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Abnormal number of Nambu-Goldstone bosons in the color-asymmetric dense color
superconducting phase of a Nambu–Jona-Lasinio–type model
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We consider an extended Nambu–Jona-Lasinio model including both (qq̄) and ~qq! interactions with two
light-quark flavors in the presence of a single~quark density! chemical potential. In the color superconducting
phase of the quark matter the colorSUc(3) symmetry is spontaneously broken down toSUc(2). If the usual
counting of Goldstone bosons would apply, five Nambu-Goldstone~NG! bosons corresponding to the five
broken color generators should appear in the mass spectrum. Unlike that expectation, we find only three
gapless diquark excitations of quark matter. One of them is anSUc(2) singlet; the remaining two form an
SUc(2) ~anti!doublet and have a quadratic dispersion law in the small momentum limit. These results are in
agreement with the Nielsen-Chadha theorem, according to which NG bosons in Lorentz-noninvariant systems,
having a quadratic dispersion law, must be counted differently. The origin of the abnormal number of NG
bosons is shown to be related to a nonvanishing expectation value of the color charge operatorQ8 reflecting the
lack of color neutrality of the ground state. Finally, by requiring color neutrality, two massive diquarks are
argued to become massless, resulting in a normal number of five NG bosons with the usual linear dispersion
laws.
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I. INTRODUCTION

It is well known that, in accordance with the Goldsto
theorem@1,2#, N Nambu-Goldstone~NG! bosons appear in
Lorentz-invariant systems if an internal continuous symm
try groupG is spontaneously broken down to a subgroupH
~hereN is the number of generators in the coset spaceG/H);
i.e., the number of NG modes is equal to the number
broken generators. However, in Lorentz-noninvariant s
tems the number of NG bosons can be less thanN. In this
case, the counting of NG bosons is regulated by the Niels
Chadha~NC! theorem@3#: Let n1 andn2 be the numbers o
gapless excitations that in the limit of long wavelengths ha
the dispersion lawsE;upW u and E;upW u2, respectively; then,
N<n112n2. ~Here, E is the energy andpW is the three-
momentum of the particle.! In particular, this theorem is
valid for relativistically covariant theories as well, since
this case~i! the total number of NG bosons equalsN, the
number of broken symmetry generators@2#; ~ii ! evidently,
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the dispersion law for theseN massless excitations looks lik

E;upW u, thusN5n1.
Recently, in some relativistic models describing the d

namics of the kaon condensate in the color-flavor-lock
phase of dense quark matter, an abnormal number of
bosons has been revealed@4,5#. The same is true for model
with a massive relativistic vector fields interaction in th
presence of a chemical potential@6#. Since the Lorentz in-
variance is broken in this case and some of the gapless
citations have a quadratic dispersion law, there are no c
tradictions with either Goldstone or NC theorems. T
superfluid3He in theA phase@7# and ferromagnets@8,9# are
other known examples of condensed-matter systems with
abnormal number of NG bosons.

In the present paper, we demonstrate the abnormal n
ber of NG bosons in the dense color superconducting ph
~2SC! of quark matter for a simple version of the Nambu
Jona-Lasinio~NJL! model with two light quarks and a singl
~quark number! chemical potential. In this phase, which ca
be realized naturally only at sufficiently large values of t
chemical potential (300 MeV<m,1 GeV), the initial color
SUc(3) symmetry is spontaneously broken down to t
SUc(2) group. Hence, in accordance with the usual count
of the Goldstone theorem, one might expect five NG boso
corresponding to the five broken symmetry generators
©2004 The American Physical Society06-1
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appear in the NJL model. We shall prove that in the 2
phase only three gapless excitations that can be ident
with NG bosons appear. Two of them have a quadratic
persion law, thus yielding no contradiction with the NC the
rem. For further applications, notice also the following im
portant criterion which is sufficient for the equality betwe
the number of NG bosons and the number of broken gen
tors @5#: If Qi , i 51, . . . ,N, is the full set of broken genera
tors and if^@Qi ,Qj #&50 for any pair (i , j ), then the number
of NG bosons is equal to the numberN of broken generators

Recall, that there is an alternative approach to study c
superconductivity, which is based on weak coupling per
bative QCD@10#. In this case, using the Schwinger-Dyso
equation with one-gluon exchange, the color supercond
ing phase was proved to exist at asymptotically high de
ties. In the two-flavored QCD investigations of color sup
conductivity five scalar NG bosons are shown to exist, wh
are mixing with gluons and required as longitudinal comp
nents for five massive gluons~color Meissner effect! @11#.
Hence, the results concerning the number of NG boson
both the QCD and the NJL model approaches seem to b
contradiction.1 The origin of the above discrepancy is relat
to the fact that the ground state of the considered sim
NJL-type model is not color neutral. Indeed, since the exp
tation value of the color charge operatorQ8 is nonvanishing,
^Q8&Þ0, the criterion@5# is not applicable, and an abnorm
number of NG bosons must arise. On the other hand
quark models with a color-neutral ground state, according
the above criterion, there should arise a normal numbe
five NG bosons all having normal~linear! dispersion laws.
Most interestingly, we find from the analysis of the ma
spectrum in our model that the masses of two scalar diqu
are proportional to the ground-state expectation value of
color chargê Q8&. Thus, when color neutrality—i.e.,^Q8&
50—is imposed in NJL-type models as an additional co
dition ~which can be realized by introducing a colo
chemical potentialm8 ‘‘by hand’’ @12#!, then two additional
massless particles should appear, and the total number o
bosons would be equal to 5. Recently, it was shown that
ground state of the 2SC phase of QCD is automatically co
neutral @13# due to a dynamical generation of the colo
chemical potentialm8 by gluon condensation. So we see th
the original discrepancy in the number of NG bosons
tween the QCD approach and an extended NJL appro
would disappear.

The paper is organized as follows. In Sec. II we inves
gate the considered NJL-type model in the framework of
Nambu-Gor’kov formalism and derive an effective meso
diquark action for a finite chemical potential. Moreover, t
gap equations for the quark and diquark condensates are
merically studied. Sections III and IV contain a detail
analysis of the massless and massive excitations in the

1Of course, it is necessary to point out that the QCD weak c
pling considerations are valid at asymptotic values of the chem
potential—i.e., atm.1 GeV—whereas NJL model results are co
rect for sufficiently lower valuesm,1 GeV. Thus, a direct com
parison of results seems to be problematic.
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quark sectors and explicitly show the influence of the co
properties of the ground state on the diquark mass spect
Section V contains a summary and discussions. Finally,
persion laws for gapless diquarks are derived in the App
dix.

II. MODEL AND ITS EFFECTIVE ACTION

It is well known that perturbative methods are not app
cable in the low-energy and -density QCD regions. Inste
effective field theories are usually considered. The m
popular effective theories are based on Lagrangians w
four-fermion interactions, like the NJL-type models. Let
first give several~very approximate! arguments somehow
justifying the chosen structure of our QCD-motivated N
model introduced below. For this aim, consider two-flav
QCD with a nonzero chemical potential and the color gro
SUc(3). By integrating in the generating functional of QC
over gluons and further ‘‘approximating’’ the nonperturb
tive gluon propagator by ad function, one arrives at an ef
fective local chiral four-quark interaction of the NJL typ
describing low-energy hadron physics. Finally, by perfor
ing a Fierz transformation of the interaction term and tak
into account only scalar and pseudoscalar (q̄q)- as well as
scalar~qq!-interaction channels, one obtains a four-fermion
model given by the Lagrangian2 ~in Minkowski space-time
notation!

L5q̄@gni ]n1mg02m0#q1G1@~ q̄q!21~ q̄ig5tWq!2#

1G2@ q̄Cedg5t2q#@ q̄edg5t2qC#. ~1!

In Eq. ~1!, m>0 is the quark chemical potential, which i
isotopically symmetric quark matter is the same for bo
quark flavors, qC5Cq̄t, q̄C5qtC are charge-conjugate
spinors, andC5 ig2g0 is the charge conjugation matrix~the
symbol t denotes the transposition operation!. The quark
field q[qia is a flavor doublet and color triplet as well as
four-component Dirac spinor, wherei 51,2; a51,2,3.
~Latin and Greek indices refer to flavor and color indice
respectively; spinor indices are omitted.! Furthermore, we
use the notationtW[(t1,t2,t3) for Pauli matrices in flavor
space; (ed)ab[eabd is the totally antisymmetric tensor in
color space, respectively. Clearly, Lagrangian~1! is invariant
under the chiralSU(2)L3SU(2)R ~at m050) and color
SUc(3) symmetry groups. The physics of light mesons@14–
17#, diquarks@18,19#, and meson-baryon interactions@20,21#
was successfully described in the framework of different N
models. These effective theories were involved for the inv
tigation of both ordinary@22–24#, hot and dilute@16#, and
color superconducting dense quark matter@25–28#. Usually,

-
al

2The most general Fierz-transformed four-fermion interaction

cludes additional vector and axial-vector (q̄q) as well as pseudo-
scalar, vector and axial-vector-like~qq! interactions. However, thes
terms are omitted here for simplicity.
6-2
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on the basis of light-meson and baryon phenomenology,
following restrictions on the coupling constants are cons
ered:

G1.p2/~6L2!, G2,G1 , ~2!

where L is the cutoff parameter in the three-dimension
momentum space, necessary to eliminate the ultraviolet
vergences appearing when quantum effects~loops! are taken
into account~usually L,1 GeV). Since Eq.~1! is a low-
energy effective theory for QCD, the external parameterm is
restricted from the above:m,L. In the region of coupling
constants~2! and at small values ofm ~the case of low
baryon densities!, only the operatorq̄q has a nonzero
vacuum expectation value. Thus, the chiral symmetry of
model is spontaneously broken in this case, whileSUc(3)
remains intact. The behavior of quark and meson masse
established rather well in the quark matter of low dens
@22,23#. In particular, the number ofp mesons, which are the
three NG bosons in this phase, is equal to the numbe
broken symmetry generators. Hence, this example is a g
demonstration of the fact that Lorentz noninvariance is
necessary but not sufficient condition for the abnormal nu
ber of NG bosons to appear in the system. At sufficien
high values of the chemical potentialm;300–350 MeV, the
two-flavor color superconductivity phase occurs in model~1!
@27#. So a nonzero diquark condensate (^qq&Þ0) is formed
in this case, and as a consequence, color symmetry is s
taneously broken down to theSUc(2) subgroup. A naive
counting gives us five NG bosons in this case@it is just the
number of broken generators of theSUc(3) group#. How-
ever, as will be shown further, there are only three gap
bosonic excitations of the 2SC quark-matter ground st
Two of them satisfy the quadratic dispersion law, in agr
ment with the NC theorem.

The linearized version of Lagrangian~1! that contains
auxiliary bosonic fields has the form

L̃5q̄@gni ]n1mg02s2m02 ig5tWpW #q2
s21pW 2

4G1
2

D* dDd

4G2

1
iD* d

2
@ q̄Cedg5t2q#2

iDd

2
@ q̄edg5t2qC#. ~3!

Lagrangians~1! and ~3! are equivalent to the equations
motion for bosonic fields, from which it follows that

Dd;q̄Cedg5q, s;q̄q, pW ; i q̄g5tWq. ~4!

However, it is more convenient to start our considerat
from Lagrangian~3!. Clearly, thes and pW fields are color
singlets. Besides, the~bosonic! diquark fieldDd is a color
antitriplet and a~isoscalar! singlet under the chiralSU(2)L
3SU(2)R group. Note further thats and Dd are ~Lorentz!
scalars, butpW are pseudoscalar fields. Hence, if^s&Þ0, then
the chiral symmetry of the model is spontaneously broken~at
m050), whereaŝ Dd&Þ0 indicates the dynamical breakin
of color symmetry. In the framework of the Nambu-Gor’ko
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formalism ~for a recent relativistic treatment see, e.g., R
@29#! quark fields are represented by a bispinor

C5S q
qCD .

Integrating in the generating functional based on the
grangian~3! over the quark fields, one obtains an effecti
meson-diquark action of the original model~1!:

Seff~s,pW ,Dd,D* d!52E d4xFs21pW 2

4G1
1

DdD* d

4G2
G

2
i

2
Trs f cxlnS D1 K2

K1 D2D . ~5!

Besides of an evident trace over the two-dimensio
Nambu-Gor’kov matrix, the Tr operation in Eq.~5! stands
for calculating the trace in spinor (s), flavor (f ), and color
~c! as well as four-dimensional coordinate~x! spaces, corre-
spondingly. We have used also the notation

K15 iD* dedg5, K252 iDdedg5,

D65 ign]n6mg02m02S6, S65s6 ig5pW tW . ~6!

Let us introduce notation for the ground-state expectat
values of the meson and diquark fields:^s&5s0 , ^pW &
5pW 0 , ^D* d&5D0*

d , ^Dd&5D0
d and

~K0
6 ,D0

6 ,S0
6!5~K6,D6,S6!us5s0 ,pW 5pW 0 ,Dd5D

0
d , . . .

The quantitiess0 ,p0
k ,D0

d ,D0*
d (k,d51,2,3) correspond to

the global minimum of the effective potentialVeff and can be
found as a solution of the system of equations

]Veff

]pk
50,

]Veff

]s
50,

]Veff

]Dd
50,

]Veff

]D* d
50, ~7!

usually called gap equations. In Eqs.~7! we used the follow-
ing definition of the effective potential:

Seffu s,pW ,Dd,D* d5const52Veff~s,pW ,Dd,D* d!E d4x, ~8!

where, in the spirit of the mean-field approximation, all fiel
are considered to be independent ofx. Without losing any
generality of the consideration, one can search for a solu
of Eqs.~7! in the form (D0

1 ,D0
2 ,D0

3)[(0,0,D). Moreover, we

suppose also thatpW 050. ~The last assumption is maintaine
by the observation that in the theory of strong interactionP
parity is a conserved quantity.! If D50, the color symmetry
of the model remains intact. IfDÞ0, thenSUc(3) symmetry
is spontaneously broken down toSUc(2), and the 2SCphase
is realized in the model. In this case, the system of gap eq
tions ~7! is reduced to
6-3
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s0

2G1
54iM E d4q

~2p!4E
H E1

q0
22~E1!2

1
E2

q0
22~E2!2

1
2E1

D1~q0!
1

2E2

D2~q0!J , ~9!

D

4G2
54iDE d4q

~2p!4 H 1

D1~q0!
1

1

D2~q0!J , ~10!

where D6(q0)5q0
22(E6)22uDu2, E65E6m, E

5AqW 21M2, andM5m01s0 is the constituent quark mas
In these and other similar expressions,q0 is a shorthand
notation forq01 i« sgn(q0), where the limit«→01 must be
taken at the end of all calculations. This prescription c
rectly implements the role ofm as chemical potential an
preserves the causality of the theory~see, e.g.,@30#!.

Let us now make a field shifts(x)→s(x)1s0 ,
D* d(x)→D* d(x)1D0*

d , Dd(x)→Dd(x)1D0
d and then ex-

pand the expression~5! into a power series of the meson an
diquark fields. The second-order termSeff

(2) of this expansion
is responsible for the mass spectrum of mesons and diqu
It looks like

S eff
(2)~s,pW ,Dd,D* d!52E d4xFs21pW 2

4G1
1

DdD* d

4G2
G

1
i

4
Trs f cxH S0S S1, 2K2

2K1, S2 D
3S0S S1, 2K2

2K1, S2 D J , ~11!

whereS0 is the quark propagator, which is an evident 232
matrix in the Nambu-Gor’kov space

S05S D0
1 K0

2

K0
1 D0

2D 21

[S a b

c dD , ~12!

whose matrix elements can be found by means of the pro
tion operator technique@31#:

a5E d4q

~2p!4
e2 iq(x2y)H q02E1

q0
22~E1!21uDu2e3e3

g0L̄1

1
q01E2

q0
22~E2!21uDu2e3e3

g0L̄2J , ~13!

b52 iDe3E d4q

~2p!4
e2 iq(x2y)

3H 1

q0
22~E1!21uDu2e3e3

g5L̄2

1
1

q0
22~E2!21uDu2e3e3

g5L̄1J , ~14!
01400
-

ks.

c-

c5 iD* e3E d4q

~2p!4
e2 iq(x2y)

3H 1

q0
22~E1!21uDu2e3e3

g5L̄1

1
1

q0
22~E2!21uDu2e3e3

g5L̄2J , ~15!

d5E d4q

~2p!4
e2 iq(x2y)H q01E1

q0
22~E1!21uDu2e3e3

g0L̄2

1
q02E2

q0
22~E2!21uDu2e3e3

g0L̄1J , ~16!

whereL̄65 1
2 @(16g0(gW pW 2M )/E# are projectors on the so

lutions of the Dirac equation with positive-negative energ
ande3e35diag(21,21,0) is the projector~up to a sign! in
the color space. Quantities~13!–~16! are nontrivial operators
in the coordinate, spinor, and color spaces, but they are
operators in flavor space.

A tedious but straightforward analysis ofSeff
(2) shows that

there arises a mixing between thes andD3 fields. We have

S eff
(2)~s,pW ,Dd,D* d!5S pp

(2)~pW !1S s3
(2)~s,D3,D* 3!

1S 1
(2)~D1,D* 1!1S 2

(2)~D2,D* 2!,

~17!

where (r51,2)

S r
(2)~Dr,D* r!52E d4x

DrD* r

4G2

1
i

2
Trs f cx$aDrerg5dD* rerg5%. ~18!

In the following we are going to search for gapless boso
excitations of the 2SC quark-matter ground state of
model only. Since we are mainly interested in the diqua
sector, the expression for thep-meson effective action
S pp

(2)(pW ) is omitted here. Moreover,S s3
(2)(s,D3,D* 3) has a

rather cumbersome form, so we also do not show it.@If
needed, both these expressions can be obtained immedi
from Eq. ~11!.#

Before proceeding further, we should fix the paramet
of our model. Here, we choose the parametrization proced
given in @15#. We simplify that model by ignoring the cor
rections to the pion-quark coupling constant that come fr
the mixing between the pion and axial vector. To fix t
model parameters, we require the model to reproduce
Goldberger-Treiman relation Mgp5Fp , where Fp

'93 MeV is the pion weak-decay constant, andgp is the
pion-quark coupling constant determined in the local N
model as follows:
6-4
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gp
225

2 iNc

~2p!4E d4q

~q22M2!2
. ~19!

~This integral is divergent, and a regularization is suppo
to be implemented here. In our work we use a thr
dimensional cutoff to make such integrals meaningful.!

Then, we require the observed pion mass (;140 MeV) to
be reproduced by the local NJL model with our paramete
After this, one more condition is needed to complete
parameter fixing procedure. We consider two possibilit
to finalize it: ~i! fix the model parameters so that the QC
sum rules estimate for the chiral condensate^q̄q&
'(2245 MeV)3 is reproduced in our model,~ii ! choose the
model parameters in a way that allows one to obtain
correct description of ther→pp decay, as was done in@15#.
In the first case~let us refer to this set of parameters as
A!, the cutoffL is about 618 MeV, and the four-quark inte
action constantG1 is equal to 5.86 GeV22. The remaining
constantG2 is chosen according to the Fierz transformati
asG253G1/454.40 GeV22. The current quark massm0 is
fixed via the gap equations to the value: 5.7 MeV. The c
stituent quark mass in the vacuum~at zeroth temperature an
chemical potential! amounts to 350 MeV.

In the second case, we obtain a different set of mo
parameters, which will be referred to, throughout the pap
as set B. Imposing the condition that an extension of t
model to the vector channel would give the experimen
value for ther meson width~ther meson decays mostly int
a couple of charged pions, and the decay is described by
constantgr'6.1.! and keeping in mind that in the local NJ
model one gets a natural connection betweengr and gp

~discarding pion–axial-vector transitions!, A6gr5gp , we
obtain L5856 MeV, G152.49 GeV22, G253G1/4
51.87 GeV22, andm053.6 MeV. In the vacuum the con
stituent quark mass is 233 MeV, which is small, compared
the case, where the chiral condensate is used to fix the m
parameters.3 A similar procedure has been implemented
@28# in the chiral limit. Here, we keep the current quark ma
nonzero in order to reproduce the pion mass in the vacu

Solving the gap equations at a fixed chemical potent
we obtain the constituent quark massM and the color gapD
that satisfy the global minimum of the effective potential.
Figs. 1 and 2, one can see the quark massM and the color
gapD versus the chemical potential for parameter sets A
B. For parameter set A, one observes a first-order phase
sition from hadron matter to the 2SC phase. The gaps~con-
stituent quark mass and color gap! change abruptly when th
chemical potential reaches the vacuum value ofM ~see Fig.
1!. On the contrary, if parameter set B is chosen, the g
reveal a rather smooth character near the phase trans
which is typical for a phase transition of second order~see
Fig. 2!.

3A larger quark mass can be obtained if one takes into accoun
mixing between the pion and axial vector. However, we omit it
our paper for simplicity and for the reason that this mixing is ne
ligible in the 2SC phase.
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III. GAPLESS EXCITATIONS IN THE DIQUARK SECTORS

SinceD1 in Eq. ~17! is not mixed with other fields, let us
first of all, focus on the diquarkD1 sector. If D1(x)
5@w1(x)1 iw2(x)#/A2, D* 1(x)5@w1(x)2 iw2(x)#/A2,
then the effective actionS 1

(2)(D1,D* 1) from Eq.~17! can be
presented in the form

S 1
(2)~D1,D* 1![S 1

(2)~w1 ,w2!

52
1

2E d4xd4ywk~x!Gkl~x2y!w l~y!,

~20!

where the 232 matrix G(x2y) is the inverse propagator o
the w1 ,w2 fields @summation overk,l 51,2 is implied in Eq.
~20!#. Its matrix elements can be found via a second variat
of S 1

(2) :

he

-

FIG. 1. The constituent quark massM ~solid line! and the color
gapD ~dashed line! as functions of the chemical potential~param-
eter set A!.

FIG. 2. The constituent quark massM ~solid line! and the color
gapD ~dashed line! as functions of the chemical potential~param-
eter set B!.
6-5
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Gkl~x2y!52
d2S 1

(2)

dw l~y!dwk~x!
. ~21!

In momentum space, the Fourier-transformed componen
the G matrix have the structure

G11~p!5G22~p!5
1

2
@GD* D~p!1GD* D~2p!#,

G12~p!52G21~p!5
i

2
@GD* D~p!2GD* D~2p!#. ~22!

The derivation of these relations is given in the Append
where the quantityGD* D(p) is also presented@see Eq.~A5!#.
The particle dispersion laws are defined by zeros of detḠ(p)
in the p0 plane—i.e., by the equation

detḠ~p!5G11~p!G22~p!2G12~p!G21~p!

5GD* D~p!GD* D~2p!50. ~23!

Clearly, the solutions of Eq.~23! with positive and negative
p0 correspond to particles and antiparticles, respectively.
us first putp5(p0,0,0,0). In this case, detḠ(p0) is an even
function ofp0, so solutions of Eq.~23! in thep0

2 plane might
be searched for. They are the squared masses of ex
states in theD1 sector of the model. Moreover, all thes
formulas are then greatly simplified. Indeed, it follows fro
Eq. ~A5! at pW 250 that

GD* D~p0!54ip0E d4q

~2p!4 H 1

~p01q01E1!D1~q0!

1
1

~p01q02E2!D2~q0!
J [24p0H~p0!,

~24!

where it is possible to integrate overq0, using the following
prescription: (p01q0)→(p01q0)1 i« sgn(p01q0) and q0
→q01 i« sgn(q0) with «→01 @see also comments after fo
mula ~10!#, and

H~p0!52
1

2E d3q

~2p!3 H 1

~p01E11ED
1!ED

1

1
u~E2!

~p02E22ED
2!ED

2
1

u~2E2!

~p02E21ED
2!ED

2J .

~25!

In Eq. ~25! ED
65A(E6)21uDu2. Since the integral on the

right-hand side~RHS! of this equation is ultraviolet diver
gent, we regularize it, as the other divergent integrals,
using a three-dimensional cutoffL—i.e.,qW 2<L2. Then, Eq.
~23! is transformed to

p0
2H~p0!H~2p0!50, ~26!
01400
of
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from which it is evident that there is a solutionp0
250, cor-

responding to a gapless excitation of the 2SC ground st
Since the functionH(p0) does not vanish atp050 andm

Þ0, this solution may be identified in the case of finitepW 2

with a NG boson with the quadratic dispersion lawp0

;pW 2/H(0) ~see the Appendix!. Now, let us suppose that a
some nonzero valuep052m1 the function H(p0) has a
zero—i.e.,H(2m1)50. Then, detG(p0) has two zerosp0

56m1—i.e., the pointp0
25m1

2 is a solution of Eq.~26!—
and the second bosonic excitation of this sector has the n
zero massm1. In the low-p0 expansion we haveH(p0)
5H(0)1p0H8(0)1•••, where

H~0!5
1

2E d3q

~2p!3 H u~E2!

~E21ED
2!ED

2
1

u~2E2!

~E22ED
2!ED

2

2
1

~E11ED
1!ED

1J ,

H8~0!5
1

2E d3q

~2p!3 H u~E2!

ED
2~E21ED

2!2
1

u~2E2!

~E22ED
2!2ED

2

1
1

ED
1~E11ED

1!2J . ~27!

Thus, in this approximationm15H(0)/H8(0). Them1 vs m
plots for particular values of the coupling constantsG1 ,G2
and the cutoff parameterL discussed at the end of Sec.
~or, equivalently, for the valuesD andM from Figs. 1 and 2!
are presented in Figs. 3 and 4. In Fig. 3 the values ofm1 are
calculated form5350–400 MeV when parameter set A
involved. The leftmost point corresponds to the condition
the phase transition (m'350 MeV). At smallerm the color
gap equals zero and Eqs.~27! cannot be applied, since the
have been derived by using Eq.~10! with DÞ0. Similarly, in

FIG. 3. The diquark massm15H(0)/H8(0) as a function of the
chemical potential~parameter set A!.
6-6
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Fig. 4 the axism begins with 250 MeV. At smallerm ~but
greater than 233 MeV!, the value ofm1 is almost zero. Com-
mon to both parameter sets A and B is that the values ofm1
are small and thus justify the series expansion of the func
H(p0) aroundp050.4 Analogous results are obtained for th
D2 sector of the model. There, as in theD1 sector, only one
massless boson with the quadratic dispersion law as well
massive one with the massm2[m1 is found. Evidently, the
two massless and two massive bosons in theD1, D2 sectors
form antidoublets with respect to the unbrokenSUc(2) sym-
metry.

Now let us consider the sector with mixing of the com
plex diquarkD3 field and the scalars meson. Introducing
new real fields f(x)5@D3(x)1D* 3(x)#/A2, c(x)
5 i @D* 3(x)2D3(x)#/A2, we rewrite the effective action
S s3

(2) @here we omit the cumbersome expression for this qu
tity, however it can be easily reproduced from Eq.~11!# in
the form

S s3
(2)~s,D3,D* 3!52

1

2E d4xd4y„s~x!,f~x!,c~x!… P~x

2y! „s~y!,f~y!,c~y!…t, ~28!

whereP(x2y) is the inverse propagator of thes meson and
the diquark fieldsf,c. Clearly, it is a 333 matrix, whose
elements can be obtained from Eq.~28! by taking all second
variational derivatives ofS s3

(2) over the fieldss, f, andc.

We have calculated the momentum-space matrixP̄(p) ~cor-
responding explicit formulas and relations are omitted!, and
then, puttingp5(p0,0,0,0), found that det@P̄(p0)# has only
one zero atp0

250. Therefore, only one NG boson, which
an SUc(2) singlet, exists in this sector„as in theD1,D2

4The numerical investigation shows that the mass valuem1 found
in the low-p0 approximation~see Figs. 3 and 4! differs from the
exact solution of the equationH(m1)50 by no more than 10%.

FIG. 4. The diquark massm15H(0)/H8(0) as a function of the
chemical potential~parameter set B!.
01400
n

s a

n-

sectors, each zero of det@P̄(p0)# in the p0
2 plane means the

mass squared of the ground-state excitation, this time in
mixed s-D3 sector….5

As was mentioned above, in the 2SC phase of the mo
whereDÞ0, the colorSUc(3) symmetry of the ground stat
is spontaneously broken down to theSUc(2) group. Hence,
in accordance with the Goldstone theorem, it is genera
expected that five NG bosons would appear in the the
However, we have proved that in theD1,D2,D3 sectors of
the model only three massless bosons exist, which can
identified with NG bosons. Therefore, there seems to b
deficiency of two NG bosons in the framework of the mod
under consideration. In spite of this fact, there are, howe
no contradictions with the NC theorem, since two of t
three found NG bosons have quadratic dispersion laws
upW u→0. In addition, the model contains also light massi
diquarks.

Usually, in the framework of the NJL model, the 2S
phase is studied in the region of coupling constants~2!. In
this case, atm50 we have a chirally noninvariant phas
even ifm0→0, and the transition to the 2SC phase occurs
some finite value of the chemical potential. Formally, ho
ever, one can consider the region

v5$~G1 ,G2!:G2.p2/~4L2!, p2~G22G1!.2G1G2L2%,

~29!

where~even atm50) the 2SC phase is realized@32#. As can
easily be seen from Eq.~27!, in the case ofm50 we have
H(0)50 andm15m250, and the total number of gaples
excitations~NG bosons! in the D1 and D2 sectors of the
model equals 4. They form two masslessSUc(2) antidou-
blets. Apart from this, there is one NG boson, which is
SUc(2) singlet, in the mixeds-D3 sector. Naturally, all these
excitations have a linear dispersion law, as should be in
relativistically invariant case~see the Appendix!. However,
at an arbitrary smallm, particles from one of these antidou
blets acquire nonzero masses, and the dispersion laws fo
two massless particles from the remaining antidoublet
changed essentially from the linear to quadratic laws.

Note finally, that in the above consideration we used
real-imaginary part parametrization for diquark fields:

D1~x!5@w1~x!1 iw2~x!#/A2,

D2~x!5~ w̃1~x!1 i w̃2~x!!/A2,

D3~x!2D5~f~x!1 ic~x!!/A2, ~30!

whereDr(x) are the unshifted diquark fields from Lagran
ian ~3! andD5^D3&. However, one can use also an altern
tive ‘‘polar coordinate’’ parametrization

5A detailed investigation of the meson-diquark spectrum includ
the s-D3 mixing is in preparation.
6-7
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S D1~x!

D2~x!

D3~x!
D 5expH 2 i(

a

la
t ja~x!

A2D
J 1

A2 S 0

0

A2D1h~x!
D

5
1

A2 S j52 i j4

j72 i j6

A2D1h1 i
2

A3
j8
D 1o~j i ,h!, ~31!

wherela are Gell-Mann matrices and the summation ov
a54, . . . ,8 isimplied @the form of an exponential multiplie
in Eq. ~31! corresponds to the fact thatDr(x) is anSUc(3)
antitriplet#. Comparing Eqs.~30! and~31! at smallj i ,h, we
see that

w15j5 , w252j4 , w̃15j7 ,

w̃252j6 , f5h, c5
2

A3
j8 . ~32!

Further, one should insert Eq.~31! into Eq. ~5! and expand
the resulting expression into a series of meson andja ,h
fields. It is easily seen that in the second order of the n
variables the effective action is a sum similar to Eq.~17!. In
particular, it means that the diquark fieldsj4 ,j5 are decou-
pled from other fields, and their effective action looks li
Eq. ~20! with the replacement~32! used. So some elemen
of the inverse propagator matrix forj4 ,j5 fields differ by a
sign from Gkl(x2y), Eq. ~21!, but the determinant of the
whole momentum space matrix is not changed. Hence,
mass spectrum, the dispersion laws, etc., in thej4 ,j5 fields
are the same, as in the case with old fieldsw1 ,w2. Similar
conclusions are valid for the rest of new variables; i.e., s
physical characteristics of the model, such as particle mas
dispersion laws, etc., do not depend on the choice of fi
parametrizations, Eq.~30! or ~31!. In particular, the numbe
of abnormal NG bosons, which equals 3 in the model un
consideration, is a parametrization-invariant quantity.6

IV. COLOR ASYMMETRY AND MASSES
OF SCALAR DIQUARKS

As was noted in@13#, the color superconducting phase
automatically color neutral in QCD, but this does not ho
for the NJL model under consideration. Massive scalar
quarks and, as a consequence, the abnormal number o
bosons in the model discussed in previous sections testify
this. As mentioned in the Introduction, for the number of N
bosons to equal the number of broken generators of the

6In Refs. @4,5# an abnormal number of NG bosons in the sa
SU(2)3U(1) toy model was discovered. But in@4# the parametri-
zation~30! was used for the scalar doublet, whereas in@5# a ‘‘polar
coordinate’’ parametrization, similar to Eq.~31!, was used. Evi-
dently, their results coincide; i.e., the abnormal number of N
bosons, particle masses, formulas for dispersion laws are the s
01400
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G

or

n-

derlying symmetry group@in our caseSUc(3)], theground-
state expectation value for the commutator of any two b
ken symmetry generatorsQa and Qb must be zero:
^@Qa ,Qb#&50 @5#. This criterion is not fulfilled for the NJL
model considered here—namely, the ground-state expe
tion value of the color charge operatorQ85q̄g0l8q does not
vanish—and, therefore, the usual counting rule for N
bosons is not applicable.

Let us look at the functionH(p0) at p050. One can
rewrite the expression~27! in a different form:

H~0!5
1

2E d3q

~2p!3

1

D2 S 22u~m2E!1
E1

ED
1

2
E2

ED
2D .

~33!

This formula can be expressed in terms of quark densit
For this purpose, we need the expression of the thermo
namical potential of the system, which in the mean-field a
proximation is equal to the value ofVeff in its global mini-
mum point, supplied by the gap equations—i.e.,

V~m!5Veff~s0 ,pW 0 ,D0
d ,D0*

d!, ~34!

whereVeff was given in Eq.~8!. Further, one can divide the
thermodynamical potential into several terms

V~m!5 (
c51

3

Vc~m!1
~M2m0!2

4G1
1

uDu2

4G2
, ~35!

whereVc(m) is the contribution from the color-c quark, de-
fined as follows:

V1~m!5V2~m!522E d3q

~2p!3
~ED

11ED
2!,

V3~m!522E d3q

~2p!3
~ uE1u1uE2u!. ~36!

The contributions from color-1 and color-2 quark
V1(2)(m), are equal due to the remainingSUc(2) color sym-
metry after the globalSUc(3) symmetry group is spontane
ously broken in the color superconducting phase. The th
color quark, which does not condensate, givesV3(m). Then,
one can calculate the densitiesnc of color-1, -2, and -3
quarks separately without introducing additional chemi
potentials for each color simply by differentiatingVc(m)
over m—i.e.,

nc52
]Vc~m!

]m
, c51,2,3, ~37!

n15n252E d3q

~2p!3 S E1

ED
1

2
E2

ED
2D ,

n354E d3q

~2p!3
u~m2E!. ~38!

e.
6-8
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Equation~33! can thus be transformed to

H~0!5
1

8D2
~n11n222n3!5

A3^Q8&

8D2
. ~39!

From Eq. ~39! and the fact that the diquark massm1
5H(0)/H8(0) is found to be nonzero~see Figs. 3 and 4!,
one concludes that the 2SC ground state in the NJL mo
under consideration has finite color charge^Q8&. Evidently,
this fact is related to the inequality of color quark densit
n1,2.n3 for paired ~1,2! and unpaired~3! quarks—i.e., to
color asymmetry. Moreover, as discussed in the Appen
the nonzero value ofH(0) is responsible for the abnorma
dispersion lawp0;pW 2/H(0) for two NG bosons.

To restore the local color neutrality in the NJL model, o
can, e.g., include an additional termm8Q8 and impose the
color-neutrality condition

^Q8&52
]V~m,m8!

]m8
50 ~40!

or consider the superconducting matter as composed of
ored domains, with the global color charge being equal z
The latter, however, goes beyond the mean-field approxi
tion exploited here and should be considered as an app
mation for the case of large colored domains. Anyway,
true ground state should be checked to give the abso
minimum of the thermodynamical potential.

The inclusion of an additional chemical potentialm8 ‘‘by
hand,’’ however, does not contradict QCD. As discussed
@13#, a nonvanishing expectation value of the gluon fieldA0

8,
corresponding to the eighth generator in theSUc(3) group,
gives rise to a nonvanishing value ofm8, which then cancels
certain tadpole contributions and restores the color neutra
This cannot occur in the NJL model automatically beca
there are no gluons in it.

V. SUMMARY AND DISCUSSIONS

Recently, it has been shown that in QCD with a nonz
strangeness chemical potential@4,5#, as well as in some mod
els for relativistic massive vector field condensation@6#, the
number of NG bosons can be less than the number of bro
symmetry generators, so that the usual counting rule for
bosons evidently does not hold. In the present paper, we h
presented another relativistic model providing us with an
normal number of NG bosons. This is an NJL-type mo
with two light-quark flavors, where a single quark-chemic
potential is taken into account. In the color superconduct
phase of this model, the colorSUc(3) group is spontane
ously broken down toSUc(2); i.e., the number of broken
symmetry generators equals 5. Despite this fact, there
peared only three NG bosons in the 2SC phase; two of th
form an antidoublet with respect to the unbrokenSUc(2)
subgroup and have quadratic dispersion laws. The remai
one is anSUc(2) singlet, so there are no contradictions w
the NC theorem@3#. Moreover, there exists anSUc(2) anti-
doublet of light diquarksD1,D2 with massesm1, the behav-
01400
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ior of which at final chemical potentialm is shown in Figs. 3
and 4 for the parameter sets A and B, respectively.

Most interestingly, we found that the diquark massesm1
5H(0)/H8(0) are proportional to the ground-state avera
of the color charge operator̂Q8&51/A3(n11n222n3).
Here, the quark densitiesn1 , n2 of paired quarks with color
1,2 are equal due to the remainingSUc(2) symmetry and
larger than the densityn3 of the unpaired color-3 quark
Thus, the ground state of the considered NJL-type mode
evidently color asymmetric. It is just the appearance of t
nonvanishing expectation value^Q8& which simultaneously
leads to a violation of the criterion for the equality of th
number of NG bosons and broken symmetry generators@5#
and to the appearance of the quadratic dispersion law for
NG diquarks@compare Eqs.~38!, ~A6!#.

In the investigations of color superconductivity in th
two-flavored QCD, five scalar NG bosons are argued to
ist. They are mixing with gluons and required as longitudin
components for five massive gluons~color Meissner effect!
@11#. The fact that we find an abnormal number of three N
bosons does not directly contradict QCD. Namely, in t
color superconducting phase of QCD a nonvanishing c
densate of the eighth gluon field componentA0

8 appears,
which induces a color chemical potentialm8 and cancels
certain tadpole contributions, responsible for the nonvan
ing color charge of the ground state@13#. This mechanism
just leads to color neutrality. Obviously, there arises
question, how can one reconcile the considered NJL
proach with QCD? Insofar as NJL-type models do not co
tain gluon fields, the required contribution from the co
densed eighth gluon field does not follow automatica
Therefore, the tadpole contribution becomes unbalanced
gluon contributions. It can be cancelled ‘‘by hand’’—e.g
with the help of the additional color chemical potentialm8
simulating the omitted gluon contribution. In such enlarg
NJL models the condition of color neutrality of the groun
state—i.e.,̂ Q8&50—can be imposed as an additional phy
cal requirement@12#. According to our results, one gets i
this case two additional NG bosons as well as a chang
quadratic dispersion laws into normal linear ones. Thus,
abnormal number of three NG bosons might, in princip
become converted into the normal number five found
QCD.

Nevertheless, what to do now with these five NG boso
arising in the color neutral 2SC phase of an enlarged N
type model? Clearly, in the framework of the standard N
model one cannot apply the color Meissner effect, in orde
absorb these NG bosons into longitudinal degrees of freed
of massive gluons. A possible way out of this problem cou
be an extension of the NJL mode via the inclusion of pert
bative gluons, fluctuating around the original low-ener
gluonic fields~realized, e.g., by instantons or other nonp
turbative background fields, which were already integra
out to yield the effective four-quark interactions! @33#. Obvi-
ously, the color Meissner effect could then be realized
such perturbative gluons.

In addition, let us remark that the above discussions re
to the case of locally neutral quark matter, where color n
trality should indeed be required. On the other hand, glo
6-9
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color neutrality does not demand local color neutrality:
example, one can assume the ground state as being
posed of colored domains. Anyway, to decide which of
considered ground states is in favor, the absolute minim
of the thermodynamic potential should be calculated in e
case.~Note that the presence of domains means a violatio
translational invariance and is not consistent with the sim
mean-field approach.!

Finally, notice that in the framework of the consider
NJL-type of model there arises a mixing between thes me-
son andD3 diquark in the 2SC phase. The behavior ofs-,
D3- as well asp-meson masses versusm in the 2SC phase is
now under consideration.
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APPENDIX: THE G-MATRIX ELEMENTS
AND DISPERSION LAWS

Using the effective action~18!, let us introduce auxiliary
quantities

GD* D~z!52
d2S 1

(2)

dD1~y!dD* 1~x!

5
d~z!

4G2
2 i Trsc$a~z!e1g5d~2z!e1g5%,

GDD* ~z!52
d2S 1

(2)

dD* 1~y!dD1~x!

5
d~z!

4G2
2 i Trsc$d~z!e1g5a~2z!e1g5%, ~A1!

whered(z) is the Dirac delta function,z5x2y, and a(z)
and d(z) are operators~13! and ~16!, respectively. Since
d2S 1

(2)/(dD1dD1)5d2S 1
(2)/(dD* 1dD* 1)50 and

d

dw1
5

1

A2
S d

dD
1

d

dD*
D ,

d

dw2
5

i

A2
S d

dD
2

d

dD*
D ,

the matrix elements of the inverse propagator matrix~21!
have the form

G11~z!5G22~z!5
1

2
@GD* D~z!1GDD* ~z!#,

G12~z!52G21~z!5
i

2
@GD* D~z!2GDD* ~z!#. ~A2!

For an arbitrary functionF(z), it is possible to define the
Fourier-transformed one,F̄(p), by the relation
01400
r
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F̄~p!5E d4zF~z!eipz, i.e. F~z!5E d4p

~2p!4
F̄~p!e2 ipz.

~A3!

Now, using Eq.~A3!, it is possible to get, from Eq.~A1!,

GD* D~p!5
1

4G2
2 iTrscE d4q

~2p!4
$ā~q1p!e1g5d̄~q!e1g5%,

GDD* ~p!5
1

4G2
2 iTrscE d4q

~2p!4
$d̄~q1p!e1g5ā~q!e1g5%,

~A4!

where the Fourier-transformed expressionsā(q), d̄(q) can
be easily derived from Eqs.~13!, ~16!. It follows from Eqs.
~A4! that GD* D(2p)5GDD* (p). So, taking into accoun
Eqs.~A2!, one can easily obtain the relations~22!.

After tedious calculations we arrive at the expression

GD* D~p!5
4ip0

~2p!4E d4q

@~p01q01m!22Ep1q
2 #

3Fp01q01m1Eq

D2~q0!
1

p01q01m2Eq

D1~q0! G
2

4i

~2p!4E d4q

@~p01q01m!22Ep1q
2 #

3FEqpW 21~q01m1Eq!~pW •qW !

EqD2~q0!

1
EqpW 22~q01m2Eq!~pW •qW !

EqD1~q0!
G . ~A5!

Here, the notation that was introduced after Eq.~10! is used.

Moreover,Eq[E5AqW 21M2. Note that expression~A5! is
obtained under the assumption thatDÞ0; i.e., it is valid only
in the 2SC phase. In this case, the gap equation~10! was
used to eliminate the coupling constantG2 from relation
~A4! in favor of other model parameters.

Quasiparticle dispersion laws are defined by Eq.~23! or,
equivalently, by the two equationsGD* D(6p)50. One can
easily see that atpW 250 the first integral in RHS of Eq.~A5!
coincides with Eq.~24! having an evident zero atp050.
This is just the dispersion law of a gapless particle~NG
boson! at pW 250. Let us find the dispersion law for the NG
boson at small nonzero values ofpW 2—i.e., try to solve the
equationGD* D(p)50 at p→0. Expanding expression~A5!

into a Taylor series of (p0 ,pW ) at the point (0,0W ) and taking
into account only leading terms, we have, atmÞ0, the fol-
lowing equation connecting the energy and momentum of
massless particle~in Sec. III, it was proved that such a pa
ticle, NG boson, exists in theD1 sector of the model!:
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GD* D~p![4ip0H~0!2
4ipW 2

~2p!4E d4q

D2~q0!@~q01m!22Eq
2#

3H 12
2qW 2

3Eq~q01m2Eq!
J

2
4ipW 2

~2p!4E d4q

D1~q0!@~q01m!22Eq
2#

3H 11
2qW 2

3Eq~q01m1Eq!
J 1•••
. D

t.

01400
50, ~A6!

where the quantityH(0) ~which is nonzero atmÞ0) is given
in Eq. ~27!. Obviously, the quadratic dispersion law,p0

;pW 2, for a massless particle follows from Eq.~A6!. How-
ever, in case of relativistic invariance of the system@i.e., at
m50 and for coupling constants from the regionv, Eq.
~29!# or for a color-neutral ground state, whenH(0)50, the
dispersion law for a NG boson changes. Indeed, in this c
the term 4ip0H(0) from Eq. ~A6! should be replaced by
4ip0

2H8(0) @H8(0) is presented in Eq.~27!#, and one arrives
at a linear dispersion law for NG bosons.
.
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@5# T. Schäfer et al., Phys. Lett. B522, 67 ~2001!.
@6# F. Sannino, Phys. Rev. D67, 054006~2003!.
@7# G. E. Volovik, Exotic Properties of Superfluid3He ~World Sci-

entific, Singapore, 1992!, pp. 119–121.
@8# Y. Nambu, J. Stat. Phys.115, 7 ~2004!.
@9# C.P. Hofmann, Phys. Rev. B60, 388 ~1999!.

@10# D.T. Son, Phys. Rev. D59, 094019~1999!; R.D. Pisarski and
D.H. Rischke,ibid. 60, 094013~1999!; 61, 074017~2000!; T.
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