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The physical act of accelerating observation instruments has an obvious counterpart in

Newtonian physics: It is the transformation induced by (x, t~(x + 2 at, t). In special rela-
tivity, a theoretical counterpart for physical acceleration has been introduced only for a
small subset of measurement procedures, such as clocks and yardsticks, but not for such

instruments as accelerometers. We propose a general theoretical counterpart for physical
accelerations in Minkowski space. In the algebra 6 of observation procedures, it induces
automorphisms, not of 6 but of a point subalgebra 6„C 6 that is associated to a single
point x. From the postulates of presymmetry, we deduce a generalized version of Newton's

second law; an acceleration-invariant subset U
& ~„0~ 6„~ of instant observation proce-

dures provides complete predictive power. The main technical contribution of the paper is
the introduction of a topological algebra 6 in which local subsets associated to a single point
are proper (although unbounded) subalgebras, whose automorphisms are discussed.

I. INTRODUCTION

The motivation for the present study is the de-
sire to obtain clues in classical field theory for a
more complete and physically plausible axiom
system of quantum field theory. The canonical
commutation relations of the early field theories
had to be rejected because they produced incon-
sistencies, but the new mathematically consistent
axiomatic field theories of Wightman and Araki-
Haag lack an important element: kinematics. '
This deficiency is exemplified by the lack of limi-
tation on the order of the equations of motion. In
a nonrelativistic n-particle problem, the equations
of motion are 3n second-order differential equa-
tions for purely kinematic reasons. The Lagran-
gian field theories have analogous properties, but
no such limitation is contained in axiomatic field
theories as they stand. Yet a limitation of this

kind is indispensable for a physical theory with
effective predictive power. Is it possible to add

simple and physically cogent assumptions to the
axioms of quantum field theory such that a general-
ized kind of Newton's second law follows as a
theorem? For the simpler case of nonrelativistic
quantum mechanics, this question was answered
positively in a previous paper. '

Classical relativistic field theory may provide
another clue for answering the main question at
hand. The present paper establishes what we hope
to be physically reasonable basic assumptions
from which a generalized form of Newton's second
law follows as a theorem. Couched in abbreviated
terms, it states that an acceleration-independent
subset of instant observation procedures provides
full predictive power for the future.

For the systematic comparison of two theories,
it is at least necessary that they purport to answer
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the same questions. More precisely, there must
be a common conceptual framework and the two
theories should appear as special cases. Since
quantum mechanics predicts the mean values of
observables with respect to states, the classical
theory must be reformulated in terms of an alge-
bra of observables and of states. Furthermore,
it has been found recently that problems related
to presymmetry (as contrasted to the usual space-
time symmetry, either Poincard or Galilei) re-
quire an additional structure, the algebra of ob-
servation procedures. It is only in this algebra
6 that physical accelerations of measuring instru-
ments induce automorphisms, and not in the alge-
bra 8 of observables. Hence, the present paper
starts by constructing an Abelian algebra of ob-
servation procedures. The great technical ad-
vantage of this classical algebra is that observa-
tion procedures and observables at one space-
time point are proper but unbounded elements of
a topological algebra.

This strategy of attacking easier objectives as a
preparation for the main operation has the. appar-
ent drawback that an elaborate formal apparatus
is used to obtain old results in a new form and
from new assumptions. Yet we believe that these
results are interesting by themselves, and not
only as by-products of a search for insights on
quantum field theory. Maxwell's theory, the pro-
totype of relativistic field theories, was expressed
in the form of second-order equations because
Maxwell believed in mechanical ether models and
in Newton's second law. All other relativistic
field theories follow this model, although the orig-
inal mechanical motivation is forgotten. The chal-
lenge is to derive the result from considerations
of space-time invariance. To understand how the
order of the equations is related to space-time
transformations, it is necessary to define acceler-
ation transformations of the algebra of observation
procedures. The usual mathematical framework
of partial differential equations is insufficient for
this purpose.

The elementary nonmathematical objects with
which a class of field theories deals are observa-
tion procedures designed to measure conditions
at space-time points P = (x, t). Experience shows
that a small subset of such conditions or proper-
ties measured at all points at an instant t is suf-
ficient for full predictive power; for instance, it
is sufficient to measure temperature for heat con-
duction and the six components of electric and
magnetic intensities for the Maxwell field. In the
algebra eof observation procedures (contrary to the
algebra 5 of observables) the images E, , of such
nonmathematical procedures are distinct and alge-
braically independent for all space-time points x.

By abuse of language, we shall identify these pro-
cedures with their images in 6 and refer to them
as generators of canonical point algebras 6,„as-
sociated to space-time points x.

We shall assume a specific structure of the alge-
bra 6 and then show that it has properties in agree-
ment with reasonable idealizations of empirical
facts. In this construction, we are guided both by
the algebra 6 of observation procedures for non-
relativistic quantum mechanics' and by the algebra
8 of observables for classical field theory. '

II. THE ALGEBRA 6 OF OBSERVATION
PROCEDURES AND THE CONVEX SET 8

OF STATE-PREPARING PROCEDURES

Traditionally, the theory of classical fields has
the mathematical form of partial differential equa-
tions. The algebraic theory has the more elabo.-
rate mathematical structure of algebras of func-
tionals on a carrier space of functions, and the
partial differential equations of the traditional
theory appear in the subordinate role of inducing
homeomorphisms of the carrier space, which in
turn induce algebraic automorphisms of the space
of functionals.

In a previous paper, ' a specific Abelian algebraI of observables was associated to a classical
field. One knows from the study of nonrelativistic
quantum mechanics' that a systematic theory of
transformations induced by accelerations requires
the consideration of a larger structure, namely
the algebra 6 of observation procedures. In this
algebra, observation procedures at different in-
stants are algebraically independent. The relation-
ship between 6 and 5 is a many-one morphism 4.

The algebra 8 was defined as the algebra C(~)
of all real continuous functionals on a linear space
&u of bounded, real, vector-valued functions g on
the Euclidean space E'. The prime physical inter-
pretation was the association bet-veen the nonmath-
ematical observation procedures &p,.(x) at a point
x and time t =0 (the field) and the functional

(2.1)

By extension, it is natural to define the algebra 6
of observation procedures as the algebra C(Q) of
all real-valued continuous functionals I'(y) on a
space 0 of real, bounded, vector-valued functions
on the Minkowski space M, and to identify the point-
observation procedure y,.(x) (xE M) with the func-
tional

(2.2)

By analogy with the topological assumptions on
the algebra 8, we assume that the algebra 8 = C(Q)
is equipped with the c topology, ' and that the car-
rier space 0 is a linear space of real vector-val-
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ued functions y on Minkowski space M, equipped
with the norm

N l/2

II VII =sup Z I
@;(x)l'

x i=1
(2 2)

j=l, ... , N

and piecewise differentiable. We assume that Q

contains all functions q of the class defined.
The great technical advantage of this algebra

over its quantum-theoretical analog mentioned in
the Introduction is the existence of subalgebras of
observation procedures and of observables associ-
ated to a single point x. These elements are, of
course, unbounded, but they are proper members
of a topological algebra. No "smearing" is neces-
sary, and this circumstance opens the door to the
definition of those automorphisms of point algebras
of observation procedures that are induced by lo-
cal accelerations.

For any set (F,) of elements of 8, the topologi-
cal closure of the set of all inhomogeneous poly-
nomials in I',. will be called the algebra topologi-
cally generated by (F,.) and denoted by ((F,.))„. By
definition, every topologically closed subalgebra
contains the multiples of the unit functional f(y)
=1. The following theorem shows that the un-
bounded functionals (2.2) topologically generate
the algebra 8.

Theorem 1:

It will be called the canonical algebra of point ob-
servation procedures at x.

Those observation procedures that "look only"
at events in the space-time region R and are
"blind" to what happens outside R are character-
ized by the equation

8(&) =DEFI F(O) =F(X&V)), (2.5)

where X~ is the characteristic function of R. The
subalgebra 8(A) is called the algebra of local ob-
servation procedures (or the local subalgebra) in
R. It will be shown that for any open set RC M
(with respect to the Euclidean topology), the to-
pological closure of the union of canonical point
algebras associated to x EA is equal to 8(R).

Theorem 2:

(2 6)

if R is open.
Proof: Before proceeding as in Theorem l,

one must take into account the fact that, because
of the constraint (2.5), 8(A) now is not the set of
all continuous functionals on Q. However, it is
shown in the appendix of Ref. 2 that this constraint
can be eliminated by working in the space of equiv-
alence classes of functions. The proof is then as
in Theorem 1.

For a spacelike hyperplane h C M, the canonical
algebra 8 ~ will be defined by

U 8. (2.7)
Proof: Let

u
xgAf
l) ~ ~ ~

Then clearly BC 8.
Further, B separates Q in the following sense.

For each pair q„y, ~Q, y, y„ there exists an
EHB such that

F(V, ) &F(V'.)

The fact that (B)„=8follows now from the Stone-
Weierstrass theorem. '

Theorem 1 allows a more general physical inter-
pretation. If expectations of the functional +,„are
(approximately) equal to dial readings or printouts
obtained by the nonmathematical procedure y,.(x)
(the field at x), then all real-valued functions of
such printouts are now similarly associated to
elements of 8, and all elements of 8 are approxi-
mated by such functions.

Let 8,„be the algebra generated by the point ob-
servation procedures I',. „at a fixed point x, i.e.,

(2.4)

but since h is not an open set, this is not a local
subalgebra of 8. As in Ref. 1, this canonical sub-
algebra of 8 is isomorphic to the algebra I of ob-
servables, Rs shown by the following theorem.

Theorem 8:

Proof: Without loss of generality, we assume
that h is the hyperplane t =0. Then

8„,=] U F;„,
[

~

~ ~

~

xgE
j=l, ... , N c1

Let

gH(d q

C, =((peQ, (p(x, o) =g(xg .
The map 4,~g is one-one from the set U,„C,
onto co. Now, if +&8~ and y„y, +4„we have

We now define a map m from 8~ onto I by
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such that

f(g) =F(C,), for all gE(u,
and it is easy to check that this map is in fact an
isomorphism.

After defining the algebra 8, we turn to the set
S of state-preparing procedures. As pointed out
in Refs. 5 and 2, one can operationally define a
convex linear combination of two state-preparing
procedures. Hence, S is a convex linear set. A
subset S„ is characterized by a spacelike hyper-
plane h such that the emission of the prepared
sample occurs on h. At this instant, all interac-
tion between the sample and the preparing equip-
ment ceases. It is assumed that there exists a
(canonical) subset 8„,of observation procedures
whose expectation values always remain fixed for
a given procedure sES„, regardless of the external
field or interaction within the prepared sample.
Hence, the procedure sHS„ is associated to a state
c (a linear, continuous, positive, and normalized
form) on the algebra 8~, and 8„ itself is isomor-
phic to the set of these states, i.e., it is the inter-
section 8~'" of the positive cone of the dual 8~'
with the surface v(f) = l.

Let a family of parallel hyperplanes be parame-
trized by z. Then the convex linear closure of
the union U,S, is assumed to be the set S given by

(2 8)

with the inclusion of all finite convex sums. While
each subset S, is isomorphic to the set of states
on 8 „, the set S is not the set of states on 8.

v,F„,=s„,(A)F„„, (3.2)

where the matrices S„„(A)form a finite-dimension-
al linear representation of I-. More generally, an
element (A, a) of the Poincard group induces the
transformation

v(A, a)F, „=s„„(A)F„„,. (3 3)

The finite-dimensional representations S„„ofthe
Lorentz group are completely reducible. ' Each
irreducible subspace may be identified with a field,
and hence may be associated to a particular col-
lection of blueprints b &~ through F~&~ = (b~&~, fP„}).

Since the canonical procedures g„„generate the
algebra 8, the automorphisms induced by the
Poincarb group are completely defined. It is con-
venient to induce this automorphisms by a linear
transformation Q(A, a): A -Q of the carrier space
Q. Thus

procedures? In Ref. 2, it was assumed that these
are the automorphisms of space-time, and that
they induce automorphisms of the algebra 8 of ob-
servation procedures through

(3 l)
A distinguished generating subset of 8, con-

sisting of the linear canonical point functionals
F,. „defined by Eq. (2.2), has a direct and simple
physical interpretation. It is natural to require
that automorphisms induced by space-time mo-
tions leave stable the linear manifold generated
by (F, „}.Co. nsider the action of the Poincarb
group on the canonical point algebras 8,„. An ele-
ment A of that Lorentz group I- that leaves x fixed
acts on a generating element P„„of8,„by

III. AUTOMORPHISMS INDUCED

BY SPACE- TIME MOTIONS
( Q(A, a)y),.(x) =S„q„(Ax+ a)

so that, by Eq. (2.2),

(3.4)

In accordance with Ref. 2, an observation pro-
cedure +~8, which we wi].l identify with the in-
structions for its performance, can be considered
as a pair (b, fP„})composed of a blueprint b for the
building of the hardware and a set (P„}of the
space-time points in V4 at which various marks on
the apparatus are to be positioned, switches are
to be thrown, or buttons are to be pressed. A
modified instruction is obtained by a permutation
g: P~gP of the events P„which is induced by a
transformation g of space-time. In general, such
altered instructions cannot be implemented phys-
ically, or they lead to meaningless acts: For
instance, a scale transformation might call for
the crushing of an ammeter, but a crushed am-
meter is not a measuring instrument. What char-
acterizes those transformations g that create new
observation procedures, i.e., those that induce
transformations within the set of all observation

(v(A, ~)F)(v) =F(Q(A, ~)v'j (3.5)

Are these all the space-time automorphisms? It
is possible to transfer some observation instru-
ments to an accelerated vehicle without "ruining"
them. The operational test for proper functioning
of observation instruments is the preservation of
algebraic relations. Two ammeters which, when
at rest, had dial readings in the proportion 2: 1
for all states are expected to maintain this alge-
braic relation. Three observation procedures
q„, q„q~, whose results were invariably related by

qe =q„cosg+q, sin0

when at rest, are expected to maintain this rela-
tionship after being set in motion if they function
properly. More generally, automorphism is an
operationally verifiable condition for the existence
of a presymmetry, and experience suggests that
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there exist enough instruments with sufficiently
sturdy design to justify such an idealization, at
least for a class of accelerations. The difficulty
in preserving true functioning of measuring instru-
ments despite space-time motions is not peculiar
to accelerations. A magnetometer, properly cali-
brated in an empty room, should read "the same"
when transported to a region of high fields other
than magnetic. Clearly, there are conditions that
will melt or otherwise spoil any magnetometer,
but the experimenter has at least two remedies:
He can shield his instrument or he can correct
the "false" reading by using theory. The first de-
vice is impossible for gravitational or inertial
forces, but the second is reasonable and is in
fact used constantly for satellite observations.

According to a widely accepted view, one has to
use the concept of curved space to describe ac-
celerated laboratories. Yet, the argument is not
convincing, since one can easily associate a clas-
sical nonrelativistic transformation (x, t)m(x
+ & gt', t) to a physical act of accelerating observa-
tion instruments. This possibility is quite com-
patible with the absence of what is loosely called
physical equivalence between the static and the
accelerated laboratories.

Some authors' have given a partial answer to
the question of accelerated motion of measuring
devices in flat space. The article by Heintzmann
and Mittelstaedt' is perhaps the most explicit
statement of this view. According to these au-
thors, a restricted set of standard measuring in-
struments is not affected by their acceleration,
but only by their instantaneous velocity. Our in-
terest, on the other hand, centers on the change
of observation results in those instruments (e.g. ,
accelerometers) that are influenced by instanta-
neous acceleration. The acceleration invariance
of a special subset of procedures is the content of
a theorem to be derived. Thus, the present work
may be viewed as a more general theory of accel-
eration transformations; it may contain the situa-
tion viewed by Mt(lier and others as a special case.

If accelerated motions can be assumed to induce
automorphisms, there remains the choice be-
tween automorphism, s of the whole algebra 8 and
those of subalgebras of 8.

IV. LOCAL ACCELERATIONS

For Newtonian space-time, the automorphisms
of the Galilean space-time preserve two bilinear
forms: both the space distances

~
x, —x, ~

for
pairs of simultaneous points P,. = (x, , t) with
i =1, 2 and also the time distances t, —t, for any
two points I', These automorphisms are not ex-
hausted by the Galilei group; they are the rigid-
body motions; automorphisms of the algebra 8 of

observation procedures induced by them were dis-
cussed in Ref. 2. In special relativity, the auto-
morphisms of M preserve the Minkowski pseudo-
distance; they form the extended Poincard group.
No extension to a larger group with accelerations
is possible. For a theory of acceleration trans-
for mations, there are only two possibilities:
Abandon the flat affine space-time as did Einstein,
or modify the assumed relationship between the
allowed transformations g of M and transforma-
tions of the algebra 8 of observation procedures
induced by g. In this paper, the second possibility
is explored.

A subset of observation procedures that measure
events at or close to a point I', in space-time is
modified in a manner that can be described in-
tuitively as the act of imparting an accelerated
motion to the apparatus. The transformation g
that induces this change by (b, (P„'I)~(b, (gP„})
will be assumed to preserve only a part of the
structure of Minkowski space. Since the labora-
tory is small, it is not required that the structure
of distant regions be preserved. Hence, it is as-
sumed only that the Minkowski distance between
any point I' and the reference point I', is pre-
served. Consider a transformation in the (x, t)
plane, namely,

g, x= xcoshf (x, t)+ t sinhf (x, t),
g, t = x sinhf (x, t) + t coshf (x, t) .

(4.1)

lx = x cosh+ + t sinhn,

lt = x sinhn+ t cosh'
(4.2)

for all values of n. It follows that f depends only
on the invariant x —t .

Similarly, a rotatory motion in the (x, y) plane,
namely

g„x=xcosf(x, y, t)+y slnf (x, y, t),
g„y =-xsinf(x, y, t)+ycosf(x, y, t),

(4.3)

preserves the invariant x'+y'. It is naturally im-
plemented by letting a rotating axle parallel to the

It preserves the invariant x' —t' with any function

f (x, t). The natural implementation of such an ac-
celeration is accomplished by an impact on a solid
piece of apparatus at the space-time point P,
which we assume to be the origin of the coordinate
system. Then, no material point can move before
the arrival of a signal from the origin. Hence,
the function f (x, t) must vanish outside the for-
ward light cone. It stands to reason that the ef-
fect of the impact must be independent of the state
of uniform motion of the apparatus; i.e., the trans-
formation g, commutes with the Lorentz trans-
formations
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z direction impact the point 0 of a solid apparatus
at the instant t =0. To maintain causality, the
function f must vanish outside the forward light
cone defined by t~ —x' —y' ~ 0. It stands to rea-
son that the effect of the mechanical impact is not
intrinsically altered by a previously accomplished
rotation of the apparatus, i.e., that the transfor-
mation g„commutes with the rotation

xx=xcosy+y siny,

ry = -xsiny+y cosy
(4.4)

for all angles q&. It follows that f can only be a
function of the invariant x'+y' —t' and vanishes
outside the forward light cone.

To describe the acceleration transformations
compactly, consider the Lorentz group as gener-
ated by the usual six canonical one-parameter
subgroups, the parameters being three angles
and three pseudoangles, namely,

I.'(o.)x„=A'„',(o.)x„ i =1, . . . , 6, (4 6)

where A „, is considered as a function, trigonomet-
ric or hyperbolic. Then

g&M„~ g= Qg, , g, &S, q &~ . (4.9)

Thus, our group is not closed, since the product
of an infinite number of elements may not belong
to the group. M„ is not a Lie group, since it con-
tains elements with an arbitrary, though finite,
number of parameters. Too little is known about
the theory of infinite-dimensional Lie groups' to
allow the use of a Lie algebra. However, we can
associate a generator a,. „ to. each one-parameter
subgroup g,. „(P), and thereby obtain an infinite-
dimensional Lie algebra.

Proceeding formally, one obtains the commuta-
tion relations of this Lie algebra in the usual way.
Let c,,k be the standard set of structure constants
of the Lie algebra of the Lorentz group. Then, the
infinite set of generators a,. „has the commutation
relations

(4.10)

The elements a,. p can be associated to the Lorentz
group itself. This Lie algebra is used only as a
mnemonic aid.

I'(~) L*(P) =&*(~+0) . (4.6) V. THE ALGEBRA I OF OBSERVABLES

A subgroup of acceleration transformations has
the form

g'(f )x„=A„',[f(xp x~)]x„, (4.7)

where f vanishes outside the forward light cone.
Then

g*'(f )g*(@)=g'(f + @) . (4.8)

With substitution as a multiplication, these
transformations generate a group. They preserve
a part of the structure of Minkowski space: the
Minkowski pseudodistance d(P, P,) for all points
P e M, and the pseudodistances d(P„P,) between
any two points I'„I', that are on the same hyper-
boloid; i.e. , d(P„P,) =d(P„P,). This set will be
referred to as the group M„of meromorphisms of
Minkowski space with x as a fixed point.

Some smoothness properties for the function f
are physically indispensable. We choose the sim-
plest. Let n be a fixed non-negative integer and
consider the one-parameter group

g, , „(I=I)=A'„.(~l.l'), ,

where
l xl =(x,' —x,' —x,' —x,')" in the forward

light cone and zero otherwise. The set

s-=U U g,. „(p,. „)
=1»» &6 n=p&I& ~ oe

is composed of 6&& one-parameter groups, and
we will be interested in the group generated from
this set by multiplying a finite number of elements,
i.e., in the group

g: gx8-R (5.1)

of the Cartesian product of 3 and 8 into the reals
such that the mean value of repeated observations
by the procedure +~8 on a state produced by pro-
cedure sC g is approximately

As in Ref. 2, each expectation defines an equiva-
lence class E($) and a kernel K($) in 8 and 8, re-
spectively, by

K(h) =(nl h(s, o.') =0 for all s] (6.8)

[s„s,aE($)] ~ [$(s„n)= $(s„n) for all n] .

(6 4)

The two quotient sets 6/K and 8/E define surjec-

As in Ref. 3, the algebra @ of observables is as-
sumed to be the algebra C(e) of all continuous
functionals f on the linear space &u of all piece-
wise differentiable real vector-valued functions

g,.(x„x„x,) on E'. As mentioned before, this al-
gebra is isomorphic to each canonical subalgebra
8~C8 associated to a spacelike hyperplane A. It
follows from Sec. II that a subset 8„( S of instant
state-preparing procedures is isomorphic to the
set S(K) of states on 8.

The results of observations in a given external
field are summarized by the map (expectation)



PRESYMMETRY OF CLASSICAL RELATIVISTIC FIELDS 989

tive morphisms

e: 8- K-=8/Z (5.5)

The algebraic structure of 8~ is carried over onto
S. In particular, if x, and x, are on a spacelike
hyperplane h, i.e., if

e: S-S(K)=-S/E (5.6)
8„,I18„„=I,nI'I,

then also

(5.11)

and, for open sets R,

48(R) = K(R) . (5.9)
Since every subalgebra 8„,belongs to a canonical
subalgebra 8~ associated to a spacelike hyper-
plane, and the latter are isomorphic to g, there
is an isomorphism

8„,-=5„,=48„, . (5.10)

up to isomorphisms of I and S.
Physical evidence is consistent with the postulate

of strong causality: Knowledge of the expectation
values for the subalgebra of observation proce-
dures 8„,associated to a spacelike hyperplane
(instant) h is sufficient for complete prediction.
In mathematical language, the image 48~ of the
instant canonical algebra 8„, is the whole algebra
8 of observables procedures, so that the expecta-
tion value of every element A~5 is known. Con-
sider now those automorphisms V, of 8 that are
induced by elements g&P that carry spacelike
hyperplanes k into other spacelike hyperplanes
h'. These are the time-translation and velocity-
boost transformations. Since V, is an automor-
phism of 8, its restriction to 8„, is an isomor-
phism onto 8„,.

According to Theorem 3, 8~ is isomorphic to
Hence, the morphism 4 together with the auto-

morphism V, of 8 induces an automorphism Q, ofI by

4 V,n = Q,4 n, n &8~ .
However, a one-parameter subgroup (V,) that
carries a subalgebra 8~ onto a family of isomor-
phic subalgebras 8„„,associated to hyperplanes
h+ 7 does not necessarily induce a group (Q,) on
I.

A particular subalgebra 8„, generated by the
point subalgebras 8„,with x, = t = 0 and x ranging
over E', is isomorphic to the algebra C(~), and
we make the convention that the morphisms 4 are
completely defined by the requirement that the
map

48„=5
be the natural isomorphism

(5.7)

The local structure in 8 induces a corresponding
local structure in 5 by the definition

(5.8)

K„,(lK„.=I~I),
i.e., canonical point algebras associated to space-
like points are algebraically independent. It was
shown in Ref. 2 that this fact implies causal inde-
pendence for any two subalgebras K(V, ) and K(V, ),
where V, A V, =

&f& and both space volumes belong
to t=0.

We turn to the derivation of the causal shadow
structure of S.

Theorem 4: If x is in the causal shadow of
VCh, then K„,C K,(V).

Proof: From strong causality,

(5.12)

g„,c5
By Theorem 3, K„,A K„,, =fnIJ if x' is in h but
not in V. That is, if x'~k —V, then

K„,R K(„~), (c)I I . -

K(D)=(U 5„)
and hence

K(D ) C:K,(U) .

But since D~~ V, we have also

K(D,) ~ K.(V)

and therefore

K(D~) = K,(V) .
For convenience, we will write

8, = S2

to express causal independence of 5, and 8,. In
Ref. 3 it was proved that for instant spacelike re-
gions V„V

K,(V, ) = K,(V, ) .
From the equality K(D~) = K,(V), and hence, for
spacelike double cones D~ and D with instant

Vj 2
bases V, and V„one has

Therefore K„,C K,(V).
To show that our construction satisfies the theo-

ry of relativity, we must prove local independence.
Theorem 4 states that if x is in the causal shadow
of the three-dimensional volume V, then I„,
C K,(V).

Let D~ be the double cone with V as basis. Ac-
cording to Theorem 2, we have
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K(D )= K(D ) .
For any two open regions R, and R, that are space-
like, there exist two double cones D,. &R,, i =1, 2,
such that D, is spacelike to D, and both have bases
on the same hyperplane t =const. Thus

5(D, ) —8(D,}

and obviously

5(I~,) = $(~,) .

VI. SPACE- TIME AUTOMORPHISMS OF I
The main theorem' that relates the algebraic

structure to the usual field theory expressed in
terms of partial differential equations asserts
that every automorphism of 5= C(u&) can be imple-
mented by a unique homeomorphism of ~.

Theorem 5: For every automorphism Q: 5-5,
i.e., for

f (C)~(Qf)(V),

there exists a unique homeomorphism &u- &v (P
~gP) such tha. t

The proof is found in Ref. 10.
The causal structure of 5 imposes constraints

on the homeomorphisms q, that implement time-
translation automorphisms.

Theorem 6: If P =(x, i) is in the causal shadow
of the hyperplane segment (V, 0), and X v is the
characteristic function of V, then

(q,4)(x) = (q,x,f)(x) .
That is, the homeomorphism associates the same
function (q,g)(x) to all functions g that agree with-
in V.

Proof: By Theorem 4, f, ~(P)=—(Q,f;-„)(g) is in
5,(V), so that

(f;,~)(() =f;,~( Xt)v

From Theorem 5, we have

fi, p(xv~) f x(qtxv~) =('q, ~xv~)(x)

On the other hand, by definition,

f, -„(q,g) =(q,4)(x) . .

A sufficient implementation of this homeomor-
phism is obtained by requiring that (q,g)(x) —= P(x, i)
be the solution of a hyperbolic partial differen-
tial equation with the light cones as characteris-
tics. However, it is not necessary that these
homeomorphisms be diffeomorphisms. The math-
ematical theory of classical relativistic fields is
properly a theory of a class of homeomorphisms,
not of partial differential equations.

VII. NEWTON'S SECOND LAW

By assumption, the N linearly independent func-
tionals

+;,„(4)=4;(x) (i = I, , N)

in 8,„span a linear representation space of the
Lorentz group I-. In addition, the canonical alge-
bra

6,„=((E,. „,i =1, . . . , N/)„

of point observation procedures generated by the
functionals P,. „, being a subalgebra of 8„, has a
group of acceleration automorphisms

induced by the group M„of meromorphisms of
Minkowski space. We wish to prove that these
automorphisms are trivial, i.e., that the acceler-
ation group acts as a unit operator on 8,„.

By virtue of the assumption made in Sec. III, the
linear manifold K„generated by the generating
canonical point-observation procedures (E, „)
(i =1, . . . , N) is stable under the automorphisms
V,. It suffices to show that the linear representa-
tion of the acceleration group on the manifold K„
is trivial.

As noted in Sec. III, K„ is a representation
space for the Lorentz group I-. Since, according
to the assumption of Sec. III, each irreducible sub-
space R,(y) of K, is identified with a particular
collection of blueprints b &', the acceleration group
acting through (b'&', (P„I)~(b &', (gP„)) (g~M„)
leaves each irreducible subspace R,(y) stable.
The mathematical problem is then: Can an irre-
ducible finite-dimensional representation of the
Lorentz group be extended nontrivially to a rep-
resentation of the acceleration group M„'P

The acceleration group M„defined by Eq. (4.9)
cannot be faithfully represented by finite matrices.
This is clear, since M„contains elements that de-
pend on an arbitrarily large number of indepen-
dent parameters, whereas in an n-dimensional

~ matrix representation, the number of independent
parameters is at most n'. Hence, any finite-di-
mensional representation of M„ is a proper homo-
morphism.

A homomorphism maps an invariant subgroup
onto the unit, and we must determine the invari-
ant subgroups of M„. Such invariant subgroups
are the groups generated by the subgroups g. „,
n& m, where m is an integer not less than 1. It
can be shown that these are all the invariant sub-
gl oups.

The group to be represented faithfully on the ir-
reducible representation space of L is then the
quotient group M„/G that contains L as a sub-
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group. From the Lie algebra (4.10) one sees that
a subgroup H generated by the generators {a,. „}
(0& n& m) is an invariant subgroup of M„/G .
Hence, this group is a semidirect product

M„/G. =H.eL, .
Let VH be the representation subduced on H„by
the representation V of H„ L. V is, of course,
an irreducible representation, since its restric-
tion to L is irreducible. Therefore" V„ is com-
pletely reducible and all conjugate representations
must appear in its decomposition. Now the quo-
tient group M„/G„ is a Lie group, the algebra of
which is given by (4.10) with a,. „=0 for n& m. It
is seen from this equation that there are infinitely
many distinct elements of the form r 'ur where
r~L and u&H .' Hence, either the representa-

tion space is infinite-dimensional, contrary to our
assumption, or the irreducible representation of
H is trivial.

The same argument holds for every invariant
subgroup except that generated by all subgroups
6„, n&0. Hence, the acceleration group is
mapped onto the unit.

This is the generalized form of Newton's second
law: The observation procedures (6„,}that have
full predictive power are acceleration invariant.
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