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All-orders infrared freezing of observables in perturbative QCD

D. M. Howe* and C. J. Maxwell†

Centre for Particle Theory, University of Durham, South Road, Durham, DH1 3LE, England
~Received 17 October 2003; published 13 July 2004!

We consider a Borel sum definition of all-orders perturbation theory for Minkowskian QCD observables
such as theRe1e2 ratio, and show that both this perturbative component and the additional nonperturbative
all-orders operator product expansion~OPE! component can remainseparatelywell-defined for all values of
energyAs, with the perturbative component dominating ass→`, and with both components contributing as
s→0. In the infrareds→0 limit the perturbative correction to the parton model result forRe1e2 has an
all-orders perturbation theory component which smoothly freezes to the valueR(0)52/b, where b5(33
22Nf)/6 is the first QCD beta-function coefficient, withNf flavors of massless quark. For freezing one
requiresNf,9. The freezing behavior is manifested by the ‘‘contour-improved’’ or ‘‘analytic perturbation
theory’’ ~APT!, in which an infinite subset of analytical continuation terms are resummed to all-orders. We
show that for the Euclidean Adler-D function, D(Q2), the perturbative component remains defined into the
infrared if all the renormalon singularities are taken into account, but no analogue of the APT reorganization
of perturbation theory is possible. We perform phenomenological comparisons of suitably smeared low-energy
data for theRe1e2 ratio, with the perturbative freezing predictions, and find good agreement.

DOI: 10.1103/PhysRevD.70.014002 PACS number~s!: 12.38.Bx, 12.38.Aw, 12.38.Qk, 13.60.Hb
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I. INTRODUCTION

In this paper we wish to address the question of whet
QCD perturbation theory can be used to make prediction
the low-energy infrared regime where one expects nonpe
bative effects to dominate. Such an extension of the appl
bility of perturbation theory, beyond the ultraviolet regime
asymptotic freedom, would obviously enable one to t
QCD in new ways. Reorganizations of fixed-order pertur
tion theory exhibiting a stable infrared freezing behav
have previously been formulated and studied; these inc
the so-called ‘‘analytic perturbation theory’’~APT! approach
initiated by Shirkov and Solovtsov in Refs.@1# ~for a review
see Ref.@2#!, and the variational perturbation theory~VPT!
approach@3#. Our discussion will address the more fund
mental question of how all-orders QCD perturbation theo
and the nonperturbative operator product expansion~OPE!
contribution, can remain defined in the low-energy regim
We will discover that this is possible for Minkowskian ob
servables, and that the APT approach should be asymp
to the all-orders perturbative result which also exhibits
same infrared freezing behavior found with APT. For Eucl
ean quantities, however, we will find that all-orders pert
bation theory only exhibits stable infrared behavior if o
has complete information on the perturbative corrections
all-orders, and that this behavior is not in general related
the infrared behavior found using APT.

We will focus our discussion on theRe1e2(s) ratio, at
c.m. energyAs. This is a Minkowskian quantity derived b
analytical continuation from the Euclidean QCD vacuum p
larization function. The corrections to the parton model
sult for Re1e2(s) will consist of a perturbative part, which
can be developed as a power series in the renormalized Q
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coupling a(s)[as(s)/p, and a nonperturbative part whic
can be developed as an OPE in powers ofL2/s, the first term
corresponding to the lowest dimension relevant operator,
gluon condensate, being proportional to (L2/s)2. The key
point is that the combination of the all-orders perturbati
series and OPE must be well-defined at all values ofs, since
Re1e2(s) is a physical quantity. Each part by itself, howeve
exhibits pathologies. Specifically, the perturbation series
hibits n! growth in the perturbative coefficients, at larg
ordersn. Attempts to define the all-orders sum of the pert
bation series using a Borel integral run into the difficulty th
there are singularities on the integration contour termed
frared renormalons@4#. It turns out, however, that the resul
ing ambiguity in defining the Borel integral is of the sam
form as ambiguities in the coefficient functions involved
the OPE, and so choosing a particular regulation of the Bo
integral ~such as principal value! induces a correspondin
definition of the coefficient functions, and the sum of the tw
components is well-defined@4,5#. There is a further crucia
pathology of the Borel integral, which we shall refer to as t
‘‘Landau divergence.’’ This means that at a critical ener
s5sL , the Borel integral diverges. It should be stressed t
the value ofsL should not be confused with the ‘‘Landa
pole’’ or ‘‘Landau ghost’’ in the QCD couplinga(s). The
‘‘Landau ghost’’ is completely unphysical and schem
dependent, whereas the divergence of the Borel integra
completely scheme-independent@4#. For Minkowskian quan-
tities such asRe1e2 there is an oscillatory factor in the Bore
transform in the integrand, arising from the analytical co
tinuation from Euclidean to Minkowskian, which means th
the Borel integral is finite ats5sL , and diverges fors
,sL . To go to lower energies thansL we shall show that one
needs to modify the form of the Borel integral, the modifi
form now having singularities on the integration contour c
responding toultraviolet renormalons, correspondingly to g
below s5sL one needs to resum the OPE to all-orders a
recast it as a modified expansion in powers ofs/L2. One
©2004 The American Physical Society02-1
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then finds that the ambiguities in regulating this modifi
Borel integral, are of the same form as ones in the modi
OPE, and fors,sL the sum of the two components is aga
well-defined. In the infrareds→0 limit the modified OPE
resulting from resummation can contain a constant term
dependent ofs even though such a term is not invisible
perturbation theory, so both the perturbative and nonper
bative components will contribute to the infrared freezi
limit. The oscillatory factor in the Borel integral means th
it freezes smoothly to 2/b in the infrared, whereb5(33
22Nf)/6 is the first SU(3) QCD beta-function coefficien
with Nf quark flavors.

The arguments sketched above suggest that the all-or
perturbative and nonperturbative components
Minkowskian quantities such asRe1e2(s) canseparatelyre-
main defined at all energies, with the perturbative part be
dominant in the ultraviolet and both components contribut
in the infrared limit. One can then compare all-orders per
bative predictions with data, having suitably smeared a
averaged over resonances@6# to suppress the nonperturbativ
mass threshold effects. In practice, of course, we do not h
exact all-orders perturbative information. We know exac
the perturbative coefficients of the corrections to the par
model result forRe1e2 to next-next-leading order~NNLO!,
i.e. including terms of orderas

3 @7#. Clearly, conventional
fixed-order perturbation theory forRe1e2 will not exhibit the
freezing behavior in the infrared to be expected for the
orders perturbation theory. What is required is a rearran
ment of fixed-order perturbation theory which has freez
behavior in the infrared. As we have discussed in a rec
paper @8# the resummation to all-orders of the converge
subset of analytical continuation terms~‘‘large-p2’’ terms!,
arising when the perturbative corrections to the Euclide
Adler-D(2s) function at a given order are continued to t
MinkowskianRe1e2(s), recasts the perturbation series as
expansion in a set of functionsAn(s) which are well-defined
for all values of s, vanishing ass→` in accord with
asymptotic freedom, and with all butA1(s) vanishing in the
infrared limit, with A1(s) approaching 2/b to provide infra-
red freezing behavior to all-orders in perturbation theo
This ‘‘contour-improved’’ perturbation theory~CIPT! ap-
proach is equivalent to the analytic perturbation the
~APT! mentioned above@1# in the case ofRe1e2(s). We
gave explicit expressions for the functionsAn(s). At the
two-loop level these can be expressed in terms of the L
bert W-function @9,10#. To make contact with the all-order
perturbative result represented as a Borel integral, we n
that the CIPT-APT reorganization of perturbation theory c
responds to leaving the oscillatory factor in the Borel tra
form intact whilst expanding the remaining factor as a pow
series. Integrating term-by-term then yields the functio
An(s). The presence of the oscillatory factor in these in
grals guarantees that theAn(s) are well-defined at all ener
gies. The CIPT-APT series should thus be asymptotic to
Borel integral at both ultraviolet and infrared energie
Whilst a reorganized fixed-order perturbation series exhi
ing stable infrared freezing behavior is possible
Minkowskian quantities, we shall show that it is not possib
for Euclidean observables such as the AdlerD-function,
01400
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D(Q2). For Euclidean observables the Borel integral do
not contain the oscillatory factor and so is potentially dive
gent ats5sL , although as we shall show in the so-calle
leading-b approximation@4,5#, the divergence is cancelled
all the infrared and ultraviolet renormalon singularities a
included, and once again perturbative and nonperturba
components which are separately well-defined at all ener
can be obtained. This is only possible in the leading-b ap-
proximation, however.

The plan of the paper is as follows. In Sec. II we sh
describe the CIPT-APT reorganisation of fixed-order pert
bation theory forRe1e2, reviewing the results of Ref.@8#. In
Sec. III we consider how for Minkowskian observables o
can define all-orders perturbation theory, and the all-ord
nonperturbative OPE in such a way that each compon
remains well-defined at all energies. The link between
all-orders perturbative result and the reorganized CIPT-A
fixed-order perturbation theory is emphasized. We th
briefly consider the corresponding problem for Euclidean
servables. In Sec. IV we perform some phenomenolog
studies in which we compare low energy experimental d
for Re1e2(s) with the CIPT-APT perturbative predictions
Section V contains a discussion and conclusions.

II. INFRARED FREEZING OF Re¿eÀ-CIPT-APT

We begin by defining theRe1e2 ratio at c.m. energyAs,

Re1e2~s![
s tot~e1e2→hadrons!

s~e1e2→m1m2!
53(

f
Qf

2~11R~s!!.

~1!

Here theQf denote the electric charges of the different fl
vors of quarks, andR(s) denotes the perturbative corre
tions to the parton model result, and has a perturbation se
of the form,

R~s!5a1 (
n.0

r nan11. ~2!

Here a[as(m
2)/p is the renormalized coupling, and th

coefficientsr 1 andr 2 have been computed in theMS scheme
with renormalization scalem25s @7#. We can consider the
s-dependence ofR(s) at NNLO,

s
dR~s!

ds
52

b

2
r~R![2

b

2
R 2~11cR1r2R 2!. ~3!

Here c5(153219Nf)/12b is the second universal QCD
beta-function coefficient, andr2 is the NNLO effective
charge beta-function coefficient@11#, an RS-invariant combi-
nation ofr 1 ,r 2 and beta-function coefficients. The conditio
for R(s) to approach the infrared limitR* ass→0 is for the
effective charge beta-function to have a nontrivial ze
r(R* )50. At NNLO the condition for such a zero isr2
,0. PuttingNf52 active flavors we find for the NNLO RS
invariant,r2529.72, so thatR(s) apparently freezes in the
infrared toR* 50.43. The freezing behavior was first inve
tigated in a pioneering paper by Mattingly and Stevens
2-2
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@12# in the context of the principle of minimal sensitivit
~PMS! approach. However, it is not obvious that we shou
believe this apparent NNLO freezing result@13#. In factr2 is
dominated by a largeb2p2 term arising from analytical con
tinuation~AC! of the Euclidean AdlerD(2s) function to the
MinkowskianR(s), with r259.402p2b2/12. Similarly the
N3LO invariant r3 will contain the large AC term
25cp2b2/12. This suggests that in order to check freez
we need to resum the AC terms toall-orders.

Re1e2 is directly related to the transverse part of the c
relator of two vector currents in the Euclidean region,

~qmqn2gmnq2!P~s!

54p2i E d4xeiq•x^0uT@ j m~x! j n~0!#u0&, ~4!

where s52q2.0. To avoid an unspecified constant it
convenient to take a logarithmic derivative with respect ts
and define the AdlerD-function,

D~s!52s
d

ds
P~s!. ~5!

This can be represented by Eq.~1! with the perturbative cor-
rectionsR(s) replaced by

D~s!5a1 (
n.0

dnan11. ~6!

The Minkowskian observableR(s) is related toD(2s) by
analytical continuation from Euclidean to Minkowskian. O
may write the dispersion relation,

R~s!5
1

2p i E2s2 i e

2s1 i e

dt
D~ t !

t
. ~7!

Written in this form it is clear that the ‘‘Landau pole’’ in th
couplinga(s), which lies on the positive reals-axis, is not a
problem, andR(s) will be defined for alls. The dispersion
relation can be reformulated as an integration around a
cular contour in the complex energy-squareds-plane@14,15#,

R~s!5
1

2pE2p

p

duD~seiu!. ~8!

One should note, however, that this is only equivalent to
dispersion relation of Eq.~7! for values ofs above the ‘‘Lan-
dau pole.’’ ExpandingD(seiu) as a power series inā
[a(seiu), and performing theu integration term-by-term,
leads to a ‘‘contour-improved’’ perturbation series, in whi
at each order an infinite subset of analytical continuat
terms present in the conventional perturbation series of
~2! are resummed. It is this complete analytical continuat
that builds the freezing ofR(s). We shall begin by consid
ering the ‘‘contour-improved’’ series for the simplified ca
of a one-loop coupling. The one-loop coupling will be give
by
01400
g

-

ir-

e

n
q.
n

a~s!5
2

b ln~s/L̃MS
2

!
. ~9!

As described above one can then obtain the ‘‘conto
improved’’ perturbation series forR(s),

R~s!5A1~s!1 (
n51

`

dnAn11~s!, ~10!

where the functionsAn(s) are defined by

An~s![
1

2pE2p

p

duān5
1

2pE2p

p

du
an~s!

@11 ibua~s!/2#n
.

~11!

This is an elementary integral which can be evaluated
closed-form as@8#

A1~s!5
2

pb
arctanS pba~s!

2 D
An~s!5

2an21~s!

bp~12n!
ImF S 11

ibpa~s!

2 D 12nG~n.1!.

~12!

We then obtain the one-loop ‘‘contour-improved’’ series f
R(s),

R~s!5
2

pb
arctanS pba~s!

2 D1d1F a2~s!

~11b2p2a2~s!/4!
G

1d2F a3~s!

~11b2p2a2~s!/4!2G1•••. ~13!

The first arctan term is well-known, and corresponds to
summing the infinite subset of analytical continuation ter
in the standard perturbation series of Eq.~2! which are inde-
pendent of thedn coefficients. Subsequent terms correspo
to resumming to all-orders the infinite subset of terms in E
~2! proportional tod1 ,d2 , . . . , etc. In each case the resum
mation isconvergent, provided thatua(s)u,2/pb. In the ul-
traviolet s→` limit the An(s) vanish as required by
asymptotic freedom. In the infrareds→0 limit, the one-loop
couplinga(s) has a ‘‘Landau’’ singularity ats5L̃MS

2 . How-
ever, the functionsAn(s) resulting from resummation, if ana
lytically continued, are well-defined for all real values ofs.
A1(s) smoothly approaches from below the asymptotic
frared value 2/b, whilst for n.1 theAn(s) vanish. Thus, as
claimed,R(s) is asymptotic to 2/b to all-orders in perturba-
tion theory. We postpone the crucial question of how to d
fine all-orders perturbation theory in the infrared region un
the next section. We should also note that the functio
An(s) in Eq. ~12! can also be obtained by simple manipul
tion of the dispersion relation in Eq.~7!, which is defined for
all real s. This avoids the possible objection that the conto
integral in Eq.~8! is only defined fors above the ‘‘Landau
pole.’’
2-3
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Beyond the simple one-loop approximation the freezing
most easily analyzed by choosing a renormalization sch
in which the beta-function equation has its two-loop form

]a~m2!

] ln m2
52

b

2
a2~m2!~11ca~m2!!. ~14!

This corresponds to a so-called ’t Hooft scheme@16# in
which the nonuniversal beta-function coefficients are
zero. Here c5(153219Nf)/12b is the second universa
beta-function coefficient. For our purposes the key feature
these schemes is that the coupling can be expressed an
cally in closed-form in terms of the LambertW function,
defined implicitly byW(z)exp(W(z))5z @17,18#. One has

a~m2!52
1

c@11W21~z~m!!#

z~m![2
1

e S m

L̃MS
D 2b/c

, ~15!

where L̃MS is defined according to the convention of@19#,
and is related to the standard definition@20# by L̃MS
5(2c/b)2c/bLMS . The ‘‘21’’ subscript onW denotes the
branch of the LambertW function required for asymptotic
freedom, the nomenclature being that of Ref.@18#. Assuming
a choice of renormalization scalem25xs, wherex is a di-
mensionless constant, for the perturbation series ofD(s) in
Eq. ~5!, one can then expand the integrand in Eq.~6! for
R(s) in powers ofā[a(xseiu), which can be expressed i
terms of the LambertW function using Eq.~15!,

ā5
21

c@11W~A~s!eiKu!#
~16!

where

A~s!5
21

e S Axs

L̃MS
D 2b/c

, K5
2b

2c
. ~17!

The functionsAn(s) in the ‘‘contour-improved’’ series are
then given, using Eqs.~15!, ~16!, by

An~s![
1

2pE2p

p

duān5
1

2pE2p

0

du
~21!n

cn

3@11W1~A~s!eiKu!#2n1
1

2pE0

p

du
~21!n

cn

3@11W21~A~s!eiKu!#2n. ~18!

Here the appropriate branches of theW function are used in
the two regions of integration. As discussed in Refs.@9,10#,
by making the change of variablew5W(A(s)eiKu) we can
then obtain
01400
s
e

ll

of
yti-

An~s!5
~21!n

2iKcnp
E

W1(A(s)e2 iKp)

W21(A(s)eiKp) dw

w~11w!n21
. ~19!

Noting that W1(A(s)e2 iKp)5@W21(A(s)eiKp)#* , we can
evaluate the elementary integral to obtain forn51,

A1~s!5
2

b
2

1

pKc
Im@ ln~W21~A~s!eiKp!!#, ~20!

where the 2/b term is the residue of the pole atw50. For
n.1 we obtain

An~s!5
~21!n

cnKp
ImF lnS W21~A~s!eiKp!

11W21~A~s!eiKp!
D

1 (
k51

n22
1

k~11W21~A~s!eiKp!!kG . ~21!

Crucially the contribution from the poles atw50 andw5
21 cancel exactly. Equivalent expressions have been
tained in the APT approach@10#. Provided thatb/c.0,
which will be true forNf,9, we find the same behavior a
in the one-loop case with theAn(s) vanishing in the ultra-
violet limit consistent with asymptotic freedom, and wi
An(s) vanishing in the infrared limit forn.1, andA1(s)
freezing to 2/b. To the extent that the freezing holds to a
orders in perturbation theory it should hold irrespective
the choice of renormalization scheme~RS!. The use of the ’t
Hooft scheme simply serves to make the freezing manif
In Figs. 1–3 we plot the functionsA1(s),A2(s) andA3(s),
respectively, as functions of (sx/L̃MS

2 ).
Having shown how fixed-order perturbation theory can

reorganized so that it exhibits well-behaved freezing beh
ior in the infrared, we turn in the next section to a discuss
of how all-orders perturbation theory and the all-orders n
perturbative OPE, can be defined in such a way that t
remain well-defined at all energies.

FIG. 1. The functionA1(s) of Eq. ~20! versussx/L̃MS
2 . We

assumeNf52 flavors of quark.
2-4
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III. ALL-ORDERS PERTURBATION THEORY AND OPE

The corrections to the AdlerD function, D(Q2), can be
split into a perturbative part,DPT(Q2), and a nonperturba
tive operator product expansion~OPE! part,DNP(Q2),

D~Q2!5DPT~Q2!1DNP~Q2!. ~22!

The PT component is formally just the resummed pertur
tion series of Eq.~6!,

DPT~Q2!5a~Q2!1 (
n.0

dnan11~Q2!. ~23!

In addition one has the nonperturbative OPE contribution

DNP~Q2!5(
n

Cn~Q2,m2!^On~m2!&

Q2n
, ~24!

where the sum is over the relevant operatorsOn of dimen-
sion 2n. m denotes the factorization scale, andCn is the
coefficient function. For the AdlerD function the lowest di-
mension relevant operator is the dimension four gluon c
densate,

^0uGmn
a Ga

mnu0&. ~25!

FIG. 2. As Fig. 1 but forA2(s) of Eq. ~21!.

FIG. 3. As Fig. 1 but forA3(s) of Eq. ~21!.
01400
-

-

It will be convenient to scale out the dimensionful factorL̃2n

from the operator expectation value, and combine it with
coefficient function to obtain the overall coefficien
Cn(Q2,m2). We can then write theDNP(Q2) component in
the form

DNP~Q2!5(
n

CnS L̃2

Q2D n

. ~26!

We have suppressed them2 andQ2 dependence of the coef
ficient Cn . The coefficients are themselves series expans
in a:

Cn5Kadn~m2!@11O~a!#. ~27!

Here K is an undetermined nonperturbative normalizatio
anddn is related to the anomalous dimension of the opera
concerned.

The definition of the all-orders perturbative component
Eq. ~23! needs care. The series has zero radius of con
gence in the couplinga. A direct way of seeing this is to
consider the large-Nf expansion of the perturbative coeffi
cient dn ,

dn5dn
[n]Nf

n1dn
[n21]Nf

n211•••1dn
[0] . ~28!

The leading large-Nf coefficient,dn
[n] , can be computed ex

actly to all-orders since it derives from a restricted set
diagrams in which a chain ofn fermion bubbles~renormalon
chain! is inserted in the initiating quark loop. Working in th
so-calledV-scheme, which corresponds toMS subtraction
with scalem25e25/3Q2, one finds the exact large-Nf result
@21–23#,

dn
[n]~V!5

22

3
~n11!S 21

6 D nF22n2
n16

2n12

1
16

n11 (
n/211.m.0

m~12222m!

3~1222m2n22!z2m11Gn!. ~29!

The n! growth of coefficients means that the perturbati
series is at best an asymptotic one. To arrive at a functio
which it is asymptotic one can use a Borel integral repres
tation, writing

DPT~Q2!5E
0

`

dze2z/a(Q2)B@D#~z!. ~30!

HereB@D#(z) is the Borel transform, defined by

B@D~z!#5 (
n50

`
zndn

n!
. ~31!

On performing the Borel integral term-by-term one reco
structs the divergent formal perturbation series forDPT . If
the series for the Borel transform has finite radius of conv
2-5
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gence, by analytical continuation to the whole region of
tegration one can then define the Borel sum, provided
the Borel integral exists. On general grounds@24,25# one
expects that in renormalizable field theories the Borel tra
form will contain branch point singularities on the real ax
in the complexz plane, at positionsz5zk[2k/b correspond-
ing to infrared renormalons,IRk , k51,2,3, . . . , and atz5
2zk corresponding to so-called ultraviolet renormalon
UVk . Hereb is the first beta-function coefficient, so that fo
QED with Nf fermion speciesb52 2

3 Nf , whilst for SU(3)
QCD with Nf active quark flavors,b5(3322Nf)/6. Thus in
QED there are ultraviolet renormalon singularities on
positive real axis, and hence the Borel integral will be a
biguous. In QCD withNf,33/2 flavors, so that the theory i
asymptotically free, andb.0, there are infrared renormalo
singularities on the positive real axis making the Borel in
gral again ambiguous. For both field theories all-orders p
turbation theory by itself is not sufficient. The presence
singularities on the integration contour means that there i
ambiguity depending on whether the contour is taken ab
or below each singularity. It is easy to check that, takingD in
the Borel integral of Eq.~30! to be a generic QED or QCD
observable with branch point singularities (12z/uzku)2gk in
the Borel plane, the resulting ambiguity for the singularity
z5uzku is of the form

DD PT;Ke2uzku/a(Q2)a12gk, ~32!

whereK is complex. Using the one-loop form for the co
pling, a(Q2)52/b ln(Q2/L̃2), one finds that in the QCD case

DD PT'Ka12gkS L̃2

Q2D k

. ~33!

This has exactly the same structure as a term in the O
expansion, Eq.~26!, and one sees that the branch point e
ponentg of the IR renormalon is related to the anomalo
dimension of the operator, withdk512gk . The idea is that
the coefficient,Ck , in particular the constantK, is ambiguous
in the OPE because of nonlogarithmic UV divergenc
@26,27#. This ambiguity can be compensated by the IR ren
malon ambiguity in the PT Borel integral, and so regulati
the Borel integral, using for instance a principal value~PV!
prescription, induces a particular definition of the coefficie
functions in the OPE, and the PT and OPE components
then separately well-defined. That this scenario works in
tail can be confirmed in toy models such as the nonlin
O(N) s model @26,28#. For the QED case the ambiguit
corresponds to aQ2/L̃2 effect. So that all-orders QED pe
turbation theory is only defined if there are in addition pow
corrections inQ2. Such effects are only important ifQ2

;L̃2, hereL̃ corresponds to the Landau ghost in QED,L̃2

;10560m2, with m the fermion mass. Thus in QED suc
power corrections can have no phenomenological con
quences and can be completely ignored.

Our exact information about the Borel transform
B@D#(z), for the QCD AdlerD function is restricted to the
large-Nf result of Eq.~29!. In QCD we expect large-orde
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behavior in perturbation theory of the formdn
'Kng(b/2)nn!, involving the QCD beta-function coefficien
b5(3322Nf)/6. Motivated by the structure of renormalo
singularities in QCD one can then convert theNf expansion
into the so-calledb-expansion@29–32#, by substitutingNf
5(33/223b) to obtain

dn5dn
(n)bn1dn

(n21)bn211•••1dn
(0) . ~34!

The leading-b termdn
(L)[dn

(n)bn is then used to approximat
dn . Sincedn

(L)5(23)ndn
[n]bn, it is known to all-orders from

the large-Nf result. This approach is sometimes also refer
to as ‘‘naive non-Abelianization’’@29#. It can be motivated
by considering a QCD skeleton expansion@33#, and corre-
sponds to simply taking the first ‘‘one-chain’’ term in th
expansion. It does not include the multiple exchanges
renormalon chains needed to build the full asymptotic beh
ior of the perturbative coefficients, and there are no fi
guarantees as to its accuracy. The leading-b result for the
Borel transform of the Adler-D function in theV-scheme can
then be obtained from Eq.~29!:

B@D (L)#~z!5(
j 51

`
A0~ j !1zA1~ j !

S 11
z

zj
D 2 1

B0~2!

S 12
z

z2
D

1(
j 53

`
B0~ j !1zB1~ j !

S 12
z

zj
D 2 , ~35!

so that one sees in the leading-b limit a set of single and
double pole renormalon singularities at the expected p
tions. The residues of theUVj poles,A0( j ) and A1( j ), are
given by @30#

A0~ j !5
8

3

~21! j 11~3 j 216 j 12!

j 2~ j 11!2~ j 12!2
,

A1~ j !5
4

3

b~21! j 11~2 j 13!

j 2~ j 11!2~ j 12!2
. ~36!

Because of the conformal symmetry of the vector correla
@34# the IRj residues,B0( j ) andB1( j ), are directly related to
the UVj ones, with B0( j )52A0(2 j ) and B1( j )
52A1(2 j ) for j .2. B0(1)5B1(1)5B1(2)50, and
B0(2)51. Notice the absence of anIR1 renormalon singu-
larity. This is consistent with the correspondence betwe
OPE terms and IR renormalon ambiguities noted abo
since there is no relevant operator of dimension 2 in
OPE. The singularity nearest the origin is then theUV1 sin-
gularity atz522/b, which generates the leading asympto
behavior,

dn
(L)'

~12n122!

27
n! S 2b

2 D n

. ~37!

We shall now consider the correction,R(s), to the parton
model result forRe1e2. This may be split into a perturbativ
2-6



r

ive
e

d
tio
,

ve

IR
l
o
ip

e
le

e

ate
the

en

nd

he

y.
the

ed

at

ALL-ORDERS INFRARED FREEZING OF OBSERVABLES . . . PHYSICAL REVIEW D 70, 014002 ~2004!
componentRPT(s), and an OPE componentRNP(s), analo-
gous to Eqs.~23!, ~24!. Inserting the Borel representation fo
DPT of Eq. ~30! into the dispersion relation of Eq.~7! one
finds the representation

RPT~s!5
1

2p i E2s2 i e

2s1 i edt

t E0

`

dze2z/a(t)B@D#~z!. ~38!

It will be convenient to consider the all-orders perturbat
result in leading-b approximation to start with, in which cas
the coupling a(t) will have its one-loop form, a(t)
52/„b ln(t/L̃V

2)…, where we assume theV-scheme. In this
case thet integration is trivial and one finds

R PT
(L)~s!5E

0

`

dze2z/a(s)
sin~pbz/2!

pbz/2
B@D (L)#~z!, ~39!

whereB@D (L)#(z) ~in theV-scheme! is given by Eq.~35!. It
is now possible to explicitly evaluateR PT

(L)(s) in terms of
generalized exponential integral functions Ei(n,w), defined
for Rew.0 by

Ei~n,w!5E
1

`

dt
e2wt

tn
. ~40!

One also needs the integral

E
0

`

dze2z/a
sin~pbz/2!

z
5arctanS pba

2 D . ~41!

Writing the ‘‘sin’’ as a sum of complex exponentials an
using partial fractions one can then evaluate the contribu
to R PT

(L)(s) coming from the UV renormalon singularities
i.e. from the terms involvingA0( j ) and A1( j ) in Eq. ~35!
@30#

R PT
(L)~s!uUV5

2

pb S 8z2

3
2

11

3 DarctanS pba~s!

2 D
1

2

pb (
j 51

j 5`

~A0~ j !f1~1,j !1~A0~ j !

2A1~ j !zj !f1~2,j !!, ~42!

wherez25p2/6 is the Riemann zeta-function, and we ha
defined

f1~p,q![ezq /a(s)~21!qIm@Ei~p,~1/a~s!!1 ipbzq/2!#.

~43!

To evaluate the remaining contribution involving the
renormalon singularities we need to regulate the integra
deal with the singularities on the integration contour. F
simplicity we could choose to take a principal value prescr
tion. We need to continue the Ei(n,w) defined for Rew.0
by Eq. ~40!, to Rew,0. With the standard continuation on
arrives at a function analytic everywhere in the cut comp
01400
n

to
r
-

x

w-plane, except atw50; with a branch cut running along th
negative real axis. Explicitly@35#

Ei~n,w!5
~2w!n21

~n21!! F2 ln w2gE1 (
m51

n21
1

mG
2 (

m50
mÞn21

~2w!m

~m2n11!m!
, ~44!

with gE50.5722 . . . Euler’s constant. The lnw contributes
the branch cut along the negative realw-axis. To obtain the
principal value of the Borel integral one needs to compens
for the discontinuity across the branch cut, and make
replacement Ei(n,w)→Ei(n,w)1 ip sgn(Imw). This leads
one to introduce, analogous to Eq.~43!,

f2~p,q![e2zq /a(s)~21!qIm@Ei~p,~21/a~s!!2 ipbzq/2!#

2
e2zq /a(s)~21!qzq

p21

~p21!!
p Re@~~1/a~s!!

1 ipb/2!p21#. ~45!

The principal value of the IR renormalon contribution is th
given by @30#

R PT
(L)~s!u IR5

2

pb S 14

3
2

8z2

3 DarctanS pba~s!

2 D
1

2B0~2!

pb
f2~1,2!1

2

pb (
j 53

`

~B0~ j !f2~1,j !

1~B0~ j !1B1~ j !zj !f2~2,j !!. ~46!

The perturbative component is then the sum of the UV a
~regulated! IR contributions,

R PT
(L)~s!5R PT

(L)~s!uUV1R PT
(L)~s!u IR

5
2

pb
arctanS pba~s!

2 D1
2

pb (
j 51

`

~A0~ j !f1~1,j !

1~A0~ j !2A1~ j !zj !f1~2,j !!

1
2B0~2!

pb
f2~1,2!1

2

pb (
j 53

`

~B0~ j !f2~1,j !

1~B0~ j !1B1~ j !zj !f2~2,j !!. ~47!

Note that thez2 contributions cancel, and one obtains t
arctan term, which is the leading contribution,A1(s), in the
CIPT-APT reformulation of fixed-order perturbation theor
The connection between the Borel representation and
An(s) will be further clarified later.

We now turn to the infrared behavior of the regulat
Borel integral. In the one-loop~leading-b) case the
V-scheme couplinga(s) becomes infinite ats5sL[L̃V

2 .
The e2z/a(s) term in the Borel integrand approaches unity
s5sL , but the trigonometric factor sin(pbz/2)/(pbz/2) en-
sures that the integral is defined ats5sL . For s,sL , how-
2-7
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ever,a(s) becomes negative, and thee2z/a(s) factor diverges
at z5`, the Borel transform in theV-scheme does not con
tain any exponentialz-dependence to compensate, so
Borel integral is not defined. We shall refer to this patholo
of the Borel integral ats5sL as the ‘‘Landau divergence.’’ It
is important to stress that the Landau divergence is to
carefully distinguished from the Landau pole in the couplin
The Landau pole in the coupling depends on the cho
renormalization scale. At one-loop choosing anMS scale
m25xs, the coupling a(xs) has a Landau pole ats
5L̃MS

2 /x, the Borel integral of Eq.~39! can then be written
in terms of this coupling as

R PT
(L)~s!5E

0

`

dze2z/a(xs)
sin~pbz/2!

pbz/2
@xe5/3#bz/2B@D (L)#~z!.

~48!

In a general scheme the Borel transform picks up the e
factor @xe5/3#bz/2 multiplying theV-scheme result. The Bore
integrand is scheme~x! invariant. The extra factor has to b
taken into account when identifying where the integ
breaks down, and one of course finds the Landau diverge
to be at the samex-independent energy,s5sL5e5/3L̃MS

2

5L̃V
2 . Thus the Borel representation of Eq.~38! for R PT

(L)(s)
only applies fors>sL . For s,sL the one-loop (V-scheme!
couplinga(s) becomes negative. We can rewrite the pert
bative expansion ofRPT(s) as an expansion in (2a(s)),

RPT~s!5a~s!1r 1a2~s!1r 2a3~s!1•••1r nan11~s!1•••

52@~2a~s!!2r 1~2a~s!!21r 2~2a~s!!31•••

1~21!nr n~2a~s!!n111•••#. ~49!

The expansion in (2a(s)) follows from the modified Borel
representation

RPT~s!52E
0

`

dze2z/(2a(s))B@R#~2z!

5E
0

2`

dzez/(2a(s))B@R#~z!. ~50!

This modified form of Borel representation will be val
when Re(a(s)),0, and involves an integration contou
along the negative real axis. Thus, it is now theultraviolet
renormalonsUVk which render the Borel integral ambigu
ous. The ambiguity in taking the contour around these s
gularities@analogous to Eq.~33!# now involves (s/L̃2)k. Of
course, it is now unclear how these ambiguities can can
against the corresponding OPE ambiguities. The key poin
that since only the sum of the PT and OPE component
well-defined, the Landau divergence of the Borel integra
s5sL , must be accompanied by a corresponding breakdo
in the validity of the OPE as an expansion in powers
(L̃2/s), at the same energy. The idea is illustrated by
following toy example, where the OPE is an alternating g
metric progression,
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RNP~s!5S L̃2

s
D 2S L̃2

s
D 2

1S L̃2

s
D 3

2•••

5

L̃2

s

11
L̃2

s

5
1

11
s

L̃2

512S s

L̃2D 1S s

L̃2D 2

2S s

L̃2D 3

2•••.

~51!

At any value ofs, RNP(s) is given by the equivalent func
tions in the middle line. Fors.L̃2 these have a valid expan
sion in powers ofL̃2/s, the standard OPE, given in the to
line. Fors,L̃2 the standard OPE breaks down, but there i
valid expansion in powers ofs/L̃2 given in the bottom line.
Thus for s,sL the OPE should be resummed and recas
the form

RNP~s!5(
n

C̃nS s

L̃2D n

. ~52!

It is crucial to note that this reorganised OPE can contai
C̃0 term which is independent ofs, as indeed is the case in th
toy example of Eq.~51!. Of course, an analogousC0 term in
the standard OPE in Eq.~26! is clearly excluded since i
would violate asymptotic freedom, and all the terms in t
regular OPE are perturbatively invisible. As a resultRNP(s)
can have a nonvanishing infrared limit, and both compone
can contribute to the infrared freezing behavior. It should
no surprise that perturbation theory by itself cannot de
mine the infrared behavior of observables, but the existe
of a well-defined perturbative component which, as we sh
claim, can be computed at all values of the energy usin
reorganized APT version of fixed-order perturbation theo
is a noteworthy feature. The remaining terms present in
modified OPE should then be in one-to-one corresponde
with theUVn renormalon singularities in the Borel transfor
of the PT component, and the PT renormalon ambigui
can cancel against corresponding OPE ones, and again
component separately be well-defined. The modified coe
cientsC̃n will have a form analogous to Eq.~27!,

C̃n5Kad̃n~m2!@11O~a!#. ~53!

The anomalous dimension is that of an operator which
be identified using the technique of Parisi@24#. The anoma-
lous dimension corresponding toC̃1 for the AdlerD function
has been computed@36#. The ambiguity for the modified
Borel representation of Eq.~50!, taking UVk to be a branch
point singularity (12z/zk)

g̃k, is

DRPT'Ka12g̃kS s

L̃2D k

. ~54!
2-8
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Comparing with Eq.~53! one findsd̃k512g̃k . The modi-
fied Borel representation forR PT

(L) valid for s,sL will be

R PT
(L)~s!52E

0

`

dze2z/(2a(s))B@R (L)#~2z!. ~55!

This may again be written explicitly in terms of Ei(n,w)
functions. One simply needs to changea(s)→2a(s), zj→
2zj , and A1( j )→2A1( j ), B1( j )→2B1( j ) in Eq. ~47!.
One finds that the result of Eq.~47! is invariant under these
changes, apart from the additional terms which we adde
the Ei(n,w) in continuing from Rew.0 to Rew,0, in or-
der to obtain the principal value. In fact the PV Borel integ
is not continuous ats5sL . Continuity is obtained if rather
than the principal value we use the standard continuatio
the Ei(n,w) defined by Eq.~44!. That is we redefine

f2~p,q![e2zq /a(s)~21!qIm@Ei~p,~21/a~s!!2 ipbzq/2!#.

~56!

This simply corresponds to a different regulation of sing
larities. We then see that Eq.~47! for R PT

(L)(s) is a function of
a(s) which is well-defined at all energies, and freezes tob
in the infrared. We note that the branch of the arctan chan
at s5sL , so that its value smoothly changes from zero as
5` to p at s50. The reformulated OPE of Eq.~52! to-
gether with the perturbative component determines the in
red freezing behavior, and in the ultraviolet the perturbat
component dominates. The key point is that both com
nents can be described by functions ofs which are well-
defined at all energies. The apparent Landau divergence
ply reflects the fact that the Borel integral and OPE ser
which are used to describe the PT and NP components,
have a limited range of validity ins. The connection with the
CIPT-APT rearrangement of fixed-order perturbation the
is now clear. It is obtained by keeping th
sin(pbz/2)/(pbz/2) term in the Borel transform intact, an
expanding the remainder in powers ofz. Ordinary fixed-
order perturbation theory, of course, corresponds to expa
ing the whole Borel transform in powers ofz. The retention
of the oscillatory sin factor in the Borel transform ensur
that the reformulated perturbation theory remains define
all energies. One then finds that fors>sL ,

An~s!5E
0

`

dze2z/a(s)
sin~pbz/2!

pbz/2

zn21

~n21!!
, ~57!

where the one-loopAn(s) are given by Eqs.~12!. Similarly
for s<sL one finds

An~s!5E
0

2`

dzez/(2a(s))
sin~pbz/2!

pbz/2

zn21

~n21!!
. ~58!

Thus the CIPT-APT fixed-order result should be
asymptotic approximation to the Borel integral at both lar
and small values ofs. In Fig. 4 we compare the all-order
leading-b result for R PT

(L)(s) given by Eq. ~47!, with the
NNLO CIPT-APT prediction,
01400
to

l

of

-

es

a-
e
-

m-
s,
ch

y

d-

s
at

e

R APT
(L) ~s!5A1~s!1d1

(L)A2~s!1d2
(L)A3~s!. ~59!

The one-loopAn(s) are given by Eqs.~12! and as in Eq.~47!
the V-scheme is assumed. We assumeNf52 quark flavors.
One sees that there is good agreement at all values ofs/L̃V

2 .
We now turn to the full QCD result beyond the one-loo

approximation, and as in Sec. II it will be sufficient to co
sider the two-loop result since one can always use
’t Hooft scheme. Consider the Borel representation
RPT(s) of Eq. ~38!. We shall assume that, as in the leadin
b approximation, the Borel transformB@D#(z) in the
V-scheme does not contain any exponential dependencez,
but is simply a combination of branch point singularities.
is then clear that the Landau divergence occurs when
factor e2z/a(2s) becomes a diverging exponential, that
when Re(1/a(2s)),0. Thus the critical energysL is given
by the condition Re(1/a(2s))50. At one-loop level one has

1

a~2s!
5

b

2
lnS s

L̃V
2 D 1

ipb

2
, ~60!

and so the condition yieldss5sL5L̃V
2 , as we found before

At the two-loop level the situation is slightly different. Inte
grating the two-loop beta-function in Eq.~14! now gives

1

a~2s!
1c lnF ca~2s!

11ca~2s!G5
b

2
lnS s

L̃V
2 D 1

ipb

2
. ~61!

The vanishing of Re(1/a(2s)) then corresponds to the so
lution of the transcendental equation

ReH c lnF ca~2s!

11ca~2s!G J 5
b

2
lnS s

L̃V
2 D . ~62!

AssumingNf52 flavors one findss5sL50.4574L̃V
2 . Since

the Borel integral is scheme-invariant so must the value osL
be, in particular the breakdown of the Borel representat
would occur in any scheme, not just a ’t Hooft one. We c
perform the t-integration in Eq.~38! in closed form, and
arrive at the two-loop Borel representation

FIG. 4. dR(s)5R PT
(L)(s)2R APT

(L) (s), at the one loop level for 2
flavors of quark.
2-9



th
It

t
o
r,
at
-
ta
in

lit

to

in
tio
n
r

s.
th
x-

la-
to
We
re
r-
are

at
-

e

r-
tly

en

on

der
of

ese
he
This

r-

on

r-

by

D. M. HOWE AND C. J. MAXWELL PHYSICAL REVIEW D 70, 014002 ~2004!
RPT~s!5
22

pbE0

`

dz ImFe2z/a(2s1 i e)

z

2cezcEiS 1,zc1
z

a~2s1 i e! D GB@D#~z!.

~63!

The factor in the square bracket plays the role of
e2z/a(s)sin(pbz/2)/(pbz/2) factor in the one-loop case.
provides an oscillatory factor so that ats5sL the Borel rep-
resentation remains defined. Fors,sL one must switch to a
modified Borel representation as in Eq.~50!, writing

RPT~s!52
1

2p i E2s2 i e

2s1 i edt

t E0

`

dze2z/(2a(t))B@D#~2z!.

~64!

Which, performing thet-integration gives

RPT~s!5
2

pbE0

`

dz ImF2
e2z/(2a(2s1 i e))

z
2ce2zc

3EiS 1,2zc1
z

~2a~2s1 i e!! D GB@D#~2z!.

~65!

Unfortunately we cannot write down a function analogous
Eq. ~47! which givesRPT(s) at all energies, because we d
not knowB@D#(z) exactly. The two-loop situation, howeve
is the same as that at one-loop. The regulated represent
of Eq. ~63! applies fors>sL , with the corresponding stan
dard OPE. Belows5sL one needs the modified represen
tion of Eq. ~65! together with the resummed OPE recast
the form of Eq.~52!. The perturbative componentRPT(s)
then freezes to 2/b in the infrared, we can see this if we sp
B@D#(2z) into (11(B@D#(2z)21)). Thepart of the inte-
grand proportional toB@D#(2z)21 vanishes for allz from
0→` in the infrared limit. The remaining term integrates
give usA1(s) which freezes to 2/b ass→0. The nonpertur-
bative componentRNP(s) given by the reformulated OPE
together with the perturbative component determine the
frared freezing behavior. There is again a direct connec
with the CIPT-APT reformulation of fixed-order perturbatio
theory. Using integration by parts one can show that fos
>sL

An~s!5
22

pbE0

`

dz ImFe2z/a(2s1 i e)

z
2cezc

3EiS 1,zc1
z

a~2s1 i e! D G zn21

~n21!!
, ~66!

where theAn(s) correspond to the two-loop results in Eq
~20!, ~21!. Once again CIPT-APT corresponds to keeping
oscillatory function in the Borel transform intact, and e
panding the remainder in powers ofz. Similarly for s<sL
one has
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An~s!5
2

pbE0

`

dz ImF2
e2z/(2a(2s1 i e))

z
2ce2zc

3EiS 1,2zc1
z

~2a~2s1 i e!! D G ~2z!n21

~n21!!
.

~67!

Thus, as in the one-loop case, the CIPT-APT reformu
tion of fixed-order perturbation theory will be asymptotic
the Borel representations at small and large energies.
would like, as in Fig. 4 for the one-loop case, to compa
how well the fixed-order CIPT-APT perturbation theory co
responds with the all-orders Borel representation. We
necessarily restricted to using the leading-b approximation
since this is the extent of the exact all-orders information
our disposal. One possibility is to simply use the leadingb
result for the Borel transform,B@D (L)#(z), in the two-loop
Borel representation of Eq.~63!. The difficulty though is that
with a(2s) the two-loop coupling, the Borel integral is now
scheme-dependent, sinceB@D (L)#(z) has a scale dependenc
which exactly compensates that of theone-loop coupling.
Using a renormalization scalem25xs our result forRPT(s)
has an unphysicalx-dependence. This difficulty is exace
bated if we attempt to match the result to the exac
known perturbative coefficientsd1 and d2, which we
could do by adding an additional contribution (d12d1

(L))z
1(d22d2

(L))(z2/2) to the Borel transform. Thus, as has be
argued elsewhere, such matching of leading-b results to ex-
act higher-order results yields completelyad hocpredictions,
which may be varied at will by changing the renormalizati
scale@37,38#. The resolution of this difficulty follows if one
accepts that the standard RG-improvement of fixed-or
perturbation theory is incomplete, in that only a subset
RG-predictable UV logarithms involving the energy scales
are resummed. Performing a complete resummation of th
logs together with the accompanying logs involving t
renormalization scale, yields a scale-independent result.
complete renormalization group improvement~CORGI! ap-
proach@39# applied toD(s) corresponds to use of a reno
malisation scalem25e22d/bs, whered denotes the NLO per-
turbative correctiond1 in Eq. ~23!, in the MS scheme with
m25s. In the CORGI scheme we have the perturbati
series,

D~ t !5a0~ t !1X2a0
3~ t !1X3a0

4~ t !1•••1Xna0
n111•••,

~68!

where a0(t) is given by Eq. ~15! with z5(21/e)(At/
LD)2b/c, whereLD[ed/bL̃MS , andXn are the CORGI in-
variants, and onlyX2 is known. We can then attempt to pe
form the leading-b CORGI resummation,

D CORGI
(L) ~ t !5a0~ t !1X2a0

3~ t !1 (
n.2

Xn
(L)a0

n11~ t !1•••,

~69!

so that the exactly known NNLOX2 coefficient is included,
with the remaining unknown coefficients approximated
2-10
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X3
(L) , X4

(L) , . . . , the leading-b approximations. We stres
that a0(t) denotes the full CORGI coupling defined in E
~15!. One can define this formal sum using the Borel rep
sentation ofD in Eq. ~30!, with the result forB@D (L)# in Eq.
~35!. The integral can be expressed in closed form in ter
of the exponential integral functions Ei(n,w) of Eq. ~40!,
with the result@9#

D (L)~1/a~ t !!5(
j 51

`

zj$2ezj /a(t)Ei~1,zj /a~ t !!@~zj /a~ t !!

3~A0~ j !2zjA1~ j !!2zjA1~ j !#1~A0~ j !

2zjA1~ j !!%2e2zj /a(t)B0~2!Ei~1,2zj /a~ t !!

1(
j 53

`

$2e2zj /a(t)Ei~1,2zj /a~ t !!@~zj /a~ t !!

3~B0~ j !1zjB1~ j !!#2~B0~ j !1zjB1~ j !!%.

~70!

To define the infrared renormalon contribution we ha
assumed the standard continuation of Ei(n,w) from
Rew.0 to Rew,0, defined by Eq.~44!. In @9# a princi-
pal value was assumed, which corresponds to add
2 ip sgn(Im(zj /a(t)) to the Ei(1,2zj /a(t)) term. As we
found for R PT

(L)(s) the principal value is not continuous a
s5sL , whereas the standard continuation is. The formal
summation in Eq.~69! then corresponds to@9#

D CORGI
(L) ~ t !5D (L)S 1

a0~ t !
1d1

(L)~V! D1~X22X2
(L)!a0

3~ t !,

~71!

once againa0(t) is the full CORGI coupling, andd1
(L)(V)

denotes the NLO leading-b correction in theV-scheme. In-
sertingDCORGI(t) inside the dispersion relation of Eq.~7!
one can then define

R CORGI
(L) ~s!5

1

2p i E2s2 i e

2s1 i e

dt
D CORGI

(L) ~ t !

t
. ~72!

This can be evaluated numerically, if we haveR CORGI
(L) (s1)

then we can obtain

R CORGI
(L) ~s2!5R CORGI

(L) ~s1!1
1

2p i S E2s22 i e

2s12 i e

dt
D CORGI

(L) ~ t !

t

1E
2s11 i e

2s21 i e

dt
D CORGI

(L) ~ t !

t D . ~73!

If we sets1 to be large enough we can evaluateR CORGI
(L) (s1)

using the circular contour in thes-plane, as in Eq.~8!. Com-
bining this circular integral with the integrals above and b
low the real negative axis we arrive atR CORGI

(L) (s2) wheres2

can be as far into the infrared as we want. The all-ord
CORGI result can be compared with the NNLO CIPT-AP
CORGI result,
01400
-

s

g

-

-
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RAPT~s!5A1~s!1X2A3~s!. ~74!

Here theAn(s) are the two-loop results of Eqs.~20!, ~21!,
with A(s)5(21/e)(As/LD)2b/c in the CORGI scheme
Analogous to Fig. 4 we plot in Fig. 5 the comparison of t
all-orders and NNLO APT CORGI results;Nf52 quark fla-
vors are assumed. As in the one-loop case there is extrem
close agreement at all values ofs. For the fits to low-energy
Re1e2(s) data to be presented in the next section, therefo
we shall use the NNLO CORGI APT result.

Before turning to phenomenological analysis in Sec.
we conclude this section with a brief discussion of the si
ation for Euclidean observables. We can define the AdleD
function in the Euclidean region by inverting the integr
transform corresponding to the dispersion relation of Eq.~7!.
That is we can write

D~Q2!5Q2E
0

` ds

~s1Q2!2
R~s!. ~75!

One can certainly define a Euclidean version of APT by
serting the MinkowskianAn(s) in the right-hand side of Eq
~75!, and defining

An
(E)~Q2!5Q2E

0

` ds

~s1Q2!2
An~s!. ~76!

The one-loop result would be@1#

A1
(E)~Q2!5

2

b F 1

ln~Q2/L̃2!
1

L̃2

L̃22Q2G . ~77!

This Euclidean APT coupling freezes in the infrared to 2/b,
but this behavior is induced by the second nonperturba
contribution, which cancels the forbidden tachyonic Land
pole singularity present in the first perturbative term. There
now no direct connection, however, between this Euclide
APT coupling and the Borel representation forDPT(Q2) of
Eq. ~30!. Since there is now no oscillatory factor present
the Borel integral it is potentially divergent ats5sL . We can
explicitly exhibit this divergent behavior working in leading

FIG. 5. dR(s)5R CORGI
(L) (s)2RAPT(s), at the two loop level

for 2 flavors of quark.
2-11
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b approximation. The Borel integral can then be explici
evaluated in terms of Ei functions as we have seen in
~70!. Using Eq. ~44! for the Ei function one then finds
divergent behavior ass→sL proportional to lna,

DPT~s!→F (
j 51

`

~zj
2A1~ j !1zj

2B1~ j !!2z2B0~2!G ln a1•••,

~78!

where the ellipsis denotes terms finite ass→sL . However,
remarkably, the factor in the square bracket vanishes, and
result is finite ats5sL , provided thatall the renormalon
singularities are included. The contribution of any individu
renormalon is divergent. The cancellation follows because
an exact relation between the residues of IR and UV ren
malons@Eq. ~36!#,

zj
2A1~ j !52zj 13

2 B1~ j 13!. ~79!

This results in cancellations in the sum, leaving a resid
termz3

2B1(3) which then cancels with thez2B0(2) term. An
analogous relationA0( j )52B0( j 12) has been noted in
@30#. It seems that these relations are underwritten by
conformal symmetry of the vacuum polarization functi
@34#, but further investigation is warranted. The above fini
ness ats5sL means that one can obtain aDPT(Q2) compo-
nent well-defined in the infrared by changing to the modifi
form of Borel representation fors,sL . One finds that this
component becomes negative before approaching the fr
ing limit DPT(0)50. Similar behavior is found for the
Gross-Llewellyn Smith and polarized and unpolariz
Bjorken structure function sum rules, whose complete ren
malon structure is also known in leading-b approximation
@30#. Phenomenological investigations are planned@40#.
Comparable investigations in the standard APT appro
have been reported in@41#. Unfortunately, nothing is known
about the full renormalon structure beyond leading-b ap-
proximation. Such knowledge would be tantamount to a
solution of the Schwinger-Dyson equations. Correspondin
no analogue of the APT reorganization of fixed-order pert
bation theory asymptotic toDPT is possible in the Euclidean
case.

We finally note that in the case ofRe1e2 and D it is
possible to say something about the separate infrared fr
ing behaviors of the PT and NP components. Arguments
spontaneous chiral symmetry breaking in the limit of a la
number of colors@34# imply that D(0)50, or equivalently
D(0)521. Furthermore according to Ref.@42# R and D
should have the same infrared freezing limit. This argum
follows directly from Eq.~8! if the circular contour is shrunk
to zero. These exact results then suggest thatDNP(0)521
to be consistent with the leading-b result DPT(0)50 ob-
tained above. ForR one infers thatRNP(0)5212(2/b) to
be consistent with theRPT(0)52/b result.

IV. COMPARISON OF NNLO APT WITH LOW ENERGY
Re¿eÀ DATA

In this section we wish to compare the NNLO CORG
APT perturbative predictions with low energy experimen
01400
q.

he

l
of
r-

al

e

-

ez-

r-

h

ll
ly
r-

z-
of
e

t

l

data forRe1e2. The discussion so far has assumed mass
quarks. To include quark masses we use the approxim
result @6,43#

Re1e2~s!53(
f

Qf
2T~v f !@11g~v f !R~s!#, ~80!

with the sum over all active quark flavors, i.e. those w
massesmf,As/2, and where

v f5~124mf
2/s!1/2,

T~v !5v~32v2!/2,

g~v !5
4p

3 F p

2v
2

31v
4 S p

2
2

3

4p D G . ~81!

For the theoretical predictions we shall takeR(s) to be the
NNLO CIPT-APT CORGI result of Eq.~74!. Starting with
L̃MS̄

(5)
5216 MeV for Nf55, corresponding to the world av

erage valueas(MZ)50.1172 @44#, we demand thatR(s)
remains continuous as we cross quark mass thresholds.

then determinesL̃
MS̄

(Nf ) for Nf54,3,2. We take standard va

ues for current quark masses for the light quarks@44#: mu
53.0 MeV, md56.75 MeV, ms5117.5 MeV, and also
from @44# we take the values for pole masses of the hea
quarks mc51.65 GeV, andmb54.85 GeV. The approxi-
mate result@6# uses pole masses in Eq.~81!, so we use pole
masses where we can. Using these values for the q
masses andas(MZ), we plot the resultingRe1e2(s) in Fig.
6. The solid line corresponds to the CORGI APT result
R(s) in Eq. ~74!. The dashed curve corresponds to the st
dard NLO fixed-order CORGI result,

RCORGI~s!5a0~s!1S X22
p2b2

12 Da0
3~s!. ~82!

The standard fixed-order result breaks down ats5LD
2

50.4114 GeV2, where there is a Landau pole. The APT r
sult smoothly freezes in the infrared. The dashed-dot cu
shows the parton model result@i.e. assumingR(s)50].

FIG. 6. Comparison of CORGI APT and the standard NNL
CORGI calculations ofRe1e2(s) at low energies.
2-12
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For a recent comprehensive review of the experime
data forRe1e2(s) at low energies see Ref.@45#. The experi-
mental data we have used comes from a variety of sour
From the two pion threshold up toAs51.43 GeV we use
references@46#, the data from these references is given
individual exclusive channels which must be combined
obtain the full hadronic cross section. In the region betwe
1.43 GeV and 2.0 GeV we use data from@47,48#; Refs.
@49,50# are used in the region between 2.0 GeV and 5.0 G
From 5.0 GeV to 7.25 GeV we use@51#, and from 7.25 GeV
to 10.52 GeV we use@52,53#. These sets of data all give th
inclusive total hadronic cross section. Above 10.52 GeV
insert the NNLO CORGI APT prediction forRe1e2, this is
represented by the continuous line in Fig. 7.

In order to simplify the analysis of the data we did not u
overlapping data sets, instead where one data set overla
another we simply took the better, smaller error, data se
the region of the overlap inAs. Errors were dealt with by
taking each data point and calculating the effect of its sta
tical and its systematic error. The effect of its statistical er
was added in quadrature with the other statistical errors.
contribution from the systematic error was added to the o
systematic errors from the same data set, then the cont
tion from the systematic errors of each data set were adde
quadrature with each other and the contribution from
statistical errors.

We also need to consider the effect of narrow resonan
not included in the data; we employ the same approach
used in@12#. We assume that the narrow resonances hav
relativistic Breit-Wigner form

Rres~s!5
9

a2
Bll Bh

M2G2

~s2M2!21M2G2
, ~83!

wherea is the QED coupling, andM ,G,Bll ,Bh are the mass
width, lepton branching ratio, and hadron branching ra
respectively. We are assuming a narrow resonance i.e.G is
small, so we approximate the resonance with a delta func

FIG. 7. Data used to compare with model, statistical err
shown only.
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Rres~s!5
9

a2
Bll BhMGp

MG/p

~s2M2!21M2G2

'
9

a2
Bll BhMGpd~s2M2!. ~84!

The compilation of data forRe1e2 is shown in Fig. 7.
Narrow resonances are indicated by the vertical lines. Un
tunately it is not possible to directly compare the experim
tal data with the theoretical predictions. This is because th
is not a direct correspondence between the quark m
thresholds in perturbation theory and the hadronic re
nances. This difficulty can be overcome if one employs
‘‘smearing procedure.’’ We shall employ the method pr
posed by Poggio, Quinn and Weinberg@6#, defining the
smeared quantity

R̄e1e2~s;D!5
D

pE0

`

dt
Re1e2~ t !

~ t2s!21D2
. ~85!

Re1e2(s) itself is related to the vacuum-polarization functio
P(s) of Eq. ~4! by

2iRe1e2~s!5P~s1 i e!2P~s2 i e!, ~86!

that is it is the discontinuity across the cut. The smea
R̄e1e2(s;D) can be written as

2iR̄e1e2~s;D!5P~s1 iD!2P~s2 iD!. ~87!

If D is sufficiently large one is kept away from the cut, and
insensitive to the infrared singularities which occur there
both data and theory are smeared they can then be comp
In this way one hopes to minimize the contribution of t
RNP component. One needs to chooseD sufficiently large
that resonances are averaged out. For the charm regio
turns out thatD53 GeV2 is a good choice, whilst for lower
energiesD51 GeV2 is adequate. In Fig. 8~a! we chooseD
51 GeV2. R̄e1e2(s;D) obtained from the data is represent
by the solid line. The dashed-dot line is the smeared NN
CORGI APT prediction, assuming the quark mass thresho
as above with the exception of the charm quark whose m
is taken to bemc51.35 GeV for reasons which we sha
shortly discuss. The dashed line is the parton model pre
tion. The shaded region denotes the error in the data.
clear that in the charm region the averaging is insufficie
although for lower energies the agreement is extremely go
In Fig. 8~b! we show the corresponding plot withD
53 GeV2. There is now good agreement between smea
theory and experiment over the wholes range, for mc
51.35 GeV. Whilst we have indicated an error band asso
ated with the data, we have not indicated an error band
the theory prediction. There are several potential source
error to consider. The first is the choice of renormalizati
scale. Our viewpoint would be that the use of the COR
scale corresponds to a complete resummation of ultravi
logarithms, which in the process results in a cancellation
m-dependent logarithms contained in the couplinga(m2)

s

2-13
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and in the perturbative coefficients. As we have argued e
where @39# attempts to estimate a theoretical error on
perturbative predictions by makingad hoc changes in the
renormalization scale are simply misleading, and give no
formation on the importance of uncalculated higher-or
corrections. A common approach, for instance, is to
scalesm25xs where x is varied betweenx5 1

2 and x52,
with x51 providing a central value. We should note, ho
ever, that were we to have used such a procedure it wo
not have led to a noticeable difference in the theory curv
since the APT has greatly reduced scale-dependence, a
been noted elsewhere@54#. A more important uncertainty is
the precise value of the quark masses assumed, and in

FIG. 8. ~a! R̄(s;D) in the charm region, withD51 GeV2. ~b!

R̄(s;D) in the charm region, withD53 GeV2. ~c! R̄(s;D) in the
charm region, withD53 GeV2 heremc51.65 GeV.
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ticular the choice of the charm quark massmc . To illustrate
how this affects the results we show in Fig. 8~c! the curves
obtained if we assumemc51.65 GeV. As can be seen th
theory curve is now inconsistent with the data in the cha
region, although for lower energies where the charm qu
has decoupled, the agreement is again good.

The uncertainty in the mass of the charm quark is exc
tionally large. Looking at the different references used
@44# a valuemc51.35 GeV for the pole mass is reasonab
and agrees well with@55# which is referenced in@44#. Part of
the problem is the relationship between the pole mass
theMS mass for the charm quark, where theas

3 contribution
is larger than theas

2 contribution. Obtaining the pole mas
throughMS mass calculations, which is done in@44#, is not
very satisfactory. Reference@55#, which also fits low-energy
Re1e2 data, gives a pole mass ofmc51.33–1.4 GeV, and so
the choice of 1.35 GeV is reasonable.

It is possible to extend the smearing to spacelike value
s. We give the corresponding curves forR̄e1e2(s;D), with
mc51.35 GeV, over the range23,s,1 GeV2 in Figs.
9~a!, 9~b!, for D51 GeV2, and D53 GeV2, respectively.
The agreement between theory and experiment is extrem
good in both cases.

In Fig. 10 we showR̄e1e2(s;D) in the upsilon region. The
choiceD510 GeV2 works quite well; we show the theor
predictions for differentmb values. A direct comparison be
tween theory and data which does not involve smearing

FIG. 9. ~a! R̄(s;D) in the spacelike region, withD51 GeV2.

~b! R̄(s;D) in the spacelike region, withD53 GeV2.
2-14
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possible if one evaluates the area under theRe1e2(s) data,
that is evaluates the integral,

I ~s![E
4mp

2

s

Re1e2~ t !dt, ~88!

where s lies well above the low-energy resonances in
continuum. We show the theory and experimentalI (s) over
the range 5,As,9 GeV in Fig. 11. There is extremely goo
agreement. Finally we can avoid smearing by transform
Re1e2(s) to obtainD(Q2) in the Euclidean region, using th
dispersion relation of Eq.~75!

D~Q2!5Q2E
4mp

2

` ds

~s1Q2!2
Re1e2~s!. ~89!

In practice we cannot integrate up to infinity so we just ta
the sufficiently large upper limit of 106 GeV2. As noted ear-
lier aboveAs510.52 GeV the NNLO CORGI APT predic
tion is used for the data. The theory and data results
shown in Figs. 12, 13. There is good agreement. Our res
are comparable to the fit obtained in@56#, and to the results
in @57#. We should also note that very similar plots and fits
those we have presented in this section are included in

FIG. 10. R̄(s;D) in the upsilon region, withD510 GeV2.

FIG. 11. Area underRe1e2(s).
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@58#, which uses instead the so-called variational pertur
tion theory~VPT! approach@3#.

V. DISCUSSION AND CONCLUSIONS

The analytic perturbation theory~APT! approach advo-
cates the ‘‘analytization’’ of the terms in standard perturb
tion theory so that the perturbative expansion is recast a
expansion in a basis of functions that have desirable ana
properties, in particular the absence of unphysical ‘‘Land
poles’’ in Q2 @1#. The functions in the Euclidean an
Minkowski regions are interrelated by the integral transfor
of Eq. ~7! (D→R) and Eq. ~75! (R→D). In a previous
paper we pointed out the Minkowskian formulation of AP
for the quantityRe1e2 was equivalent to the all-orders re
summation of a convergent subset of analytical continua
terms @8#. This reorganization of fixed-order perturbatio
theory gives apparent infrared freezing to the limit 2/b to
all-orders in perturbation theory, and the functionsAn(s) at
two-loop level could be written in closed form in terms
the Lambert W function. However, one might questio
whether this all-orders perturbative freezing has any phys
relevance. It is well-known that all-orders perturbatio
theory by itself is insufficient, and that it must be compl
mented by the nonperturbative operator product expan
~OPE! @4,5#. It is clear that the OPE breaks down ass→0,

FIG. 12. D(Q2) calculated using APT.

FIG. 13. Same as Fig. 12 but viewed over a smaller range.
2-15
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since it is an expansion in powers ofL̃2/s. In this paper we
have shown how both the PT and the OPE components
remain defined in the infrared limit. Writing a Borel repr
sentation for the PT component one finds that it is ambigu
because of the presence of singularities on the integra
contour, termed infrared renormalons@4#. These ambiguities
however, are of precisely the same form as OPE terms, a
regulation of the singularities in the Borel integrand induc
a definition of the OPE coefficients, allowing the two com
ponents to be defined. We showed that the Borel inte
representation inevitably breaks down at a critical energysL

which we referred to as the ‘‘Landau divergence.’’ F
Minkowskian quantities the Borel transform contains an
cillatory factor which means that the Borel integral rema
defined ats5sL . For s,sL one needs to switch to an alte
native Borel representation, which has ambiguities due
ultraviolet renormalon singularities on the integration co
tour. Correspondingly the OPE should be resummed and
cast in the form of an expansion in powers ofs/L̃2. The UV
renormalon ambiguities in the Borel integral are then of
same form as the terms in the modified OPE, and regula
the modified Borel integral induces a definition of the co
ficients in the modified OPE, allowing both components
be defined. The modified Borel integral freezes to 2/b in the
infrared thanks to the presence of the oscillatory fac
whilst the modified OPE component will also contribute
the infrared freezing behavior since resummation of the s
dard OPE can result ins-independent terms which can give
nonzero freezing limit, as in the toy example of Eq.~51!. As
we noted we did not expect to be able to determine the
frared behavior from perturbation theory alone, but the ex
tence of a perturbative component which can be defined
ing a reorganized version of fixed-order perturbation the
at all energies is important. In particular the perturbat
component dominates in the ultraviolet and may poss
provide a good approximation into the low-energy regio
We explicitly constructed the all-orders Borel representati
using the all-orders leading-b approximation forR(s) @30#,
and a one-loop coupling. We could express the Borel inte
in closed form in terms of exponential integral functions@Eq.
~47!#. With the standard continuation of the Ei(n,w) func-
tions defined by Eq.~44! the result forR PT

(L)(s) of Eq. ~47! is
a function ofs which is well-defined at all energies, freezin
to 2/b in the infrared, and continuous ats5sL . The two-loop
Borel representation was also discussed. The details are
lar to the one-loop case, with a modified oscillatory fac
and a shifted value ofsL , the modified Borel representatio
again freezes to 2/b in the infrared. At both one-loop an
two-loops the APT modification of fixed-order perturbatio
theory corresponds to keeping the oscillatory factor in
Borel integrand intact, and expanding the remainder. A
result the APT results should be asymptotic to the Borel r
resentations at all energies, underwriting the validity of
all-orders perturbative freezing behavior. It should be no
that we have somewhat oversimplified our discussion of
OPE contribution. The OPE coefficients are not constant
in the toy example of Eq.~51!, but are functions ofa, Cn(a).
Each coefficient will involve a perturbation series ina which
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is divergent withn! growth of coefficients, and can be de
fined using a Borel representation. As defined by analy
continuation from the OPE forDNP to that for RNP , the
corresponding Borel integrands will contain the same os
latory factors, enablingCn(a) to remain defined ats5sL ,
and for s,sL one switches to the modified Borel represe
tation. We should note that the difficulty of uniquely exten
ing the Borel representation for Minkowskian quantities in
the infrared has also been discussed in Ref.@59#, but with
differing conclusions to us. A more closely related discuss
concerning the significance and interpretation of the Lan
pole is given in Ref.@32#. The modified Borel representatio
of Eq. ~50! and the promotion of UV renormalon singular
ties to the positive axis in the Borelz-plane has also bee
discussed in Ref.@34#.

Whilst the Minkowskian version of APT is underwritte
by a Borel representation valid at all energies, this is not
case for the Euclidean version. There is no oscillatory fac
in the integrand in the Euclidean case, and the Borel inte
will potentially diverge as one approachessL . However, we
showed that working in leading-b approximationDPT was
finite atsL thanks to a cancellation between the infinite set
IR and UV renormalon residues. For individual renormal
singularities the Borel integral is divergent. By switching
the modified Borel representation one can then define aDPT

component which in fact freezes to zero in the infrared. T
is interesting and similar perturbative freezing is also fou
for structure function sum rules@40#. The key point, how-
ever, is that no analogue of the Minkowskian APT reorga
zation of fixed-order perturbation theory is possible in t
Euclidean case, and one is restricted to the leading-b ap-
proximation in exhibiting the perturbative freezing.

In the final section we performed fits of NNLO APT re
sults to low energyRe1e2 data. We needed to introduc
quark masses approximately, and in order to avoid amb
ities due to the precise location of quark mass thresholds,
to minimize the contribution of theRNP component, we used
a smearing procedure. Extremely good agreement betw
theory and data was found.

An obvious further application would be to use the AP
approach in the analysis of the tau decay ratio and in part
lar the estimation of the uncertainty inas(MZ) which such
measurements imply@9,54#. In Ref.@9# this was estimated by
comparing NNLO CIPT in the CORGI approach, with a
all-orders resummation based on the leading-b result. How-
ever, in fact CIPT for the tau decay ratio isnot equivalent to
the APT approach and corresponds to an expansion in a
ferent basis of functions. In particular the resulting functio
arediscontinuousat s5sL . We hope to study this further in
a future publication.
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