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We consider the scalar field with quartic self-interaction in Riemannian space-time.
Identities are proved which connect the modified energy-momentum tensors of Callan, Cole-
man, and Jackiw in different conformally related space-times. We consider the quantized
scalar field in a conformally flat metric, and show that our identities relate the matrix ele-
ments of the modified energy-momentum tensor to corresponding matrix elements in Minkow-
ski space. We show further that when the mass can be neglected in the conformal wave equa-
tion there is no gravitationally induced particle creation in conformally flat space-times, thus
generalizing a result proved earlier in the free-field case. The influence of additional fields
and interactions on that result is briefly discussed.

I. INTRODUCTION

A modification of the conventional energy-mo-
mentum tensor of the scalar field with quartic
self-interaction has been proposed by Callan,
Coleman, and Jackiw. ' Their modified energy-
momentum tensor has interesting properties at
both the classical and quantum levels. It evidently
has, at least in Minkowski space-time, finite ma-
trix elements, in the sense that they possess a fi-
nite limit in every order of renormalized pertur-
bation theory, as the cutoff approaches infinity.
Furthermore, the currents associated with confor-
mal coordinate transformations are simply ex-
pressed in terms of the modified energy-momen-
tum tensor, so that it is sometimes referred to as
the conformal energy-momentum or stress tensor.
Callan, Coleman, and Jackiw also showed how to
alter the general relativistic action functional to
make the fully covariant form of the conformal
stress tensor the source of the gravitational field.
A similar gravitational theory has also been con-
sidered by Chernikov and Tagirov. '

The physical distinction between the conventional
and conformal stress tensors is most evident in
strong gravitational fields. For example, the con-
sequences of the theories involving the two tensors
are quite different near the cosmological singular-
ity in an isotropically expanding universe. ' lt is
therefore of interest to consider the properties of
the conformal energy-momentum tensor in Rie-

mannian space-time. This paper will be concerned
with those properties, both for a classical and a
quantized scalar field. 4

The basis of our treatment will be a number of
identities involving fields and energy-momentum
tensors in metrics which are related by conformal
transformation. ' Those identities are proved in
Sec. II. Section III is concerned with the quantized
scalar field with quartic self-interaction in con-
formally flat space-time. The class of conformal-
ly flat metrics includes the fundamentally signifi-
cant Robertson-Walker metrics. ' The canonically
quantized scalar field in the curved space-time is
related by an unquantized conformal factor to a
corresponding canonically quantized scalar field
in Minkowski space. The identities proved earlier
relate the matrix elements of the modified energy-
momentum tensor in conformally flat space-time
to corresponding matrix elements in Minkowski
space. Finally, we show that for the massless
scalar field obeying the conformal wave equation
with quartic self-interaction there is no gravita-
tionally induced particle creation in conformally
flat metrics.

II. MODIFIED STRESS TENSOR IN CONFORMALLY
RELATED METRICS

By replacing ordinary derivatives B„by covari-
ant derivatives 7'„ in the modified energy-momen-
tum tensor, one obtains the following tensor':
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Later we will consider a further generalization of
the modified energy-momentum tensor. Since var-
ious metrics and fields will be discussed, we have
found it convenient to display the dependence of 6„,
on those quantities, as well as on A. , and p, When
the dependence on ~, or p., is not included, it will
mean that the parameter not appearing is equal to
zero. Our present considerations are for a clas-
sical scalar field. The quantized field will be dis-
cussed in the next section.

In this paper, we are mainly concerned with con-
formally related metrics. A conformal transfor-
mation of the metric is any transformation of the
form

may satisfy.
As noted by Synge, ' one can use Eq. (3) to trans-

form one gravitational problem into another con-
formally related problem. Thus, if g 6 describes
a gravitational field for some distribution of mat-
ter, then the metric P'g 8 is the solution of Ein-
stein's field equations with an energy-momentum
tensor given by the right-hand side of (3) multi-
plied by -(8vG) '. Given P, one must confirm
that the energy-momentum tensor obtained has
reasonable properties. The identification of the
second term on the right of (3) with e„, should be
useful in that respect. For example, if one re-
quires that P satisfy

Na8 Rn8 ~ +n8 ~ (2) (V"V„+-,' R)y =0,

where 0 is a function of the space-time coordi-
nates. The relation between conformal coordinate
transformations and conformal metric transfor-
mations is briefly discussed in Appendix A.

An identity proved by Synge, ' which relates the
Einstein tensors in conformally related metrics,
can be written in terms of the modified stress
tensor as follows:

G„,(&jPg„)=G„,(g ) —6Q e„,(g„,Q), (3)

then

g""e„„(g „y)=--,'zy', (10)

so that the right-hand side of (3) has vanishing
trace. Of course, it must still be checked that the
solution has physically reasonable density and
pressure.

As Callan, Coleman, and Jackiw show, ' the
gravitational equations incorporating their modi-
fied stress tensor are

where G„„=R„,——,
' g„„A is the Einstein tensor,

formed using the metric indicated. Writing

(4)

1 1 2 -1
(S.G

and applying the same identity as in (3), one ob-
tains

G„,(Q'k" ) =G„„(g ) —64-'e„„(g,(f)), (5)

where g„z is given by Eq. (2). Hence

G„.(g' ) —64 'e„.(g, 4)
= G„„(g„,) —64 -'e „,(g„„y).

This result can be written in the form

Gpv = -8rGA~„

where

A„„=e„,—vQ'G„, .

(12)

For Eq. (12) to be consistent one must require that

This symmetrical identity has an interesting in-
terpretation, which will be discussed later.

By replacing G» (0 'g„8) in (6) by G» (g„a)
—60'e „„(g„z,0 '), one obtains the further iden-
tity

(V"V~+ po + 6 R)Q +4k. op =0.

Then

V, A~'=0

(14)

Putting Q = 1 (and replacing Q by P) yields

'e»(y-'g.-„y)= y'e„, (g„„-y-'). (8)

We emphasize that Eqs. (3)-(8) are identities, in-
dependent of what equations of motion P and g„s

y-'e„„( .g„y) =y 'e„,(g„„y)--a'e„, (g.„n-').
(7)

(16)

The energy-momentum tensor A„, is the gener-
alization of the modified stress tensor to Riemann-
ian space-time, acting as the source of the gravi-
tational field. It was used (with A. , =0) by Cherni-
kov and Tagirov in Ref. 2. Equation (6) can now

be written in the very simple form
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Apv(gna 0 ~o)=~pv(gns~4)+yogi. A',

one finds that (17) can be generalized to

(18)

(19)Ap. (g~a 4 ~o) =n'Av. (g 8 4' ~o).

If one sets Q =1 (i.e., n = Q '), and uses (13) and

(18), then the last identity can be written in the
form

A„„(g.„y)=n'A„„(g.„y),
where A„„ is defined in terms of the e„„with the
corresponding arguments by means of (13), and

g 8 and &f& are given by (2) and (4), respectively.
The identity (17) holds regardless of the equations
satisfied by g„&, P, and P.

Since

og~' = n' og~',

and it follows from (26) that

5S 5S
ggP ggP

Calculation shows that

5S
5g„, --, A„,v'-g,

(27)

(28)

(29)

so that (28) is equivalent to (19), when one notes
that

mensional hypersurface ~ V.
Vary g„, such that 5g„, and &6g"' vanish on 8V.

Then

G„.(g 8) —6~og .= 60 '-A„.(g 8 0 ~.) (2o)
(g/g)"' =n' (30)

One can relate solutions of Einstein's equations
with a cosmological constant by means of (20), in

analogy to the use of Eq. (3) discussed above.
When Q satisfies (14) with vanishing g„ then the
trace of the right-hand side of (20) vanishes.

When p, is nonzero,

~v.(g 8 4' &oVo)=Av. (gn8 0 ~o)+ 'Vo'gv.-4'

(21)

and one finds that

Avv(gn8& '$t ~ot Q~o) Avv(g 8& 0 ~oi& ~o) '

(22)

Finally, we give an alternate approach based on
an action functional. Equation (19) and a related
identity can be obtained by considering the action
functional

S =-,' d'xv'-g(gv"a„pa, y ——,
' Ry' -2~,y'),

~V

(23)

where V is an arbitrary four-volume. Let

S=T' d'xv'-g(gv'a„ya, y--,'Ry'-2z, p),
~V

(24)

where g„„and Q are given by (2) and (4), respec-
tively, and R =R(g 8). Using the identity'

R =n'[R —6g~v V „V,inn + 6g"'(a „inn)(a, Inn)],

(26)

one finds that

8 = S ——,
' d'x v'-g g„g""(a„inn)y',

where g„ is the outward normal to the three-di-

Similarly, one finds that

5S 5S—= —Q.

Using

5S
(V ~V-„y+-', Ry+ 4~,y') v'-g,

5
(32)

Eq. (31) yields the known identity'

VvVvg+ o RP+4Aocjb =n (V "Vvp+ o RQ+4Aop ).

HI. QUANTIZED SCALAR FIELD IN CONFORMALLY

FLAT SPACE- TIME

We now suppose that the metric under consider-
ation is conformally flat. Then the original scalar
field Q is conformally related to a corresponding
scalar field Q in Minkowski space. We prove that
canonical quantization of Q in the Minkowski space
is equivalent to canonical quantization of Q in the
curved space-time. The metric and conformal
factor are not quantized. It follows that the quan-
tized energy-momentum tensor A„, is simply re-
lated by a power of the conformal factor to the
corresponding energy-momentum tensor in Min-
kowski space. Therefore, the corresponding ma-
trix elements are related by an unquantized factor,
so that one would expect properties of the matrix
elements in Minkowski space to be carried over to
the corresponding matrix elements in the confor-
mally flat space-time. The dynamical consistency
and general covariance of the present quantization
procedure is demonstrated in Appendix B. We are
mainly concerned here with the algebraic structure
of the quantized theory, rather than with the prob-
lem of constructing the Hilbert space of state vec-
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tors. Finally, we give an application of the present
formalism, making use of P as an asymptotic field.

The theory given in Ref. 1 is based on the action

S=-'
J

d xd-g(g~"Bqg& P —„-', BP'

(34)

The equation of motion for the field P is given by
Eq. (14), namely,

Equation (36) implies that

and

so that

v=Q Bop.

Then (37) and (40) yield

(41)

(42)

(43)

V"V&Q+6RQ+po P+4AOQ =0. (35)
m = Q 77 —Q BoQ . (45)

By definition, conformal flatness of the metric
implies that there exists a coordinate system and
a function Q such that g„, given by Eq. (2,' takes
the Minkowskian form q„„ i.e.,

g„,(x) = Q'(x) g„,(x)

Now suppose that we are given

[P(x), Tr(x')J, =i5(x -x')

[4(x), 4(x')] =[v(x), ~(x')l

(46)

=Q'(x)q„, . (36)
=0 (47)

The field Q will be quantized, while the metric g„,
and conformal factor 0 are unquanfized. The
source of the gravitational field, in this semiclas-
sical approximation, can be taken to be a suitable
expectation value of A„, . Then our assumption
that the metric is conformally flat implies certain
limitations on the state vectors with respect to
which the expectation value of A„, is taken. Alter-
natively, we may regard g„, as a prescribed met-
ric, produced by classical sources, with respect
to which the gravitational influence of the quan-
tized scalar field is negligible.

Let Q be defined in accordance with Eq. (4) as

[P(x), m(x')], =i5(x —x'). (48)

Similarly,

[ ~(x), ~(x')], = —Q(x, t)&,Q(x', t)[ R(x), Q(x')],

—Q(x', t)s,Q(x, t)[ y(x), m(x')]„

which gives

[w(x), ~(x )], =O. (49)

Then, as a consequence of (45) and (47), we find

[ P(x), ~(x')], =Q '(x, t)Q(x', t)[ $(x), w(x')]„

and from (46),

It follows from Eqs. (33), (35), and (36) that

(37) Finally, it is obvious that

[y(x), y(x')], =O.

q~'8 „a„y+4~,y'+ (Q p,,)'y = O. (38)

g = '[q""s&$8—, $ —2A. Q —(Qp ) Q ].
Therefore the momentum conjugate to Q is

ag
s(s,y)

=sob.

(39)

We show that the canonical commutation relations
on Q and 9 are equivalent to those on Q and r

The momentum conjugate to Q follows from the
action (34), and is

Thus, P obeys the special relativistic equation of
motion, but with a space-time-dependent "mass. "
Thus, with regard to P, Q plays the role of an ex-
ternal potential acting in Minkowski space. The
Lagrangian corresponding to Eq. (38) is

Conversely, it is straightforward to show that the
canonical commutators of P and m imply those of
Q and 8, so that the equivalence has been demon-
strated.

It is clear that the commutation relations of Q
and ~ yield the Minkowski space equation of motion
(38) as a consequence of the Heisenberg equation
involving m and the Hamiltonian obtained from Z.
Dynamical consistency in the curved space-time
is not immediately evident, so that we demonstrate
it in Appendix B. There w'e show that the canonical
commutators of P and vr (which are equivalent to
those of P and m), and the Heisenberg equation in-
volving m and the Hamiltonian obtained from the
action (34), yield the field equation (35) for Q. We
also point out in Appendix B that the canonical
commutators are consistently propagated by the
equation of motion, and that the canonical quanti-
zation scheme in the curved space-time is gener-
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=n "(x')7l„„ (5l}

and, since Q(x) is a scalar under arbitrary coordi-
nate transformation, and in particular under Lo-
rentz transformation, it follows that

y'(x') = n'(x'}y'(x')

= n(x)y(x)

= y(x). (52)

Thus, the generally covariant canonically quan-
tized theory involving the physical field Q induces
a Lorentz-covariant canonically quantized theory
in the Minkowski space corresponding to a given
conformal factor 0. We can, for our present pur-
poses, regard P as a mathematical adjunct field
defined over a limited set of coordinates, which is
nevertheless useful for deducing certain properties
and consequences of the physical theory involving

Returning to the energy-momentum tensor, we
note that Eq. (22) continues to hold when Q and Q

are quantized in the manner described above,
since 0 is an ordinary function, and the derivation
of the identity does not require that noncornmuting
quantities be interchanged. In this case, g & is
the Minkowski metric q 8, so that (22) becomes

(A'ne 0 ~0 l o)=n ep (n 8 0 ~0 Qpo) ~

(53)

Regardless of how the Hilbert space of physical
state vectors is constructed, it follows that ma-
trix elements of A„, in the curved space-time are
related to those of 6„, in Minkowski space by
means of the unquantized factor 0 ', as in Eq.
(53). Thus, properties of e„, or its matrix ele-
ments in Minkowski space which follow purely
from the field algebra and equation of motion of P
must yield corresponding properties of the physi-
cal energy-momentum tensor A„, or its matrix
elements via Eq. (53). This seems to indicate that
problems involving regularization or renormaliza-
tion of A„, can be treated by applying special rel-
ativistic methods to B„„asin Ref. 1. Some lim-
ited assumptions concerning the construction of
the physical Hilbert space of state vectors and be-

ally covariant.
For our present purposes, the mathematical ad-

junct field Q need only be defined over the class of
coordinate systems which are related by Lorentz
transformation to a particular set of coordinates
in which Eq. (36) holds. The fields Q and Q will be
Lorentz scalars. Then, under Lorentz transfor-
mation applied to g„, in Eq. (36), we have

g„',(x') =n'(x)q„,

havior of 0 may also be necessary, in addition to
the algebraic structure which has been discussed
up to now.

As an application of the foregoing formalism, we
consider the question of the production of particles
or quanta of the self-interacting scalar field by a
conformally flat gravitational field, when the rest
mass p, , vanishes, or is assumed to be negligible
(as one would expect at sufficiently high energy).
We will find that particle production by the gravi-
tational field is absent under the above conditions.
Our derivation uses the device of making Q(x} stat-
ically bounded, or asymptotically static. That is,
we assume that 0 is a smooth function of x' which
is constant for x'&-T and x'&T, where T can be
arbitrarily large, and 0 need not be equal to the
same constant initially and finally. Our result
concerning the absence of gravitationally induced
particle creation holds for otherwise arbitrary 0,
and is independent of the precise manner in which
Q is statically bounded (it can even approach the
constant asymptotic values rapidLy). We there fore'
conclude that the result does not depend on the
static bounding, and is valid for arbitrary confor-
mally flat metrics. The use of a convenient set of
coordinate systems, which exist in a conformally
flat space-time, is not a violation of the principle
of general covariance. Admittedly, a manifestly
covariant derivation, which does not make use of
relations that hold only in a subset of coordinate
systems, would be desirable, but the present der-
ivation should nevertheless be valid.

When 0 is statically bounded, it follows from Eq.
(37) that for x'& Tand x'&-T, &f& is equal to the
Heisenberg field P to within a constant factor.
Therefore, Q plays the role of an in-field when x'
& -T and an out-field when x'& T. During these
periods P has physical significance, and it makes
sense to use it to construct the physical Hilbert
space of state vectors. Since Q is a Lorentz-co-
variant canonically quantized field in Minkowski
space, it is plausible to construct the Hilbert space
for the in- and out-fields exactly as in special rel-
ativity. " When p, , vanishes or can be neglected in
Eq. (38), the conformal factor Q does not appear
in the resulting equation,

q~'s„s„y+4~,y' =o.

Thus, f& satisfies the special relativistic equation
of motion with no external potential for all x', so
that the gravitational field has no influence on Q.
Since Q is the in-field as x'- -~ and the out-field
as x'- +~, it follows that there can be no gravita-
tionally induced particle creation or instability of
the vacuum and one-particle states when p,, can be
neglected.
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4-g)(. Q = 4-gA. p (55)

More precisely, suppose that the generalization
of the special relativistic interaction between two
fields g(') and P(2) is the interaction term

F(g y(&) y(2) v ((z) v g(2))

and that g(') and P(') must be transformed into g(')

and P(') to make the massless free-field equations
form invariant under conformal metric transfor-
mation. Then the interaction is invariant under
conformal metric transformation if

The present result generalizes an earlier result
concerning the conformal scalar field with no self-
interaction in an isotropic, homogeneous universe.
It has been shown"'" that if the scalar field satis-
fies the conformally-invariant, massless, free-
field equation [i.e., Eq. (35) with (),, =A. , =0], then
in a Robertson-Walker metric there will be no par-
ticle creation induced by the expansion; and that
when p., has a value small with respect to the
Planck mass (10 ' gm), then, even near the cos-
mological singularity, the energy-density of the
created particles will be small with respect to the
energy-density of the matter which must be pres-
ent to act as the source of the Robertson-Walker
expansion in Einstein's equation. According to the
present considerations, those results should con-
tinue to hold in the Robertson-Walker metrics,
when the field obeys Eq. (35) with nonvanishing )).„
and with p,, small compared to the Planck mass, "
as for the known elementary-particle rest masses.
The Robertson-Walker metrics are known to be
conformally flat. '

It seems evident that, by means of the same
method of reasoning, one can reach the same con-
clusion regarding the absence of gravitationally
induced particle creation for a theory involving
several kinds of interacting particles of various
spins, provided the following conditions are met:
(1) The rest masses of the particles can be ne-
glected. (2) The free-particle fields obey equa-
tions of motion invariant under conformal metric
transformation, when the rest masses are ne-
glected. (3) The interactions are invariant under
conformal metric transformation, at least in the
same approximation that the rest masses are ne-
glected. (4) The metric is conformally flat. Con-
dition (3) is analogous to the requirement that
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APPENDIX A: CONFORMAL COORDINATE AND
METRIC TRANSFORMATIONS

An infinitesimal coordinate scale transformation
is given by

x =x +cx y (A1)

and an infinitesimal coordinate conformal trans-
formation by

x'" =x" +2m, x"x' —~,g"'g), x x'. (A2)

Under coordinate transformations the metric sat-
isfies the equation

pn js ~x ~x pv
ax" ~x' (A3)

For the scale transformation (Al), one finds that

g'"8 = (1+2m) g"s, (A4)

while for the conformal transformation (A2), one
obtains

g'" =(1+4'„x")g"8. (A5)

The infinitesimal scale and conformal coordinate
transformations leave the velocity of light un-
changed, since the condition ds' =0 is not affected
by any multiplicative factor on g

A conformal metric transformation leaves the
coordinates unchanged, but replaces the metric
g„„by g„„, where

to invariance under conformal and scale transfor-
mations of the coordinates, which has been sug-
gested as an approximate symmetry of elementary-
particle interactions.

~g y (g y(x) y(2) v y(t) p g(2)
gpv =~ gpv~ (A6)

g~(g y(z) p(2) v g(&) v y(2) )

(56)

The invariance given by Eq. (56) should be related

and 0 is a function of the coordinates. Thus, the
effect of scale and conformal coordinate transfor-
mations on the metric is the same as the particu-
lar conformal metric transformations with Q =1
—e and 0 =1 —2c„x", respectively.
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APPENDIX B: DYNAMICAL CONSISTENCY
AND COVARIANCE

We show that the Heisenberg equation of motion
is equivalent to

V "V
~ + ~ R (f) + go &j) + 4A. 0$ = 0 . (Bl)

Our derivation makes use of the following assump-
tions, which are satisfied by the Lagrangian den-
sity i: appearing in the action (34) (note that 2 in-
cludes the v' —g factor): namely, that

We show that (B7) is equivalent to (B3),

I w(x), H(t)] = d'x' w(x),
( (,)]„,w'(x')

~J

—&(4(x'), &lb(x'), w(x'))
t

=i[ Px'5(x -x') ——s, 8(s 0)

(B8)

BZ

&(&.0) '

that the equation of motion is

(B2)
But

(B9)

a4 '~ a(s„~))= (B3)

= is,'5(x —x'), (B4)

for i =1, 2, 3. From Eqs. (48)-(50) and Eq. (B4) it
follows that if F can be written as a power series
in Q, 8;P, and w, then

-I tr(x), P(x')], = i 5(x -x') ——8; —
)

BF BE
sp ' s(s, y)

(B5)

where summation over i is from 1 to 3. The Ham-
iltonian is given by

H= d xmB -g (B6)

The Heisenberg equation of motion is

(B7)

and that Q and w obey the canonical commutation
relations, Eqs. (48)-(50), which we have already
shown are consistent with the canonical commuta-
tors of P and w.

We have

-I. w(x), ale(x')l =slI w(x), e(x')]

Therefore, Eq. (B7) is indeed equivalent to (B3),
so that the method is dynamically consistent. Fur-
thermore, the canonical commutation relations are
propagated consistently by the equation of motion.
This follows from the propagation of the commuta-
tors of Q and w in the Minkowski space, or can be
directly demonstrated for the commutators of P
and w in the curved space-time. "

The canonical quantization procedure for P is
generally covariant, although that is not obvious.
The point is that, although the introduction of Q

and r involved a particular coordinate system in
which the conformal flatness of the metric was
manifest, the induced canonical structure involv-
ing Q and w in the curved space-time is indepen-
dent of the coordinate system. " This covariance
follows from the consistent propagation of the can-
onical commutation relations by the equation of
motion. For if the canonical commutation rela-
tions hold on one spacelike hypersurface, then
they hold on any spacelike hypersurface (as a con-
sequence of the equation of motion). Therefore,
they hold in any coordinate system with spacelike
constant time hypersurfaces, so that the field al-
gebra and equation of motion are generally covar-
iant.
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The physical act of accelerating observation instruments has an obvious counterpart in

Newtonian physics: It is the transformation induced by (x, t~(x + 2 at, t). In special rela-
tivity, a theoretical counterpart for physical acceleration has been introduced only for a
small subset of measurement procedures, such as clocks and yardsticks, but not for such

instruments as accelerometers. We propose a general theoretical counterpart for physical
accelerations in Minkowski space. In the algebra 6 of observation procedures, it induces
automorphisms, not of 6 but of a point subalgebra 6„C 6 that is associated to a single
point x. From the postulates of presymmetry, we deduce a generalized version of Newton's

second law; an acceleration-invariant subset U
& ~„0~ 6„~ of instant observation proce-

dures provides complete predictive power. The main technical contribution of the paper is
the introduction of a topological algebra 6 in which local subsets associated to a single point
are proper (although unbounded) subalgebras, whose automorphisms are discussed.

I. INTRODUCTION

The motivation for the present study is the de-
sire to obtain clues in classical field theory for a
more complete and physically plausible axiom
system of quantum field theory. The canonical
commutation relations of the early field theories
had to be rejected because they produced incon-
sistencies, but the new mathematically consistent
axiomatic field theories of Wightman and Araki-
Haag lack an important element: kinematics. '
This deficiency is exemplified by the lack of limi-
tation on the order of the equations of motion. In
a nonrelativistic n-particle problem, the equations
of motion are 3n second-order differential equa-
tions for purely kinematic reasons. The Lagran-
gian field theories have analogous properties, but
no such limitation is contained in axiomatic field
theories as they stand. Yet a limitation of this

kind is indispensable for a physical theory with
effective predictive power. Is it possible to add

simple and physically cogent assumptions to the
axioms of quantum field theory such that a general-
ized kind of Newton's second law follows as a
theorem? For the simpler case of nonrelativistic
quantum mechanics, this question was answered
positively in a previous paper. '

Classical relativistic field theory may provide
another clue for answering the main question at
hand. The present paper establishes what we hope
to be physically reasonable basic assumptions
from which a generalized form of Newton's second
law follows as a theorem. Couched in abbreviated
terms, it states that an acceleration-independent
subset of instant observation procedures provides
full predictive power for the future.

For the systematic comparison of two theories,
it is at least necessary that they purport to answer


