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Rigorous lower bounds on the imaginary part of helicity-nonflip elastic amplitudes are
derived under the assumption that their impact-parameter representations are monotonically
decreasing functions of b (central profiles). One result of these bounds is that at intermedi-
ate to high energies, typical Pomeranchukon-dominated elastic helicity-nonflip amplitudes
must not have zeros for |¢|< 0.6 BeV?2. A connection between the phenomenological absence
of zeros in these Pomeranchukon amplitudes at small |¢| and the conjectured central behavior

of the profile is thus established.

I. INTRODUCTION

Ever since the geometrical-absorptive picture
was first applied to high-energy two-body scatter-
ing processes,' the impact-parameter profile of
elastic helicity-nonflip amplitudes has been viewed
as a monotonically decreasing function in impact-
parameter (b) space. This profile is often re-
ferred to as a “central” profile. Such forms have
been used extensively to calculate the effects of
absorption on various “basic” exchanges, as well
as to phenomenologically describe elastic ampli-
tudes at high energies.

One of the more successful phenomenological
models which uses geometrical language, and
which has been applied with considerable success
to two-body processes at intermediate and high
energies, is the dual absorptive model.? This
model utilizes two-component duality. The diffrac-
tive or Pomeranchukon-exchange part of any given
amplitude is assumed to be central in b space and
to have no zeros in ¢ space for | {| <1 BeV?, This
last assumption is of a crucial importance in the

phenomenological analyses to which the model has
been applied, where it has become a common prac-
tice to parametrize Pomeranchukon-exchange am-
plitudes by simple exponentials e,

It has already been shown® that the two above as-
sumptions — “centrality” in b and “no zeros” in ¢ -
are in some sense independent. Slight modifica-
tions of the profile can effortlessly generate or
eliminate zeros in the amplitude. In fact, it is
quite possible that the structure observed in pp
—~pp at* | t| ~1.2 BeV? is caused by a zero ina
Pomeranchukon-exchange amplitude. It is, how-
ever, a remarkable phenomenological observation
that Pomeranchukon-exchange amplitudes do not
exhibit zeros or dips at values of | | smaller than
~0.8 BeVZ, We face therefore the interesting prob-
lem: What exactly is the relation between the prop-
erty of “centrality” in b, and the location of the
zeros in {? A precise answer to this question will,
of course, provide tests for monotonicity of the
Pomeranchukon-exchange profile. Some interest
was recently added to this problem by conjectures
that Pomeranchukon profiles may possess a pe-
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ripheral component.®

In this work we derive a lower bound on the
imaginary part, A(f), of helicity conserving elas-
tic amplitudes which have monotonically decreas-
ing profiles. For a given A(f{=0), which defines
the strength of the interaction, and which is re-
lated to the total cross section o, by the optical
theorem, and for a given slope S=A'(¢=0)/A(¢=0),
which defines the range of the interaction, we
prove that for amplitudes which have monotonical-
ly decreasing imaginary parts in b space,

AlD)> At =0)2i’~;sz_—@ 1)

for values of ¢ such that RV—7¢ < z~3.83, the first
zero of J,, where J, is the Bessel function of or-
der n. R is defined by R®=8S, and is the radius
of a uniformly grey sphere which generates an
amplitude with a slope S.

In other words, for realistic values of 0, and
S, the smallest A(f) (for the ¢ range given above)
which can be generated by a central profile, is
generated by a grey sphere of constant opacity.

An immediate result is that Z, the position of
the first zero of A(¢) (if zeros exist at all) is con-
strained by RV—f = z. At intermediate energies,
where the slope is 3—-4 BeV ™2, corresponding to
a radius of 1-1.2 F, we find | 7 | = 0.5-0.7 BeV>.
The absence of zeros for | £|<0.5-0.7 BeV? is
therefore a simple consequence of monotonicity.

We have proved our theorem by using the tech-
nique of Lagrange multipliers.® This method can
be used to find bounds only if the lower (upper)
bound is obtained as a minimum (maximum) in the
space of profiles considered, which is not neces-
sarily true in general, and must be checked in
every specific calculation. This point has been
overlooked in many previous calculations of
bounds by the above technique, where it has been
implicitly assumed that the bound is obtained in
the space. Though in some calculations this as-
sumption is a posteriori obviously justified, no
formal proofs were given. We have overcome this
difficulty by a technique which we describe in the
following section, and which may be useful to for-
mally complete the calculations of other bounds
as well.

In Sec. II of this paper we state and prove the
mathematical theorem which gives the lower
bound. In Sec. II we discuss the constraints and
phenomenological implications, and suggest future
directions of inquiry.

II. DERIVATION OF THE BOUNDS

In this section we wish to present the two re-
lated theorems, Theorems 1 and 2 below, which

are the central results of this paper. Since the
proofs of these theorems involve virtually identi-
cal arguments, we shall state and prove Theorem
1 in detail, and merely state Theorem 2. We
would like, however, to eliminate the unpleasant
possibility discussed in the Introduction, namely,
that the lower bound is not obtained as a minimum
in the space we are considering. To prove that
this does not happen in our problem, we proceed
as follows: we first prove Theorem 0 below,
which is identical to Theorem 1, except that the
profiles are defined on a finite interval of b,

[0, x]. In this case the bound is necessarily a min-
imum in the space considered and so the lowest
local minimum is the lower bound. Using Theo-
rem 0, we then proceed to prove Theorem 1.

In the spirit of geometrical models, we shall
work with profiles which are functions of the con-
tinuous impact parameter 5. However, the proof
can easily be translated into the more exact lan-
guage of partial-wave amplitudes labeled by the
discontinuous parameter I. The discreet reader
who fears that something may be lost in transla-
tion, may consult Ref. 7, where both treatments
of a similar problem are discussed in detail.

In the impact-parameter notation, our problem
is to minimize the imaginary part of a helicity-
nonflip scattering amplitude

A(t)=j;w 2ba(b)Jo(0V=F)db, t<0

given the total cross section,

o
Iz
L—ZTT

=A(0)

- f " 2ba(b)db

and the value of the imaginary part of the ampli-
tude at a point outside the physical region,

G =A(t,)
- f 2a(b) I,V )b, 0<t,<t,
0

where ¢, is the value of the first continuum singu-
larity in the ¢ channel, I, is the modified Bessel
function of order », and a(b) is the imaginary part
of the profile

a(b) = Imf (b)
=Im[e®® sind ()] .

In addition to these constraints, we require that
unitarity be obeyed,®
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ab) > a®(b) |

and we implement the central behavior of the Pom-
eranchukon by requiring

_da(b)
==b <0.

a(d)

Theorem 1 may then be stated as:

Theovem 1. If at some energy, values for o,
and G are given, and if unitarity is obeyed and
a(b) is a nonincreasing function of b, then A(?),
the absorptive part of the helicity-nonflip scatter-
ing amplitude, is bounded from below by

J RV=1)

RV-t
in the ¢ range -z%<{R?<0, where c and R are de-
termined by

A(t)= 2cR?

Iz _¢R® and G =2cR2M
27 R\/If_l
and z is the first zero of J,, 2~3.83.
To prove this, we first need to prove:
Theovem 0. Let H(x, L, G) be the space of func-
tions @(b) defined on 0 < b < x, where x>z/V=7,
such that

(i)o<ap)<1,
)% <o,
s\ T = ¥ ~ d
(iii) L fo 26a(b)db ,
and
(iv) G = f © 2bI, bV, Yalb)db .
Then, for a(b)EH,
sne [ s _ onprd (BY=1)
A(t)= fo 20J,(0V=T alb)db > 2eR* 7=

where R and ¢ are determined by L =éR? and G
=2¢R?I,(RVt,)/RVE, for the ¢ range 0 <RV=f <z.

Proof of Theorem 0. The proof involves four
steps. First, we show that a lower bound exists,
and we derive the necessary equations which de-
scribe the profile a(b) that minimizes A, assuming
it is piecewise differentiable. Next we present a
function, @(b) which is a candidate for the correct
solution. Third, after proving a lemma, we show
that there is no other profile that satisfies the
necessary conditions. Finally, we demonstrate
that our candidate is consistent with the variation-
al equations, thus proving that a piecewise differ-
entiable minimizing function does exist.

To begin, we note that a lower bound to A cer-

tainly exists, because | A| < L. We have explicitly

proven that the lower bound is obtained as a min-
imum in A, i.e., that there exists a profile @(b)

in A such that the amplitude A(t) corresponding to
it is equal to the lower bound. We will not present
this proof in this paper, since it is based on in-
volved and purely mathematical considerations.
We only wish to remark that the finiteness of x
plays an essential role in the proof; when x=w,
there is no a priori reason why the bound should
be a minimum in the space.

Now we wish to derive the variational equations
for the lower bound. To do this, we use the La-
grange-multiplier technique with inequality con-
straints.®” The auxiliary functional for our prob-
lem is

£=—fx 2bd(b)Jo(bﬁT)db+a[i- fo Zbd(b)db]
+ﬁ[ G- fo 26a(0)1,(0VT, )de
. fo " 260(b)[a(d) - a*(b)]db

- f " 20(b)[dalb)/db)db . @)

a and B are equality multipliers, and A (b) and ¢(b)
are non-negative inequality multipliers. The gen-
eralized coordinates of the variational problem
are d(b). In writing the above functional we have
made the extremely mild assumption that the min-
imizing profile is piecewise differentiable. This
assumption is sufficient in order to implement the
monotonicity constraint into the Lagrange function-
al by using da(b)/db. Applying the Euler-Lagrange
equations to the functional £, gives

~Jo(bV=t ) = @ = BI(bV=F)
+1(D)[1 - 2a(b)]+ $(b)/b=0, (3)
where ¢(b) =d¢(b)/db.
As usual, it is convenient to define three sets

for b, depending on the value of d@(b). If d@(b)=1,
bEB, and Eq. (3) becomes

bEB,: A(b) =9§;b—) = Jo(bV=1) — a = BI(bVE))

=20. (4)
For 0< a(b)<1, b<I, A(b)=0 and we have

beEI: 9—292 =Jy(bV=F)+a+BI,(VE) . (5)
Finally, when d@(b)=0, b&B,, and then
bEB,: x(b)=j’b@ +do (V=T ) + o + BI,(BVE,)

=0. (6)
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The most general behavior @) can have is re-
gions where dd(b)/db =0 alternating with regions
where da(b)/db<0. Suppose b& 1. If da(b)/db<0,
then ¢(b)=0. Equation (5) indicates that for b &I,
<¢3(b) cannot be zero except at isolated points since
a and B do not depend on b. Therefore ¢(b) cannot
be zero except at isolated points and the most gen-
eral behavior d@(b) can have for b& 1 is a series of
flat plateaus with sharp edges. If b& B, then
a(b)=1, and as soon as a(b) starts to decrease,
b&I. Hence the transition from B, to I must also
be a sharp drop-off. Similarly, it is easy to see
that a region decreasing from I to B, must be a
sharp edge.

Let us now discuss the positions of these falloff
points, First, consider a point connecting a pla-
teau in I to another plateau in I. As shown by Eq.
(5), ¢(b) is continuous and infinitely differentiable
for b 1. Since ¢(b)= 0 everywhere, and since
¢(b)=0 at the drop off points in I, it follows that
$(b)=0 and $(b)= 0 at these points. Using expres-
sion (5), we can write these two conditions as

Jo(DV=8)+a +BI,(DVE) =0, (7
—V=1 J(DV=0)+pVE, I,(DVE)=0 (8)

where b =D is a dropoff point.

Now consider a transition point from B, to I.
Approaching this point from the right, we have the
explicit expression (5) for ¢(b). Since ¢(b)=0 at
this point, and since ¢(b)= 0 everywhere, the
right-hand side of (5) must be non-negative here.
Since a(b) is identically equal to 1 in B;, ¢(b) may
clearly be chosen to be differentiable in B,. Ex-
pression (4) tells us that approaching the dropoff
point from the left, ¢(b) is greater than or equal
to the right-hand side of (5). But, since ¢(b)=0
at this point and is everywhere non-negative, we
must have ¢(b) <0, approaching this falloff point
from the left. The only way to make all these
statements consistent is to have ¢(b)=0 whether
we approach from the left or the right. Since ¢(b)
=¢(b)=0 here, and since ¢(b)= 0 everywhere, it
follows that ¢(b)= 0 when we approach from the
left or right. [Note, however, that ¢(b) may be
discontinuous at this point.] Therefore, Egs. (7)
and (8) apply to this transition point also, with the
understanding that (8) is obtained by evaluating
&(b) as a limit from the right. One might have
thought that ¢(d) could have been discontinuous at
the transition point from B, to I, thus allowing
this point to exist without satisfying expressions
(7) and (8). That this is not the case can be intu-
itively understood by remembering that the drop-
off point is a transition point when approached ei-
ther from B, or I. Furthermore, expressions (7)
and (8) can be obtained by taking the limit of the

difference equations which govern the transition
from B, to I when the problem is treated in the
formalism of discrete partial-wave amplitudes.
These arguments are, of course, closely connect-
ed with the assumption that @(b) is piecewise dif-
ferentiable.

It is easy to see that similar arguments can be
used in discussing the transition from I to B,. Ex-
pressions (7) and (8) apply here too, where now
$(b) has been evaluated from the left,

Suppose now that there exists a plateau region in
I, which begins at b=D, #0 and ends at =D, #x.
Equations (7) and (8) must, of course, be valid at
D, and D,, but we also need ¢(D,)=¢(D,)=0. In-
tegrating Eq. (5), this condition can be written as

b

EJl(b\/'—_t)+%ab2+B

b
7

1

Lo =0, ()
Dy

We now notice that we can solve for o and 8 by
using (7) evaluated at the points D, and D,. These
values can be inserted into (9), and we have a con-
dition that must be fulfilled by the end points of a
plateau. A remarkable feature of this condition is
that it does not depend on the values of the con-
straints L and G. Notice also that since there is
no a priori reason to require ¢(0)=0 or ¢(x)=0,
Eq. (9) must be modified by adding —¢(0) to the
right-hand side if D, =0 and ¢(x) if D, =x.

Expressions (7), (8), and (9) govern the allowed
positions of falloff points for our minimization
problem. Whether in general for a given value of
—t and ¢, they uniquely determine one set of tran-
sition points is not clear. However, the fact that
they are conditions which it is necessary to satis-
fy is enough for our purposes.

We seek, therefore, a solution which is a series
of plateaus obeying the conditions (7), (8), and (9).
The simplest profile for a@(b) to assume is a single
plateau of height ¢ (0 s ¢< 1) falling to zero at a
radius R. It can easily be shown that if the given
values of L and G can be fit by a profile @) which
satisfies 0 < @(b) s 1 and da(b)/db <0, then there
exist values for R and 0 < <1 such that a single
plateau of height ¢ and radius B will also fit L and
G. Physically this is clearly the case. This pro-
file results in the expressions for L, G, and the
lower bound given in the statement of Theorem 0,
above. A solution (if it exists) with » plateaus of
heights {¢,} and radii {R,} gives for the lower
bound to A

I o= BT

A=N" 2d,R2HA 10)
2 2R (

where d;=¢; - ¢;,, and ¢,,, =0. Since the value of

A at ¢t=0 is fixed by the constraint L, it can be

seen from (10) that any solution with more than



860 YORAM AVNI AND ROBERT SAVIT 7

one plateau which falls below the one-plateau so-
lution for 0 < BV=f <z must necessarily have some
members of the set {R,} be greater than R, the
radius of the one-plateau solution.

We shall now prove that for 0 < RV=f <z there
are no n-plateau solutions (z>1) which satisfy the
variational conditions. There are therefore no
solutions of the type described in the last para-
graph, and so the one-plateau solution provides
the only local minimum in this region of {. To
show this, we need to use the following lemma:

Lemma. Suppose we can fit the given values of
the constraints L and G with a one-plateau profile
function of height ¢ (0 < ¢<1) and radius B. Any
other profile which consists of = flat plateaus (n
> 1) with sharp edges must have at least one fall-
off point at some b<R in order to fit the same val-
ue of the ratio of the constraints, G/L.

Proof. Define S=G/L. For a solution with »
nonzero plateaus (z>1), we have:

- 2,12dR LR VE)/RJE,

0T =1 4; R 2
> ..( 1 Ec.i' }E 21{(." )
Ry, D4R’ Ry,

where R, is the smallest member of {R,}. This
follows because I,(y)/y is a monotonically increas-
ing function of y. Evaluating S for the one-plateau
solution with radius £, we find
55, -2L000)

RVL
Hence, if B, >R, §,>5,, and the n-plateau solu-
tion will not be able to fit the same values of the
constraints as the one-plateau solution. There-
fore, R, <R.

To complete the proof of Theorem 0, we need
only show that for —z2/R? <¢<0 it is not possible
to have the left end point of a plateau at 0<b<R.
To do this, we first refer again to expressions (7)
and (8). Now, B>0 which can most easily be seen
in our problem by referring to expression (8), and
remembering that we need at least one falloff
point to occur when J,(5v=¢)> 0. Consider first
Eq. (7) for the two end points of a plateau, D, #0
and D, #x. Since I, is an increasing function of its
argument, we must have

Jo(DV=2)< Jo(DV=F) ,

in order for (7) to be satisfied at both end points.
Now look at inequality (8). The left-hand side is
the derivative of (7) with respect to . This deriv-
ative is required to be non-negative at the end
points, and the value of the function is required to

D,>D, (11)

be zero. Suppose these two equations are satisfied
at the left end point of a plateau, D,. In order for
them to be satisfied again at D,, there must be a
region between D, and D, where the left-hand side
of (8) is negative. Call a point in this region P.
Then we require

J_J(PJ") _ V=t J,(D=7)
Vi, 1,(PVE) T Vi, L(DNE)

or
J\(PV=1)/PV=F _J,(D\/=1)/D\=F
L®VE)/PVE L0NE)/DYE

Since I,(y)/y is a monotonically increasing func-
tion of y, it is necessary that

J,(PV=F) JJ(D V=£)
PV=t D=t

In Fig. 1, we have plotted J,(y) and J,(y)/y.

This curve can be read as Jy(bv=¢) and J,(bv=7¢)/
bV—t plotted as a function of b for fixed ¢, For a
value of b corresponding to 0<y<y,, we cannot
have the left end point of a plateau, since we will
never be able to find a P which will satisfy (12).
Now let us consider the interval y, <y<y,. If we
begin a plateau in this region, in order to satisfy
(11) we will also have to end the plateau in this re-
gion. But then we will not be able to satisfy (12).
Since y,<y,, this shows that we cannot have a tran-
sition between two nonzero plateaus when 0<y < y,.

D,<P<D, .

D,<P<D,. (12)

O T 7T T T T T

0.8 I -
0.6 —
0.4

0.2 -

-0.2

-0.4 |-

-0.6 '

FIG. 1. This figure illustrates the definiton of the
points y;, ¥,, ¥3, and z used in the text. z is the first
positive zero of Jy(y) or of Jy(y)/y. y; and y3 are such
that if » & (y1,y3) and v € (y4,¥3), J1@)/u <J @) /v. ¥,
is such that if u <y, and v =y,, Jy(x) >J,@).
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Therefore, by the above lemma, we cannot have
an intermediate plateau with end points, D, #0 and
D, #x.

The only other possibility to consider, is the ex-
istence of a plateau with end points D, #0 and D,
=x, leading to a two-plateau solution with B, emp-
ty. We shall now show that such a profile cannot
satisfy the variational equations. We can write
the expressions for A, L, and G generated by this
profile as

G=2d a2 BBYD) og 2 L0VG)

11 Rlﬁ; 2 xﬁ:

Now, let us fix R,, x, and d,, and calculate 84/
od,. Using the chain rule and the definitions of o
and 8, we find

T =~ , L(R V)
=-aR*-28R, —’—L—Lélﬂ: . (13)
Performing the same operation with d, —d,, we
have a similar expression with R, -~ x. Now, since
D, =x is not a bona fide dropoff point, ¢(x) may
not be zero, and is given by the left-hand side of
(9) evaluated at D,=x and D, =K, #0. But, Eq. (13)
and the analogous one obtained by letting Rl - x to-
gether imply that the left-hand side of (9) is zero.
Therefore ¢(x)=0. Since ¢(b)=0, ¢(x)<0.
[Since we are at the edge of the domain over which
our space is defined, we cannot argue that ¢3(x)
=0.] That is, the left-hand side of (7) evaluated at
x is nonpositive. These conditions on ¢(x) togeth-
er with the facts that (i) b=R, is a bona fide drop-
off point, and (ii) B, <R (by the lemma proved
above) guarantee that an argument analogous to
the one used above for D, # x based on conditions
(7) and (8) applies here also. Consequently, this
profile cannot satisfy the variational equations.

We have shown, then, that for —(y,/R)?< —(2/R)
<t <0 there is no function in our space that satis-
fies the variational equations other than the one-
plateau profile, and so this profile generates a
unique local minimum.

Finally, it is interesting to see how we can check
the consistency of our solution with the variational
equations. Using the chain rule of differentiation,

and the definition of the multipliers in terms of
derivatives of the lower bound, we find for our
solution

24y L&D
4 RV=t

1}
sz
&

|
s,
8I&

- -a it - LR (14)
1

which is the same as (9) with ¢(0)=0. Using (7)
and (14) we can solve for « and 8 and with this
value of 8 consistency requires that inequality (8)
be obeyed. This inequality will be satisfied for
the region of ¢ we are interested in if

__,__2Jy(jv) -Jo(y)ay——l—J4(y) , 22y>0

and

2311
Io(y)——"——ZIy(y) < iy) , forall y>0.

We have explicitly checked these conditions and
find that they are satisfied.

Having proved Theorem 0, we now proceed to
establish our bound by proving Theorem 1.

Proof of Theorvem 1. Let a(b) be a monotonically
decreasing function in [0, ) such that 0 < a(d) <1
and

L= f 2ba(b)db ,
0

G= f 2ba(b) [,(bVE,)db .
v]
We first prove three inequalities which will be
used later. If w>0, the monotonicity of a(b), pos-

itivity, and the properties of I, imply

G> f " 2ba(8)1,(0VT)db
0
> alw) f " 98I,(6VE,)db
0

> alw) f 2b48t,db = alw)t 0
(\]
so that
8G 1
a(w) < "tT 1';)1‘ . (15)

Consider now

f Zba(b)dbsf 53¢ L 4 8¢ L (16)
w w
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and also

wa 2ba(b)Jo(0V=F )db|< fw 26a(b)|J(bV=1)|db

w

< f 2balb)db

[ee]

G1
st—t—ug 1
1

Let €>0 be given. Choose x large enough so that

8G 1 €
% <3 (18)
and so that
G
L(xVt)> 7 . (19)

Consider the profile @(b) defined over [0, x| and
being equal to a(b) for 0 < b < x. Define

i- f 20a(b)db |
0
pl=f 2ba(b)db

. (20)
G= f 2ba(b)1,(bVE)db |

0, = f " 2ba(b)I, (VT )b .

Consider the difference

G_Q_G"Pz G
L L L-p, L
_=PL+p,G
(L -p,)L
But
pe=1Io(x ‘/t—l)pl ,
so that
G _G _[6=LuVhLp,
I"LS (@L-p)L :

Define now R and R by

QLBVL) G LRVE) G
R, L’ “"RiE, LY

then from the monotonicity of 1,(y)/y it follows
that R <R and, if RV—f <z, also RV=f <z.

The profile a@(b) satisfies the conditions of Theo-
rem 0, and therefore

o - . 2J(RV=t)

fo 20a(b)Jy(o/=T)db > L =L 2=

. 2J,(RV=1)
RV=¢

_ 2J,(RV=1)
=L-p) =R

in the range of / considered. Also from (17) and
(20)

fw 2ba(b) Jo(bV=T)db> - p,

and we find that

° 5 2, (RV=1)
fo 2ba(b)Jo(b¢—_t)db/L—-———R =
_ <2J1(R\/——t)+1>
'\ RV=7 ’

But by (16), (18), and (20), p,<e€, since € can be
chosen as small as one wishes, we end up with the
result claimed in Theorem 1:

° _ 5 2J,(RV=1)

fo 2ba(p)Jo(pV=T)db > L =L

2J,(RV=1)
RV=t °

Since the lower bound is positive for v=f < z/R,
the first zero of the imaginary part of the scatter-
ing amplitude must occur at v—7 > z/R.

A bound similar to the one derived above, which
does not depend on extrapolations outside the phys-
ical region can be stated as follows:

Theovem 2. If at some energy, values of o, and

=A(0)

d
A’(0) =7 A

=4 f b3a(b)db
t=0 o]

are given, and if unitarity is obeyed and a(b) is a
nonincreasing function of b, then for —z?/R®<¢<0,
A(t), the absorptive part of the scattering ampli-
tude, is bounded from below by

J, (RV=1)
RV=T

where ¢ and R are determined by

A()= 2cR?

97 _ _p2
70 =A(0)=cR

and
A’(0)=3cR* .

This theorem can be proved by arguments exact-
ly analogous to those used to prove Theorem 1.
The comparative utility of these two bounds will
be discussed in the next section.
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III. DISCUSSION
e

In the previous section we proved that the imag-
inary part of any nonflip elastic scattering ampli-
tude, which satisfies unitarity, corresponds to a
monotonically decreasing profile in b space, has
a given value A(0) at £=0, and has a given slope
S=A'(t=0)/A(t=0) [or a given value G =A(¢=¢,),
¢,>0], is bounded from below by

A(t) > A(O) M
RV=t
as long as RV=f is smaller than the first zero of
J,. R is given by either R¢*=8S for the S con-
straint or

G= A(O) Z_IL(.R_.Git—l_)
RVt
for the G constraint. .

The interpretation of the equality constraints is
clear. A(0) defines the over-all strength of the
interaction while S or G/A(0) defines the range of
the interaction: The natural unit in b space (or,
equivalently, in ¢ space).

In the ¢ range with which we are concerned, the
minimizing profiles, and hence the functional
forms of the two bounds are the same. However,
the values of the bounds may be different because
R may be different from R;, depending on the
numerical values of S and G used in the two prob-
lems. We have not treated the problem for larger
values of | |, and it is quite possible that in those
regions the bounds will be entirely different in
their functional form.

We can gain some insight into the relationship
between these two bounds by noticing the following:
For small {,, we can approximate G =A(t=t,) by
A(0)+A’(0)t,. Then, using the first-order expan-
sion of

IL(RG‘/?;) ':RG‘/Z (§ + TIERcztl) s

we find R;=Rg, and the two bounds are identical.

Now, since {, is outside the physical region,
A(¢,) may be difficult to measure directly. Ob-
viously, if we know the value of A(¢,) (perhaps
from theoretical considerations) we can use the
G constraint to derive a bound. However, even in
the absence of such information, we can evaluate
A(¢,) by extrapolating from the physical region us-
ing a Taylor’s expression of A(¢) about £=0. Of
course, if we keep only the first-order term in
the expansion (and the linear approximation of I,),
the two bounds become identical as described
above,

Since the lower bound which we have obtained is
positive for 0 < RV—f <z, where z is the first posi-
tive zero of J, it follows that A(¢) cannot vanish in

this range of {. At intermediate to high energies
typical values of the slope of Pomeranchukon-ex-
change amplitudes correspond to radii R of approx-
imately 1 F, and therefore A(¢) cannot vanish for

| £| <0.6 BeV®. We shall show below that the mono-
tonicity requirement is a strong constraint in our
problem, and therefore the phenomenological lack
of zeros in diffractive amplitudes in this range

may be attributed to the monotonic behavior of
such amplitudes in b or ! space. At higher values
of | |, zeros may occur,® and present data* indi-
cate that a zero may exist near | ¢| =0.8-1.2 BeV?
in the diffractive amplitudes of the process pp —-pp.
(We shall comment below on bounds which can im-
prove our results, and may give a lower bound on
the position of the zero quite close to the “ob-
served value,”)

Of course, since our bounds are derived at a
fixed value of s, they can say nothing about the
allowed positions of the zeros as a function of en-
ergy without additional information. However, we
would like to remind the reader of the following
situation: If the interaction radius grows as a
function of energy, then the first zero of A(¢) can
move towards /=0 at higher energies. It has been
shown that S cannot grow faster than (Ins)?,® and
therefore Rg cannot grow faster than Ins, and the
first zero of A(¢) cannot approach ¢=0 faster than
(Ins)~2. There is phenomenological evidence!® that
S grows definitely slower than Ins, in which case
the motion of any zero of A(f) towards =0 is slow-
er than (Ins)™.

We turn now to a more specific discussion of the
role of the monotonicity constraint in our results.
That this is indeed a strong restriction can be
seen by comparing our result with similar bounds
derived without the assumption of monotonicity.

Singh and Vengurlekar® derive a lower bound on
A(t) assuming all the conditions of Theorem 1 ex-
cept monotonicity. Our bound increases by rough-
ly a factor of two the region in ¢ derived by Singh
and Vengurlekar over which A(f) must be positive
definite. In fact, expanding our result in Theorem
2 for small | £|, and keeping only the first two
terms reproduces the result of Ref. 9. Hahn and
Hodgkinson!! add a value for the elastic cross sec-
tion to the assumptions of Singh and Vengurlekar.
Their lower bound passes through zero at {~-0.4
BeV®. Hence, replacing the elastic cross section
constraint by the monotonicity constraint again
significantly improves the lower bound on the posi-
tion of the first zero. Because of the behavior of
Jy, it is clear that the monotonicity requirement
should be in general more important in lower
bounds on A(t) than in upper bounds, and this
seems to be the case.'?

While our results go a long way towards under-
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standing the absence of zeros at small || in Pom-
eranchukon dominated reactions, a further im-
provement in the lower bound of the position of the
first zero would be quite welcome. Looking at the
profile which generates our lower bound we see
that the physically most unrealistic feature is the
existence of a sharp discontinuity. One might at-
tempt to remedy this problem by explicitly requir-
ing the profile function to be smooth. Such an at-
tempt, however, would fail since there exist
smooth functions which are arbitrarily close to
discontinuous functions. A Fermi function with a
very narrow transition region, for example, is a
smooth function which can be made arbitrarily
close to our one-plateau discontinuous profile, In
other words, if we try to modify our problem by
adding a smoothness assumption on a(b), we will
find that the lower bound on A(¢) will not be ob-
tained as a minimum in the space. It is possible,

however, to implicitly enforce a smoothness as-
sumption, and thus circumvent this problem. For
example, adding a fixed value of the elastic cross
section to the constraints of Theorems 1 or 2 will,
for realistic ratios of 0,/0, (0,/0,< %) significant-
ly alter the profile which gives the lower bound.
We believe that the space of functions defined in
this way will not have the pathology discussed
above. Furthermore, the minimizing profile may
well be smooth in the relevant { range, and in any
case will substantially improve some of the re-
sults presented here.
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