bosons can be less tNain this  citations have a quadratic dispersion law, there are no con-
case, the counting of NG bosons is regulated by the Nielsenradictions with either Goldstone or NC theorems. The
Chadha(NC) theorem[3]: Let n; andn; be the numbers of  superfluid®He in theA phase 7] and ferromagnetg8,9] are
gapless excitations that in the limit of long wavelengths havesther known examples of condensed-matter systems with an
the dispersion law&~|p| and E~|p|2, respectively; then, abnormal number of NG bosons.

N=<n;+2n,. (Here, E is the energy ancﬁ is the three- In the present paper, we demonstrate the abnormal num-
momentum of the particlg.In particular, this theorem is ber of NG bosons in the dense color superconducting phase
valid for relativistically covariant theories as well, since in (2SO of quark matter for a simple version of the Nambu—
this case(i) the total number of NG bosons equdls the  Jona-LasinigNJL) model with two light quarks and a single
number of broken symmetry generatdd; (ii) evidently, (quark numberchemical potential. In this phase, which can
be realized naturally only at sufficiently large values of the
chemical potential (300 Me¥ u <1 GeV), the initial color
*Electronic address: david.blaschke@physik.uni-rostock.de SU.(3) symmetry is spontaneously broken down to the

"Electronic address: debert@physik.hu-berlin.de SU(2) group. Hence, in accordance with the usual counting
*Electronic address: kklim@mx.ihep.su of the Goldstone theorem, one might expect five NG bosons,
$Electronic address: yudichev@thsuni.jinr.ru corresponding to the five broken symmetry generators, to
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appear in the NJL model. We shall prove that in the 2SCguark sectors and explicitly show the influence of the color
phase only three gapless excitations that can be identifiegroperties of the ground state on the diquark mass spectrum.
with NG bosons appear. Two of them have a quadratic disSection V contains a summary and discussions. Finally, dis-
persion law, thus yielding no contradiction with the NC theo-persion laws for gapless diquarks are derived in the Appen-
rem. For further applications, notice also the following im- dix.
portant criterion which is sufficient for the equality between
the number of NG bosons and the number of broken genera-
tors[5]: If Q;, i=1,... N, is the full set of broken genera-
tors and if([Q; ,Q;])=0 for any pair (,j), then the number It is well known that perturbative methods are not appli-
of NG bosons is equal to the numbéiof broken generators. cable in the low-energy and -density QCD regions. Instead,
Recall, that there is an alternative approach to study coloeffective field theories are usually considered. The most
superconductivity, which is based on weak coupling perturpopular effective theories are based on Lagrangians with
bative QCD[10]. In this case, using the Schwinger-Dyson four-fermion interactions, like the NJL-type models. Let us
equation with one-gluon exchange, the color superconducfirst give several(very approximatge arguments somehow
ing phase was proved to exist at asymptotically high densijustifying the chosen structure of our QCD-motivated NJL
ties. In the two-flavored QCD investigations of color super-model introduced below. For this aim, consider two-flavor
conductivity five scalar NG bosons are shown to exist, whichQCD with a nonzero chemical potential and the color group
are mixing with gluons and required as longitudinal compo-SU,(3). By integrating in the generating functional of QCD
nents for five massive gluongolor Meissner effeg¢t[11]. over gluons and further “approximating” the nonperturba-
Hence, the results concerning the number of NG bosons dfve gluon propagator by & function, one arrives at an ef-
both the QCD and the NJL model approaches seem to be iiective local chiral four-quark interaction of the NJL type
contradiction® The origin of the above discrepancy is related describing low-energy hadron physics. Finally, by perform-
to the fact that the ground state of the considered simpléng a Fierz transformation of the interaction term and taking

NJL-type model is not color neutral. Inde(_ad, since t_he_expec-mto account only scalar and pseudoscalgg)¢ as well as
tation value of the color charge operafj is nonvanishing, scalar(qg)-interaction channels, one obtains a four-fermionic

(Qg)#0, the criterion[5] is not applicable, and an abnormal model given by the Lagrangiariin Minkowski space-time
number of NG bosons must arise. On the other hand, imotation

qguark models with a color-neutral ground state, according to
the above criterion, there should arise a normal number of

II. MODEL AND ITS EFFECTIVE ACTION

five NG bosons all having normdlinean dispersion laws. L=a[7"id,+ uy°—molq+G4[(qq)?+ (qiy°rq)?]
Most interestingly, we find from the analysis of the mass 5.5 95 5 2.C
spectrum in our model that the masses of two scalar diquarks +Goq~e’y’mqllae’y> g~ ]. (1)

are proportional to the ground-state expectation value of the

color charg&Qg). Thus, when color neutrality—i.&(Qs) |5 Eq. (1), ©=0 is the quark chemical potential, which in
=0—is imposed in NJL-type models as an additional conygggnically symmetric quark matter is the same for both
d|t|0n. (which can be realized by introducing q_color- quark flavors, =Cq, q°=gq'C are charge-conjugated
chemical potentialg “by hand” [12]), then two additional inors and:':i > 9 is: the charge conjugation matrithe
massless particles should appear, and the total number of Nl ’ ry 9 jugat

ymbol t denotes the transposition operajiofhe quark

bosons would be equal to 5. Recently, it was shown that th da=a is afl doublet and color triplet I
ground state of the 2SC phase of QCD is automatically colo I€1d 4=0i, IS a Tlavor doublet and color tripiet as wetl as a
our-component Dirac spinor, wheré=1,2; «=1,2,3.

neutral [13] due to a dynamical generation of the color- . - T
chemic:gl p]otentiah by gyluon condgensation So we see that(Latm and Greek indices refer to flavor and color indices,
8 ' respectively; spinor indices are omittedzurthermore, we

the original discrepancy in the number of NG bosons be- R . i .
tween the QCD approach and an extended NJL approadkse the notationr=(7*,7%,7°) for Pauli matrices in flavor
would disappear. space; €°)*P=¢*P? is the totally antisymmetric tensor in
The paper is organized as follows. In Sec. Il we investi-color space, respectively. Clearly, Lagrangiahis invariant
gate the considered NJL-type model in the framework of théinder the chiralSU(2)_ X SU(2)g (at my=0) and color
Nambu-Gor'kov formalism and derive an effective meson-SUc(3) symmetry groups. The physics of light mesbé—
diquark action for a finite chemical potential. Moreover, the17], diquarks[18,19, and meson-baryon interactiof20,21]
gap equations for the quark and diquark condensates are nyas successfully described in the framework of different NJL
merically studied. Sections Il and IV contain a detailed models. These effective theories were involved for the inves-

analysis of the massless and massive excitations in the diigation of both ordinary{22-24, hot and dilute[16], and
color superconducting dense quark maf@5—2§. Usually,

0Of course, it is necessary to point out that the QCD weak cou-
pling considerations are valid at asymptotic values of the chemical “The most general Fierz-transformed four-fermion interaction in-
potential—i.e., afu>1 GeV—whereas NJL model results are cor- cludes additional vector and axial-vectayq) as well as pseudo-
rect for sufficiently lower valuegt<1 GeV. Thus, a direct com- scalar, vector and axial-vector-likgg) interactions. However, these
parison of results seems to be problematic. terms are omitted here for simplicity.
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on the basis of light-meson and baryon phenomenology, thiormalism (for a recent relativistic treatment see, e.g., Ref.
following restrictions on the coupling constants are consid{29]) quark fields are represented by a bispinor
ered:

G, >m(6A2%), G,<G,, 2 \P:(qc '

where A is the cutoff parameter in the three-dimensional|ntegrating in the generating functional based on the La-
momentum space, necessary to eliminate the ultraviolet dlgrangian(g) over the quark fields, one obtains an effective

vergences appearing when quantum effgictsps are taken  meson-diquark action of the original mod@):
into account(usually A<1 GeV). Since Eq(1) is a low-

energy effective theory for QCD, the external paramgites
restricted from the abover<A. In the region of coupling Se( o, m, A% A*0) = —J d*x
constants(2) and at small values OiL_ (the case of low

baryon densitiegs only the operatorqq has a nonzero i
vacuum expectation value. Thus, the chiral symmetry of the - ETrsfcxIn
model is spontaneously broken in this case, wilg.(3)

remains intact. The behavior of quark and meson masses @esides of an evident trace over the two-dimensional
established rather well in the quark matter of low denSityNambu-Gor'kov matrix, the Tr operation in E¢5) stands
[22,23. In particular, the number of mesons, which are the for calculating the trace in spinos), flavor (f), and color

three NG bosons in this phase, is equal to the number g ) as well as four-dimensional coordin&te spaces, corre-

broken symmetry generators. Hence, this example is a goo : X
) ; : 2~ spondingly. We have used also the notation

demonstration of the fact that Lorentz noninvariance is a

necessary but not sufficient condition for the abnormal num-

ber of NG bosons to appear in the system. At sufficiently

high values of the chemical potentja-300—-350 MeV, the L 0 . . L.

two-flavor color superconductivity phase occurs in madgl D =iy"d,*uy’—me—37, 3" =0xiy’nr. (6)

[27]. So a nonzero diquark condensatg ) #0) is formed . . _

in this case, and as a consequence, color symmetry is spoket us introduce notation for the ground-state expectation

taneously broken down to th8U,(2) subgroup. A naive values of the meson and diquark fieldsr)=ayq, ()

counting gives us five NG bosons in this cd#tés justthe — _ 7= (Ax0)— A*9 (A%=AJ and

number of broken generators of ti$J.(3) groug. How-

ever, as will be shown further, there are only three gapless =+ p= S (KEDESH| o siis

bosonic excitations of the 2SC quark-matter ground state. (KoDo 20) = (KEDZE D)oy ey 20=7,

Two of them satisfy the quadratic dispersion law, in agree-

4G, ' 4G,

24+ 72 ASA* 5}

DY K-~
) (5)

K* D)

K+:iA* 565’}/5, K = _iA(?E&,yS,

ment with the NC theorem. The quantitiesoq, 7, A9,A%° (k,6=1,2,3) correspond to
The linearized version of Lagrangiail) that contains the global minimum of the effective potentidLy and can be
auxiliary bosonic fields has the form found as a solution of the system of equations
~ = 0 . g o2+ 7% A*OA° aveff_ ‘?Veff_o &Veﬁ_ IV eff -0 @)
L—q[’)/ |(9V+,LL’)/ —o—My—1y Tﬂ-]q_ 4Gl - 462 (9’7Tk ! Jdo ! aA& ! aA*ﬁ !
IA*® iA° . _
+ [qCe%y572q] - —[qe®y5r2qC]. 3) usually called gap equations. In E@g) we used the follow
2 2 ing definition of the effective potential:
Lagrangians(1) and (3) are equivalent to the equations of - s ews .
motion for bosonic fields, from which it follows that Sefil o,7,00,a% 9=const= — Ver( 07,7, A%, A% )f d*x, (8)
A5~aC6575q, a~5q, 77r~iq_75;Q- (4)  where, in the spirit of the mean-field approximation, all fields

o _ _ ~are considered to be independentxofwithout losing any
However, it is more convenient to start our considerationgenerality of the consideration, one can search for a solution
from Lagrangian(3). Clearly, theo and 7 fields are color of Egs.(7) in the form (A(l),AS,Ag)E(O,O,A). Moreover, we

singlets. Besides, thébosonig diquark field A° is a color  suppose also that,=0. (The last assumption is maintained
antitriplet and a(isoscalay singlet under the chiraBU(2). by the observation that in the theory of strong interacti®ns

X SU(2)r group. Note further thair andA’ are(Lorent  parity is a conserved quantiif A=0, the color symmetry
scalars, butr are pseudoscalar fields. Hencedf) #0, then  of the model remains intact. £ # 0, thenSU,(3) symmetry

the chiral symmetry of the model is spontaneously braleen is spontaneously broken down$dJ.(2), and the 2S@hase
mo=0), whereagA°)+0 indicates the dynamical breaking is realized in the model. In this case, the system of gap equa-
of color symmetry. In the framework of the Nambu-Gor’kov tions (7) is reduced to
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oo 4q E* E-
26, * J‘<2w>4E B—(EN @ (E )
N 2E* N 2E~ ©
D.(do) D_(qp)|’
A , 4q 1 1
Za;_mAJ‘(ZWV[D+“hy+D“hJ1 (10

where

D.(0o)=05—(E*)?—|A]?, E*=Expu, E

=/ 2+M?2, andM =m,+ o is the constituent quark mass.

In these and other similar expressiomg, is a shorthand
notation forgq+ie sgn(@y), where the limit: — 0, must be

taken at the end of all calculations. This prescription cor-
rectly implements the role oft as chemical potential and

preserves the causality of the thedsge, e.9.[30]).
Let us now make a field shifto(x)—a(X)+ oy,
A*(X)—A*O(X)+ A%, A%(X)—A°(x)+A§ and then ex-

PHYSICAL REVIEW D 70, 014006 (2004

d4
C=iA*e3f a9

5 )4efiq<xfy)
v

1 _
X SA
|qé¢E*F+¢AFée’y '

1 _
+ SA b, 15
2~ (E7)2+ (A2 ] o
4
(2m)* da—(E")2+]|A|%€%€®
qO_E— 0x
+ ALt 16
qg—(E7)2+|A|263637 +] (16

whereA . = 1[ (1= y°(yp—M)/E] are projectors on the so-
lutions of the Dirac equation with positive-negative energy,

pand the expressiafd) into a power series of the meson and and €3e®=diag(—1,— 1,0) is the projectofup to a sigh in

diquark fields. The second-order tesff) of this expansion

the color space. Quantiti€$3)—(16) are nontrivial operators

is responsible for the mass spectrum of mesons and diquarkis. the coordinate, spinor, and color spaces, but they are unit

It looks like
2+7-;,2 Az‘)‘A*ﬁ
@)~ 2 A A% — _ | s T
Seif(o,m,A%A*?) JdX G, + 1G,
i 3T, KT
+ZTrsfcx SO —K+, S

3T,

e (11

XS

_ K)
s- [
whereS, is the quark propagator, which is an evident 2
matrix in the Nambu-Gor’kov space

a b
c d)’

+ -1
Do

Ko

Ko
Do

So= = 12

operators in flavor space.
A tedious but straightforward analysis %f) shows that
there arises a mixing between theand A3 fields. We have

SG(o,m A% M%) =80 (m)+SF(0,4% %)
+8P(AN AN +5P(4%,4%2),
(17)
where p=1,2)

APA*P
) AP A*P)y= _ 4
Sp (AP,A*P) fd X 4G,

+
2

TreredaAP ey’ dA*PeP S}, (18)

whose matrix elements can be found by means of the projec-

tion operator techniquid1]:

4 =
a:f 9 o-iaey) Go—E VX,
(2m)* az—(E")%+|Al%e%€®

7°/T],

e—id(x-y)

qot+E~
do—(E7)?+[A[%e%

e A3 f d'q
(2m)*

13

X ! 5\
B (EN )2+ [ARSS”

1 _
+ SAL T, (14
G- (E )7+ [aPee *]

In the following we are going to search for gapless bosonic
excitations of the 2SC quark-matter ground state of the
model only. Since we are mainly interested in the diquark
sector, the expression for the-meson effective action
8@ (7) is omitted here. Moreoves {3 (o,A%,A*%) has a
rather cumbersome form, so we also do not showflit.
needed, both these expressions can be obtained immediately
from Eq. (12).]

Before proceeding further, we should fix the parameters
of our model. Here, we choose the parametrization procedure
given in[15]. We simplify that model by ignoring the cor-
rections to the pion-quark coupling constant that come from
the mixing between the pion and axial vector. To fix the
model parameters, we require the model to reproduce the
Goldberger-Treiman relation Mg.=F,, where F_
~93 MeV is the pion weak-decay constant, amd is the
pion-quark coupling constant determined in the local NJL
model as follows:

014006-4



ABNORMAL NUMBER OF NAMBU-GOLDSTONE BOSON . . . PHYSICALREVIEW D 70, 014006 (2004

o —iNc d4q 350
et (@ m 19

300 4

(This integral is divergent, and a regularization is supposed 2501
to be implemented here. In our work we use a three-
dimensional cutoff to make such integrals meaningful. ]
Then, we require the observed pion massld0 MeV) to 1 150
be reproduced by the local NJL model with our parameters. = ] -
After this, one more condition is needed to complete the 1004
parameter fixing procedure. We consider two possibilities
to finalize it: (i) fix the model parameters so that the QCD 501 \
sum rules estimate for the chiral condensatqq) ] . . . .
~(—245 MeV) is reproduced in our modefii) choose the 0 100 200 300 400
model parameters in a way that allows one to obtain the i [MeV]
correct description of the— 7 decay, as was done [i5]. ) o
In the first casdlet us refer to this set of parameters as set FIG. 1. The constituent quark mas(solid line) and the color
A), the cutoffA is about 618 MeV, and the four-quark inter- gapA (dashed lingas functions of the chemical potentig@aram-
action constan6, is equal to 5.86 GeV2. The remaining St S€tA.

constantG, is chosen according to the Fierz transformation
asG,=23G,/4=4.40 GeV 2. The current quark mass, is IIl. GAPLESS EXCITATIONS IN THE DIQUARK SECTORS

fixed via the gap equations to the value: 5.7 MeV. The con-  gjnceAlin Eq. (17) is not mixed with other fields, let us,
stituent quark mass in the vacuuat zeroth temperature and first of all, focus on the diquarkA® sector. If AY(x)

chemical potentialamounts to 350 MeV. _ O +io()1/ 2 A*L(x) = ) —i0.(x)1/ 2
In the second case, we obtain a different set of mode{hgﬁlt(hg eﬁgczt(iv)e]a\({;és(z)(Al(Al 1)[5(13(m)Eq qff% )c]ar\1/—b’e
parameters, which will be referred to, throughout the paper resented in the form ! ' '

as set B. Imposing the condition that an extension of thi
model to the vector channel would give the experimental
value for thep meson widththe p meson decays mostly into SPALA*H=5P (1, 0,)
a couple of charged pions, and the decay is described by the
constanig,~6.1.) and keeping in mind that in the local NJL S EJ d*xd*y o ()T (X—Y) @1(Y),
model one gets a natural connection betwggnand g, 2
(discarding pion—axial-vector transiti@ms\/ég’,:gw, we (20)
obtain A=856 MeV, G;=2.49 GeV? G,=3G,/4
=1.87 GeV 2, andmy=3.6 MeV. In the vacuum the con-
stituent quark mass is 233 MeV, which is small, compared t
the case, where the chiral condensate is used to fix the mod ; . A
parameteré.A similar procedure has been implemented in 0)](.2I)ts matrix elements can be found via a second variation
[28] in the chiral limit. Here, we keep the current quark mass®f S1°
nonzero in order to reproduce the pion mass in the vacuum.
Solving the gap equations at a fixed chemical potential,
we obtain the constituent quark madsand the color gaph 1
that satisfy the global minimum of the effective potential. In 200 4
Figs. 1 and 2, one can see the quark nmidsand the color
gapA versus the chemical potential for parameter sets A and
B. For parameter set A, one observes a first-order phase tranc, 1504
sition from hadron matter to the 2SC phase. The daps-
stituent quark mass and color gajhange abruptly when the
chemical potential reaches the vacuum valud/ofsee Fig.
1). On the contrary, if parameter set B is chosen, the gaps

200

AMeV]

cyvhere the X2 matrixI'(x—y) is the inverse propagator of
e ¢1,¢, fields[summation ovek,l =1,2 is implied in Eq.

250

[}
=3
< 100
=

reveal a rather smooth character near the phase transition 50 _
which is typical for a phase transition of second or¢sse ] ~
Fig. 2. . - -
0 l 1(I)O ' 260 l 3(IJO ' 400
U [MeV]

3A larger quark mass can be obtained if one takes into account the
mixing between the pion and axial vector. However, we omit it in  FIG. 2. The constituent quark makt(solid line) and the color
our paper for simplicity and for the reason that this mixing is neg-gapA (dashed lingas functions of the chemical potentiglaram-
ligible in the 2SC phase. eter set B.
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5#25P
- 21
5e1(y) Sor(X) @1

In momentum space, the Fourier-transformed components of
the I' matrix have the structure

I(x—y)=

20+

N 3
Fll(p):FZZ(p):E[FA*A(p)+FA*A(_p)], E,
€
- - [ . 10
I'iAp)==T2(p)= 5 [Faxa(P) = Laxa(=p)]- (22)
The derivation of these relations is given in the Appendix, 0 ' . '
where the quantity’ ,+ A(p) is also presentedee Eq (ﬁS)]. 350 375 400
The particle dispersion laws are defined by zeros of'dp) u [MeV]

in the p, plane—i.e., by the equation FIG. 3. The diquark mass; =H(0)/H’(0) as a function of the

— _— = _— = chemical potentialparameter set A
detl’(p) =T"11(p)I'22(P) = T'12(P)T24(P)

=T s A(P)T gxa(—p)=0. (23 from which it is evident that there is a soluti@=0, cor-
responding to a gapless excitation of the 2SC ground state.

Clearly, the solutions of Eq23) with positive and negative Since the functiorH(p,) does not vanish ap,=0 and u
po correspond to particles and antiparticl_es, respectively. Le;toy this solution may be identified in the case of firﬁ%
us first putp=(po,0,0,0). In this case, d&€¥(p,) is an even  with a NG boson with the quadratic dispersion lgwy
function of pg, so solutions of Eq(23) in the p3 plane might ~p 2/H(0) (see the Appendix Now, let us suppose that at
be searched for. They are the squared masses of excite@me nonzero valup,=—m; the functionH(p,) has a
states in theA® sector of the model. Moreover, all these zero—i.e.,H(—m;)=0. Then, def'(p,) has two zerop,
formulas are then greatly simplified. Indeed, it follows from _ +m;—i.e., the pointp?=m? is a solution of Eq(26)—

Eq. (A5) atp >=0 that and the second bosonic excitation of this sector has the non-
. zero massm;. In the lowp, expansion we havéd(pg)
-— . d*q 1 =H(0)+poH'(0)+ - - -, where
FA*A(pO):4|pOJ 4[ " (0)+PoH’(0)
(2m)" | (Po+do+E™)D (o)
11 d3q 6(E™) 6(—E")
1
__ H(0)=5 f [ +
+ = — 4poH(po). s i
(p0+qo—E—>D<qo)] PoF(Po) 2} (2w | (E+EpE; (B —E)E;
(24) 1 ]
where it is possible to integrate ovgs, using the following (E"+E{EL)’

prescription: g+ o) — (Po+ o) +ie sgnEy+ o) and gq

—(g+ie sgng) with e—0, [see also comments after for- 5 B B

mula (10)], and .1 dq 6(E™) 6(—E")
H'(0)= E +

H )—_EJ d’q 1 (2m)3 | Ex(E"+E;)? (E —E})%E;
R +;2J 27
Ex(ET+E}
6(E™) N 0(—E") N A)

(Po=E ~Ey)Ey (Po=E +EL)E, Thus, in this approximatiom;=H(0)/H'(0). Them; vs u
(250 plots for particular values of the coupling consta@isg,G,

. _ . . and the cutoff parametek discussed at the end of Sec. Il
In Eq. (25 Ey=V(E™)“+|A]“ Since the integral on the (qr, equivalently, for the values andM from Figs. 1 and 2

right-hand side(RHS) of this equation is ultraviolet diver- are presented in Figs. 3 and 4. In Fig. 3 the valuesipfire
gent, we regularize it, as the other divergent integrals, by:alculated foru=350-400 MeV when parameter set A is
using a three-dimensional cutaffi—i.e.,q 2<A?2. Then, Eq.  involved. The leftmost point corresponds to the condition of

(23) is transformed to the phase transitioni{~350 MeV). At smallern the color
) gap equals zero and Eq®7) cannot be applied, since they
PoH(Po)H(—po) =0, (26)  have been derived by using E30) with A#0. Similarly, in
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FIG. 4. The diquark mass,=H(0)/H'(0) as a function of the
chemical potentia(parameter set B

Fig. 4 the axisu begins with 250 MeV. At smallep (but
greater than 233 Me)\/ the value ofm; is almost zero. Com-
mon to both parameter sets A and B is that the valuasof
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sectors, each zero of dl&t(py)] in the p(z) plane means the
mass squared of the ground-state excitation, this time in the
mixed o-A® sectoy.®

As was mentioned above, in the 2SC phase of the model,
whereA #0, the colorSU,(3) symmetry of the ground state
is spontaneously broken down to tB&J.(2) group. Hence,
in accordance with the Goldstone theorem, it is generally
expected that five NG bosons would appear in the theory.
However, we have proved that in the!,A% A® sectors of
the model only three massless bosons exist, which can be
identified with NG bosons. Therefore, there seems to be a
deficiency of two NG bosons in the framework of the model
under consideration. In spite of this fact, there are, however,
no contradictions with the NC theorem, since two of the
three found NG bosons have quadratic dispersion laws for

|p|—0. In addition, the model contains also light massive
diquarks.

Usually, in the framework of the NJL model, the 2SC
phase is studied in the region of coupling constdgjs In
this case, atu=0 we have a chirally noninvariant phase
even ifmy—0, and the transition to the 2SC phase occurs at
some finite value of the chemical potential. Formally, how-

are small and thus justify the series expansion of the functioever, one can consider the region

H(po) aroundp,=0.* Analogous results are obtained for the

A? sector of the model. There, as in thé sector, only one

0={(G1,G;):G,>m?/(4A?), m*(G,~G1)>2G;,G,A%,

massless boson with the quadratic dispersion law as well as a

massive one with the mass,=m; is found. Evidently, the
two massless and two massive bosons inAfheA? sectors
form antidoublets with respect to the unbrokebl.(2) sym-
metry.

(29

where(even atu=0) the 2SC phase is realiz€82]. As can
easily be seen from Eq27), in the case ofu=0 we have

Now let us consider the sector with miXing of the com- H(O):O and m;= m2:0, and the total number of gap|ess

plex diquarkA® field and the scalao- meson. Introducing
new real fields @(x)=[A3(X)+A*3(x)]/V2, ¥(X)

excitations (NG bosong in the A and A? sectors of the
model equals 4. They form two massleS8);(2) antidou-

=i[A*3(x)—A3(x)]/\2, we rewrite the effective action blets. Apart from this, there is one NG boson, which is an
S% [here we omit the cumbersome expression for this quans U,(2) singlet, in the mixedr-A3 sector. Naturally, all these

tity, however it can be easily reproduced from Efjl)] in
the form

SS,%?(U,AS,A”)?% f d*xd*y((x),$(x),4(x)) T(x

=y) (o(y),(y), p(y)), (28)

wherell(x—y) is the inverse propagator of tkemeson and
the diquark fieldsp, . Clearly, it is a 33 matrix, whose
elements can be obtained from Eg8) by taking all second
variational derivatives o5'2) over the fieldss, ¢, and .

We have calculated the momentum-space maliifyp) (cor-

responding explicit formulas and reIatiorE are omikteahd
then, puttingp=(p,,0,0,0), found that dgtl(py)] has only

excitations have a linear dispersion law, as should be in the
relativistically invariant casésee the Appendix However,
at an arbitrary smalk, particles from one of these antidou-
blets acquire nonzero masses, and the dispersion laws for the
two massless particles from the remaining antidoublet are
changed essentially from the linear to quadratic laws.

Note finally, that in the above consideration we used the
real-imaginary part parametrization for diquark fields:

AY ) =[@1(X)+iga(x)1/\2,
AZ(x)=(p1(X) +iga(x))/\2,

A3(X) = A=(p(X) +ip(x))/\2, (30)

one zero apSzO. Therefore, only one NG boson, which is whereA”(x) are the unshifted diquark fields from Lagrang-

an SU,(2) singlet, exists in this sectdias in theAl,A?

“The numerical investigation shows that the mass valydound
in the lowp, approximation(see Figs. 3 and)4differs from the
exact solution of the equatidd(m,) =0 by no more than 10%.

ian (3) andA=(A3). However, one can use also an alterna-
tive “polar coordinate” parametrization

°A detailed investigation of the meson-diquark spectrum including
the o-A® mixing is in preparation.
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AY(X) : 0 derlying symmetry groupin our caseSU,(3)], the ground-
A2 3 ) N&a(X)| 1 0 state expectation value for the commutator of any two bro-
(X) | =ex _'g 2r |2 ken symmetry generator®), and Q, must be zero:
A3(x) V2A + 7(X) ([Qa,Qp])=0 [5]. This criterion is not fulfilled for the NJL
model considered here—namely, the ground-state expecta-

& fg“ tion value of the color charge operag=qy°A8q does not
1 &7 16 vanish—and, therefore, the usual counting rule for NG
N +o(&,7m), (B posons is not applicable.
J2A + p+i—é& Let us look at the functiorH(py) at pp=0. One can
V3 rewrite the expressiof27) in a different form:

where\, are Gell-Mann matrices and the summation over 1 d3q Et E-
a=4, ... ,8 isimplied[the form of an exponential multiplier H(0)= EJ’ — —2( —20(u—E)+ ———|.
in Eq. (31) corresponds to the fact thA?(x) is anSU,(3) (2m)° A Ex Ea
antitriplef]. Comparing Eqs(30) and(31) at small§; ,», we (33
see that

This formula can be expressed in terms of quark densities.

_ B ~ For this purpose, we need the expression of the thermody-

P1=¢5 2= "6 1= é7, namical potential of the system, which in the mean-field ap-
proximation is equal to the value &f. in its global mini-
o= —Es, b=n, Y= %58- (32) mum point, supplied by the gap equations—i.e.,
Q(p)=Ver( 00, 70,45,45°), (34)

Further, one should insert E(B1) into Eq. (5) and expand
the resulting expression into a series of meson &pdy ~ WhereVes was given in Eq(8). Further, one can divide the
fields. It is easily seen that in the second order of the newhermodynamical potential into several terms
variables the effective action is a sum similar to ELj). In 3 ) )
particular, it means that the diquark fields, 5 are decou- aw=S (M—mg)® |A|
pled from other fields, and their effective action looks like ('“)_c=l c(m)+ 4G, * 4G,’
Eq. (20) with the replacement32) used. So some elements
of the inverse propagator matrix fdp, 5 fields differ by a  whereQ.(u) is the contribution from the colaz-quark, de-
sign from 'y (x—y), Eq. (21), but the determinant of the fined as follows:
whole momentum space matrix is not changed. Hence, the
mass spectrum, the dispersion laws, etc., inghgs fields d3q R
are the same, as in the case with old fields ¢,. Similar Qi(pu)=Qx(p)= —ZJ 7(EA +Ey),
conclusions are valid for the rest of new variables; i.e., such (2m)
physical characteristics of the model, such as particle masses,

(35

dispersion laws, etc., do not depend on the choice of field _ d’q i _
parametrizations, Eq30) or (31). In particular, the number Qa(p)= ZJ (277)3(“5 [+1E7D. (36)
of abnormal NG bosons, which equals 3 in the model under
consideration, is a parametrization-invariant quaritity. The contributions from color-1 and color-2 quarks,
Q;(2)(n), are equal due to the remainidJ.(2) color sym-
IV. COLOR ASYMMETRY AND MASSES metry after the globabU,(3) symmetry group is spontane-
OF SCALAR DIQUARKS ously broken in the color superconducting phase. The third

) ) _color quark, which does not condensate, giegw). Then,
As was noted irf13], the color superconducting phase is gne can calculate the densities of color-1, -2, and -3

automatically color neutral in QCD, but this does not holdyyarks separately without introducing additional chemical
for the NJL model under consideration. Massive scalar diyygientials for each color simply by differentiatird( «)

quarks and, as a consequence, the abnormal number of

er u—i.e.,
bosons in the model discussed in previous sections testify for K

this. As mentioned in the Introduction, for the number of NG a0 ()

bosons to equal the number of broken generators of the un- Ne=— “on c=1,2_3, (37
6 , d®q (E* E-
In Refs.[4,5] an abnormal number of NG bosons in the same ny=n,=2 R

SU(2)XU(1) toy model was discovered. But jA] the parametri- (2m)° EI Ea

zation(30) was used for the scalar doublet, whereafsiha “polar

coordinate” parametrization, similar to E¢31), was used. Evi- d3q

dently, their results coincide; i.e., the abnormal number of NG n3:4f 6(u—E). (39
bosons, particle masses, formulas for dispersion laws are the same. (271-)3
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Equation(33) can thus be transformed to ior of which at final chemical potential is shown in Figs. 3
and 4 for the parameter sets A and B, respectively.
1 \/§<Q8> Most interestingly, we found that the diquark masegs
H(0)= @(nﬁ Ny—2n3)= ™ (39  =H(0)/H’(0) are proportional to the ground-state average

of the color charge operatofQg)=1/y/3(n;+n,—2ny).

: Here, the quark densities;, n, of paired quarks with color
From Eq.(39) and the fact that the diquark ma E
=H(0)/H’?O§ is) found to be nonzerésee gigs_ 3 ang?;l,df 1,2 are equal due to_the remamnmJC(_Z) symmetry and
one concludes that the 2SC ground state in the NJL mod r:g(;r ttr?sn rf)hem;ji?;g'gf (t)rflethc?)nusri]é):rltra?de?JOLI?tr-?)eqmugtr:iljél is
under consideration has finite color chakggs). Evidently, e 'lée’ntl cgololrj asvmmetric. It is iust the a eari\pnce of this
this fact is related to the inequality of color quark densities Vi y Y : . PP

N, ,>n; for paired (1,2 and unpaired3) quarks—i.e., to nonvanishing expectation valy®g) which simultaneously

color asymmetry. Moreover, as discussed in the Appendixleads to a violation of the criterion for the equality of the

the nonzero value ofi(0) is responsible for the abnormal humber of NG bosons and broken SYm”.‘e”y genera[ﬁ]rs
_ _ -y and to the appearance of the quadratic dispersion law for the
dispersion lawpy~ p“/H(0) for two NG bosons. NG diquarks[compare Eqs(38), (A6)].

To restore the local color neutrality in the NJL model, one | the investigations of color superconductivity in the
can, e.g., include an additional termQg and impose the  yyo-flavored QCD, five scalar NG bosons are argued to ex-
color-neutrality condition ist. They are mixing with gluons and required as longitudinal

components for five massive gluotsolor Meissner effegt
(Qg)=— I (. ) -0 (40) [11]. The fact that we find an abnormal number of three NG
dug bosons does not directly contradict QCD. Namely, in the
color superconducting phase of QCD a nonvanishing con-
or consider the superconducting matter as composed of colfensate of the eighth gluon field componeX§ appears,
ored domains, with the global color charge being equal zerayhich induces a color chemical potential and cancels
The latter, however, goes beyond the mean-field approximacertain tadpole contributions, responsible for the nonvanish-
tion exploited here and should be considered as an appro>qing color charge of the ground staf#3]. This mechanism
mation for the case of large colored domains. Anyway, thqust leads to color neutrality. Obviously, there arises the
true ground state should be checked to give the absoluiguestion, how can one reconcile the considered NJL ap-
minimum of the thermodynamical potential. proach with QCD? Insofar as NJL-type models do not con-

The inclusion of an additional chemical potentiad “by  tain gluon fields, the required contribution from the con-
hand,” however, does not contradict QCD. As discussed injensed eighth gluon field does not follow automatically.
[13], a nonvanishing expectation value of the gluon figfd ~ Therefore, the tadpole contribution becomes unbalanced by
corresponding to the eighth generator in 86,(3) group, gluon contributions. It can be cancelled “by hand”—e.g.,
gives rise to a nonvanishing value @§, which then cancels with the help of the additional color chemical potentig
certain tadpole contributions and restores the color neutralitsimulating the omitted gluon contribution. In such enlarged
This cannot occur in the NJL model automatically becauseNJL models the condition of color neutrality of the ground

there are no gluons in it. state—i.e.{Qg) = 0—can be imposed as an additional physi-
cal requiremen{12]. According to our results, one gets in
V. SUMMARY AND DISCUSSIONS this case two additional NG bosons as well as a change of

_ _ _ quadratic dispersion laws into normal linear ones. Thus, the
Recently, it has been shown that in QCD with a nonzeraabnormal number of three NG bosons might, in principle,

strangeness chemical potenfid)5], as well as in some mod- become converted into the normal number five found in
els for relativistic massive vector field condensatjéh the  QCD.

number of NG bosons can be less than the number of broken Nevertheless, what to do now with these five NG bosons
symmetry generators, so that the usual counting rule for NGrising in the color neutral 2SC phase of an enlarged NJL-
bosons evidently does not hold. In the present paper, we hawgpe model? Clearly, in the framework of the standard NJL
presented another relativistic model providing us with an abmodel one cannot apply the color Meissner effect, in order to
normal number of NG bosons. This is an NJL-type modelabsorb these NG bosons into longitudinal degrees of freedom
with two light-quark flavors, where a single quark-chemicalof massive gluons. A possible way out of this problem could
potential is taken into account. In the color superconductinghe an extension of the NJL mode via the inclusion of pertur-
phase of this model, the col@U,(3) group is spontane- bative gluons, fluctuating around the original low-energy
ously broken down t&5U,(2); i.e., the number of broken gluonic fields(realized, e.g., by instantons or other nonper-
symmetry generators equals 5. Despite this fact, there apurbative background fields, which were already integrated
peared only three NG bosons in the 2SC phase; two of therut to yield the effective four-quark interactiori§3]. Obvi-
form an antidoublet with respect to the unbrok8iU,(2) ously, the color Meissner effect could then be realized for
subgroup and have quadratic dispersion laws. The remaininguch perturbative gluons.

one is anSU.(2) singlet, so there are no contradictions with  In addition, let us remark that the above discussions refer
the NC theorenj3]. Moreover, there exists aBU;(2) anti-  to the case of locally neutral quark matter, where color neu-
doublet of light diquarks\',A? with massesn,, the behav- trality should indeed be required. On the other hand, global
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color neutrality does not demand local color neutrality: for

example, one can assume the ground state as being conF(p)zj d*zF(2)e'P?, .. F(z)=f
posed of colored domains. Anyway, to decide which of the

considered ground states is in favor, the absolute minimum

PHYSICAL REVIEW D 70, 014006 (2004

d4

F(p)e P
(A3)

m)?

of the thermodynamic potential should be calculated in each _ o _
case(Note that the presence of domains means a violation oNow, using Eq.(A3), it is possible to get, from EqA1),
translational invariance and is not consistent with the simple

mean-field approach.

4

- 1 d — —
Finally, notice that in the framework of the considered I'y«,(p)= 4—GZ—iTrSJ ﬁ{a(qu p)etyd(q)ety®},
K

NJL-type of model there arises a mixing between éhme-
son andA® diquark in the 2SC phase. The behaviormof
A3- as well asr-meson masses versusin the 2SC phase is
now under consideration.
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APPENDIX: THE I'-MATRIX ELEMENTS
AND DISPERSION LAWS

Using the effective actioii18), let us introduce auxiliary
guantities

525
Tawp(z)=— ———
el T earin)
5
- 4(—Gzi—i Treda(z) elySd(—Z) 61’)/5},
58P
Myax(z) = ——————
s D ) eat0)
o(2) .
= 4(_G2 =1 Trsc{d(z) 6175a( - Z) 5175}1 (Al)

where §(z) is the Dirac delta functionz=x—y, anda(z)
and d(z) are operatorg13) and (16), respectively. Since
2SP(6A6AY) = 52°SPI(5A* 1 5A* =0 and

6 1[5 N é 6 i 6 é

dp1 2\ 0A  sAx | Spp 2\ 8A  sA)’
the matrix elements of the inverse propagator mat#)
have the form

1
F1(2)=T(2)= E[FA*A(Z)+FAA*(Z)],

Pid2)= T = 5[Tas(D-Tase@]. (A2

For an arbitrary functiorf-(z), it is possible to define the
Fourier-transformed oné;(p), by the relation

[axa(—p)=Taa+(p). So, taking into account
Egs.(A2), one can easily obtain the relatio(&2).
After tedious calculations we arrive at the expression

Fros(e) 4ip0f dq
* p =
AT emA) [potdot m)?—E2, ]

Potdotu+Eyq Potdotu—E,
D _(do) D (o)

4i f dq
(2m*) [(po+ao+m)?—Ej. 4l
{Eqﬁz‘F(QO‘*MJFEq)(F;'a)
Equ(QO)
EqP 2—(do+1—Eg)(p-Q)
EqD+(q0) .

(A5)

Here, the notation that was introduced after Ed) is used.
Moreover,E,;=E=\/q 2+ M?2 Note that expressioA5) is
obtained under the assumption that O; i.e., it is valid only
in the 2SC phase. In this case, the gap equafidh was
used to eliminate the coupling consta@ from relation
(A4) in favor of other model parameters.

Quasiparticle dispersion laws are defined by &%) or,
equivalently, by the two equatiod3,« ,(=p)=0. One can
easily see that aﬁ 2=0 the first integral in RHS of EqA5)
coincides with Eq.(24) having an evident zero giy=0.
This is just the dispersion law of a gapless partidG
boson at p 2=0. Let us find the dispersion law for the NG
boson at small nonzero values ﬁfz—i.e., try to solve the
equationl’yx ,(p) =0 atp—0. Expanding expressiofA5)
into a Taylor series of f,,p) at the point (0,0 and taking
into account only leading terms, we have,at 0, the fol-
lowing equation connecting the energy and momentum of the
massless particlén Sec. lll, it was proved that such a par-
ticle, NG boson, exists in tha® sector of the modg
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Fova(p)=4ipoH(0)— P~ il
(2m*) D_(qo)[(do+ p)?*~E]]
2-’ 2
X[l_ 3Eq(Q0'q",U«_Eq)}
4ip 2 d“q
~(2m*) DL (@At 12 —EZ]
X [ 1+ L .
3E4(dot i+ Eg)
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=0, (AB)
where the quantityd (0) (which is nonzero at.# 0) is given
in Eq. (27). Obviously, the quadratic dispersion law,

~p 2, for a massless particle follows from EEA6). How-
ever, in case of relativistic invariance of the systdrm., at
p#=0 and for coupling constants from the regian Eq.
(29)] or for a color-neutral ground state, wher{0)=0, the

dispersion law for a NG boson changes. Indeed, in this case

the term 4pyH(0) from Egq. (A6) should be replaced by
4ip§H’(O) [H'(0) is presented in Eq27)], and one arrives
at a linear dispersion law for NG bosons.

[1] J. Goldstone, Nuovo Cimentt®, 154(1961); J. Goldstone, A.
Salam, and S. Weinberg, Phys. R&27, 965(1962.

[2] T.W.B. Kibble, Phys. Rev155, 1554(1967).

[3] H.B. Nielsen and S. Chadha, Nucl. Ph{&l05 445 (1976.

[4] V.A. Miransky and I.A. Shovkovy, Phys. Rev. Le88, 111601
(2002; I.A. Shovkovy, Int. J. Mod. Phys. A7, 904 (2002;
Nucl. PhysA702, 191(2002; J. Phys. @8, 1877(2002; V.P.
Gusynin, V.A. Miransky, and |. Shovkovy, Phys. Lett.581,
82 (2004); Mod. Phys. Lett. A19, 1341(2004).

[5] T. Schder et al., Phys. Lett. B522 67 (2001).

[6] F. Sannino, Phys. Rev. B7, 054006(2003.

[7] G. E. Volovik, Exotic Properties of SuperfluitHe (World Sci-
entific, Singapore, 1992pp. 119-121.

[8] Y. Nambu, J. Stat. Phy4.15, 7 (2004).

[9] C.P. Hofmann, Phys. Rev. 80, 388(1999.

[10] D.T. Son, Phys. Rev. 39, 094019(1999; R.D. Pisarski and
D.H. Rischke,ibid. 60, 094013(1999; 61, 074017(2000; T.
Schder and F. Wilczek,bid. 60, 114033(1999; D.K. Hong
et al, ibid. 61, 056001(2000; 62, 059903E) (2000.

[11] D.H. Rischke, Phys. Rev. B2, 034007(2000; V.A. Miran-
sky, ILA. Shovkovy, and L.C.R. Wijewardhanabid. 62,
085025(2000; Nucl. Phys. B(Proc. Supp). 102, 385(2002);
D.H. Rischke and I.A. Shovkovy, Phys. Rev. @5, 054019
(2002.

[12] M.G. Alford and K. Rajagopal, J. High Energy Phy6, 031

[18] D. Ebert, L. Kaschluhn, and G. Kastelewicz, Phys. LetR@3,
420(1991).

[19] U. Vogl, Z. Phys. A337, 191 (1990; U. Vogl and W. Weise,
Prog. Part. Nucl. Phy7, 195 (199J.

[20] D. Ebert and L. Kaschluhn, Phys. Lett. 27, 367 (1992; D.
Ebert and T. Jurke, Phys. Rev.48, 034001(1998; L.J. Abu-
Raddadet al, Phys. Rev. 66, 025206(2002.

[21] H. Reinhardt, Phys. Lett. B44, 316(1990; N. Ishii, W. Benz,
and K. Yazaki,ibid. 301, 165(1993; C. Hanhart and S. Kre-
wald, ibid. 344, 55 (1995.

[22] M. Asakawa and K. Yazaki, Nucl. PhyA504, 668 (1989; P.
Zhuang, J. Htner, and S.P. Klevanskipid. A576, 525(1994).

[23] D. Ebert, Yu.L. Kalinovsky, L. Machow, and M.K. Volkov,
Int. J. Mod. Phys. A8, 1295(1993.

[24] M. Buballa, Nucl. PhysA611, 393 (1996; A.S. Vshivtsey,
V.Ch. Zhukovsky, and K.G. Klimenko, JET&, 1047(1997);
D. Ebertet al, Phys. Rev. D61, 025005(2000; B.R. Zhou,
Commun. Theor. Phy<l0, 449 (2003.

[25] R. Rapp, T. Scffar, E.V. Shuryak, and M. Velkovsky, Ann.
Phys.(N.Y.) 280, 35(2000; M. Alford, Annu. Rev. Nucl. Part.
Sci.51, 131(2001); G. Nardulli, Riv. Nuovo Ciment@5N3 1
(2002.

[26] M. Buballa, J. Hosek, and M. Oertel, Phys. Rev6h) 014018
(2002.

(2002; A.W. Steiner, S. Reddy, and M. Prakash, Phys. Rev. D[27] T.M. Schwarz, S.P. Klevansky, and G. Papp, Phys. Re80,C

66, 094007(2002; M. Huang and |. Shovkovy, Phys. Lett. B

564, 205 (2003.

[13] A. Gerhold and A. Rebhan, Phys. Rev.68, 011502(2003;
D.D. Dietrich and D.H. Rischke, nucl-th/0312044.

[14] D. Ebert and M.K. Volkov, Yad. Fiz36, 1265(1982; Z. Phys.
C 16, 205 (1983; M.K. Volkov, Ann. Phys.(N.Y.) 157, 282
(1984); D. Ebert and H. Reinhardt, Nucl. PhyB271, 188

055205(1999; J. Berges and K. Rajagopal, Nucl. PhB&38,
215 (1999; M. Sadzikowski, Mod. Phys. Lett. A6, 1129
(2002); D. Ebertet al, Phys. Rev. D65, 054024(2002.

[28] D. Blaschke, M.K. Volkov, and V.L. Yudichev, Eur. Phys. J. A
17, 103(2003.

[29] T. Ohsaku, Phys.
cond-mat/0209352.

Rev. B 65 024512 (2002;

(1986; D. Ebert, H. Reinhardt, and M.K. Volkov, Prog. Part. [30] A. Chodos, K. Everding, and D.A. Owen, Phys. Rev4P

Nucl. Phys.33, 1 (1994).

[15] M.K. Volkov, Fiz. Elem. Chastits At. Yadra7, 433(1986.

[16] T. Hatsuda and T. Kunihiro, Phys. Rep47, 221 (1994); S.P.
Klevansky, Rev. Mod. Phys$4, 649 (1992.

[17] M.K. Volkov and V.L. Yudichev, Phys. Part. NucB2S1 63
(2002).

2881(1990.

[31] M. Huang, P. Zhuang, and W. Chao, Phys. Re\69)076012
(2002.

[32] V.Ch. Zhukovsky et al,
hep-ph/0108185.

[33] G.W. Carter and D. Diakonov, Nucl. PhyB582, 571 (2000.

JETP Lett. 74, 523 (200Y);

014006-11



