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Previous work, based on the interaction of only one mode of the pion field with nucleons,
indicated the possibility that the ground state of nuclear matter at densities above some onset
density would consist of a coherent mixture of protons, neutrons, and pions, the latter con-
densed in a plane-wave state of momentum =170 MeV/c. The model is now made more real-
istic by inclusion of ordinary nuclear forces, emission and absorption of noncondensed pion
modes, S-we /e pion-nucleon interactions, and pion-pion interactions. A pion condensation
is again predicted, with onset between p =0.5 baryons/F3 and p =1 baryon/F3. Some possible
consequences for neutron stars are discussed.

I. INTRODUCTION

Superdense nuclear matter, or infinite matter at
densities higher than those of nuclei, is of interest
in connection with neutron-star theory, supernova
theory, and the theory of the early stages of the
big bang. Of particular interest is the equation of
state for cold superdense matter (where the equa-
tion of state is concerned the temperature must be
in the MeV region in order to be a significant fac-
tor). To find the equation of state it is necessary
to find the energy density as a function of the bar-
yon density in the ground state of an electrically
neutral system with a certain number of baryons
confined in a volume V.' The equation of state then
can be used to determine neutron-star parameters,
most notably the mass-radius relationship and the
maximum allowable mass. '

In the neutron-star regime the baryon densities
will range from nuclear densities, 0.15 baryons/F',
to perhaps 6 baryons/F'. In almost all theoretical
treatments the matter has been assumed to con-
sist entirely of fermions, that is, baryons and lep-
tons. ' In the lower ranges of density, 0.15&p

&1 F ', it turns out, in these theories, that the
composition is largely neutrons, with a small frac-
tion of protons neutralized by electrons. It is at
least conceivable that the successful theory of
nuclear matter, based on phenomenological nucle-
on-nucleon potentials, can be extended reliably
into this density regime, and this has been the aim
of considerable recent work. 4 '

Above a density of about 1 baryon/F', other bar-
yons, p, A, Z, Z', etc. , are thought to enter in
appreciable fractions. " In this regime it is clear
that theoretical calculations become shakier. The
forces between most of the baryon pairs are un-
known experimentally. Important contributions of
many-body forces become a likelihood as densities
are increased. There is also always the question
of whether the list of constituents is complete.

In the present work we investigate the possibility
that pions are a significant constituent of the
ground state of superdense matter, even in the
lower density region, p&1 F ', in which neutrons
are presently thought to be the dominant constit-
uent. It will turn out that m particles are the only
serious contender (they are a natural possibility
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since they can neutralize proton charge without
costing electron Fermi energy).

Clearly the realization of such possibilities will
depend on the strong interaction of pions with nu-
cleons. It would be natural to begin an investiga-
tion by asking what is known experimentally and
theoretically about the interactions of m particles
in nuclei. For A = 2Z nuclei the optical potential
of Auerbach et a/. ' fits the medium-energy @-
nucleus scattering data quite well. The real part
of this potential is a strongly attractive velocity-
dependent potential derived from the low-energy
P-wave pion-nucleon phase shifts. It can be ex-
pressed as a modification of the energy-momen-
tum relation for a m in the medium,

&u' = k 2(1 —Gp) + m „',
where p is measured in nucleons/F'. ' This po-
tential has the rather strange property that above
a certain nucleon density (p=0.16 nucleons/F') the
energy is lower for a moving pion than for a 0 =0
pion.

This raises the question of whether at some den-
sity the matter can lower its energy by creating a
condensed phase of n particles, all in a state
with some momentum k. However, this question
cannot be answered on the basis of the above n

potential in nuclear matter, basically because
when ~-0, for the m, degenerate perturbation
theory must be used to treat the problem. Direct
use of the optical potential corresponds roughly to
use of nondegenerate second-order perturbation

theory. It is necessary instead to go back to the
source of the P-wave scattering in the emission
and absorption of single pions.

Ne formulate the problem by writing down a
Hamiltonian for the system of protons, neutrons,
and pions in the form of the free Hamiltonian plus
the standard trilinear pion-nucleon Hamiltonian
plus the Hamiltonian for those nucleon-nucleon
forces which we shall not calculate explicitly from
pion exchange. ' On the basis of this Hamiltonian
we wish to solve for the difference between the
lowest energy of a pure neutron state and the state
of the same nucleon density with a pion condensa-
tion. Through a lucky circumstance this energy
difference can be calculated reliably even in the
presence of strong nuclear forces (such as hard
cores) which lead to a highly correlated wave func-
tion for the nucleons, as long as these forces are
reasonably spin- and isospin-independent. The
energy difference will turn out to be almost inde-
pendent of the nuclear wave functions. Since the
single-pion-exchange potential is extremely spin-
dependent we separate it out and estimate its con-
tribution to the energy difference perturbatively.

The Hamiltonian will be written as

H Hc+HNg+H, +Hs

H~ is to include the kinetic energy of the nucleons,
treated as nonrelativistic, and of the mesons; and
in addition the interaction of nucleons with a single
w mode, which we take as having momentum 0
in the -z direction, ' "

ex�+�

)a f d'x(K(x)a k(x)a~ ~(-kk)e ' 'ek(x)aa(x)a~~)(-ke)e' '].' m, 2~, V»' (1 2)

Here a& )(-k2) is the destruction operator for a ))

of momentum k = -M. The constant f= 1.1
= [4)i(0.088)]'~'. H, contains the kinetic-energy
terms.

The next term, H„„, will contain the convention-
al nucleon-nucleon interaction with the exclusion
of single-pion-exchange terms. H, will contain
the interaction of nucleons with all the other modes
of the pion field. H~ will contain pion-nucleon and
pion-pion S-wave effects.

In Sec. II we solve the problem characterized by
H~ exactly, in the V- limit, for both the energy
and the wave function of the ground state and all
excited states. In Sec. III we show how the result
of Sec. II, for the energy difference between the
condensed and noncondensed states, survives even
in the presence of the strong nucleon-nucleon
forces in H», as long as they are isospin- and
spin-independent. In Sec. IV the second-order

energy perturbations due to noncondensed pions
are evaluated, using H~ as an unperturbed Hamil-
tonian. In Sec. V the effects of 8-wave nN and mm

interactions are included.
The results taken together will argue strongly

for the onset of a pion condensation at some den-
sity between p =0.25 F ' and p =1 F '. In Sec. VI
we discuss the effect of electromagnetic forces
and some of the possible consequences of the con-
densation for neutron stars.

II. THE MEAN-FIELD SOLUTION

Phase changes associated with condensed modes
are well-known phenomena in many-body systems.
For example, superfluid He, superconducting met-
als, and lasers are all characterized by the exis-
tence of a finite field amplitude for a particle
mode. This so-called condensate requires that the
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mode be macroscopically and coherently occupied
so that it has both a well-defined amplitude and
phase. For three-dimensional systems, a self-
consistent mean-field approach provides a useful
starting point because of phase-space suppression
of the low-lying long-wavelength fluctuations of the
condensate. Once the mean-field ground state and
excitations are obtained, the question of the modi-
fication of the normal-state correlations can be
considered. Therefore, in this section, we will
study the mean-field problem of N baryons inter-
acting with a condensed w mode. Our solution of
this problem shows that at a critical baryon den-
sity the normal neutron Fermi sea becomes un-
stable with respect to the formation of an infini-
tesimal n condensate, and that at larger densities
the ground state has a m condensate. The elemen-
tary excitations in this new state as well as its
physical properties will be discussed.

Replacing the n field by the mean field describ-
ing the condensate mode and neglecting the non-
condensed pion interactions, the Hamiltonian con-
sists of the kinetic energy of the protons and neu-
trons, the pion energy, and the P-wave part of the
pion-nucleon interaction,

2

Hc= p (p„p„+n„n„)+X%A»2M

the free pion energy. We take nonrelativistic kine-
matics for the nucleons; M is the nucleon mass.
The mean field amplitude 4XN corresponds to a
condensate which has on the average XN negative
pions in a mode of momentum k=-kz. It is con-
venient to represent the occupation of this mode
as a fraction X of the total baryons N. The ma-
trix element M» has the form implied by (1.2):

-i
m, (~» V)"' ' (2.2)

with f=1.1, and V the volume.
In order to maintain over-all charge neutrality,

the number of protons must be equal to the number
of pions. Actually, as we mentioned, in order to
have a well-defined phase for the pion amplitude,
the ground state must be a linear combination of
states with different number of pions. This im-
plies that the proton and neutron numbers also
vary. Then since XN represents the average pion
occupation, charge conservation and baryon con-
servation imply that

XN=+ (p~, p„),
(2.3)

N(l -X)=P (n„n„) .
qs

Finally, in order to balance momentum we demand
that the protons recoil so that"

+Q VXhl M»(P, +»tn, i —P +»in, i)+H. c. XNk=g q,(P„P„). (2.4)

(2.1)

Here p„and n„are creation operators for protons
and neutrons of momentum q and spin s, and co~ is

The constraints on the state, Eqs. (2.3) and (2.4),
are conveniently dealt with by introducing Lagrange
multipliers and writing an effective Hamiltonian

36c=Hc u imp p u2+n„n„—7'Zqp p (2.6)

Here the chemical potential p, , and p, 2 for the protons and neutrons are fixed by the average-number require-
ments Eq. (2.3), while it follows from the constraint Eq. (2.4) that A. =k/M. Collecting the terms in Eq.
(2.5), SCc takes the simple form

2 2

36c=g 2M u~ p +», p, +»,,+
2M

—u, , 'n„n, +(-1)'(v'XNM»p„», n„+v'XN &~~&„p„»,) i+XN&u»,„g 2M (2.6)

with u,' =u. , +k'/2M.
The quadratic form Eq. (2.6) is easily diagonal-

ized by making the canonical transformation

for example, n, =(n, &, n, &). Expressing Kc in
terms of the u and v operators yields the diagonal
form

u, = (1 —8')'"n, + ip, ,» c,B,

v, =(1 —8 )'~2P„+in, cr,B,

with

8(1 —8 ) KXN IM„I
1 —26 P.2

—P. ~

(2 'l)

(2.8)

(2.9)

with

'(u', + u. ) +-( 'Ru,' —u.)-)'+xNIM»19'".

Here we have introduced a spinor notation in which, (2.10)
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24[(p,' p-)]'+»IM&I ]"'&p . (2.11)

This important feature implies that the ground
state is obtained by filling the single-particle u
states inside the usual Fermi sphere of radius p~
set by the total baryon density (3n' N/V)"':

ly, )= g u, lvac). (2.12)

Now, the ground-state energy is determined by
occupying the lowest-N single-particle baryon
states. For the densities of interest, the splitting
between the u and v states exceeds the Fermi ener-
gy p, of the normal-state neutron sea

Using this, and taking the equality in Eq. (2.18),
leads to a critical baryon density

m ~4 K~g(dA, g

2fk* (2.19)

N
N

= (d~X[1 —Qg(1 X ) ] . (2.20)

Minimizing this with respect to X gives the con-
densate amplitude

When p exceeds p„ the condensation energy per
baryon is

In this ground state, the neutron and proton oc-
cupation numbers are, respectively,

1X —I [1+(1y3o 2)~~2]2
3Qp

(2.21)

and

O',
I q+kl&p~

(4 IOP P I Po&
=

0 p

(2.13)

The charge-neutrality constraint, 'Eq. (2.3),
becomes

XN=Q(Q I p„p„IQ ) =NO'. (2.14)

The relation between the nucleon chemical po-
tentials and the parameter X (the fraction of pro
tons) follows from (2.8):

v X(1 —X) MN Mp MX

1 —2X p2 —p~
(2.15)

This is trivially satisfied when X=0. However,
we shall see that when the baryon density exceeds
a critical value, a finite value of X satisfying (2.15)
will lead to a lower energy than the normal-state
(X= 0) solution.

Taking the expectation value of B~ in the ground
state and using the constraint Eq. (2.14) to elimi-
nate 0 in favor of X we find

The value of k which minimizes the ground-state
energy is a function of density. In looking for the
lowest-energy ground state we must substitute the
condensate amplitude X, Eq. (2.21), into the ex-
pression for the energy and minimize it with re-
spect to k. However, in the homogeneous problem
treated here, once a k value is selected, we ex-
pect that the condensate will not be able to adjust
the k value as the density increases adiabatically
even though a new k value might correspond to a
yet lower energy. Thus in analogy to the case of
current-carrying superfluid states, we will be
dealing with a metastable state. Therefore, in de-
termining a property, such as the pressure versus
density, of the homogeneous condensed state, we
will calculate with fixed k. On a more macroscopic
scale, the condensate will have a structure gov-
erned by the interplay of the condensate energy
density and the electromagnetic energy density.
When the macroscopic structure of the condensate
is taken into account, an applied force can, for
example, compress the macrostructure, distort-
ing the mode of the m condensate.

Taking k equal to its value at p„ the condensa-
tion energy per baryon becomes

E.=-'p, N+NX~&-2~NIM&IX(1-X)"'N, (2 16)

where

E, —'u = ~&*X[1—( p/-p. )'"(1—X)"'1,

where

(2.22)

2, = ~, + k'/2M, (2.17)

2M' M, l

Qq= o 1.
(dp

(2.18)

The maximum value of n~ occurs for k*=1.26m„.

and Eo is the energy of the entire system, not in-
cluding nucleon rest energy. The first term on the
right-hand side of Eq. (2.16) is just the normal-
state energy of a free neutron Fermi sea. The re-
maining pari of the energy, the condensation ener-
gy, is negative when

X = 1 ——'[1+(1+3p/p, )'~']'.
Qp

(2.23)

For densities slightly greater than p„ the per-
centage X of protons varies as —,'[(p/p, ) —1], and
the condensation energy per baryon is given by
-0.125'~~(p/p, —1) . In the high-density limit
where p/p, » 1, it follows from Eq. (2.23) that the
percentage of protons approaches 67% while the
condensation energy is -0.38¹~~(p/p,)'".

Although this state is anisotropic because of the
geometry of the n mode, the pressure calculated
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formally by varying the energy with respect to the
baryon density is still of interest. Note that, as
previously mentioned, we do not allow k* to vary.
Then

Q.

X
CL

I.O

(2.24) 0.5

Using the previous expressions we find that the
fractional pressure loss due to the condensation is

5u p
2Wc Pc s(p/Pc)

0
I.O 3.0

I

5.0
Pl'P

I

7.0 9.0

x I XI.1 —(P/P. )'"(1—X)"'l), (2.25)

with X given as a function of (p/p, ) by Eg. (2.23),
and p, , equal to the Fermi energy at the critical
density p,. P~ is the pressure of the free Fermi
gas of neutrons. This pressure difference is
plotted as a function of (p/p, ) in Fig. 1. Near the
critical density and for densities large compared
to p„we can use the expressions for the energy
previously discussed to obtain approximate ex-
pressions for the pressure

(2.26)

FIG. 1. The fractional pressure loss of the condensed
state as compared to the normal state. In (2.25), az
=1.66m„c, p,, =0.57m c .

densed pions, it is convenient to modify the mean-
field formalism slightly to obtain an explicitly
charge-conserving theory. In addition this will
allow us to obtain a clearer picture of the coherent
nature of the new ground state.

Suppose that instead of simply replacing the
pion field operators b~~ and b ~ for the mode -k
by 4XN, we introduce the formal condensate field
operators

p
pc

b ~ QXNII b QXNII. (2.28)

Having discussed the ground-state properties of
the mean-field solution, we turn to the excited
states. These correspond to quasiholes in the g
sea and excited u or v states. Making use of the
charge-neutrality constraint, we replace the 8 fac-
tors in the canonical transformation Eq. (2.V) by
v X and also absorb the factors of i in the phase of
the n field amplitude. Then

u, = (1 X)"'n, +—v X'j„,o„
v, = (1-X)'"p„,o. vX n, . — (2.27)

Note that in the limit in which X vanishes, u goes
over to the neutron operator and v becomes the
proton operator. In this limit, the ground state
Eq. (2.12) is simply a filled Fermi sea of neutrons.

At a finite condensate density, u and v are linear
combinations of neutron and proton operators.
Clearly they do not conserve charge. The origin
of this is the simple form of the mean-field theory
in which the creation and destruction operators of
the m field were replaced by the c-number ampli-
tude v'X¹ Here average charge conservation was
obtained using the constraint, (2.3), relating the
total proton number to the total pion number XN.
In dealing with the excitations, as we will in Sec.
IV, where we examine the effect of the noncon-

Here the normalized operator II~ acting on a state
with N condensed pions transforms it to the cor-
responding state with M+1 condensed pions, while
II reduces the number of condensed pions by one.
Furthermore, to order (1/4NX),

II~II =IIIlf =1. (2.29)

Using the operator replacement Eq. (2.28) and
the relations given by Eg. (2.29), the diagonaliza-
tion of &c proceeds just as before. The eigen-
values q'/2 M+0, remain the same; however, the
eigenoperators (2.2'7) now take the explicitly
charge-conserving forms

u,' = (1-X')'"n +~»V„,o. ,

v,' = (1-X')"'ll'p„, o.—MXn, . (2.30)

I g, &
= g I(1-X')'"n, +v &IItp„,o,] Ivac)

(2.31)

and we see that it is a coherent state of neutrons,
protons, and n 's.

A proton creation operator is accompanied by a w

condensate creation operator. Using this notation,
the ground state takes the form"
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III. INCLUSION OF SHORT-RANGE NUCLEAR FORCES

In this section we show how our result for the energy difference between the pure neutron case and the
condensed pion case survives the inclusion of at least a considerable number of nucleon-nucleon interac-
tion effects. We shall assume that the Hamiltonian term H» (the nuclear force minus the single-pion ex-
change force) can be written as

15
N x N x V x- x' !N x' N x' d'xd'x'+ N x 1;N x V x —x' N x' I' N x' d xd x', 3.&

i=1

n(x) =(1—8')"'u(x) —8v(x),

P(X) = [8o,u(x ) + (1 —8')'"o,v(x ) je"". (3.2)

Note first that (17(x)N(x))=u(x)u(x)+v(x)v(x).
Thus the V, term in H» has the identical form in
the fields u and v as in the fields n and p. As for
the V, term, we note that except for the e""fac-
tor, the transformation from (n, p) to (u, v) is an
SU4 transformation. Thus if the potential V2 has a

where we have introduced the isospin notation for
nucleon fields, (N(x)f(1'(x)) =p(x)P(x) + n(x)n(x), and
the I,. are the matrices;

i =1, 2, . . . , 15.
This is the most general nucleon-nucleon poten-

tial invariant under Wigner SU~ (the transforma-
tions generated by the matrices I',.). We have
hopes that for the purposes of determining the nu-
clear wave functions the most important part of
the force (the short-range repulsion) is of type V,
in Eq. (3.1). The V, term is probably an unneces-
sary luxury. Note that the most dramatically SU,-
noninvariant force, the tensor force arising from
single-pion exchange, was not included in H» and
will be treated separately.

In a lowest-order perturbation-theoretic calcula-
tion it is easy to see why an interaction of the V, form
in (3.1) gives the same energy shift for a pure neu-
tron state and for our condensed state. In the con-
densed pion state found in Sec. H the density-den-
sity correlation function (p(x)p(x')) can be calcu-
lated, where p is the baryon density operator
(Ã(x)K(x)), and it has the same value as for a free
neutron gas. We can develop a much farther
reaching result, however, in which all orders of
V„V, and distortions of the wave function are
taken into account.

Using the u and v fields introduced in (2.27) we
have

range a and ka«1, the V2 term in (3.1) has very
nearly the same form in the fields u and v as in the
fields n and p.

Now we consider the Hamiltonian Hc+H» ex-
pressed in terms of the new fields u and v, with
the classical substitution for the meson operators
in Hc. We form an X exactly as in (2.5),

& &c+

= P q'( , x, xv,vv, )+ H(x, v) +VX(V) Jxxd'x
e2m

+u(V) Jvvd, x+8 Vv (3.3)

The ground state for the pure neutron system
under the influence of the forces contained in H„„
is the lowest eigenstate of 8C for the choice 8= 0.
This ground state will consist of some correlated
state of u particles (neutrons in this case). For
the condensed case, 8& 0, we see that the eigen-
functions of $C are the same states of u particles
(which are now mixtures of neutron and proton) as
those of the 8=0 case. This observation follows
from (a) the fact that H»(u, , v) is independent of 8,
and (b) the fact that the term 0 (8)fuu, which is
8-dependent, measures only the number of u par-
ticles and is independent of the correlations.

The energies of the two states differ through the
0 (8) and 8'N(d, terms as well as through the La-
grange multiplier terms which must be added to
X to give II. At given densities of protons and neu-
trons all of these terms are the same as for the
case with H» =0. Thus the difference in energy
per baryon between the pure neutron state and the
state with condensed pions is again given by (2.20).
We note that the proton density (P(x)P(x)) is given
by 8'p, as before, independently of the wave
function, in any state of u particles only.

IV. NONCONDENSED-PION CORRECTION

In the previous section it was seen that it is the spin- or isospin-dependent nucleon-neucleon forces
which might lead to significant changes in our results. It is therefore important to examine the effects of
the most prominent of such forces, the single-pion-exchange force. However, in what follows it will be-
come clear that it would be a mistake to reduce the single-pion exchange to a static potential and calculate
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the expectation value in our new ground state, because the intermediate states implicit in the potential it-
self are modified by the condensation. Instead we shall begin with the Hamiltonian for the emission and ab-
sorption of pions (for all the uncondensed modes) and apply second-order perturbation theory directly, us-
ing intermediate energies derived from H~, rather than from Ho.

We begin by expressing the pion-nucleon interaction in terms of the new fields u' and v' of (2.30):
r

H~ = X ~d3x,

K„= [Vm ~ (PgP -non)+v 2Vm (ngP)+v 2Vv ~ (Pan)]

(Vwo [u'(-o+ 8's)u'+ v's8(l —8')'i'u'+ v's8(1- 8')"'u'+ v'(-s8'+o, og, )v']

+ v 2Vm' ~ [8(l —8')"'u'og, u' —8'Fog,u'+(1 —8')u'gg, v' —8(1 —8')'"v'og, v'] e' lit

+ &2 Vw ~ [8(1—8')'~' 'ugou' —8'u'g, gv'+ (1 —8')v'g, ou' —8(1- 8')'~'v'g, gv'] e ' 'll]. (4.1)

The spin vector s here has components s1 0 s2 0 s3 2o',.
For the unperturbed ground state

~ go) we take a sea of plane-wave u particles filled up to the Fermi mo-
mentum pz corresponding to the ground state, (2.12), discussed in Sec. II. The intermediate states gener-
ated by applying JC„ to

~ )0) contain a hole in the u sea, an excited u or v particle, and one noncondensed

pion. In addition, if the noncondensed pion is negatively charged a pion is removed from the condensate,
while if it is positively charged a pion is added to the condensate. The intermediate-state energies rela-
tive to the ground-state energies are obtained in the usual way using the u-v single-particle energies given

by q /2M+0, . The energy associated with adding a m to the condensate is just the chemical potential of
the m condensate p, For example, consider the virtual processes corresponding to the second-to-last
term in Eq. (4.1). Here a u particle and a condensed m are scattered to a v particle and a noncondensed

14
)

u(p ) +fl - v(p —q+k)+ w (q) . (4 2)

In second-order perturbation theory this process gives the energy correction
(1-8')(q og, ('

—Tr
[(p —q+ k)'(2 M) '+ 0 ]+&u, —[P~(2M) '+ 0, ] —p, , (4.3)

with the trace being carried out over the spin vari-
ables. The energy denominator just corresponds
to the energy of an excited v particle of momen-
tum p —q+k, a noncondensed pion of momentum q,
a hole in the u sea of momentum p, and a hole in

the pion condensate.
We can understand the energy denominators in,

for example, Eq. (4.3), without the artifice of the
II operator. If we returned to the original defini-
tion of u and v operators, (2.2V) [instead of (2.30)],
then the II operators would be deleted in (4.1) and
we would consider the process u(p)- v(p —q+k)
+w (q). The imbalance of momentum comes from
the exponential factor in the m emission part of
(4.1). According to (2.9) we gain additional energy
0, —0 by replacing a u by a v of the same mo-
mentum. But the energy of the whole medium has
changed in another way; since charge is con-
served, the emission of the noncondensed n must
be compensated by a change in the charge of the
residual system of nucleons plus condensed pions.
This can come about in either of two ways: The

condensate can give up a n, or the parameter g

can change infinitesimally [O(1/N)] in order to
make one less unit of baryon electric charge. At
the equilibrium density of condensed m 's the en-
ergy loss (or gain) in giving up one w is exactly
equal to the gain (or loss) in changing a proton to
a neutron. Thus in either case we have only to
calculate the energy change when one condensed
pion is added, with the proton and neutron occu-
pancy staying the same, that is, the chemical po-
tential of the w, p. „.

To evaluate the second-order energy shift asso-
ciated with the noncondensed pions we shall regu-
late the integrals by putting a sharp cutoff on the
momentum of the pion, through a factor A(q)
= 8(km,„—

~ q ~ ). Such a cutoff is conventional in
meson theory and represents an effect which is
almost certainly present, the suppression of sin-.

gle-meson emission at high momentum. In the
present problem there is an additional reason for
imposing a rather low cutoff. We are calculating
the energy shift using plane waves for the unper-
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turbed system. This calculation will probably
overestimate the energy shift in any event, since
the correlations which keep particles apart at
short distances have been omitted. A cutoff on
pion momentum at least suppresses the singular-
ity of the pion exchange force at short distances,
which should partially compensate for having
omitted the hard-core effects from the wave func-
tions.

We make two more simplifications: (1) Neglect
of the nucleon kinetic-energy differences. Static
kinematics, M-~, for the nucleons will suffice

in evaluating perturbations of this kind. (2) Ne-
glect of the effect of k2 on the integration regions.
This is not a superb approximation since in the re-
gion of interest p~ runs from 2.5 to 3.5 times k
(as it increases the approximation improvel).
However, it is good enough for the 20% to 80% ac-
curacy we need in making our estimate.

Defining the momentum of the intermediate nu-
cleon as p' and setting p -p' =q, O' =X, we obtain
the following terms in the second-order energy
shift.

q 2 —4Xq32+4X q32
d 'P d 'P' ', '

A(q),
(p~ )p~ (dq

, , 2X(1-X)q'
u u+v'+ll-u: 5E2=C d2p d2p' A(q),

&P~ &p~ &q(&q+0 q)

f' . 2 .2X(1-X)q'u+II -u+nu' +-II: 5E, =C
i

d2P d2P' A(q),
&2 &2 +q(+q 9 2)

4X(1 —X )q,
'

u-v+//'-u; 5E, =C t d2P /f2P' '
A(q),

(dq((dq+ Q+ —0 )F

u+fl-- v+ ~ -&+II-:5E,-= C d2p d2p' -A(q),
2(1 -X )'q'

&2 au &q(&q + II+ I~- p 2)

(4.4)

2X2@z
u v+n +0 u: 5E~=C ~

d P dsp' A(q)
&2 22 (d2((d2+ Q+ ~ 0 + p, q)

Here the constant C is given by

C=-f2m 2(2v) '. (4.5)

It remains to evaluate p„and perform the integrals. p, , is calculated by returning to the expectation val-
ue of the meson part of the Hamiltonian (2.1) in the ground state Iiu

~
vac),

y l/2

(dj.222 „) (4.6)

and changing X by +1, giving 1Pr z

0, —0 —p, ,- co~X.
(4.8)

I/ 1/2

8(l —8 2)'/2 + (u,m, v'&u2 N,

2 1/2(1 —8 ) +cu2.
Vg ~ (dg,

(4 7)

In the second form for g„ the equation of con-
straint 82p V=N„=XN has been resubstituted (note
that the variation of p. , has to be performed before
this equation is substituted, since we want the re-
sponse to the addition of a condensed meson with
no change in baryon occupancy). For small values
of X we note the limits

Here we have substituted into (4.5) the expression
for onset density in terms of ~, . The energy shift
of the pure neutron sea, calculated to second order
in f, is found by evaluating the sum of terms of
(4.4) for the case X=O, 0, —0 =0, p, ,=0.

It is interesting to note that except for the differ-
ences in denominators coming from nonvanishing
0, -0 and p, „ the sum of the contributions in
which the variable p' was outside the Fermi sphere
would be exactly equal to the free-neutron result,
for any X. These represent contributions from
ordinary single-nucleon self-energies which, being
the same for a proton and a neutron, should not
contribute to the difference in the two cases.



PION CONDENSATION IN SUPERDENSE NUCLEAR MATTER 961.

If the differences in the denominators were ne-
glected the contributions in which p' was below the
Fermi surface would not equal those for the pure
neutron case. The difference would be exactly that
calculated from the static one-pion-exchange po-
tential, which splits the energies because of its
spin and isospin dependence. More than half of
our answer will, in fact, come from this source.
But the correction du to the denominators will not
be negligible. This raises the question of to what
extent the rest of the NN potentials discussed in.

Sec. III are affected by the presence of the con-
densate. However, questions on a par with this
one have not been settled in ordinary nuclear-
matter theory. "

We have estimated

5E, = 5E(condensed case) —5E(neutron case)

near onset p =p„X=0 retaining only the terms
proportional to X. We obtain

Wp while the pion corrections, already limited by
' k, stay more or less constant.

For the case k =3m, , the equalization occurs
at a density of about p =0.5 F '. We actually pre-
dict onset before this point since at a given den-
sity, now that the repulsive term 5E proportional
to X is included, it will be advantageous to reduce
X below the best value for the previously solved
case. We thus anticipate a second-order phase
transition in the presence of the pion corrections,
with much the same nature as the one which is tab-
ulated in Table I, only with the onset somewhat
delayed by the pion corrections.

Use of more realistic wave functions should
strengthen this conclusion, since they would act
to reduce the single-pion effects.

V. PION-NUCLEON AND PION-PION
S-WAVE EFFECTS

0 5',X for km' =3m, ,

58, =0.16m„X for k =2m

TABLE I. p is density in baryons/F3. E, is the con-
densation energy per baryon of Eq. (2.20) for the values
of k and X which minimize E, , Thek and X given are
these minimizing values.

p (F ') -E, /m, c' k +/m„c X

0.234
0.261
0.289
0.319
0.349
0.416
0.488
0.566
0.650
0.739
0.936
1.16
1,40
1.66
1.95
2.26
2.60
2.95

1.09 x10
6.85 x10 '
1.68 x10 2

3.05 x10 2

4.73 x 10 ~

8.88 x10 '
0.139
0.197
0.260
0.329
0.481
0.649
0.830
1.02
1.23
1.45
1.67
1.91

1.27
1.30
1.34
1.36
1.40
1.46
1.54
1.60
1.68
1.74
1.90
2.04
2.20
2.36
2.52
2.68
2.84
3.0

0.034
O.otIs
0,124
0.160
0.191
0.243
0.283
0.316
0.343
0.366
0.400
0.426
0.445
0.461
0.473
0.483
0.492
0.499

A comparison with the numbers in Table I re-
veals that for the case k =2m, the negative en-
ergy gained from the condensation in the absence
of pion corrections exceeds the (positive) shift due
to pion corrections for p&0.3 F '. As the density
is increased beyond this point the negative conden-
sation energy per condensed pion grows roughly as

There is a well-known formula, often quoted as
an argument against the existence of w 's in neu-
tron-star interiors, for the effect of S-wave pion-
nucleon interactions on the energy of a n at rest
in nuclear matter":

5E=219(p„-p, ) MeV, (5.1)

where p„and p~ are the neutron and proton den-
sities measured in particles per F'. Experimental
9-wave m p and m n scattering lengths determine
the coefficients in (5.1).

Superficially the result (5.1) argues against the
gradual onset of a condensed phase as described
in Sec. II, because of the large positive energies
in a neutron-rich medium. It would clearly allow
the fully developed p„=p~ condensed phase pre-
dicted in Table I at higher densities, however, and
even push it towards greater proton occupancy.
Thus one might anticipate a first-order phase
transition to an npw phase at some density around

p = 0.5 F . However, S-wave n n interactions
should also be taken into account before a conclu-
sion is reached in this regard, since we might ex-
pect them to be of comparable importance.

There is no direct experimental information on
the 1=2 (m n ) S-wave scattering length. We shall
take Weinberg's" prediction from current algebra
for the S-wave scattering length (-0.06m, ') and
scale it down by the same factor (0.85) which
scales his predictions for the pion-nucleon scat-
tering lengths to the experimental results. This
leads to S-wave interaction-energy formulas anal-
ogous to (5.1) which are expressible to within the
errors by the following simple expression for the
energy per baryon:
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v N interactions: 5E=— X(1 —2X)
1 p2' 2

m n interactions: M =—,X',1 p
(5.2)

2kf v p (1-X)"'
+ su~+ —,p —&Xp

y (dp

(5 3)

Here m, has been set equal to unity.
It turns out that (5.3) predicts a second-order

phase transition very similar to the one described
in Sec. II. The onset is delayed by the repulsions
to a density of p =0.36 F ', the value of k at onset
is increased to about 1.9 m„, and X increases
much more rapidly above onset than it did in the
case of Sec. II (in order to reduce the repulsive
S-wave energy).

Thus the pion condensation survives both the
second-order noncondensed pion corrections and
the inclusion of S-wave forces. Will it stand up
under further corrections' It is difficult to say
for sure. We are already deeply into the strong-
interaction morass. As an example of one correc-
tion from an almost interminable list of correc-
tions, let us return for a moment to the pion-nu-
cleon S-wave interaction discussed above.

Had we written this interaction in terms of fields
(in the form gg&j&*P) we would have retrieved the
energy shift of (5.1) in a term in which both P* and

Q were xeplaced by the condensed field, Q, . In
addition there would be a new pion-nucleon vertex,

This in turn should be used in a new cal-
culation of the energy shift coming from emission
and absorption of noncondensed pions (there is no
interference with the old calculation since there is
no o matrix between g and P here). The effect this
time is clearly in the direction of favoring the con-
densation, the second-order self-energy parts be-
ing an energy-lowering effect in our systems.

Instead of continuing the list of theoretical omis-
sion and uncertainties, we would prefer at this
point to underscore the relative cleanliness of the
basic calculation of the condensation. The problem
of one meson mode interacting with nucleons was
solved without approximations. The demands made
on the nucleon wave functions in order to sustain
the pion condensation, (p(x)o,n(x))-constxe '~',

turned out to be completely compatible with the de-

where X= 6I', the fraction of baryons that are pro-
tons.

Thus the ground-state parameters (X, k) and en-
ergy will be determined by minimizing

E —E(neutrons)

mands made by short-range repulsive forces, if
spin-independent.

The condensation persists through the inclusion
of the two effects that we thought to be most dan-
gerous to it, changing only in the onset density,
which in any case remains below the value of p =1
F ', at which point life may become more compli-
cated through the creation of other species of bar-
yons. Even these other baryons can be used to
sustain the condensation, however, e.g., through
the couplings Z —4+m, so we predict no ten-
dency for the condensation to disappear at higher
densities.

VI. ELECTROMAGNETIC EFFECTS

AND EQUATION OF STATE

The state we have described has been constrained
to have average charge neutrality. As with other
many-body systems, the fluctuations of the total
charge have a negligible, N ' ', effect on the sys-
tem. However, nothing has been said about local
charge-density fluctuations. In addition, the state
we have described carries an extraordinarily large
electric current in the z direction. Clearly mag-
netic energy will preclude the formation of a homo-
geneous system with such a current. Since the
velocity of the pion condensate is near that of light,
the strength of the current interactions and the
charge-density Coulomb interactions are both set
by e'/I'c. The small size of e'/kc means that the
effects of these electromagnetic interactions will
occur on a larger scale of distances than those of
the characteristic condensate scale of length
(Xk*) ', giving rise to a macrostructure of the
condensate.

In Ref. 11 two possible macrostructures were
discussed:

(1) A structure in which a standing wave is used
for the pion field. This will cost at most a factor
of 2 ' in the interaction-energy term and could
delay the onset until p=0.5 F ' in the case without
virtual-pion and 8-wave corrections, "or until a
correspondingly higher value of p in the presence
of these corrections. The cost in Coulomb energy,
due to the charge-density wave in this case, is
negligible due to the very short wavelength (-m ').

(2) A filamentary structure, which we presently
favor, with current moving in opposite directions
on neighboring filaments. An estimate for small
X shows that a pair of cylindrical filaments side
by side with opposed currents can have a radius of
order (kc/e')'"(k*X) ' before the positive magnet-
ic energy exceeds in magnitude the negative
amount gained from the condensation. ' This fil-
ament radius is much larger than the character-
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istic condensate length (k*X) '.
A determination of the exact form of the macro-

structure requires that the local condensate ener-
gy, including its variations to distortions of the
condensate wave function, the electromagnetic
field, and the interaction between the condensate
and the electromagnetic field, all be treated on
the same footing. This is analogous to the flux
structure in a type-II superconductor. Our result
for the condensate energy can be generalized to a
nonuniform condensate by replacing 8 v N by a
slowly varying condensate amplitude ~(x). Includ-
ing the electromagnetic field and its coupling to
the condensate then leads to an energy functional
dependent upon m(x) and the electromagnetic fieM.
We are presently investigating the self-consistent
macrostructure generated in this way.

In the microscopic domain, then, we predict a
highly directional form of matter. We do not know

whether the directionality would persist over
macroscopic distances (perhaps even appreciable
fractions of the neutron star's diameter), or
whether radomly oriented domains of a microscop-
ic size will develop instead. In either event, since
we have filled the greater part of the volume with

the condensate, we can apply the macroscopic
pressure formula, (2.24).

In Fig. 1 we plot the fractional pressure loss of
the condensed state as compared to the normal
state for the case in which S-wave effects and pion
corrections were neglected, (2.22). Compared to
the neutron case we note a 30% loss of pressure
at p =0.30 F ' shortly after onset and a 73% loss
at a density of p=0.5 F . There is no qualitative
difference in this conclusion if the free Fermi
pressure is replaced by the results of one of the
several calculations in which nuclear forces are
included. 4

The corrections to (2.22) discussed in this paper
will probably not only delay the onset of the phase
transition as the density is increased, but will re-
duce the loss of pressure after onset. We do not
consider our treatment of the various corrections
to be sufficiently complete at this time to justify
deriving a numerical equation of state and comput-
ing the structure of a neutron star, although we
hope to return to these calculations in the future.
We still anticipate a substantial softening of the
equation of state, and this can only result in a
smaller maximum mass for the neutron star. '

There is also the possibility that the softening
of the equation of state will lead to a region of in-
stability of the star as a whole, analogous to that
between white dwarf densities and neutron-star
densities. If the equation of state hardens again
at still higher densities this could lead to a new

class of stable object, less massive and more
dense than a neutron star, a "pion-nucleon" star.¹teadded in Proof. Contrary to the statement
in the Introduction, n particles are not the only
serious contenders. There may be a n' condensa-
tion, but the nuclear physics questions will be
much harder to resolve in this case. A rather
small fraction of n' particles can be added to the
model of the present paper and result in an earlier
onset and a somewhat lower energy. Standing-
wave solutions have been worked out in the absence
of nuclear forces and have a critical density equal
to that for the running-wave case (instead of twice
that as conjectured in Sec. VI); however, the nu-
clear physics corrections to the standing-mode
case are again hard to evaluate and probably deter
the formation of the state. All these subjects are
discussed in R. F. Sawyer and A. C. Yao (unpub-
lished).
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