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All-orders infrared freezing of observables in perturbative QCD
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We consider a Borel sum definition of all-orders perturbation theory for Minkowskian QCD observables
such as theR.+.- ratio, and show that both this perturbative component and the additional nonperturbative
all-orders operator product expansi@@PE component can remaiseparatelywell-defined for all values of
energy+/s, with the perturbative component dominatingsas, and with both components contributing as
s—0. In the infrareds—0 limit the perturbative correction to the parton model result Rar.- has an
all-orders perturbation theory component which smoothly freezes to the #(0¢=2/b, whereb=(33
—2N;)/6 is the first QCD beta-function coefficient, witk; flavors of massless quark. For freezing one
requiresN{<<9. The freezing behavior is manifested by the “contour-improved” or “analytic perturbation
theory” (APT), in which an infinite subset of analytical continuation terms are resummed to all-orders. We
show that for the Euclidean Adlé- function, D(Q?), the perturbative component remains defined into the
infrared if all the renormalon singularities are taken into account, but no analogue of the APT reorganization
of perturbation theory is possible. We perform phenomenological comparisons of suitably smeared low-energy
data for theR,+,- ratio, with the perturbative freezing predictions, and find good agreement.
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[. INTRODUCTION couplinga(s)=as(s)/, and a nonperturbative part which
can be developed as an OPE in powerd &fs, the first term
In this paper we wish to address the question of whethecorresponding to the lowest dimension relevant operator, the
QCD perturbation theory can be used to make predictions igluon condensate, being proportional ta?(s)?. The key
the low-energy infrared regime where one expects nonpertupoint is that the combination of the all-orders perturbation
bative effects to dominate. Such an extension of the applicaseries and OPE must be well-defined at all values sfnce
bility of perturbation theory, beyond the ultraviolet regime of Rq+.-(S) is a physical quantity. Each part by itself, however,
asymptotic freedom, would obviously enable one to tesexhibits pathologies. Specifically, the perturbation series ex-
QCD in new ways. Reorganizations of fixed-order perturbahibits n! growth in the perturbative coefficients, at large-
tion theory exhibiting a stable infrared freezing behaviorordersn. Attempts to define the all-orders sum of the pertur-
have previously been formulated and studied; these includeation series using a Borel integral run into the difficulty that
the so-called “analytic perturbation theoryAPT) approach there are singularities on the integration contour termed in-
initiated by Shirkov and Solovtsov in Refdl] (for a review  frared renormalonf4]. It turns out, however, that the result-
see Ref[2]), and the variational perturbation theafyPT)  ing ambiguity in defining the Borel integral is of the same
approach[3]. Our discussion will address the more funda-form as ambiguities in the coefficient functions involved in
mental question of how all-orders QCD perturbation theorythe OPE, and so choosing a particular regulation of the Borel
and the nonperturbative operator product expan$@RE  integral (such as principal valyeinduces a corresponding
contribution, can remain defined in the low-energy regimedefinition of the coefficient functions, and the sum of the two
We will discover that this is possible for Minkowskian ob- components is well-defineldt,5]. There is a further crucial
servables, and that the APT approach should be asymptotathology of the Borel integral, which we shall refer to as the
to the all-orders perturbative result which also exhibits the‘Landau divergence.” This means that at a critical energy
same infrared freezing behavior found with APT. For Euclid-s=s, , the Borel integral diverges. It should be stressed that
ean quantities, however, we will find that all-orders pertur-the value ofs, should not be confused with the “Landau
bation theory only exhibits stable infrared behavior if onepole” or “Landau ghost” in the QCD couplinga(s). The
has complete information on the perturbative corrections tdLandau ghost” is completely unphysical and scheme-
all-orders, and that this behavior is not in general related telependent, whereas the divergence of the Borel integral is
the infrared behavior found using APT. completely scheme-independédt. For Minkowskian quan-
We will focus our discussion on thR.+.-(S) ratio, at tities such aRR.+.- there is an oscillatory factor in the Borel
c.m. energyy/s. This is a Minkowskian quantity derived by transform in the integrand, arising from the analytical con-
analytical continuation from the Euclidean QCD vacuum po-tinuation from Euclidean to Minkowskian, which means that
larization function. The corrections to the parton model re-the Borel integral is finite as=s,, and diverges fors
sult for Rg+-(S) will consist of a perturbative part, which <s, . To go to lower energies tham we shall show that one
can be developed as a power series in the renormalized QCieeds to modify the form of the Borel integral, the modified
form now having singularities on the integration contour cor-
responding taultraviolet renormalons, correspondingly to go
*Email address: d.m.howe@durham.ac.uk below s=s;, one needs to resum the OPE to all-orders and
"Email address: c.j.maxwell@durham.ac.uk recast it as a modified expansion in powerssbh2. One
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then finds that the ambiguities in regulating this modifiedD(Q?). For Euclidean observables the Borel integral does
Borel integral, are of the same form as ones in the modifiedhot contain the oscillatory factor and so is potentially diver-
OPE, and fois<s, the sum of the two components is again gent ats=s, , although as we shall show in the so-called
well-defined. In the infrared— 0 limit the modified OPE leadingb approximation4,5], the divergence is cancelled if
resulting from resummation can contain a constant term inall the infrared and ultraviolet renormalon singularities are
dependent of even though such a term is not invisible in included, and once again perturbative and nonperturbative
perturbation theory, so both the perturbative and nonpertureomponents which are separately well-defined at all energies
bative components will contribute to the infrared freezingcan be obtained. This is only possible in the leadingp-
limit. The oscillatory factor in the Borel integral means that proximation, however.

it freezes smoothly to B/ in the infrared, whereb=(33 The plan of the paper is as follows. In Sec. Il we shall
—2N;)/6 is the first SU(3) QCD beta-function coefficient, describe the CIPT-APT reorganisation of fixed-order pertur-
with N¢ quark flavors. bation theory foilR.+.-, reviewing the results of Ref8]. In

The arguments sketched above suggest that the all-orde8ec. Il we consider how for Minkowskian observables one
perturbative and nonperturbative components forcan define all-orders perturbation theory, and the all-orders
Minkowskian quantities such d&,+.-(s) canseparatelyre-  nonperturbative OPE in such a way that each component
main defined at all energies, with the perturbative part beingemains well-defined at all energies. The link between the
dominant in the ultraviolet and both components contributingall-orders perturbative result and the reorganized CIPT-APT
in the infrared limit. One can then compare all-orders perturfixed-order perturbation theory is emphasized. We then
bative predictions with data, having suitably smeared andriefly consider the corresponding problem for Euclidean ob-
averaged over resonandég to suppress the nonperturbative servables. In Sec. IV we perform some phenomenological
mass threshold effects. In practice, of course, we do not hav&tudies in which we compare low energy experimental data
exact all-orders perturbative information. We know exactlyfor R.+.-(s) with the CIPT-APT perturbative predictions.
the perturbative coefficients of the corrections to the partorSection V contains a discussion and conclusions.
model result forRg+.- to next-next-leading ordeiNNLO),

i.e. including terms of ordeng [7]. Clearly, conventional Il. INFRARED FREEZING OF Rg+--CIPT-APT
fixed-order perturbation theory f&.+.- will not exhibit the ) o )

freezing behavior in the infrared to be expected for the all- We begin by defining th&+.- ratio at c.m. energy/s,
orders perturbation theory. What is required is a rearrange- .

ment of fixed-order perturbation theory which has freezing 5 7(S)Eo'tot(e e Hhadf0n$:32 Q%(1+R(s))
behavior in the infrared. As we have discussed in a recent © © glefe —>utu) i '
paper[8] the resummation to all-orders of the convergent (1)
subset of analytical continuation terni$arge-m2" terms),

arising when the perturbative corrections to the Euclidearrere theQ; denote the electric charges of the different fla-
Adler-D(—s) function at a given order are continued to the vors of quarks, andR(s) denotes the perturbative correc-
MinkowskianRg+.-(S), recasts the perturbation series as antions to the parton model result, and has a perturbation series
expansion in a set of functiors,(s) which are well-defined ©of the form,

for all values of s, vanishing ass—« in accord with

asymptotic freedom, and with all bé;(s) vanishing in the R(s)=a+ 2 r.antl, @)
infrared limit, with A,(s) approaching 2/ to provide infra- n>0

red freezing behavior to all-orders in perturbation theory.

This “contour-improved” perturbation theoryCIPT) ap- Here a=ag(u?)/w is the renormalized coupling, and the
proach is equivalent to the analytic perturbation theorycoefficientsr; andr, have been computed in théS scheme
(APT) mentioned abové1] in the case ofR.:. (S). We  Wwith renormalization scal@?=s [7]. We can consider the
gave explicit expressions for the functiods,(s). At the  s-dependence dR(s) at NNLO,

two-loop level these can be expressed in terms of the Lam- 4R(S) 0 0

bert W-function [9,10]. To make contact with the all-orders S) _ 2 2
perturbative result represented as a Borel integral, we note S ds EP(R)Z_ER (I+CR+poRY. (3
that the CIPT-APT reorganization of perturbation theory cor-

responds to leaving the oscillatory factor in the Borel transHere ¢=(153—19N;)/12b is the second universal QCD
form intact whilst expanding the remaining factor as a poweeta-function coefficient, ang, is the NNLO effective
series. Integrating term-by-term then yields the functionscharge beta-function coefficiefitl], an RS-invariant combi-
A,(S). The presence of the oscillatory factor in these inte-nation ofr,r, and beta-function coefficients. The condition
grals guarantees that ti#g,(s) are well-defined at all ener- for R(s) to approach the infrared limR* ass—O0 is for the
gies. The CIPT-APT series should thus be asymptotic to theffective charge beta-function to have a nontrivial zero,
Borel integral at both ultraviolet and infrared energies.p(R*)=0. At NNLO the condition for such a zero s,
Whilst a reorganized fixed-order perturbation series exhibit<<0. PuttingN¢=2 active flavors we find for the NNLO RS
ing stable infrared freezing behavior is possible forinvariant,p,=—9.72, so thaiR(s) apparently freezes in the
Minkowskian quantities, we shall show that it is not possibleinfrared toR* =0.43. The freezing behavior was first inves-
for Euclidean observables such as the Adfunction, tigated in a pioneering paper by Mattingly and Stevenson
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[12] in the context of the principle of minimal sensitivity 2
(PMS) approach. However, it is not obvious that we should a(s)=—————>—. 9
believe this apparent NNLO freezing resl8]. In factp, is bin(s/Afs

dominated by a largb?=? term arising from analytical con- ) ) .
tinuation(AC) of the Euclidean AdleD(—s) function to the ~ AS descr,!bed above one can then obtain the “contour-
Minkowskian R(s), with p,=9.40- w2b?/12. Similarly the IMProved” perturbation series faR(s),
N3LO invariant p; will contain the large AC term oo
—5ca?b?/12. This suggests that in order to check freezing R(S)=ALS)+ S dyA,,1(5), (10)
we need to resum the AC terms adi-orders n=1
Re+e- is directly related to the transverse part of the cor-
relator of two vector currents in the Euclidean region, where the function#\,(s) are defined by

A (s)=ir doa—— " de s
| nS=on C2m) . "[1+ib0a(5)/2]”'
:4772if d*xe9X(0| T[] .(x)j,(0)1[0), (4) o

(0,9,~9,,99)11(s)

5 ] . _ . This is an elementary integral which can be evaluated in
where s=—q°>0. To avoid an unspecified constant it is ¢osed-form ag8]

convenient to take a logarithmic derivative with respecs to

and define the AdleD-function, 2 wba(s)
A(s)= —-arcta
q b 2
D(s)=—s—-=II(s). 5
(s) ds (s) © 2a" Y(s) ibra(s)|1 "
An(S):m“’n > (n>1).
This can be represented by Ed) with the perturbative cor- i (12)

rectionsR(s) replaced by
We then obtain the one-loop “contour-improved” series for

D(s)=a+ D damtl. 6 )
n>0
2 mba(s) a’(s)

; ; ; _ R(s)= —-arcta 1
The Minkowskian observabl®&(s) is related toD(—s) by b 2 (1+b27w2a2(s)/4)
analytical continuation from Euclidean to Minkowskian. One
may write the dispersion relation, a3(s)

2 2_2.2 2 (13
1 (-s+ie D(t) (1+b°mca“(s)/4)
R(S)=— dt—. (7)
2l ) —s-ie t The first arctan term is well-known, and corresponds to re-

summing the infinite subset of analytical continuation terms
Written in this form it is clear that the “Landau pole” in the jn the standard perturbation series of E2).which are inde-
couplinga(s), which lies on the positive reataxis, is nota  pendent of thel,, coefficients. Subsequent terms correspond
problem, andR(s) will be defined for alls. The dispersion  to resumming to all-orders the infinite subset of terms in Eq.
relation can be reformulated as an integration around a cir) proportional tod; ,d,, . . ., etc. In each case the resum-
cular contour in the complex energy-squasgalane[14,15,  mation isconvergentprovided thata(s)|<2/zb. In the ul-

traviolet s—oo limit the A,(s) vanish as required by

R(s)= ij" doD(sé"?). ®) asymptotic freedom. In the infr_areﬂ—p limit, tbg one-loop
2w ) 5 couplinga(s) has a “Landau” singularity as= A 5. How-

ever, the function#,(s) resulting from resummation, if ana-
One should note, however, that this is only equivalent to theytically continued, are well-defined for all real values of
dispersion relation of E(7) for values ofs above the “Laﬂ- A,(s) smoothly approaches from below the asymptotic in-
dau pole.” ExpandingD(s€?) as a power series im  frared value 23, whilst for n>1 theA,(s) vanish. Thus, as
=a(se?, and performing thed integration term-by-term, claimed,R(s) is asymptotic to 2J to all-orders in perturba-
leads to a “contour-improved” perturbation series, in which tion theory. We postpone the crucial question of how to de-
at each order an infinite subset of analytical continuatiorfine all-orders perturbation theory in the infrared region until
terms present in the conventional perturbation series of Eqhe next section. We should also note that the functions
(2) are resummed. It is this complete analytical continuationA,(s) in Eq. (12) can also be obtained by simple manipula-
that builds the freezing oR(s). We shall begin by consid- tion of the dispersion relation in E¢7), which is defined for
ering the “contour-improved” series for the simplified case all reals. This avoids the possible objection that the contour
of a one-loop coupling. The one-loop coupling will be givenintegral in Eq.(8) is only defined fors above the “Landau
by pole.”
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Beyond the simple one-loop approximation the freezing is
most easily analyzed by choosing a renormalization scheme

in which the beta-function equation has its two-loop form,

da(p?)

b
T 2 - 5a%(u?)(1+ca(p?)). (14

This corresponds to a so-called 't Hooft schefii®] in

which the nonuniversal beta-function coefficients are all

zero. Herec=(153—-19N¢)/12b is the second universal

beta-function coefficient. For our purposes the key feature of o1
these schemes is that the coupling can be expressed analyt

cally in closed-form in terms of the LambeW function,
defined implicitly byW(z)expWM2)=z[17,18. One has

o 1
A= W (2]
P —bl/c
Z(M)E—E - , (15
MS

where Ays is defined according to the convention [df9],

and is related to the standard definiti¢@0] by Ays
=(2c¢/b) " “®Ays. The “—1” subscript onW denotes the
branch of the LambeiV function required for asymptotic
freedom, the nomenclature being that of R&B]. Assuming
a choice of renormalization scaje’?=xs, wherex is a di-
mensionless constant, for the perturbation serie®(@) in
Eqg. (5), one can then expand the integrand in Egj. for
R(s) in powers ofa=a(xsd?), which can be expressed in
terms of the LambertV function using Eq(15),

- -1
I WA (o
where
-1 —blc —b
A(S): ?<7\—\/X__S) , = 2_C (17)
MS

The functionsA,(s) in the “contour-improved” series are
then given, using Eqg15), (16), by

Clfmo 10 (—1)n
An(S)=Ef_wd0a ZZJ_Wdﬂ o
X[1+W,(A(s)eK?] "+ iFole(_l)n
! 27 )9 ch

X[1+W_ (A(s)e®)]™". (18)
Here the appropriate branches of #efunction are used in
the two regions of integration. As discussed in Rg8510],
by making the change of variable=W(A(s)e'*?) we can
then obtain
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FIG. 1. The functionA,(s) of Eq. (20) versussx/f\ﬁ,l—s. We
assumeN;=2 flavors of quark.
(=" (w_yaekn  dw
An(S)=——— f T ——— (19
2iKc"mJwyas)e M w(l+w)

Noting that W, (A(s)e K™ =[W_,(A(s)e"™)]*, we can
evaluate the elementary integral to obtain fior 1,

2 1 ,
A(S)=§ ~ oo IMIIN(W_1(A(s)e* ™), (20)

where the 23 term is the residue of the pole at=0. For
n>1 we obtain

(" W_y(A(s)e'™) )
An(s)— Im| In -
c"Kar 1+W_y(A(s)e'*™)
n-2

1
+k21 K(1+W_,(A(s)eKm))k

] . (21

Crucially the contribution from the poles at=0 andw=

—1 cancel exactly. Equivalent expressions have been ob-
tained in the APT approachl0]. Provided thatb/c>0,
which will be true forN;<9, we find the same behavior as
in the one-loop case with th&,(s) vanishing in the ultra-
violet limit consistent with asymptotic freedom, and with
An(s) vanishing in the infrared limit fom>1, andA;(s)
freezing to 2. To the extent that the freezing holds to all-
orders in perturbation theory it should hold irrespective of
the choice of renormalization scheri®S). The use of the 't
Hooft scheme simply serves to make the freezing manifest.
In Figs. 1-3 we plot the function8,(s),A(s) and A;(s),

respectively, as functions ofs(dKf,l—S).

Having shown how fixed-order perturbation theory can be
reorganized so that it exhibits well-behaved freezing behav-
ior in the infrared, we turn in the next section to a discussion
of how all-orders perturbation theory and the all-orders non-
perturbative OPE, can be defined in such a way that they
remain well-defined at all energies.
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FIG. 2. As Fig. 1 but forA,(s) of Eq. (21).

Ill. ALL-ORDERS PERTURBATION THEORY AND OPE

The corrections to the Adldb function, D(Q?), can be
split into a perturbative partPp(Q?), and a nonperturba-
tive operator product expansi¢®PB part, Dyp(Q?),

D(Q?) =Dpr(Q%) + Dyp(Q?). (22

The PT component is formally just the resummed perturba-

tion series of Eq(6),
Dpr(Q?)=a(Q?) + ngo d,a" Q2. (23

In addition one has the nonperturbative OPE contribution,

Cn(Q?,1?)(On(1?))

Dnp(Q%)= ; o

(24)

where the sum is over the relevant operat®sof dimen-
sion 2n. u denotes the factorization scale, a@g is the
coefficient function. For the AdleD function the lowest di-
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It will be convenient to scale out the dimensionful facio?”
from the operator expectation value, and combine it with the
coefficient function to obtain the overall coefficient
Cn(Q% 1?). We can then write théyp(Q?) component in
the form

Az\"
2y _
Dyp(Q%) =2 cn(g) : (26)
We have suppressed the¢ andQ? dependence of the coef-
ficientC,. The coefficients are themselves series expansions
ina

Co=Ka’(u?)[1+0(a)]. (27)

Here K is an undetermined nonperturbative normalization,
andé, is related to the anomalous dimension of the operator
concerned.

The definition of the all-orders perturbative component in
Eqg. (23) needs care. The series has zero radius of conver-
gence in the coupling. A direct way of seeing this is to
consider the larg®; expansion of the perturbative coeffi-
cientd,,
dp=dND+din NPT gl (28)
The leading largeN; coefficient,dl™ | can be computed ex-
actly to all-orders since it derives from a restricted set of
diagrams in which a chain af fermion bubblegrenormalon
chain is inserted in the initiating quark loop. Working in the
so-calledV-scheme, which corresponds MS subtraction
with scaleu?=e"5%Q?, one finds the exact larg¥; result
[21-23,

[l -2 —1\" n+6

dn (V)Z?(n-i-l) ? —2n—2n+2
16

— m(1-2-2")

N+1 np+T=m=0

mension relevant operator is the dimension four gluon con-

densate,

(0[G},G4"10). (25

0.0004
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-0.0002
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FIG. 3. As Fig. 1 but forAz(s) of Eq. (21).

X(l_zzm_n_z)gzmnlm- (29

The n! growth of coefficients means that the perturbation
series is at best an asymptotic one. To arrive at a function to
which it is asymptotic one can use a Borel integral represen-
tation, writing

Do @)= [ dze @BD)2). (@0
0
Here B[ D](2) is the Borel transform, defined by
= z'd
B[D(2)]= 2 —. (31)
n=o0 N

On performing the Borel integral term-by-term one recon-
structs the divergent formal perturbation series fgrr. If
the series for the Borel transform has finite radius of conver-
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gence, by analytical continuation to the whole region of in-behavior in perturbation theory of the formd,
tegration one can then define the Borel sum, provided that=Kn”(b/2)"n!, involving the QCD beta-function coefficient
the Borel integral exists. On general grour{@,25 one  b=(33—2N;)/6. Motivated by the structure of renormalon
expects that in renormalizable field theories the Borel transsingularities in QCD one can then convert fig expansion
form will contain branch point singularities on the real axisinto the so-calledb-expansion[29—-32, by substitutingNs

in the complexz plane, at positions=z,= 2k/b correspond- = (33/2— 3b) to obtain
ing to infrared renormalondRy, k=1,2,3 ..., and az= - (=11 ©)
—z, corresponding to so-called ultraviolet renormalons, dy=dy"b " +dy Vo™ e dy (34)

UV, . Hereb is the first beta-function coefficient, so that for ) (L) — (M - )
QED with N; fermion specieb=— 2N, whilst for SU(3) The Igadmg? termd,’=d b' is then used to approximate
QCD with N; active quark flavorsh= (33— 2N,)/6. Thusin  dn- Sinced{”=(—3)"d{"b", it is known to all-orders from
QED there are ultraviolet renormalon singularities on thethe largeNy result. This approach is sometimes also referred
positive real axis, and hence the Borel integral will be am-t0 as “naive non-AbelianizationT29]. It can be motivated
biguous. In QCD withN;< 33/2 flavors, so that the theory is DY considering a QCD skeleton expansi@8], and corre-
asymptotically free, anti>0, there are infrared renormalon SPonds to simply taking the first “one-chain” term in the
singularities on the positive real axis making the Borel inte-€xpansion. It does not include the multiple exchanges of
gral again ambiguous. For both field theories all-orders perfenormalon chains needed to build the full asymptotic behav-
turbation theory by itself is not sufficient. The presence ofior of the perturbative coefficients, and there are no firm
singularities on the integration contour means that there is aguarantees as to its accuracy. The leadingesult for the
ambiguity depending on whether the contour is taken abov8orel transform of the AdleB function in theV-scheme can

or below each singularity. It is easy to check that, takingn ~ then be obtained from Eq29):

the Borel integral of Eq(30) to be a generic QED or QCD

©

observable with branch point singularities<€¥/|z,]) ~ * in BDL](2)= Ao())+2zA(]) N Bo(2)
the Borel plane, the resulting ambiguity for the singularity at =1 z\? z
z=|z is of the form (1+; (1_2_>
j 2
~Ke~lala@® g1~ % > i i
ADp1~Ke a %, (32 E Bo(j)-i-zBlz(]), 35
whereK is complex. Using the one-loop form for the cou- I=3 1— E)
pling, a(Q?) = 2/b In(Q%A?), one finds that in the QCD case, g
~ o\ k so that one sees in the leadibgiimit a set of single and
AD ~Ka1“/k( _) 33) double pole renormalon singularities at the expected posi-
PT ' tions. The residues of theV; poles,Aq(j) andA(j), are

given by[30]
This has exactly the same structure as a term in the OPE 118124 A
expansion, Eq(26), and one sees that the branch point ex- Ag(j) = § (—1))7(Ej7+6j+2)
ponenty of the IR renormalon is related to the anomalous 3 j3(j+1)3(j+2)?
dimension of the operator, withy=1—vy,. The idea is that

the coefficient(, , in particular the constat€, is ambiguous 4 b(—1)1*1(2j+3)
in the OPE because of nonlogarithmic UV divergences Al(j)=§ - " > (36
[26,27). This ambiguity can be compensated by the IR renor- G+D%+2)

malon ambiguity in the PT Borel integral, and so regulatingBecause of the conformal symmetry of the vector correlator
the Borel integral, using for instance a principal valt®/) y y

prescription, induces a particular definition of the coefficient[34] thelR; residuesBy(j) andB,(j), are directly related to

functions in the OPE, and the PT and OPE components artge_AU\ﬁ. or;es, lv'zth SO(i)igA‘i( __Jé Zan_do Bl(])d
then separately well-defined. That this scenario works in de- 5 1_(1 J)N tpr ih .b o )_f ;I(ER )= By )_I ;. an

tail can be confirmed in toy models such as the nonlineaFO.( )= - hotice e absence o 1 renormalon singu-
O(N) o model [26,28. For the QED case the ambiguity arity. This is consistent with the correspondence between

B OPE terms and IR renormalon ambiguities noted above,
corresponds to </A“ effect. So that all-orders QED per-

. . i . : < since there is no relevant operator of dimension 2 in the
turbathn thgoryzls only defined if there are in addition pzowerOPE. The singularity nearest the origin is then the, sin-
corrections inQ<“. Such effects are only important @

- _ gularity atz= —2/b, which generates the leading asymptotic
~AZ, hereA corresponds to the Landau ghost in QEY¥,  pehavior,

~10°%%m?, with m the fermion mass. Thus in QED such
power corrections can have no phenomenological conse-
guences and can be completely ignored.

Our exact information about the Borel transform,
B[D](z), for the QCD AdlerD function is restricted to the We shall now consider the correctioR(S), to the parton
largeN; result of Eqg.(29). In QCD we expect large-order model result folR+.-. This may be split into a perturbative

di)~——7—n!| & (37)

(12n+22) (—b)”
———nl! .
2
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componentRp+(s), and an OPE componefyp(s), analo-  W-plane, except av=0; with a branch cut running along the
gous to Eqs(23), (24). Inserting the Borel representation for negative real axis. Explicitly35]
Dp1 of Eq. (30) into the dispersion relation of E¢7) one

_ -1
finds the representation Ei C(mw)nt e +nz 1
|(n,w)——(n_l)! nw-—yg 2 m
1 —s+iedt (= 2ty
RPT(S)_ﬁffsfiET o dze B[D](Z) (38) (—W)m

B mzzo (m=n+1)m!’
m#n—1

(44)

It will be convenient to consider the all-orders perturbative

result in leadings approximation to start with, in which case with y.=0.572 ... Euler’s constant. The w contributes

the coupling a(t) will have its one-loop form,a(t)  the branch cut along the negative reabxis. To obtain the

=2/(b In(t/A2)), where we assume the¥-scheme. In this principal value of the Borel integral one needs to compensate

case the integration is trivial and one finds for the discontinuity across the branch cut, and make the
replacement Eif,w)— Ei(n,w)+im sgn(Imw). This leads

RO s jwdzezla(s)sir:zk;zzla BIDU(2), (39) one to introduce, analogous to Ed43),
° b_(p,q)=e"%/2(—1)Am[Ei(p,(— 1/a(s)) — i 7bz,/2)]
whereB[DM](2) (in the V-schemeis given by Eq.(35). It e /a9 — 1)zp~1
is now possible to explicitly evaluarR(P"T)(s) in terms of - (=11 a m Re ((1/a(s))
generalized exponential integral functions rEif/), defined P ’
for Rew>0 by +imb/2)P~1]. (45)
w @=Wt The principal value of the IR renormalon contribution is then
Ei(n,w)=f dt = (40 given by[30]
1
_ W) 2 (14 8(, mwha(s)
One also needs the integral p1(8)|1r= bl 3~ 3 jarctan—s;
o sin(whz/2) wba o
~2la _ 2Bo(2) 2 . ,
fo dze Z "”C‘a’é 2 ) 4D 612+ 5 3, (Boli)g- (L)
Writing the “sin” as a sum of complex exponentials and +(Bo()) +B1(j)z) d-(2,))). (46)

using partial fractions one can then evaluate the contribution _ _
to Rg—%(s) Coming from the uv renormalon Singu'aritiES, The perturbatlve Cpmponent is then the sum of the UV and
i.e. from the terms involvingd,(j) and A,(j) in Eq. (35  (regulated IR contributions,

30
[30] REAs)=REAS) o+ RS ir

RE(s)| 2 <8§2 11)arctar€ TH(s) ba(s)| 2 <
“abl 3 3 o
PTASNIUV™ - h 3 3 2 =5 rctarﬁ > +%121 (Ao(j)d+(1)))
2 1Y
b P (Ao(j) P+ (L)) +(Ao(]) +(Ao())—A1(])Z) B+(2)))
. . 2By(2 2 <
—A1)Z) ¢+(2)), (42) + B;’:J )¢—(1,2)+%E3(Bo(j)d’—(lyj)
=
B P . ) .
\évgftiarzggz 74/6 is the Riemann zeta-function, and we have +(Bo(i) +Ba(i)z) b (2,). 47

. . Note that thel, contributions cancel, and one obtains the

—eaZ/a(s)(_1)d 2 :

¢+(p,q) =€ (= 1)YIM[Ei(p,(1/a(s)) +imbzy/2)]. arctan term, which is the leading contributiok,(s), in the

(43) CIPT-APT reformulation of fixed-order perturbation theory.
The connection between the Borel representation and the

To evaluate the remaining contribution involving the IR An(S) Will be further clarified later. .

renormalon singularities we need to regulate the integral to We now turn to the infrared behavior of the regulated
deal with the singularities on the integration contour. ForBorel integral. In the one-loop(leadingb) case the
simplicity we could choose to take a principal value prescrip-V-scheme couplinga(s) becomes infinite as=s =AJ.
tion. We need to continue the Bi(w) defined for Rev>0  Thee Z3® term in the Borel integrand approaches unity at
by Eg.(40), to Rew<0. With the standard continuation one s=s, , but the trigonometric factor sinpz2)/(wbz/2) en-
arrives at a function analytic everywhere in the cut complexsures that the integral is definedsats, . Fors<s,, how-
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at z=o, the Borel transform in th¥/-scheme does not con- Rnp(s)=
tain any exponential-dependence to compensate, so the

Borel integral is not defined. We shall refer to this pathology

of the Borel integral as=s, as the “Landau divergence.” It S
is important to stress that the Landau divergence is to be ] 1
carefully distinguished from the Landau pole in the coupling. A2

The Landau pole in the coupling depends on the chosen 1+ — 1+ =—
renormalization scale. At one-loop choosing BIS scale s A?

u?=xs, the coupling a(xs) has a Landau pole as < \? < \?
K_) _(K_) o
sin(7bz/2)
ar

=7\f,|—slx, the Borel integral of Eq(39) can then be written —1_ ~i n
in terms of this coupling as 2
bz? [xe>?1P#2B[ D] (2). At any value ofs, Ryp(S) is given by the equivalent func-
(48) tions in the middle line. Fos>A 2 these have a valid expan-

_ sion in powers ofA?/s, the standard OPE, given in the top
In a general scheme the Borel transform picks up the extrgne Fors< A2 the standard OPE breaks down, but there is a
factor [ xe®®]°7? multiplying the V-scheme result. The Borel __. o .o .
valid expansion in powers &/ A< given in the bottom line.

integrand is schem&) invariant. The extra factor has to be .
taken into account when identifying where the integral;l;]lufol;cr;]rs<sL the OPE should be resummed and recast in

breaks down, and one of course finds the Landau divergence

ever,a(s) becomes negative, and the?3(® factor diverges (7\2)

(51)
REU(s)= Fdze—ﬂa“s)
0

to be at the same-independent energ)szstef”gf\ﬁ,,—S [ s\"
=AZ. Thus the Borel representation of H§8) for R (-)(s) RNP(S):; Cn 32/ (52

only applies fors=s, . For s<s, the one-loop Y-schemg
couplinga(s) becomes negative. We can rewrite the perturt js crucial to note that this reorganised OPE can contain a
bative expansion oRp1(s) as an expansion in<a(s)), C, term which is independent f as indeed is the case in the

toy example of Eq(51). Of course, an analogouy term in

= 2 3 . e n+1 ...
Re1(s)=a(s) +11a%(s) +1oa%(s)+- - 1@’ () + the standard OPE in Eq26) is clearly excluded since it

— e 2, . (_ 3, ... would violate asymptotic f.reedc.)m,. and all the terms in the
[(ma(s) ~ru(~a(s)™+ra(~a(s) regular OPE are perturbatively invisible. As a resgfis(s)
+(=D)"rp(—a(s)" i+ . (49 can have a nonvanishing infrared limit, and both components

can contribute to the infrared freezing behavior. It should be
The expansion in{a(s)) follows from the modified Borel no surprise that perturbation theory by itself cannot deter-

representation mine the infrared behavior of observables, but the existence
of a well-defined perturbative component which, as we shall

T e z(-ats) . claim, can be computed at all values of the energy using a

Rer(s) f 0 dze BIRI(~2) reorganized APT version of fixed-order perturbation theory,

is a noteworthy feature. The remaining terms present in this
—w modified OPE should then be in one-to-one correspondence
ZI dze/("2B[R](2). (50)  with theUV,, renormalon singularities in the Borel transform
0 of the PT component, and the PT renormalon ambiguities
This modified form of Borel representation will be valid can cancel against corresponding_OPE ones, anq. again e‘?‘Ch
when Re@(s))<0, and involves an integration contour component separately be well-defined. The modified coeffi-

along the negative real axis. Thus, it is now tigaviolet ~ cientsCy will have a form analogous to E¢27),
renormalonsUV, which render the Borel integral ambigu- ~ 3,
ous. The ambiguity in taking the contour around these sin- Ch=Ka‘n(u9)[1+0(a)]. (53

gularities[analogous to Eq(33)] now involves 6/A%)*. Of  the anomalous dimension is that of an operator which can

course, it is now unclear how these ambiguities can cancgfg jgentified using the technique of Pafigé]. The anoma-
against the corresponding OPE ambiguities. The key point 'fous dimension corresponding @ for the AdlerD function
that since only the sum of the PT and OPE components ié

: : ; been computef36]. The ambiguity for the modified
well-defined, the Landau divergence of the Borel integral a as . .
s=s,, must be accompanied b%/ a corresponding breagkdow orel representation of E450), taking UV to be a branch

in the validity of the OPE as an expansion in powers ofPoint singularity (1-2z/z,), is

(A?/s), at the same energy. The idea is illustrated by the s\
following toy example, where the OPE is an alternating geo- ARpr~Kal~ '}'k( ~_) _ (54)
metric progression, A?
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0.015 —r=rrrrm—r—rrrrm

Comparing with Eq(53) one findsd,=1—"y,. The modi-

fied Borel representation foR () valid for s<s,_ will be

0.01

R(PLT)(S):_L dze—z/(—a(s))B[R(L)](_z)_ (55)

0.005

This may again be written explicitly in terms of Bifw) 0R(s)
functions. One simply needs to changgs)— —a(s), zj— I
—zj, and Aq(j)— —A(j), Bi(j)——B4(j) in Eq. (47). 0
One finds that the result of E¢47) is invariant under these
changes, apart from the additional terms which we added to
the Ei(n,w) in continuing from Rev>0 to Rew<0, in or-
der to obtain the principal value. In fact the PV Borel integral

is not continuous as=s; . Continuity is obtained if rather s/
than the principal value we use the standard continuation of _
the Ei(h,w) defined by Eq(44). That is we redefine FIG. 4. oR(S) =R

20005 ——anl il s el T B AR AT EESETTTT MENATR ST R ETRETTT
08.()001 0.001 0.01 0.1 1 10 100 1000 10000

A

((s)—R{3(s), at the one loop level for 2
flavors of quark.

¢_(p,q)=e %3 (=1)9Im[Ei(p,(—L/a(s)) —imhzy/2)].
(56)

RiBr(s)=As(s) +dPA(s) +dAs(s). (59

The one-loopA,(s) are given by Eqs(12) and as in Eq(47)
This simply corresponds to a different regulation of singu-the V-scheme is assumed. We assule=2 quark flavors.

larities. We then see that E@i7) for R §7(s) is a function of  One sees that there is good agreement at all valus&\dy.

a(s) which is well-defined at all energies, and freezes to 2/ We now turn to the full QCD result beyond the one-loop
in the infrared. We note that the branch of the arctan changespproximation, and as in Sec. Il it will be sufficient to con-
ats=s,, so that its value smoothly changes from zers at sider the two-loop result since one can always use an
= to 7 at s=0. The reformulated OPE of E¢52) to- 't Hooft scheme. Consider the Borel representation for
gether with the perturbative component determines the infraR ,(s) of Eq. (38). We shall assume that, as in the leading-
red freezing behavior, and in the ultraviolet the perturbativeh approximation, the Borel transfornB[D](z) in the
component dominates. The key point is that both compoV-scheme does not contain any exponential dependenzge on
nents can be described by functions ofvhich are well-  but is simply a combination of branch point singularities. It
defined at all energies. The apparent Landau divergence sirs then clear that the Landau divergence occurs when the
ply reflects the fact that the Borel integral and OPE seriesfactor e ?2(~9 becomes a diverging exponential, that is
which are used to describe the PT and NP components, eagfhen Re(14(—s))<0. Thus the critical energy, is given
have a limited range of validity is. The connection with the py the condition Re(H(—s)) =0. At one-loop level one has
CIPT-APT rearrangement of fixed-order perturbation theory

is now clear. It is obtained by keeping the 1 b
sin(7bz2)/(7wbz/2) term in the Borel transform intact, and a(—s) = 5'”
expanding the remainder in powers mf Ordinary fixed-

order perturbation theory, of course, corresponds to expand- . . %2
ing the whole Borel transform in powers af The retention and so the condition yields=s, = Ay, as we found before.

of the oscillatory sin factor in the Borel transform ensuresAt the two-loop leve] the situation is slightly different. Inte-

that the reformulated perturbation theory remains defined Ajrating the two-loop beta-function in EqL4) now gives
all energies. One then finds that fee s, .
b | S N imh 61
==In| = |+—.
AY

2 2

L 60
2 (€0

S

ca(—s)

+cl
cin l+ca(—s)

sin(wbz/2) z" ! a(—s)
wbz2 n—niw 7

An(s)=J dze 7ad
0 The vanishing of Re(&(—s)) then corresponds to the so-
lution of the transcendental equation

b ]

\%

where the one-loop\,(s) are given by Eqs(12). Similarly

for s<s; one finds
ca(—s)

1+ca(—s)

sin(mhz/2) 7t Re{c In
. (58
whzl2 (n—1)!

An(s)=fo_ dze/(-a)

AssumingN;=2 flavors one finds=s, =0.45742. Since
Thus the CIPT-APT fixed-order result should be anthe Borel integral is scheme-invariant so must the valug of
asymptotic approximation to the Borel integral at both largebe, in particular the breakdown of the Borel representation
and small values o$. In Fig. 4 we compare the all-orders would occur in any scheme, not just a 't Hooft one. We can
leadingb result forR(PLT)(s) given by Eg.(47), with the perform thet-integration in Eq.(38) in closed form, and
NNLO CIPT-APT prediction, arrive at the two-loop Borel representation
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e—z/a(—s+ie)

e—z/(—a(—s+ie))
- zc

—ce

_2 © 2 0
RpT(s)=Ej0 dzlm A“(S):%L dzim

Z
z ) (—z)"?
Lozet o Teriey) | n=D1

(63 (67)

The factor in the square bracket plays the role of the Thus, as in the one-loop case, the CIPT-APT reformula-
e Z3sin(7bz2)/(wbz/2) factor in the one-loop case. It tion of fixed-order perturbation theory will be asymptotic to

provides an oscillatory factor so thatst s, the Borel rep-  the Borel representations at small and large energies. We
resentation remains defined. Fors, one must switch to a would like, as in Fig. 4 for the one-loop case, to compare

B[D](2). XEi

_ (& i -
ce? E|( 1lzc+ a—stio

modified Borel representation as in H§0), writing how well the fixed-order CIPT-APT perturbation theory cor-
responds with the all-orders Borel representation. We are
1 (—s+iedt (= necessarily restricted to using the leadm@pproximation
Rpt(s)=— Z_mf T o dze #(-2OB[D](~2). since this is the extent of the exact all-orders information at

(64) our disposal. One possibility is to simply use the leading-
result for the Borel transformB[D(V](z), in the two-loop

Which, performing the-integration gives Borel representation of E¢63). The difficulty though is that
’ with a(—s) the two-loop coupling, the Borel integral is now
e~ Z(-a(=s+ie) scheme-dependent, sinBED (V](z) has a scale dependence

-———ce *¢ which exactly compensates that of tbheeloop coupling.
z . e 5
Using a renormalization scaje“=xs our result forRp1(s)
has an unphysicak-dependence. This difficulty is exacer-
B[D](—2z). bated if we attempt to match the result to the exactly
known perturbative coefficientsl; and d,, which we
(65  could do by adding an additional contributiod,(-d{"))z
) ) + (dz—d<2"))(22/2) to the Borel transform. Thus, as has been
Unfortunately we cannot write down a function analogous t03rgued elsewhere, such matching of leadingesults to ex-
Eq. (47) which givesRp+(s) at all energies, because we do act higher-order results yields completely hocpredictions,
not knowB[D](2) exactly. The two-loop situation, however, which may be varied at will by changing the renormalization
is the same as that at one-loop. The regulated representatigfale[37,38. The resolution of this difficulty follows if one
of Eq. (63) applies fors=s, , with the corresponding stan- accepts that the standard RG-improvement of fixed-order
dard OPE. Belows=s, one needs the modified representa-perturbation theory is incomplete, in that only a subset of
tion of Eq. (65) together with the resummed OPE recast inRG-predictable UV logarithms involving the energy scale
the form of Eq.(52). The perturbative componep(S)  are resummed. Performing a complete resummation of these
then freezes to B/in the infrared, we can see this if we split |ogs together with the accompanying logs involving the
B[D](—2) into (1+(B[D](—2)—1)). Thepart of the inte-  renormalization scale, yields a scale-independent result. This
grand proportional td[ D](—z)—1 vanishes for alz from  complete renormalization group improvemé®ORG) ap-
0— in the infrared limit. The remaining term integrates to proach[39] applied toD(s) corresponds to use of a renor-
give usA,(s) which freezes to & ass—0. The nonpertur- malisation scale.>=e2%Ps, whered denotes the NLO per-
bative componen®yp(s) given by the reformulated OPE tyrhative correctiord, in Eq. (23), in the MS scheme with

together with the perturbative component determine the in;2—g |5 the CORGI scheme we have the perturbation
frared freezing behavior. There is again a direct connectioeries,

with the CIPT-APT reformulation of fixed-order perturbation
theory. Using integration by parts one can show thatsfor — D(t)=ay(t)+X,a3(t)+ Xzag(t)+ - - -+ X,ah "+ - -

2 0
RPT(S): %fo dzim

XEi|1,—z

=
“ Ca—stie)

=5 (68)
-2 (= g~ dal=stie) where ag(t) is given by Eq. (15 with z=(—1/e)(\t/
An(s)=—~| dzim —ce ~blc _ adib% ;
b Jo Ap) ¢, whereAp=e""’Ays, andX, are the CORGI in-
- variants, and onlyX, is known. We can then attempt to per-
. z form the leadings CORGI resummation,
xEil tzet oo e (66)

L _ 3 L),n+1
where theA,(s) correspond to the two-loop results in Egs. D&%RG“)_aO(t)JrXZaO(t)Jrgz Xaag O+
(20), (21). Once again CIPT-APT corresponds to keeping the (69)
oscillatory function in the Borel transform intact, and ex-
panding the remainder in powers af Similarly for s<s, so that the exactly known NNLQ, coefficient is included,
one has with the remaining unknown coefficients approximated by
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L L
X&) x®

sentation ofD in Eq. (30), with the result foB[D ("] in Eq.

(35). The integral can be expressed in closed form in terms

of the exponential integral functions Bi(w) of Eq. (40),
with the resulf 9]

DO (1a(t))= Zl z;{— €4/ VEi(1z /a(t))[(z;/a(t))
=

X(Ao(J) = ZjA1(1)) = ZjA1(5) 1+ (Ao(])
—z;A(j))}—e 4 /AUBy(2)Ei(1,~z; /a(t))

+ 23 {—e 4RVEi(1,~z/a(1))[(z /a(t))
=

X(Bo(j)+ziB1(J))]1—(Bo(j) +2;B1(j))}.
(70

To define the infrared renormalon contribution we have

assumed the standard continuation of rg) from
Rew>0 to Rew<0, defined by Eq(44). In [9] a princi-

pal value was assumed, which corresponds to addin

—imsgn(im(z;/a(t)) to the Ei(1;-z/a(t)) term. As we
found forRS‘?

summation in Eq(69) then corresponds t®]

1
D&%Rm(t):D(”(—a o TV |+ = XEhag(),
0

(71)

once agaira(t) is the full CORGI coupling, andi{-)(V)
denotes the NLO leadinlg-correction in theV-scheme. In-
serting Deora((t) inside the dispersion relation of E(7)
one can then define

1 (-s+tie DL (1)
RE:L())RGKS):_I dt—2ReL

2mi (72)

—s—ie t

This can be evaluated numerically, if we haRe- zs(S1)
then we can obtain

1 —si-ie DELq(t)
RE:%RGl(Sz):R(ch)RGKSl)JF_ZWi (f ~dt t
—sy—ie

—Sotie D(L) t
[ dtLG'”). @3

—s tie t

If we sets to be large enough we can evalu®é!) - (s1)
using the circular contour in theplane, as in Eq8). Com-

, the leadingb approximations. We stress
that ag(t) denotes the full CORGI coupling defined in Eq.
(15). One can define this formal sum using the Borel repre-

(s) the principal value is not continuous at
s=sg, , whereas the standard continuation is. The formal re-

PHr'SICAL REVIEW D 70, 014002 (2004
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FIG. 5. 6R(5)=R ra(S) — Rapr(s), at the two loop level
for 2 flavors of quark.

Rapt(S)=A;(s)+X,A5(S). (74

Here theA,(s) are the two-loop results of Eq§20), (21),
with A(s)=(—1/e)(y/s/Ap) ¢ in the CORGI scheme.
Analogous to Fig. 4 we plot in Fig. 5 the comparison of the
all-orders and NNLO APT CORGI resultsl;=2 quark fla-

ors are assumed. As in the one-loop case there is extremely

lose agreement at all values ®ffor the fits to low-energy
Re+e-(S) data to be presented in the next section, therefore,
we shall use the NNLO CORGI APT result.
Before turning to phenomenological analysis in Sec. IV,
we conclude this section with a brief discussion of the situ-
ation for Euclidean observables. We can define the ADler
function in the Euclidean region by inverting the integral
transform corresponding to the dispersion relation of (2j.
That is we can write

peY=02 s 79
o (s+Q?)?
One can certainly define a Euclidean version of APT by in-

serting the Minkowskia\,(s) in the right-hand side of Eqg.
(75), and defining

(B) 2y — 2 -
APQY=Q? | ). (76
The one-loop result would Hel]
2 1 A2
AP(QY)=— — = : 7
S Pevreer O e (77

This Euclidean APT coupling freezes in the infrared tb,2/

but this behavior is induced by the second nonperturbative
contribution, which cancels the forbidden tachyonic Landau
pole singularity present in the first perturbative term. There is

bining this circular integral with the integrals above and be-now no direct connection, however, between this Euclidean

low the real negative axis we arrive Rt} s (s,) wheres,

APT coupling and the Borel representation @p(Q?) of

can be as far into the infrared as we want. The all-order&qg. (30). Since there is now no oscillatory factor present in
CORG I result can be compared with the NNLO CIPT-APT the Borel integral it is potentially divergent s&s, . We can

CORGI result,

explicitly exhibit this divergent behavior working in leading-
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b approximation. The Borel integral can then be explicitly 8 L A
evaluated in terms of Ei functions as we have seen in Eq. 7
(70). Using Eq.(44) for the Ei function one then finds a
divergent behavior as— s, proportional to I,

Freezing included _-
~ ==+ No freezing
————— Parton model

Dpr(s)— ;1 (ZZA4()+ZBy(j)) — 2280(2)} Ina+- -, Rove(s) [
(78) ’

where the ellipsis denotes terms finite &s's, . However, 1
remarkably, the factor in the square bracket vanishes, and thi T 7
result is finite ats=s,, provided thatall the renormalon T T
singularities are included. The contribution of any individual 5/GeV?

renormalon is divergent. The cancellation follows because of
an exact relation between the residues of IR and UV renor- FIG. 6. Comparison of CORGI APT and the standard NNLO
malons[Eq. (36)], CORGI calculations oRg+.-(S) at low energies.

ZA())= 2. 3B1(j +3). (79)

2

data forRg+.-. The discussion so far has assumed massless
aguarks. To include quark masses we use the approximate

This results in cancellations in the sum, leaving a residu
' 9 result[6,43

term 2581(3) which then cancels with the,By(2) term. An
analogous relatiomy(j)= —By(j +2) has been noted in
[30]. It seems that these relations are underwritten by the Re+e—(s)=32 QfT(vf)[lJrg(vf)R(s)], (80)
conformal symmetry of the vacuum polarization function f
[34], but further investigation is warranted. The above finite-
ness as=s, means that one can obtair%(Q?%) compo-
nent well-defined in the infrared by changing to the modified
form of Borel representation fas<<s, . One finds that this
component becomes negative before approaching the freez-
ing limit Dp1(0)=0. Similar behavior is found for the
Gross-Llewellyn Smith and polarized and unpolarized
Bjorken structure function sum rules, whose complete renor- Ao J
malon structure is also known in leadibgapproximation g(v)= — ___”. (81)

[30]. Phenomenological investigations are planndd]. 3 2 Am

Comparable investigations in the standard APT approach . .

have been reported f@#1]. Unfortunately, nothing is known For the theoretical predictions we shall teakgs) to be the
about the full renormalon structure beyond leadingyp- NI\éLO CIPT-APT CORGI result of Eq(74). Starting with
proximation. Such knowledge would be tantamount to a fullx\-5=216 MeV forN;=5, corresponding to the world av-
solution of the Schwinger-Dyson equations. Correspondinglerage valuea(M;)=0.1172[44], we demand thafk(s)

no analogue of the APT reorganization of fixed-order perturremains continuous as we cross quark mass thresholds. This

bation theory asymptotic t®p+ is possible in the Euclidean then determined fVINé) for N;=4,3,2. We take standard val-
case.

with the sum over all active quark flavors, i.e. those with
massesn;< +/s/2, and where

vi=(1—4m?/s)*?,
T(v)=v(3—0v?)/2,

T 3+v
2v 4

) . oo ues for current quark masses for the light qudr4]: m,
We finally note that in the case Qe+~ andD itis  _ 5 MeV, my=6.75 MeV, m,=117.5 MeV, and also

possible to say something about the separate infrared freez-
ing behaviors of the PT and NP components. Arguments Ofrom [44] we take the values for pole masses of the heavy

spontaneous chiral symmetry breaking in the limit of a Iargequarks m,=1.65 GeV, andm,=4.85 GeV. The approxi-

. : mate resul{6] uses pole masses in E®1), so we use pole
number of colord34] imply that D(0)=0, or equivalently ;
D(0)=—1. Furthermore according to Re42] R and D masses where we can. Using these values for the quark

. AT : asses and(Mz), we plot the resultindRe+.-(S) in Fig.
should h_ave the same |nfre_1red frgezmg limit, Th!s argumeny “rhe solid line corresponds to the CORGI APT result for
follows directly from Eq.(8) if the circular contour is shrunk

to zero. These exact results then suggest thai(0)=—1 ija(rsg leéqf'iEgg; O‘EggrdgéhsgIcrlJer:SItcorresponds o the stan-
to be consistent with the leadingresult Dp(0)=0 ob- '

tained above. FOR one infers thaiRyp(0)=—1—(2/b) to

be consistent with th&p(0)=2/b result. Rcorai(S)=ag(s) +

212

b
X2~ 15

a3(s). (82

IV. COMPARISON OF NNLO APT WITH LOW ENERGY

: 2
Ryeo DATA The standard fixed-order result breaks down satAf

=0.4114 GeV, where there is a Landau pole. The APT re-
In this section we wish to compare the NNLO CORGI sult smoothly freezes in the infrared. The dashed-dot curve
APT perturbative predictions with low energy experimentalshows the parton model resiite. assumingR(s)=0].
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) JJU W(25) (1) T(zsl)‘(as) RS 9 B BMT MT/#
L S L AL I A R L S)=— 1

9
~—ZB”BhMF775(s—M2). (84)
o

The compilation of data foR.+.- is shown in Fig. 7.
Narrow resonances are indicated by the vertical lines. Unfor-
7 tunately it is not possible to directly compare the experimen-
tal data with the theoretical predictions. This is because there
L is not a direct correspondence between the quark mass
thresholds in perturbation theory and the hadronic reso-
nances. This difficulty can be overcome if one employs a

FIG. 7. Data used to compare with model, statistical errors Smearing procedure.” We shall employ the method pro-
shown only. posed by Poggio, Quinn and Weinbef§], defining the
smeared quantity

For a recent comprehensive review of the experimental - A= Ryre(t)
data forRq+.-(S) at low energies see Rd#5]|. The experi- Rete-(S;A) = —f dt%.
mental data we have used comes from a variety of sources. mJo  (t—=s)°+A
From the two pion threshold up tgs=1.43 GeV we use . . N .
referenceq46] pthe data from tr?esg_references is given asﬁgef(s) itself is related to the vacuum-polarization function
. N ) . fEQ.(4) b

individual exclusive channels which must be combined to (S) of Eq. (4) by

obtain the full hadronic cross section. In the region between 2iRgte-(s)=TI(s+ie)—TII(s—ie), (86)
1.43 GeV and 2.0 GeV we use data frddh7,48; Refs.

[49,5Q are used in the region between 2.0 GeV and 5.0 Ge\/t_hat is it is the discontinuity across the cut. The smeared
From 5.0 GeV to 7.25 GeV we u$61], and from 7.25 GeV  R,:.-(s;A) can be written as

to 10.52 GeV we usgs2,53. These sets of data all give the

(89

inclusive total hadronic cross section. Above 10.52 GeV we 2iRgte (S;A)=II(s+iA)—TI(s—iA). (87
insert the NNLO CORGI APT prediction fdR.+-, this is
represented by the continuous line in Fig. 7. If A is sufficiently large one is kept away from the cut, and is

In order to simplify the analysis of the data we did not useinsensitive to the infrared singularities which occur there. If
overlapping data sets, instead where one data set overlappB@th data and theory are smeared they can then be compared.
another we simply took the better, smaller error, data set if? this way one hopes to minimize the contribution of the

the region of the overlap ir/s. Errors were dealt with by Rnp component. One needs to choasesufficiently Iarge. .
that resonances are averaged out. For the charm region it

taking each data point and calculating the effect of its statis- - . . .
tical and its systematic error. The effect of its statistical errorturnS .OUt tEatA— 3;12(3'e\/2 is a good chqce, whilst for lower
was added in quadrature with the other statistical errors. ThgnerglesA:l GeV'is adeguate. In Fig.(8) W? choosed
contribution from the systematic error was added to the other 1 GeVF. Re+e-(s;A) obtained from the data is represented
systematic errors from the same data set, then the contrib®y the solid line. The dashed-dot line is the smeared NNLO
tion from the systematic errors of each data set were added fARORGI APT prediction, assuming the quark mass thresholds
quadrature with each other and the contribution from theS above with the exception of the charm quark whose mass
statistical errors. is taken to bem.=1.35 GeV for reasons which we shall
We also need to consider the effect of narrow resonancedortly discuss. The dashed line is the parton model predic-
not included in the data; we employ the same approach a4on- The shaded region denotes the error in the data. It is

used in[12]. We assume that the narrow resonances have @ear that in the charm region the averaging is insufficient,
relativistic Breit-Wigner form although for lower energies the agreement is extremely good.

In Fig. 8b) we show the corresponding plot with
=3 Ge\2. There is now good agreement between smeared
M2T2 theory and experiment over the whoke range, form,
, (83 =1.35 GeV. Whilst we have indicated an error band associ-
(s—M?)2+M?T? ated with the data, we have not indicated an error band for
the theory prediction. There are several potential sources of
error to consider. The first is the choice of renormalization
wheree is the QED coupling, ani,I",B,, ,B,, are the mass, scale. Our viewpoint would be that the use of the CORGI
width, lepton branching ratio, and hadron branching ratioscale corresponds to a complete resummation of ultraviolet
respectively. We are assuming a narrow resonancd’iis.  logarithms, which in the process results in a cancellation of
small, so we approximate the resonance with a delta functiop-dependent logarithms contained in the couplig.?)

9
Rres(8)=— BBy,
o
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FIG. 9. () R(s;A) in the spacelike region, with =1 Ge\2.
(b) R(s;A) in the spacelike region, with =3 Ge\~.

ticular the choice of the charm quark mamsg. To illustrate
how this affects the results we show in FigcBthe curves
obtained if we assumen,=1.65 GeV. As can be seen the
theory curve is now inconsistent with the data in the charm
region, although for lower energies where the charm quark
has decoupled, the agreement is again good.

The uncertainty in the mass of the charm quark is excep-

..... Theory, m = 1.65 GeV
~ = w. Parton, m, = 1.65GeV | 7

___;,— 1 ‘ | Dla“‘ ' tionally large. Looking at the different references used in
T [44] a valuem,=1.35 GeV for the pole mass is reasonable,
© Vs/GeV and agrees well with55] which is referenced ip44]. Part of

_ the problem is the relationship between the pole mass and
_ FIG. 8. (8 R(s;) in the charm region, witiA=1 GeV". (b} the IS mass for the charm quark, where g contribution
R(s;A) in the charm region, withh =3 Ge\®. (c) R(s;A) inthe s Jarger than thex? contribution. Obtaining the pole mass
charm region, withA =3 Ge\* herem=1.65 GeV. throughMS mass calculations, which is done[id], is not

and in the perturbative coefficients. As we have argued else\';ery satisfactory. Referen¢85], which also fits low-energy

where [39] attempts to estimate a theoretical error on the e"e” data, gives a pole mass of,=1.33-1.4 GeV, and so

perturbative predictions by makingd hocchanges in the theltc_hmce 9&1?5 GteVéstr:easonab_le.t lik | f
renormalization scale are simply misleading, and give no in- IS possibie 1o extend the smearing 1o Spacelike values o

formation on the importance of uncalculated higher-ordes: We give the corresponding curves fBg+e-(s;A), with
corrections. A common approach, for instance, is to usélc=1.35 GeV, over the range-3<s<1 GeV in Figs.
scalesu?=xs wherex is varied betweerx=3% andx=2, 9@, 9(b), for A=1 Ge\?, and A=3 GeV?, respectively.
with x=1 providing a central value. We should note, how- The agreement between theory and experiment is extremely

ever, that were we to have used such a procedure it woul@lood in both cases.

not have led to a noticeable difference in the theory curves, InFig. 10 we showRg+.-(S;A) in the upsilon region. The
since the APT has greatly reduced scale-dependence, as awice A=10 Ge\V? works quite well; we show the theory
been noted elsewhef&4]. A more important uncertainty is predictions for differenm, values. A direct comparison be-
the precise value of the quark masses assumed, and in paween theory and data which does not involve smearing is

014002-14
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FIG. 10. ﬁ(s;A) in the upsilon region, witlA =10 Ge\~. FIG. 12. D(Q?) calculated using APT.

possible if one evaluates the area under Re.-(s) data, [58], which uses instead the so-called variational perturba-
that is evaluates the integral, tion theory(VPT) approacH 3].

I(s)= F Rete-(dt, (88) V. DISCUSSION AND CONCLUSIONS

™

The analytic perturbation theorfAPT) approach advo-

where s lies well above the low-energy resonances in thecates the “analytization” of the terms in standard perturba-

continuum. We show the theory and experimeita) over tion theory so that the perturbative expansion is recast as an

the range 5 y5<9 GeV in Fig. 11. There is extremely good expansion in a basis of functions that have desirable analytic

) . . . properties, in particular the absence of unphysical “Landau
agreement. Finally we can avoid smearing by transformm%

) o . . ) oles” in Q? [1]. The functions in the Euclidean and
R.e+e’(s’.) to Obt"’.‘mD(Q ) in the Euclidean region, using the Minkowski regions are interrelated by the integral transforms
dispersion relation of Eq.75)

of Eq. (7) (D—R) and Eqg.(75 (R—D). In a previous
paper we pointed out the Minkowskian formulation of APT
for the quantityR.+.- was equivalent to the all-orders re-
summation of a convergent subset of analytical continuation
terms [8]. This reorganization of fixed-order perturbation

In practice we cannot integrate up to infinity so we just taketheory gives apparent infrared freezing to the limib 26

the sufficiently large upper limit of F0GeV2. As noted ear- all-orders in perturbation theory, and the functiokgs) at

lier aboves=10.52 GeV the NNLO CORGI APT predic- two-loop level could pe written in closed for'm in term; of
o the LambertW function. However, one might question
tion is used for the data. The theory and data results A hether this all-orders perturbative freezing has any physical
shown in Figs. 12, 13. There is good agreement. Our results b 9 Y Py

are comparable to the fit obtained|[B6], and to the results relevance. It is well-known that all-orders perturbation

in [57]. We should also note that very similar plots and fits totheory by itself is msufﬂmeng and that it must be complg-
mented by the nonperturbative operator product expansion

those we have presented in this section are included in Re{OPE) [4.5]. It is clear that the OPE breaks down i 0

[

D(QZ)ZQZJ Re+e-(S). (89

s
am’(s+Q?%)?

300 ———

T T T T I v T T I T I

38 — T T
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FIG. 11. Area undeRg+.-(S). FIG. 13. Same as Fig. 12 but viewed over a smaller range.
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since it is an expansion in powers :&?/S In this paper we is divergent withn! growth of coefficients, and can be de-
have shown how both the PT and the OPE components cdined using a Borel representation. As defined by analytic
remain defined in the infrared limit. Writing a Borel repre- continuation from the OPE foDyp to that for Ryp, the
sentation for the PT component one finds that it is ambiguousorresponding Borel integrands will contain the same oscil-
because of the presence of singularities on the integratiot@tory factors, enabling’,(a) to remain defined as=s,,
contour, termed infrared renormalofg. These ambiguities, and fors<s_ one switches to the modified Borel represen-
however, are of precisely the same form as OPE terms, andtation. We should note that the difficulty of uniquely extend-
regulation of the singularities in the Borel integrand inducesgng the Borel representation for Minkowskian quantities into
a definition of the OPE coefficients, allowing the two com- the infrared has also been discussed in R&8], but with
ponents to be defined. We showed that the Borel integraliffering conclusions to us. A more closely related discussion
representation inevitably breaks down at a critical enefgy concerning the significance and interpretation of the Landau
which we referred to as the “Landau divergence.” For pole is given in Ref[32]. The modified Borel representation
Minkowskian quantities the Borel transform contains an os-f Eq. (50) and the promotion of UV renormalon singulari-
cillatory factor which means that the Borel integral remainsties to the positive axis in the Boreiplane has also been
defined ats=s, . Fors<s, one needs to switch to an alter- discussed in Ref{34].

native Borel representation, which has ambiguities due to Whilst the Minkowskian version of APT is underwritten
ultraviolet renormalon singularities on the integration con-by @ Borel representation valid at all energies, this is not the
tour. Correspondingly the OPE should be resummed and re&ease for the Euclidean version. There is no oscillatory factor
cast in the form of an expansion in powerssth 2. The UV in the integrand in the Euclidean case, and the Borel integral
renormalon ambiguities in the Borel integral are then of theWill potentially diverge as one approachgs. However, we
same form as the terms in the modified OPE, and regulatinghowed that working in leading-approximationDpy was

the modified Borel integral induces a definition of the coef-finite ats, thanks to a cancellation between the infinite set of
ficients in the modified OPE, allowing both components tolR and UV renormalon residues. For individual renormalon
be defined. The modified Borel integral freezes to @&'the  singularities the Borel integral is divergent. By switching to
infrared thanks to the presence of the oscillatory factorthe modified Borel representation one can then defifipa
whilst the modified OPE component will also contribute to component which in fact freezes to zero in the infrared. This
the infrared freezing behavior since resummation of the staris interesting and similar perturbative freezing is also found
dard OPE can result isindependent terms which can give a for structure function sum rulegt0]. The key point, how-
nonzero freezing limit, as in the toy example of E§1). As  ever, is that no analogue of the Minkowskian APT reorgani-
we noted we did not expect to be able to determine the inzation of fixed-order perturbation theory is possible in the
frared behavior from perturbation theory alone, but the exisgclidean case, and one is restricted to the leabirap-
tence of a perturbative component which can be defined USsroximation in exhibiting the perturbative freezing.

ing a reorganized version of fixed-order perturbation theory | iha final section we performed fits of NNLO APT re-

at all energies is important. In parfucular the perturbat.weSults to low energyR,:. data. We needed to introduce
component dominates in the ultraviolet and may possibly

rovide a 00od approximation into the low-enerav region quark masses approximately, and in order to avoid ambigu-
SV ag bp gy r€QIoN o< due to the precise location of quark mass thresholds, and

e explicitly constructed the all-orders Borel representanon? inimize th tributi Fth& i d
using the all-orders leadinig-approximation forR(s) [30], 0 minimize the contribution o np COmponent, we use

and a one-loop coupling. We could express the Borel integrafll smearing procedure. Extremely good agreement between
in closed form in terms of exponential integral functigisg.  neory and data was found.

(47)]. With the standard continuation of the Bj(v) func- An obvious further application would be to use the APT
tions defined by Eq(44) the result fom(pLT)(S) of Eq. (47) is approach in thg analysis of the ta\_u depay ratio and in particu-
a function ofs which is well-defined at all energies, freezing '&r the estimation of the uncertainty @y(Mz) which such

to 2/ in the infrared, and continuous s 's, . The two-loop ~ measurements impf®,54]. In Ref.[9] this was estimated by
Borel representation was also discussed. The details are sinfiomparing NNLO CIPT in the CORGI approach, with an
lar to the one-loop case, with a modified oscillatory factora!l-orders resummation based on the leadingsult. How-

and a shifted value of_, the modified Borel representation €Ver, in fact CIPT for the tau decay rationist equivalentto
again freezes to B/in the infrared. At both one-loop and the APT approach and corresponds to an expansion in a dif-
two-loops the APT modification of fixed-order perturbation férent basis of functions. In particular the resulting functions
theory corresponds to keeping the oscillatory factor in thetreédiscontinuousats=s; . We hope to study this further in
Borel integrand intact, and expanding the remainder. As & future publication.

result the APT results should be asymptotic to the Borel rep-

resentations at all energies, underwriting the validity of the

all-orders perturbative freezing behavior. It should be noted ACKNOWLEDGMENTS

that we have somewhat oversimplified our discussion of the

OPE contribution. The OPE coefficients are not constant, as We thank Andrei Kataev and Paul Stevenson for enter-
in the toy example of Eq51), but are functions o4, C,(a). taining discussions on infrared freezing in perturbative QCD.
Each coefficient will involve a perturbation seriesamvhich ~ D.M.H. gratefully acknowledges support from PPARC UK.
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