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Abarbanel's derivation of the 2-Pomeranchukon discontinuity is examined at t =0, where
the physics is especially transparent. By slightly altering the significance of Abarbanel's
decomposition of the total cross section, arguments are given to support the crucial and
controversial assumption that his "single-fireball" vertices do not contain the 2-Pomeran-
chukon branch point. It is shown further how Abarbanel's discontinuity formula gives a
semiquantitative realization of the Finkelstein-Kajantie requirement of small Pomeranchukon
couplings if np(0) is close to unity. This demonstration, which shows that the triple-Pomer-
anchukon coupling gp is proportional to 1 &p(0), depends critically on the positive sign of
the Abarbanel discontinuity.

I. INTRODUCTION

There has recently occurred the remarkable de-
velopment that the same general S-matrix formula
for the discontinuity across the 2-Pomeranchukon
branch eut has been proposed by several different
authors, ' 4 but one of these authors argues for a
positive discontinuity while all others believe the
sign to be negative. The physical argument for a
negative discontinuity (the majority position) has
arisen from Feynman-graph models where the cut
represents an "absorptive" correction to a pole when
the latter is regarded as given ab initio with arbi-
trarily assignable strength, the cut being needed
to keep the complete amplitude within unitarity
bounds. Such an interpretation, however, lacks
meaning in S-matrix language, where the strengths
of pole, eut, and all other singula, rities are simul-
taneously controlled by unitarity.

Feynman-graph models typically represent the
amplitude as an infinite superposition of compo-
nents associated with individual graphs, but with-
out attention to renormalization the inserts in a
particular graph cannot be identified with singu-
larities of the full S matrix. Consistent renormal-
ization procedures never having been developed for
Reggeon lines, an insert line in existing forms of
"Reggeon calculus" does not correspond to an
actual J pole of the S matrix. The status in graph
models of Regge branch points is equally obscure.

Since the discontinuity formula at issue is ex-
pressible entirely through the S matrix, it should
be possible to derive the formula without recourse
to Feynman graphs, and indeed two attempts of
this kind have been made. The first, by Abarbanel,
depends on the formulation of a certain integral
equation whose kernel has simple analyticity prop-
erties near the branch point in question. ' Abar-
banel found a positive discontinuity from his equa-

tion, but his arguments to support the crucial
property of his kernel have not been entirely con-
vincing, and Abarbanel's result has failed to shake
the faith of those who on the basis of Feynman
graphs had come to believe in the negative sign.
A second attempt at an S-matrix derivation has
been made by White, 4 using techniques that in prin-
ciple seem more straight-forward than those of
Abarbanel but that in practice involve intricate
technical points where sign errors may occur.
Thus White's publication of a negative sign has
not settled the issue.

Although the physical importance of the 2-Pom-
eranchukon branch point (being only one of a
welter of Regge singularities) is far from estab-
lished, a healthy protracted controversy over the
sign of the discontinuity should augment the under-
standing of Regge behavior. The intent of this pa-
per is to fuel the controversy with arguments that
support Abarbanel's result.

II. A PHYSICAL INTERPRETATION OF
ABARBANEL'S ANALYSIS

Roughly speaking, Abarbanel's analysis depends
on classifying high-energy events according to the
number of produced "fireballs. " At zero momen-
tum transfer (t=O) the physics is especially trans-
parent because one may there carry out the dis-
cussion through the total cross section which,
apart from a simple positive factor, is the s dis-
continuity of the elastic amplitude. Abarbanel
breaks down the total cross section into certain
partial cross sections which are recursively re-
lated and thence he obtains his integral equation.
Because all quantities throughout are real and pos-
itive, no technical mistake about algebraic signs
can occur. If a mistake is made, it has a more
subtle origin.



ARGUMENTS SUPPORTING A POSITIVE. . . S35

A ~(J)=Ao~~ (J)+A'j ~ (J)+ (2.2)

We note for future purposes that the rightmost J
singularity in each A~~(J) is determined by the
leading power in the asymptotic expansion of
o~~(s). What is the connection between this lead-
ing power and the Pomeranchukon'P

We shall suppose the Pomeranchukon at t =0 to
be a simple factorizable Regge pole lying slightly
below J= 1, so that a gap occurs between this pole
and other J singularities. Although the contradic-
tory aspects of the 2-Pomeranchukon cut discon-
tinuity may conceivably be related to the failure of
such a condition to be realized in the physical S
matrix, the Feynman-graph approach should be
capable of accommodating an arbitrary pole loca-
tion, so the controversy is worth pursuing on such
a basis. In any event if we fail to assume simple-
pole status for the Pomeranchukon, meaning evap-
orates for the 2-Pomeranchukon discontinuity for-

Abarbanel is, not quite precise about his decom-
position of the total cross section. We suggest
that for each event the produced particles be or-
dered according to longitudinal rapidity, the event
being characterized as "single-fireball, " "two-
fireball, " "three-fireball, " etc. , according to the
number of large rapidity gaps in the ordered chain.
Figure 1, for example, depicts a four-fireball
event, AJ3- 8 particles. To make unambiguous
our fireball definition we specify a minimum in-
terfireball rapidity gap A; given a particular
choice of A, the total cross section may be unique-
ly decomposed as

o~ (s) =o~~(s)+o'~(s)+o'~(s)+
the superscript indicating the number of rapidity
gaps larger than 6 or, equivalently, the number
of fireballs minus one.

At any finite s there is a maximum n for which
o'~~(s) is nonvanishing (n,„ is of the order
A 'lns), but as s-~ the number of terms in the
series (2.1}increases without limit. Although
o~~(s) does not correspond to any definite set of
reactions, each of these partial cross sections
must be power bounded, so that the crossed-reac-
tion J projection of the forward amplitude has a
decomposition corresponding to Eq. (2.1}':

+ + gg + ~ ~ ~

FIG. 2. Diagrammatic representation of Eq. (2.1).

mula. Blower and Weis have recently given a per-
suasive argument that if the Pomeranchukon is a
simple factorizable pole, with finite trajectory
slope at t =0 and nonvanishing coupling to any chan-
nels, then its intercept must lie below J = 1.'

Supposing a gap in J to occur between the Pom-
eranchukon pole and other J singularities, we may
choose 6 sufficiently large that at each interfire-
ball gap a factorizable Pomeranchukon link be-
comes a good approximation. The expansion (2.1)
may then be represented diagrammatically as in

Fig. 2, where the first symbol on the right repre-
sents a sum over all types of single fireballs. The
reader is cautioned against interpreting Fig. 2 as a
Feynman-like expansion. We are representing not
the amplitude but the total cross section and each
graph depicts the contribution from a distinct class
of reactions. The different diagrams of Fig. 2, in
other words, correspond to different regions of
phase space. To illustrate the meaning of Fig. 2 in
a more concrete fashion, consider the second (two-
fireball} term in the expansion and define fireball
masses s„and s~, as well as a squared momentum
transfer t, in the manner shown in Fig. 3. The
factorization property means that o~~(s) at large
s has the structure

ds„ds~dt, A.~ s„, t,

2n~(t~)
X

SgS

(2.3}
where the factor A',~~(s„ f) may loosely be de-
scribed as being proportional to the cross section
for single-fireball formation when a Pomeranchuk-
on "collides" with a physical particle of type i.
The rapidity gap between the "rightmost" particle
in the left fireball and the "leftmost" particle in
the right fireball is approximately'the logarithm of
the ratio s/s„se when the interfireball gap is large,
so the integration in (2.3) is confined to the region

Produced
particles

Incident

particles
Rapidity

FIG. 1. The rapidity distribution of a four-fireball
event.

FIG. 3. Two-fireball diagram defining the squared
fireball masses, sz and sz, and the squared momentum
transfer t~.
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FIG. 4. Four-Pomeranchukon vertex involved in the
production of more than two fireballs.

where this ratio is greater than e~.
For production of more than two fireballs one

encounters additionally the 4-Pomeranchukon ver-
tex shown in Fig. 4, which might be described as
the single-fireball production cross section in a
Pomeranchukon-Pomeranchukon collision. With
such a factor repeated n —2 times, formula (2.3)
may be generalized so as to construct the physical
A.B cross section for e-fireball formation. Abar-
banel has given a set of variables for the general
formula'; also suitable are the Toiler variables of
Ref. 7.

The J projection of (2.3) to obtain A~~(J) involves
an integration over s that extends to s =~. If the
factor Ao~~(s, , t) is bounded by a sufficiently low

power of s„ the asymptotic s dependence is con-
trolled by the factor s2™&~'&so the leading J singu-
larity of A~~(J) will be a branch point at J = 2o.~(0)
—I, whose discontinuity has the form

dt,A.~~ J, I;~ ~3+ J, I;~ 5 J —2np t, +1

(2.4)

Similarly, if opo~~(s~, f', f") is bounded by a suf-
ficiently low power of s~, the leading singularity
of A(J ) will for any n be a branch point at this
same location —with a discontinuity that can be
computed. All these discontinuities are positive
since they dominate the asymptotic behavior of
separately positive pieces of the cross section.
We have here essentially the same situation as
that analyzed by Finkelstein and Kajantie for finite
fireball masses. '

It does not immediately follow that the discon-
tinuity of the total amplitude A~(J) is necessarily
positive, because the series (2.2) diverges for
J ~u~(0). This series, however, may be replaced
by an integral equation, whose kernel has the
structure

(2.6)

the points J, and J lying on opposite sides of the
cut. The sign of this discontinuity can be shown to
be positive in the sense of the preceding discus-
sion, although the magnitude of the full-amplitude
discontinuity near the branch point is smaller than
that of any of the individual terms in the series
(2.2). It should be observed that the final discon-
tinuity formula (2.6) is independent of b., although
this parameter has been important at every stage
of the derivation.

Abarbanel's reasoning depends crucially on the
asymptotic behavior of single-fireball cross sec-
tions. Is it possible that this behavior could lead
to J' singularities of Aop~(Z) and A~~~~(J) that would
alter the result (2.6)? With our definition of a
single fireball we find such an eventuality hard to
imagine because singularities in J arise from
power behavior in the limit as the fireball mass
approaches infinity. Now to the extent that trans-
verse momenta are bounded, each fireball cross
section for a definite number of produced particles
vanishes when the fireball mass exceeds some
finite limit, because within the fireball we con-
strain the magnitude of allowable longitudinal-
rapidity gape. To the extent that the probability
for large transverse momenta decreases exponen-
tially we shall have an asymptotic exponential de-
crease with fireball mass (faster than any power)
for each of the partial cross sections. Thus the J
projection of each fixed-multiplicity component of
a single-fireball cross section will be free from J
singularities, apart from those in the left-half J
plane due to the projecting group representation
function. Singularities in the right-half J plane
arise only from a divergence of the infinite series
of components.

The location of such singularities mill depend on
the ratio of successive terms in the series and
thus on parameters, such as b, other than the
Pomeranchukon trajectory. ' How a branch point
could arise at J'= 2o~(0) —I is obscure, none of the
usual mechanisms being operative. Singularities
mith other locations, even if they occur to the right
of the 2-Pomeranchukon branch point, will not in-
terfere with the 2-Pomeranchukon discontinuity
formula.

K(J; f'f") ~A~0~~(J, f', f") . „)
1

J —2
(2.5) III. RELATION BETWEEN POLE RESIDUE AND

BRANCH POINT DISCONTINUITY

and if the J singularities of the factor A~of(J, f', t")
may be ignored one deduces that the discontinuity
of the full amplitude has the form

Support for a positive discontinuity also emerges
from a study of the relation between the discontinu-
ity and the Pomeranchukon-pole residue when the
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pole at t =0 is very close to J =1. Following Abar-
banel, we define

so

R(J') =Ap~(J, t' = f" = to(J)), (3 1) (3.8)

where t,(J}is defined by

2np(to) —1 =J . (3.2)

Assuming the trajectory o.~(t) to be analytic in t
near the branch point, the di.scontinuity formula
for R(J ) (up to the uncertainty in sign) is

discR(J ) = 2ip(J)R(J+)R(J ),
where

(3.3)

p(J) =
2(do.p/dt)q=~ (J')

(3 4)

(3.5)

where n, = 2mp —1 is the branch point position, is
free from singularities near J = n, and in this
neighborhood may be expanded in a power series
if R(J) has no nearby zeros. To be troublesome to
the following argument a zero would have to be
located as close to n, as the pole at np. Such a
location for a zero is conceivable but would con-
stitute an accident if the pole and branch point are
significantly coupled to each other. Since the
Finkelstein-Kajantie result suggests an important
interaction between branch point and pole we shall
ignore possible zeros of R(J) near J =1. Since
R (J') vanishes at J= ap, it is convenient to ex-
pand around the pole position:

1 J —e,
R '(J) = —p(J) ln

jr np —n,

P being a positive constant that depends on the
precise normalization of R(J). Normalizing so that
the pole in R(J) at J= a~(0) has the residue gp'(0),
where gp(t) is the triple-Pomeranchukon coupling
defined in Ref. 10, it turns out that P =—„.

Formula (3.3) implies that the function

if the Abarbanel sign is correct, while the sign of
the first term on the right-hand side of (3.8) is re-
versed if the absorptive sign is correct. With the
Abarbanel sign, formula (3.8) smoothly exhibits
the Finkelstein-Kajantie mechanism' as np -1. In
this limit e,- np from below and gp' approaches
zero from the positive direction. " With the ab-
sorptive sign for the cut discontinuity, on the
other hand, gp' becomes negative if the difference
ap —n, is too small. "

IV. CONCLUSION

If the Pomeranchukon is not a simple pole with
factorizable residue, the entire subject under dis-
cussion requires reformulation, but the apparent
success of scaling rules for experimentally mea-
sured inclusive reactions is understandable in
Regge language only with a factorizable Pomeran-
chukon at I;=0. On the other hand, the assump-
tion that the Pomeranchukon trajectory is analytic
near t=0 has little experimental support. If the
pole collides with the branch point at I;= 0 and for
negative t moves onto an unphysical sheet of the 4
plane, the Finkelstein-Kajantie line of argument
and the closely-related argument of Abarbanel
must be reexamined. Both these arguments re-
quire factorization of asymptotic amplitudes nea~
t =0 as well as at (=0 [as exhibited by the appear-
ance of the Pomeranchukon trajectory slope in
formula (3.4)j.

If the White method for calculating the 2-Pomer-
anchukon discontinuity conclusively yields a re-
sult different from that of Abarbanel, it is reason-
able to infer a /=0 singularity of the Pomeranchuk-
on trajectory as the source of contradiction.

ACKNOWLEDGMENT

Now,

1 d 1

g ' dZ R(Z)), -„

+ b(J —np) + o((J —n p)') . (3.6)

(3.7}

The ideas expressed in this paper were formu-
lated through discussions at the National Acceler-
ator Laboratory during a recent visit there by the
author. Comments by Chung-I Tan have also been
helpful.

*This work was supported by the U. S. Atomic Energy
Commis sion.

V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-
Martirosyan, Phys. Rev. 139, B184 (1965).

2C. Lovelace, Phys. Letters 36B, 127 (1971).

H. D. I. Abarbanel, Phys. Rev. D 6, 2788 (1972).
4A. White, Cambridge Report No, DAMTP 72-18, 1972

.(unpublished).
BTo avoid the signature complication we may suppose

that particle A is self-conjugate, so that left and right



938 GEOFFREY F. CHEW

(s and u) discontinuities are equal.
R. Brower and J. Weis, Phys. Letters 41B, 631

(1972).
7G. F. Chew and C. BeTar, Phys. Rev. 180, 1577

(1969).
J. Finkelstein and K. Kajantie, Nuovo Cimento 56,

659 (1968).
~Note that 6-dependent singularities must disappear

from the full amplitude when the integral equation is
solved. J. Koplik [Phys. Rev. D 7, 558 (1973)] has
applied the Finkelstein-Kaj antic technique to prove that
the leading J singularity of A~y+(J) lies to the left of

nI, (0).
H. D. I. Abarbanel et al. , Phys. Rev. Letters 26, 937

(1971).
In fact the entire amplitude vanishes in this limit.

~2It can be shown that any Pomeranchukon-communicat-
ing amplitude A;, (J) is related to R(J) by

A;g(J) =P;~ (J')R(J) +P]) (J),
where P&& (J) and Po (J) are analytic near the branch
point. Thus the relative sign of pole residue and cut
discontinuity as well as the magnitude ratio is universal
when these two singularities are close to one another.

PHYSICAL RE VIE W D VOLUME 7, NUMBER 3 1 FEBRUARY 1973

Asymptotic Behavior of an Analytically Solvable Nova Model"'

Richard Kronenfeldt
Institute of Theoretical Physics, DePartment of Physics, Stanford University, Stanford, California 94305

(Received 5 July 1972)

We formulate an analytically solvable version of the nova model and obtain the s dependence
of single- and two-particle inclusive distributions. The nature of the singularity in the two-
particle distribution at x&

——x2 ——0 and numerical predictions for National Accelerator Labora-
tory energies are discussed.

The nova model of multiparticle production has
been utilized to obtain strikingly good fits to sin-
gle-particle and two-particle inclusive distribu-
tions at present accelerator energies, within the
framework of a simple diffractive excitation pic-
ture. ' To obtain the explicit s dependence of the
nova model so we can make specific predictions
about the behavior of one- and two-particle distri-
butions at National Accelerator Laboratory (NAL)
energies, we construct an analytically solvable
version of the nova model. Having exhibited ana-
lytical forms for the distributions, we can de-
termine the rate at which these distributions ap-
proach their limiting forms, and in particular ob-
tain a form for the singularity' in the two-particle
distribution at x, =x, =0 which makes its nature
more apparent than would be the case if only nu-
merical results were presented. Our specific
model should not be taken too seriously, but it
does exhibit clearly the expected properties of dif-
fractive models.

To establish our notation and assumptions, we
briefly review the nova model: Particles a and s
(the spectator) scatter diffractively, and a is
quasielastically excited into a fireball or nova
which decays isotropically in the nova rest frame
with average decay multiplicity linearly propor-
tional to the nova mass. We shall concentrate on

the single-particle distribution for pions, since
they constitute most of the produced particles and
since we can then neglect the nova's transverse
momentum', the distribution can be written as

, ' =p f p, (M(N, (M), , dM,
a

where k is the c.m. momentum of the observed
pion, and q its momentum in the nova rest frame;
M, andI, are the masses of a and s',

exp[- P,'/(M —M,)']
(M M)a

is the cross section for exciting a nova of mass
M'

N,.(M) =

is the decay multiplicity of pions from a nova of
mass I, and

=Aexp-- (4)

is the decay distribution in the nova rest frame,
normalized to unity. The Jacobian d'q/d'k is just
q'/k', and a Lorentz transformation yields


