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Properties of Polarization Density Matrix in Regge-Pole Models
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We study two-body (or quasi-two-body) parity-conserving reactions with unpolarized beam
and target. From the general considerations of angular momentum and parity conservation we
derive the structure of the density matrices of the final particles. This structure becomes
conspicuous when one uses transversity quantization with a special reordering for the lines
and columns. We study the predictions of a single Regge trajectory exchange model. We de-
rive the consequences of reality and factorization of residue functions, and of parity conser-
vation' at each vertex. The results are summarized in two tables. For the cases of low-spin
particles we give these results in a geometrical form. As an example we plot some experi-
mental data on Q-meson polarization.

I. INTRODUCTION

There is no need to emphasize the importance of
the experimental determination of spins and pari-
ties of new particles or resonant states in high-
energy physics. From the theoretical point of
view, the principles involved are the well-known
ones, namely, those that originate from the re-
quirement of relativistic invariance. In practice,
however, this is not an easy task. One has to
make various selections in the data, and also often
one has to make assumptions regarding the pro-
duction mechanism, and so on. Probably the most
important problem is the right choice of variables
so that one can extract the maximum amount of
information with a given set of data. Towards this
end, three of the present authors have been en-
gaged in an extensive study" of the "polarization
density matrix and how to present its measure-
ment. " The emphasis is on the intrinsic geomet-
rical properties of the density matrix arising
from relativistic invariance and the allowed do-
main for the values of the elements of the density
matrix. The experimentally measured values
must fall in such a domain to be consistent with
the conservation of angular momentum and parity
if the particle has a definite spin and parity.

The main purpose of the present paper is to
study the implications of the general considera-
tions of Refs. 1 and 2 in a specific model. The
model we choose is one in which a single Regge
pole with factorizable residues dominates the pro-
duction mechanism. The results can be general-
ized to slightly more complicated models which
we shall discuss in a later section. The plan of
the paper is as follows: In Sec. II, we shall brief-
ly review some general results of Refs. 1 and 2
in the case of a two-particle (or a quasi-two-par-
ticle) reaction. Of special importance are the

II. MEASUREMENT AND DESCRIPTION

OF POLARIZATION

Consider a reaction between four hadrons

1+2 —3+ 4 (s channel),

4*+2-3+1* (t channel),

with p, and j, representing the four-momenta and
spine of the particles. Particles 3 and/or 4 can
be unstable. In the present paper we are inter-
ested in the information concerning the polariza-
tion state of 3 and/or 4 obtained through the study
of angular distributions in parity-conserving de-
cays. It is well known that the polarization state
of a particle with positive mass, spin j, and en-
ergy-momentum p, is completely specified by a
density operator p. By an appropriate choice of
an orthonormal basis in a (2j+ 1)-dimensional
Hilbert space X»„,

J'
lj m) =j (j + 1) lj m),

z, Ijm) = mljm),

(jm'l jm) = ~"'.,

the density operator can be represented by a

(2.1)

symmetry properties and the rank conditions on
the density matrix in helicity and transversity
frames. In Sec. III, we specialize to Regge-pole
models and discuss in detail two special cases in
which the produced particle is (i) a boson with ar-
bitrary spin and parity, the beam particle being a
pseudoscalar meson, and (ii) a fermion isobar,
the target being a spin- —,

' particle. In Sec. IV, we
discuss a few specific examples of (i) and (ii). We
shall also discuss in this section the recent ex-
perimental results' on Q production. The final
section is devoted to a summary of the main re-
sults.
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Hermitian, nonnegative, and trace- I matrix

0,

whose matrix elements are

(2.2)

T& 's and the multipole-expansion parameters
t(L)js by

q(g& 2L + 1 (g&
0 2 ~ 0

p '„=(jm'(p(jm) . (2.3}

Conditions (2.2} imply that the eigenvalues of p
are nonnegative and the diagonal elements satisfy

O~cp ~( I (2.4)

The joint polarization of particles 3 and 4, with
known energy momenta, is described by an n &&n

Hermitian, nonnegative, trace-1 matrix p(3, 4)
with n = (2j,+ 1)(2j,+ 1).

A. Polarization Domain

p» p2&&) y

then

(2.5)

+Pl pP2+ f

where

0 &o., P, n+P=l .

B. Multipole Expansion

2. One-Particle Polarization

The density matrix p can be expanded in terms
of a set of Hermitian matrices qi~ & and a set of
real parameters y „as follows:

2j
p=po+ Z pL=l

(2.6)

The set of all nx n Hermitian matrices form a
(X+ 1)-dimensional real Euclidean space which we
shall call g~„. The set of all trace-l, Hermitian
matrices form a hyperplane g„ in this vector
space, where N=n'-I. The set of the density
matrices which satisfy (2.2) is a subdomain of h».
This subdomain is called the polarization domain
Sg y

+J C ~N+ 4+1

&& is a convex domain, i.e., if

21.+I '"
q'~& =(-1)" '(T -+ T 't) M &02 N N

(2.8)

2L, +I lj'2 Iq" =(-1)" (r"—'- r'"') ~ 0N N

(L) 2L + I (L)
0

„2I.+ I '~'
= (-1) . Retg& M &0N

2I.+I l~2
& ~j =(-1) . Imt~ &, M&0 .

(2.9)

We recall that

(T(s,&)m (2
~ 1)z/3

qual
(2.1o)

(2.12)

Z. Avo-Particle Polarization

where (&
~~) denotes Wigner's 3j symbol. The

TP&'s provide a real non-Hermitian orthonormal
basis for the expansion of p. The expansion coef-
ficients t~ 's in this basis are in general com-
plex, but the Hermiticity of p requires

,(x&~ ( 1)~,(i& (2.11)

The parameters r &~ are more convenient. They
are real (proportional to the real and imaginary
part of the tsar~&) and they are independent of each
other. Furthermore their normalization is such
that the degree of polarization of the state is

~(.&=(z i (" &')".

The parameters r~L) are very helpful in plotting
the experimental results and to see whether the
results are consistent with the requirements of
conservation of angular momentum. For details
we refer the reader to Refs. 1 and 2.

where

I I' 2J+I- Ll: (2 j+ 1) x (2j+ 1) identity matrix]

For joint polarization of a two-particle state, the
density operator can be expanded in double multi-
poles:

represents the unpolarized state, and
2$S 2~4

P(3 4)= Z Z P""
L=O L =0

(2.13)

P(~& 2j g q(1& (I, &P 2 ~ + I N (2.V)

The q~~&'s and ~~~&'s are related to the more cus-
tomary expansion of p in terms of the multipoles

mth

(~ ~,
&

(2f.+ l)(2f '+1) ~ ~ ](s,i &~

(2j+ 1)(2j'+ 1)

»(j,)'"~T(j,)" ' (2.14)
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The density matrix of each particle when the po-
larization of the other is not observed is

The polarization correlation between the two par-
ticles 3 and 4 is

p, =tr, p(3, 4),
p, =tr, p(3, 4) . (2.15)

Z(3, 4) = p(3, 4) —p, (8(p, . (2.16)

C. Decay Angular Distribution

1. Yko-Body Decay

Let 8,(8, cp) denote the normalized angular distribution of one of the decay. products, in a two-body parity-
conserving decay mode a, of a particle of spin j. If the decaying particle is described by the density ma-
trix p, then4

2j 2L+ 1 1/2 L

8.(8, 9)=—+ Z . ).(L, &) Z t'"*Y'"(8,~),4m, 2j M =-L
L

8,(e, rp)= —+ Q (Ie„j) re r (e, (e)+ p (-)"e2(rrm Rel'„m(e, p(rr „ImY„(e, y)])

(2.17)

(2.18)

where Y(~)(8, (p) are the usual spherical harmonics, and t(p) and r(~~) are the expansion parameters al-
ready defined for the density matrix. The )(.,(L, j)'s are scalar coefficients (decay coefficients) which de-
pend on L,j and on the particular decay mode a. Their value may depend on the dynamics of the decay
mode a, e.g. , 1+-1 +0, j- 2+0; however, for the most usual two-body hadronic decays,

0-+ o-, 1 -1 +0, ~3"- —,'++0 (q=+), (2.19)

they are independent of the dynamics. Indeed the corresponding angular distribution can be written

8.(8, q) =—[I+~.'(2, j)W("(8, q )]
1 (2.20)

with

4& x/2 M=+2
~( (8 +)

v g t(2)q Y(2)(8
M =-2

= ~ y(02)(3 cos'8- 1)+ 2 v 3 sin'8 (y(~')cos2(((+ r('2) sin2(() + 2 v 3 sin28 (r(icos(((+r~',~sin(((), (2.21)

)(.,'(2, j) = (20m)'~')(, (2, j) .
The )(.,(2, j) s are numerical coefficients indepen-
dent of dynamics. Their value is [cf. Ref. 1 and
Ref. 2b with tables giving v'4(( C(L) =)(,'(L,j )/~j ]:

-2 for 1 -0 +0

A, ,'(2, j)= 1 for 1 -1 +0
- v 3 for —,

'"--,"+0 .
(2.22)

Parity conservation in a two-body decay implies
that

A.,(L, j) = 0 for L odd . (2.23)

Therefore, by observing a parity-conserving two-
body decay, one obtains information concerning
only z„'s with L even; i.e., one measures p
cf. Eqs. (2.6) and (2.7), where L is even. We shall
refer to this as the measurement of even polariza-
tion.

8(8, (((, (t() =—[1—2A(')(8, y)] .1 (2.24)

This is independent of (I) and of the dynamics. It
yields the value of the even polarization (i.e., the
coefficients r")'s).

(ii) 1'-0 +0 +0 . If only the dependence in

Th.see -Body Decay

For three-body decays, the probability distribu-
tion is a function of five variables. One can choose
for them two of the s, t, u invariants and three
angles, 8, (((, g, where 8, (((( fix the orientation of
the normal to the decay plane (in the rest system
of the decaying particle) and g fixes the rotation of
the decay around the normal, e.g. , g is the azi-
muth of a chosen one of the final particles. In gen-
eral both even and odd polarization can be mea-
sured; let us be more specific for two usual de-
cays:

(i) 1 -0 + 0 + 0 . If the dependence of 8 on s,
t, u is not observed, then we find
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L9, q is observed, one obtains the even polarization
by

n' =n="n' n'= n') n'=- n'
(2.2S)

8(8, y) =—[I+A"(8, y)] (2.25)

with jt ')(8, y) given in (2.20).
In such a decay it is also possible to measure

the odd polarization (i.e., the rj~')'s) up to a sign,
from the complete observation of 8(8, q1, g, s, f).'

3. Correlated Decay s

To observe joint polarization of 3 and 4 one has
to measure the joint angular distribution. For in-
stance, for tw'o two-body decays, this is
8(8„(j1„8„q14);it can be expanded in a manner
similar to (2.18) with the basis Y jj )(8„@3)
X Y„~ ) (8„q4). If K(3, 4) = 0, i.e., no polarization
correlation, then 8 factorizes:

and consequently

(qn3)'= (qjn') D(j)(ft) '. .
D j (R) represents the (2 j+ 1)-dimensional, uni-
tary, irreducible representation of the rotation
group. In the present case

(2.29)

D( j)( f)tm -i3(m-m')/3 d( j)(1 )m

From the symmetry properties'

d(j)(8) d(j)(8)

(2.30)

That is, the helicity frame is transformed into the
transversity frame by a rotation A of --,'m' around
the first axis: In terms of Euler angles

31 9 31 841 'A) 83(83 931)' 4(849 q 4) (2.26) ( 1)m-m' d( j) (8)m'

The explicit form of the decay distribution func-
tion (and also the explicit form of the p matrix)
depends on the choice of the reference frame. Vile

deal with this question next.

D. Choice of Reference Frames

To choose an orthonormal basis in Xey+y one
needs to specify a reference frame and an axis of
quantization. Following Ref. 2, we associate with
each particle a tetrad, i.e, , a set of four vectors
n, n =0, 1, 2, 3, which are orthonormal:

(n) „(8) 0(8 (2.27)

(We use the metric g~=-g" =1.) By convention,
n ') is the quantization axis. In a four-particle
reaction of the type under consideration, the nor-
mal to the reaction plane n (which is defined up to
a sign) can be chosen to be an axis common to all
particle tetrads. In a given channel, traNsversity
quantization is a choice of tetrad n,. for each
particle i, with n&' = n and a conventional choice
for "n(') (then n,.') is fixed) which is universal but
for a sign (see below). In helicity quantization

n,.' =n, the quantization axis ~n, ' is chosen in the
following way: In the rest frame of the particle i
the space part of n, ' is collinear to the momen-
tum of the associated particle (e g , 1 with. .3, 2
w th 4 in the t channel, I with 2, 3 with 4 in the s
channel). This defines "n up to a sign. There
are different sign conventions in the literature, so
every experimental or theoretical paper should be
explicit about these conventions. Our conclusions
are of course independent of conventions, but our
computation will be done with the (channel-inde-
pendent) convention for every particle:

( 1)m-m' d( j) (8)-m

d j)(1 )m ( 1)j md(j) (1 )IS

(2.31)

it is easy to obtain for the rotation matrix (2.30)

D( j) (ft)m D( j)(ft)m'

D(j)(ft )
-m

( )m -m 'D( j) (fl)m

—&
jw j D( j)(ft)m (2.32)

In either transversity or helicity frame, to go
from one channel to the other, one has to use
crossing matrices which are functions of the vari-
ables s, t, and u. Henceforth we shall confine our
attention to the t channel. The helicity frame then
is the Gottfried-Jackson frame. The density ma-
trices p and "p are related by

7'p D( j)(ft-1) HpD( j)(ft) (2.33)

E. Restrictions on the Density Matrix Due to the

Mode of Observation or to the Nature of the

Production Reaction

Even Polarization

As we have seen in Sec. II C, in many cases only
the even part (even I, multipoles) -of the one-par-
ticle density matrix can be measured. What is
observed in these cases is the projection ~

p of p
on a subspace which is a symmetry plane of &&.
One can prove' that

(H) g~ (j)
L even

is also a Hermitian, positive, and trace-1 matrix.
One a,iso shows' that



PROPERTIE S OF POLARIZATION DENSITY MATRIX. . . 819

( (L))T (L)m

( )Lr p(L)r -1 (2.34)

r ((s)p)r (2.36)

I', is the representation of a rotation of -n around
the n~') axis,

r, =D(»(0, )), 0) . (2.37)

As we shall see, some models are specially inter-
esting by predicting only an even polarization, that
isy

where r, is the (2 j+ 1)x(2j+1) matrix defined,
independently of the choice of the quantization axis,
by

(r,)"„=(-)'- ()™.. (2.35)

From (2.34) one easily observes that s)
p satisfies

((s) )T (s) q

A 0
p= (2.41)

where A and B are Hermitian matrices of dimen-
sions (j+1)x(j+1)and jxj, respectively, with

odd and "black" those with (m' —m) even. The
main diagonal is always black, the second diagonal
is black for integer spins and white for half-integer
ones. Equation (2.39) means that all the white ele-
ments of a B-symmetric density matrix are zero
in transver sity quantization.

It is clear that by reordering the indices, the
nonvanishing (black) elements can be brought to-
gether and p can be written in a block form. For
this purpose it is convenient to discuss two cases
separately:

a. 8'hen j is integral, . Choose the separation
order of indices which separates the black and the
white squares: j,j-2, . . . , 2 —j, —j,' j-1,j -3, . . . ,
3 —j, 1-j. See for example Fig. 1(a). Then

(Z)
p trA+ trB = 1 . (2.42)

2. B Symmetry

Although in general the polarization domain S&
of the density matrix is completely determined by
conditions (2.2), in practice, there are further re-
strictions depending on the nature of the reaction
which is responsible for the production of the par-
ticle of interest. In this paper, we shall be mainly
concerned with a quasi-two-particle reaction which
is parity conserving and in which the beam and the
target particles are unpolarized. In such a reac-
tion there are only three linearly independent en-
ergy momenta. The space-time hyperplane which
contains the three observed energy momenta is a
symmetry plane for the reaction in which the nor-
mal to this hyperplane is the common quantization
axis Oz for the tetrads of the four particles. In
each tetrad, the B symmetry is represented by the
space reflection through the XY plane. Under such
a reflection,

~jm)'- (jm)' =q(jm')'D'"(0, 0, ~)'" „

Let 6& be a Axe matrix which has 1 on the second
diagonal and zero elsewhere,

(&a) 8=~ (), &a'=1. (2.43)

If p contains only even polarization, A and B are
symmetric through the second diagonal:

A*=A'=~ „A~ „, B*=B'=~m, (2.44)

D(J)(R) iw' y (2.45)

where X and F are square matrices of the same
dimensions as A and B, respectively, and $V is a
rectangular matrix of dimension ( j+ 1)x j. From
(2.32), one can write symmetry properties for X,
7, and W in the following way:

The density matrix "p is given by (2.33). To study
the structure of p we must first study that of the
rotation matrix D(~)(R) in the separation order of
indices. Then it can be written in the block form:

(2.38)=))e" ~jm&',

where g is the intrinsic parity of the particle.
Consequently,

x=x'=x* =&„,xn„,=(-)'~„,x=(-)'xn„„
Y= Y' = Y =n. , Yn.g=(-)~&~Y=(-) Yn,), (2.46)

(T )m' (~(m'- )(T m)m'

which implies that

( p)"' = 0 if m ' —m is odd.

(2.39)

(2.4o)

w = w* = ~„,w~, = -(-)'n,„,w = -(-)'w~, .

From the unitarity of D~(R) and the property

[D"(R))'= (-)'~ (2.47)

On any one-particle density matrix, with the natu-
ral order for the indices (i.e. , m ', m
=j,j—1, . . . , —j) there is a "checkerboard" pattern
when we call "white" the elements with (m ' —m)

where

6 =6)+~6 4),
we have
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n —3 2 1 0 -1 -2 -3

.K

m= '/
/2 ~2 /2 / 2 ~2 /2 ~2

3 1 -1 -3 2 0 -2

n= /2 /2 '/2 /2 '/2 /2 '/2 /2

m= '/,

-2/

0

(a)

FIG. 1. Structure of Bohr-symmetric density matrices in transversity quantization for the natural order and for the
separation order of indices. Part (a) illustrates the case of integer spin (j=3) and part (b) the case of half-integer spin
(j= 7). The arrows show the transformation of the main and second diagonal in each case.2

(2.48)

C-C -&)+a~&y+x~

= 6;Fh~,
D = -4;+ ~DA

trC+trE= 1.

(2.50)

&he relation between the submatrices C, D, J and
A and B is given by

with

C Dp=
~\ J

(2.49)

In the separation order of indices, the density ma-
trix p can be written

C =XAX+ WBW',

F=R' AW+ YBY,

D = i(XAW —W-BY),

or, conversely,

(2.51)
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A. =XCX+WFW +i(XDW —WD X),
B= YFY+ W CW+i (YD W —W D Y) .

(2.52)

E =E = E =h)Eh~,

D=D =-b) ~DE,

(2.53)

The number of parameters necessary to specify
~p or ~p is given by k, where

k = 2 j(j+ 1) if p is B symmetric,

k= j(j+2) if p is B symmetric and even.
(2.54)

b. When j is half-integral. Choose another sep-
aration order of indices: j,j -2, . . . , -j + 1; -j,
-j+2, . . . ,j -1. See for example Fig. 1(b). Then

a B-symmetric density matrix ~p can be written
in the form

Furthermore if p contains only even polarization,
we get

C=C*=C"=~),,C&,„,

or, conversely,

A = V(C+ e"~D)V,

B= V(C —e'"D)V.
(2.63)

If p contains only even polarization by putting
B=Ar we get the same form (2.60) for the density
matrix in the helicity frame but with

C=C*= C = pV(A+Ar)V,

D =D«=-D'= -'e'"'V(A A")V.
(2.64)

Bank Condition

The number of free parameters to specify the den-

sity matrix is k, where

k=2j(j+1)- —, if p is B symmetric,

k=(j+-,')(j ——,') if p is B symmetric and even.

These results are summarized in Table I.

A 0P=0 B' (2.55)
The final-state density matrix p& and the cross

section 0 are related to the initial-state density
matrix p, by

where A and B are (j+ —,') x(j+ —,') Hermitian matri-
ces with Qpy = Tp)T (2.66)

trA+trB= 1. (2.56)

p= r
A 0 (2.57)

The unitary transformation D~~~(R) in this case can
be written in the form

())- 1 V e' ~V
D (R) (2.56)

where V is a real, symmetrical, orthogonal trans-
formation:

V= V+= V, V =1. (2.59)

When p contains only even polarization, we get fur-
thermore B=A" so that

w+N-w+N

ra,nk p(N*) ~2,
(2.67)

no matter what N* spin is. Thus if the spin j of the
isobar N* is &—,

' (2.67) imposes constraints on the
measured elements of the density matrix. Also we
note that the rank of the sum of matrices cannot be
larger than the sum of their ranks. Hence in
(2.64), for example

where T is the transition matrix. Since the rank
of the product of matrices is smaller than or equal
to the smallest rank of the matrices of the product,
the rank of p& cannot exceed the rank of p, . For
example in the reaction

The density matrix "p in the helicity frame for a
B-symmetric reaction has the form

rank C ~2rank A,

but from (2.63)

(2.66)

p=
c

-D C
(2.60) rank (C+e'"~D) =rank A. (2.69)

with

C=C

D =-D

trC = —'.
(2.61)

The submatrices C and D are related to the subma-
trices A and B by

C = -', V(A+ B)V,

=D- —e "~~V( AB)V,

rank ~ ~p ~2rank p. (2.70)

As we see, in some reactions angular momentum
conservation may impose restriction on the rank

of the density matrix (for more examples see Refs.
1 and 2).

Independently of any model, if only the even part
ie~p of the density matrix id measuredone , gets,
for the rank of this even part, '

(2.62) In models which predict only an even polarization
~'p= p implies of course rank p=rank p.
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TABLE I. Structure of B-symmetric even-polarization density matrices in the separation order of indices.

B symmetry

j = integer
Separation order of indices:

j, j —2, ..., 2-j,-j; j -1,j —3, . ..,3-j,l-j
B symmetry

and
even polarization B symmetry

j =half integer
Separation order of indices:

j —2. .. , , -j+1; -j, -j+2, . .., j —1
B symmetry

and
even polarization

In any transversity frame

In any helicity frame

T
0 B,

A =A~

B =B~

trA+trB =1

C D
P=D&E

C = C~ =6~+(Cb,~+(

E =ET =A~ EEg

D =-h. gD5-2+

trC+trE =1

A 0

A *=AT =a„,Aa,.„
B ~ =BT =4.Bb, .J

trA+trB =1

H C D'=DT E
C = C*=CT =D~+(Cb,)+g

E =E *=ET
=EJECT&

D =D + = -Eg+ gDEg

trC+trE =1

A 0
T

0 B
A. =A~

B=B~

trA +trB = 1

C Dp= -D C

C=CC

D =-Dl

trC=2

A 0"
T'=

0

A =At

trA =-,'

C Dp= -D C

C=C*=CT

D =D + =-DT

trC =-'
2

Number k of
independent parameters

k =2j(j +1) k = j(j+2) k=2j (j +1)--.' k=(j +2)(j —2)

Unitary trans formation
from transversity to
helicity, R =(27t. 2 + 2

(~) )
X zW

zW Y

with:

X=X =X*=2 ~+ g Xg. )
= (-) h~+ gX = (-) Xg) )

Y=YT =Y*=S,Y~, =(-)'a,Y=(-)'Ya,
W = W ~ =a,.+,Wa, =-(—)~W,+,W = -(—)'Wa,

X2+WlW =1; X —WW =(-)~D

Y2+ W W=1s Y —WW = ()&~
XW=WY=0

v) V
D (R)= ~

V2

Relations between
submatrices in helicity
and transversity
frames

A =XCX+WEW +i(XDW —WotX)
B=YEY+W CW+i(YD~W- W DY)
C =XAX+WB WT
E= WTA W+ l& F
D=-i (XA, W- WBY)

A =V(C+e~~~D)V
B =V(C -e"~D)V

C=2V Q+B)V
D =-2' e'~'Vg -B)V

Notations 4~ is ak&&k matrix whose elements

n ~ -n

III. POLARIZATION AND REGGE-POLE MODELS

The results discussed in the previous section
give the general structure that the density matrices
must satisfy from conservation of angular momen-
tum and parity. Any specific model which con-
serves angular momentum and parity will give den-
sity matrices with this structure, but, in addition,
if the model has any predictive power on the polar-
izations, it will give further conditions on the den-
sity matrices.

Regge-pole models are such specific models and
they are extensively used in the analysis of high-

energy scattering. In Sec. IIIA we shall be mainly
concerned with two-body reactions in which a
single bosonic Regge trajectory of definite signa-
ture is exchanged. At the end of the section we
discuss the exchange of several trajectories with
the same signature. In Sec. III B we study many-
body reactions within the model of a multi-Regge
exchange.

A. Two-Body Reactions

Let Gz z .q z {s,t) and Il z &, . &, „(s,t) represent
3 4' 1 2 3 1' 4 2

the corresponding s- and t-channel helicity ampli-
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tudes for the four-particle reactions mentioned in
the previous sections. From the well-known True-
man-Wick crossing relation, we have with

(3.8)

xs) 4, x~'k~, ~ ),Ix~(Xy)d'k~ k~(Xg)

j3 J4
~ ~ (X.)d~ ~,(X,)F~;~;, ~;~;&

(3 1)

where X,. is the crossing angle of the ith particle.
If the high-s, fixed-t behavior is governed by a
single Regge trajectory, we can write

Fy y .y y (s& t)=Py y (t)Py y (t)

1 + r exp[-isa (t)]
sin&a (t)

(3 2)

where P'" and P"' are the factorized Regge resi-
dues, n(t) is the Regge trajectory function, and
r is the signature. The residue functions are real
and due to parity conservation at each vertex, they
obey the symmetry relations

P 'g q =o~rlsrh~(-1) s"'(-1) s 'P)', x, (3.3)

F . (, t)F„*„,.„(,t)
Fy y .y y (8& t)Fy y .y y (8& t)

1 2 3 4

(3 6)

with a similar expression for the density matrix
of particle 4. If we use (3.2), we see that the den-
sity matrix of particle 3 does not depend on s and
has the form

(3.6)

where

so that

1/2

mls
(3.7)

m)~

Likewise, the density matrix for particle 4 does
not depend on s and can be written as

P 'x x =vsO, ~R,(-1)' " (-1)"~ 'P x x, (3.4)

where as is the naturality of the trajectory (a~ =7P
where Pis the parity of the trajectory: o~=+1 or
-1 if the trajectory has natural or unnatural pari-
ty), and q, is the intrinsic parity of the ith particle.

Let us consider the polarization state of particle
3 (or 4) when the polarization of 4 (or 3) is not ob-
served. The density matrix in the t-channel helic-
ity frame (or more popularly known as Gottfried-
Jackson frame) is given by

=1~ y m X.2 y m X.2
~

m X.2

It is clear that the y
' 's obey the symmetry prop-

erties of the corresponding P
' 's expressed in

Eqs. (3.3) and (3.4).
Before entering into any detail concerning the

spin of the particles involved into the reaction, one
may derive some general consequences from the
expressions (3.6) and (3.8) of the density matrices
in terms of the factoxized residue functions r„~.

(i) The reality of the residue functions implies
the reality of the B-symmetric density matrix in
helicity quantization which, as we have seen in the
previous section, means that we have only even
polarization.

(ii} Because of assumed faetorizability of the
residues at the two vertices, the ranks of the den-
sity matrices of particles 3 and 4 are determined
only by the spins of their associated particles in
the t channel, i.e., particles 1 and 2, respectively.

Thus the density matrices satisfy

rank (p, ) ~ 2 j, + 1,
rank (p, ) ~ 2j,+ 1. (3.9)

(iii) Furthermore, if we consider the joint polar-
ization between the two particles 3 and 4, then fac-
torization implies that there is no polarization
correlation between the two particles, i.e.,

K(3, 4) = 0~ p(3, 4) = p(3) p(4) . (3.10}

(iv) Finally, consider several reactions which
have one common vertex, i.e., they are dominated
by the same trajectory and particles 1 and 3 (or 2

and 4) are respectively the same for all reactions.
Then the density matrix of the final particle 3 (or
4} is the same for all these reactions, i.e., it is
independent of the nature of the particles at the
other vertex.

It should be noted here that although the exchange
of a single Regge pole dominates a number of pro-
cesses, it is by no means sufficient to account for
all the features of the data. Generally one modi-
fies the simple pole model by including absorptive
corrections on contributions due to Regge cuts.
There is considerable arbitrariness in introducing
such modifications and consequently there is a va-
riety of recipes and models' in the literature.
Very few general model-independent remarks can
be made concerning the density matrices in this
context. In general corrections to pole models
lead to nonreal residue functions and consequently
property (i}disappears. In many models the fac-
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torization of the residue functions is also not pre-
served. But it may be possible to introduce the
necessary modifications without destroying the fac-
torization property, in which case the properties
(ii), (iii), and (iv) discussed above are still valid.

1. Production of a Boson

Let us consider the production of a boson of spin
and parity j"using a pseudoscalar meson as the
beam particle:

0-+j ~2 » jl+ j~4

where the target particle 2 is unpolarized and the
polarization state of 4 is not observed.

The density matrix for the observed boson must
have rank 1 according to (3.9). It is clear from
(3.6) that we can write "p in the form (since X, =0)

These relations expressed in terms of the matrix
elements of Hp read

«pm & ~( )/+ n «pm

~~@( )"-"p ".. (3.17)

The above relations represent the generalization
of those found by Ader et al. ' for the diagonal
elements of Hp.

The density matrix in the transversity frame
takes an even simpler form. As noted in (2.41),
Tp is the direct sum of two matrices A and B.
The rank of the total matrix has to be unity. Hence
the rank of A or B has to be zero, i.e., A or B
has to vanish identically. We show that vanishing
of A or B depends on the signature o~ of the ex-
changed trajectory and the naturality or unnatural-
ity of the produced boson. Equation (2.52) can be
written

«p f~T dr]
d.

cd
dC dd (3.11)

A =&4; CX+8'4; I" W

+ i (X 6)» ~ DW -WD 5) ~ ~ X),
and using (2.46) and (3.16) one gets

A = -(-)~go«A. (3.18)

c=
yJ ~2

(3.12)

In the same way, one can write

a= F~,'Fr++'C~

y2-y

y-j

—yl -f- +i(YDrh)~~ W —W hy+~ DY)

and get

Hpm Hpm' Hpm Hpm' (3.13)

The symmetry property (3.3) in this special case
can be written as

or

r ~=--no (-1)J+ X (3.14)

are two column vectors with (j+1) and j elements,
respectively. The dyadic form (3.11) of «p exhibits
clearly the rank-1 condition which, expressed in
terms of density-matrix elements, reads

B=+(-)'no. B

Therefore parity and rank conditions imply

(3.19)

A 0
(r«q( 1)'=-l-~rp=, rank A=1 (3.20)

o«q(-1)~=+1m rp=, , rank 8=1. (3.21)
po o

Expressed in terms of density-matrix elements
(3.20) and (3.21) read

h~, ,c = -go~c,

AJd ='go'gd. (3.15)
rp"„=0 if (-)"or (-)"=o«q,
Tpm Tpm' T

pm
Tpm~

(3.22)

(3.23)

&g+1C =CD ~+1= -gCr~C,

AyI =5'h~ =+gg@ 5',

+1D = Db g
= g(TED

(3.16)

Note that (3.11) has the structure (2.49) with the
identification

C =cc, D=cd, and I =dd

From (3.14) we get

Equations (3.22) and (3.23) are the translation, in
the transversity frame, of Eqs. (3.17) and (3.13).

The usefulness of (3.20) and (3.21) in practice
should be apparent. We shall discuss a few spe-
cific cases in the next section.

Vfe note that when several trajectories of the
same naturality dominate the production mecha-
nism, Eqs. (3.17), (3.18), (3.19), and (3.22) still
hold while in general the absence of odd polariza-
tion and the rank condition disappear.
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Z. Production of a Fermion Isobar

Consider first the case when the fermion is pro-
duced from a spin- —,

' target

for the values of the indices given by (3.26).
The above relations are those found by Ringland

and Thews' for m =m' and n =n', i.e., for (3.28),

2y+ 2 2g+2
(Hp m )2 + (Hpm )2 Hpm Hpn (3.30)

Tpnt Tpm' Tpm Tpnt'

where

Sly S)W y S gy) 2p ~ ~ ~ y )+ 1

(3.25)

(3.26)

The equivalent condition in helicity quantization
is, from (2.69), that the rank of (C+e"lD) is
unity. This condition is equivalent to the vanish-
ing of the determinants of every 2x2 submatrix
of (C +e"lD). With the identification

Hpm' g m~ H -m~

In this case,
H pm' g y(2) y(2) ) L & (3 24)

with the symmetry properties given by Eq. (3.4).
Equation (3.24) exhibits that the rank of "p must

be 2, independently of the spin and parity of the
produced isobar. From (2.5V) it follows that, in
the transversity frame, the rank of A is unity, i.e.,
the elements of Tp satisfy the conditions

while (3.29) becomes an identity.
Note that the above conditions are also valid

if the spin--,' particle associated with the fermion
isobar is the beam particle instead of the target.

1+2 m™3+5+4, (3.31)

where the production mechanism is dominated by
a double Regge exchange described by Fig. 2(a).

We define

B. Many-Body Reactions

Up to now we have been interested only in two-
body (or quasi-two-body) reactions. We would like
to recall some results about multiparticle reac-
tions when the production mechanism is dominated
by a multi-Regge exchange and show how our anal-
ysis can be extended to such reactions.

Let us first consider the simplest case of a
three-particle reaction:

and (3.2V)

H ni Dn' H -n'

for m, n, tn ', n' given by (3.26), the rank condition
reads

Hpyn Hpn + Hpyw Hpn
' Hpm' Hpn

where p& represents the four-mon1entum of the
ith particle.

There are five independent kinematical vari-
ables. In order to preserve the symmetry of Fig.
2(a), they can be chosen as follows:

+Hpm' H n '

Hpm' 8pl' + Hpm' Hpn Hpnt' Hpn'

(3.28)
where y is the angle between the normals to the
three planes defined by P„PS,P5 and P2, P4,P, .

The amplitude for the crossed channel,

+Hpn' H n~

(3.29)

4*+2 3+5+1*,
can be written assuming factorization as

(3.33)

(3.34)

where r, (r2) is the signature of the Begge trajec-
tory n, (n, );p(' (t') [p(2)(t")] represents the cou-'
pling of the Begge trajectory n, [n, ] to the parti-
cles 1, 3 [2, 4]; and P'(t', t'", ((t) represents the
coupling of particle 5 to the Regge trajectories
Q~ and Q2.

Parity conservation at each vertex gives, for
P(' and P@, symmetry properties analogous to
those given in (3.3) and (3.4), while we get for Pe)

5

( )P3(t ) (3)P3(t ) t

( )p4(t ) =(tt)p4(t )
(3.36)

where (,)p, ((,)p4) is the density matrix of particle

where o'» and 0» are the naturalities of the Qy

and e, trajectories.
As we have already seen, factorization implies

that the polarization of a particle is independent
of the vertices where it does not appear. So one
gets the f511owing relation:
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E El E2 &

g ~f)5 ~

J5 ~

(3.39)

Qne obtains also the rank condition

rank p, (t', t", I)) ) = 1 . (3.40)

This pure state is not easily detected since in
order to measure the polarization of particle 5 (if
it exists) corresponding to a small bin of t', t",
and y, a very good statistics is required.

This analysis can be extended in an obvious way
to the multiparticle production,

1+2-3+5+~ ~ ~ + n+4.
All the results of this section are summarized in

Table II.

2I

(b)
c)

FIG. 2. Trajectory-exchange diagrams for (a) double
Regge exchange, (b) and (c) single Regge exchange. The
model predicts the same polarization for particles 3 in
(a) and (b). It also predicts the same polarization for
particles 4 in (a) and (c).

IV. APPLICATIONS TO j= 1, 2, ~, 2

We shall now discuss in greater detail the results
of the previous sections in a few specific cases of
current experimental interest. Prior to that we
would like to make some general remarks, con-
cerning polarization measurements and polariza-
tion domains, which are independent of production
mechanisms (see Refs. 1 and 2).

3 (4) for the process described by (3.31), &)p, is
the density matrix for particle 3 in the following
process:

1+2'-3+4',
with the single trajectory n, exchanged in the t
channel [see Fig. 2(b)]. In this process we call
P,' the four-momentum of particle i and

In a similar way &,&p, is the density matrix for
particle 4 in the following process:

1'+2-3'+4,
when the single trajectory n, is exchanged in the t
channel [see Fig. 2(c)]. In this process, we call
P,"the four-momentum of particle i and

fII (pII pl/)2

Relations (3.36) have been obtained by Capella
and Ranft. ' Qur analysis of two-body reactions
can be extended immediately to three-body reac-
tions when the production mechanism is dominated
by a double Regge exchange.

Furthermore if one looks at the polarization of
particle 5, it follows from (3.35) that relations
(3.17) and (3.22) hold with the following substitu-
tions:

A. Polarization Measurement

The quantities which are determined directly
from the experimental study of a normalized decay
distribution 8(g, cp) are the coefficients y„) of the
spherical harmonics Y„)(8, (()):

2j L

8(e, cp)= —+ g P y„''*Y' ((), (()).
L= 1 M=-L

(4.1)

(i) If the decay is parity-conserving, y(„) =0 for
odd I.. One must check this first experimentally
and if this is not satisfied, it means either parity
is not conserved or more likely there are interfer-
ence effects between the resonance channel and the
background; clearly for further analysis of polar-
ization measurements, one must account for the
background (see Sec. II B).

(ii) If the reaction is B symmetric, one must
check that the components y„satisfy this symme-
try; i.e. , in any transversity frame

C

y(„~ =0 for M odd,

and in any helicity frame
(L)

( 1)L (L)0

(4.2)

(4.3)

Again, if conditions (4.2) or (4.3) are not satisfied,
one is not studying the decay of a particle with defi-
nite spin and parity; more likely this is due to in-
terferences with the background.
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TABLE II. Predictions on polarization from Regge-pole models.

1 For two-body reactions 1+2 3+4 independently of any model, if beam 1 and target 2 are unpolarized.
8 symmetry for p3, p4Parity conservation in the reaction m T m 0 f m n 1~H m m n H

2 The single trajectory exchange model adds three relevant hypotheses, whose implications are given separately.
(a) Reality of Hp3 and "p4
(b) A ssuming 1, even character of p 3, p 4.2.1 Relative reality of the amplitudes

P3 Ps& P4= P4~P n =( ) P

t (a) Rank restrictions: rank p3 ~ 2 j& + 1, rank p4 ~ 2 j2 + 1
l! (h) No correlation in the joint matrix: p(3, 4) =p&S p4

(c) Vertex dependence of the polarization: for reactions
(a) 1+2 3+4, (b) 1+2' 3+4', and (c) 1'+2 3'+4,
with the same trajectory exchange, we have (,)p&(t )

(Q) p3(t) ~ ( Q) p4 (t) (g)p4(t)-

For j& =0, and assuming 1, signature constraints for p (3):
2.3 P+ 'ty at' t h t

I
p"„= Of (-) (-) g

Hpm & ~ +( )j3+n Hpm

These hypotheses can be combined, e.g.:

!2.1 (b) )2.2 (a) for j2 =-', I

l

Stronger rank restrictions for p4.
Tpm Tpn Tpm Tpn

m n n m

(m, m', n, n'=j, j —2, ..., —j+1)
Hp m Hpn +Hp m Hpn Hpm Hpn +Hpm Hpn

Hpm Hpn + Hpm Hpn Hpm Hpn +Hpm Hpn

The implications of these hypotheses can be used separately in other models.

3 For several-trajectory exchange with the same naturaIity oz the prediction 2.3 still holds.

4 For reaction 1+2 3+5+4 with the multi-Regge exchange of Fig. 1(a), all the predictions in 2 hold for particles
1, 2, 3, 4. For particles 5, we have the rank restriction, rank p5

——1 and the signature constraints, as given in
2.3 with the substitutions o&g&q3 oz Oz g5, j3 j&.s

(iii) We note that

(I ) 2L+ 1 . (g)
2' X,(L,j)t„ (4.4)

and as discussed in Sec. II C 1, )).,(L,j) are "dynam-
ics" independent for the decays listed in (2.19). If
they depend on the dynamics of the decay mode one
only obtains the t„'s of the density matrix from
the y„'s up to an I.-dependent factor. A simple
example of such a case is

j"- 1 +0, where q = -(-I)~ .
Indeed, it is easy to see that there are two orbit-

al angular momenta involved (l=j —1, l =j+1) in
the decay and )(.,(L,j) will depend on the ratio of the
two corresponding amplitudes. Thus one cannot
construct the density matrix for A, (j"= 1') by
studying the angular distribution of w' in A,' —pa+7('
without further dyna, mical assumptions (relative
strength of s and d waves in the decay). We shall
remark later concerning the decay of A. , into three
pseudoscalar mesons.

B. Polarization Domains

The geometrical plots are for polarization what
Dalitz plots are for energy momenta. Each polar-
ization state is represented by a point of the polar-
ization domain. Vfe give below for spin 1 how to ob-
tain this point from the polarization parameters,
either the p „'s or the t(„'s or better the y„'s.
Values of the polarization parameters which yield
points outside the allowed domain are physically
meaningless (in some cases they even re(luire nega-
tive angular distribution). Such plots which use the
intrinsic properties of the density matrix are also
very useful in testing special mechanisms and spe-
cial properties such as whether the s- or t-channel
helicities are conserved.

For example, the even polarization domain of a
B-symmetric spin-1 particle is shown in Fig. 3.
It is an axially symmetric cone whose meridian
section is an equilateral triangle. Each point of
this domain represents a. polarization state. For a
given channel it is possible to define a correspon-
dence independent of the quantization frame and of
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Ti, (2)

P) P~

1/2

p

P)

'I (2)
2

Re P', i P3 v/

FIG. 3. Domain of B-symmetric even polarization for spin-1 particle. In (a) the orthogonal coordinate system with
origin at P2 {P3) corresponds to parametrization of the density-matrix element in the transversity (helieity} frame.
Zhe length of the coordinate axes represents the unity for the corresponding parameters. In these coordinate systems
the equations of the cone are: jrpt &~~rpt&sz; 1~sptt+sp) (~0, sp00(apt&-spt )~2(Re"p)0)2. In (b) the two ortho-
normal coordinate systems with origin at 0 correspond to multipole parameter ~s(t parametrization in transversity
and in helicity frames. In these coordinate systems the equations of the cone are: -1~ y'0~ ~2, {y ) +( & ~)
(~& (Tr(2) +])2.

)
Hg I2)

)
(~ (Hg(2) y]) (Hy(2))2 ( 1 (1 2H~(2)) (] AH@ (2) ~S I/y (2))

the coordinate system of the polarization space;
for instance, if the matrix elements of "p are used
as a set of coordinates, the corresponding axes
are drawn on Fig. 3(a). Note that they do not form
an orthonormal system of coordinates, the drawn
length of each axis represents the value unity.

In Fig. 3(b), the three nonvanishing r„(2) n)ultipole
parameters form an orthonormal system of coor-
dinates in any frame; they are drawn for transver-
sity and helicity quantization. Let us suppose we
have chosen the reference frame in the t channel.
The axes and coordinates for the s channel are de-
duced from those in the t channel by a rotation of
twice the crossing angle (a function of s and f)
around the axis of the cone.

For forward reactions or when the production is
helicity-conserving in a specific channel, the den-
sity matrix in the helicity frame of this channel
must be diagonal, and the representative point
must be in the interval of the p', axis which is in-
side the cone.

The point 0 represents the unpolarized state.

The pure states (i.e., totally polarized ~rank p
= 1) are at a distance unity from O. For even po-
larization they are only P„ the vertex of the cone
and the points of the circle bounding the basis of
the cone.

The point I', represents the state of longitudinal
polarization along the normal n, i.e., the state
~1, 0), and hence p', =1.

The points of the circle represent the transverse
polarization state in transversity quantization.
For such state the polarization vector e is real
(up to a phase) and orthogonal to n, the normal to
the reaction plane: e n=0. So there is a helicity
quantization with n ' = e, where such a state is
longitudinal and the only nonvanishing matrix ele-
ment is p p 1.

The even polarization domain for spin & is three-
dimensional. Its boundary is the two-dimensional
sphere drawn in Fig. 4. The matrices which are
represented by points lying on this sphere have
rank 2. For further details concerning the polar-
ization domain for spin —,

' see Ref. 2.
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T (2)
0

0$~+ r ~t/4

y 1/4

ci
1Q

/f

Re P',
(2)r
0

H &2)

2

T {2)

1(

(a) Re P', (b)

FIG. 4. Domain of B-symmetric even polarization for spin-~ particle. In (a) the orthogonal coordinate system with
origin at P2 (Q&) corresponds to density-matrix-element parametrization in the transversity (helicity) frame. The
length of the coordinate axes represents the unity for the corresponding parameter. In these coordinate systems the
equations of the sphere are:

~

rp~ &~t ~rpt&rp~&, (Resp~ &)2+(Resp~&)2sspttHp3&. In (b) the two orthonormal coordinate
systems with origin at 0 correspond to multipole parameter r&~ parametrization in the transversity and in helicity
frame. Inthi se coordinate systems ths equations of ths sphere ars: {~r't2))'+{ r{2,') +{r~( )'~-,' ("8 )'+("rp)
+(Hy%2))2 ~ x

For spin 2, the polarization domain of B-sym-
metric even polarization states is eight-dimension-
al. It is convenient to use its projection on the
two-dimensional plane of density matrices which .

are diagonal in any transversity frame. This pro-
jection is an isosceles triangle P,P,P, represented
in Fig. 5. The angle at the P, vertex is

)(=cos '( —',) =—48.2'.
The unpolarized state is projected in the point

0 (ps, =p', =pcs=5}. The setof pure states (i.e.,
rank 1}contains two disconnected parts, a one-
dimensional circle whose projection is the point P„
and a two-dimensional surface whose projection is
the segment PyP3.

In any helicity quantization the diagonal matrices
form another triangle, whose projection in the
plane of Fig. 2 is Cp Cg Cg The point C, is the
projection of the pure state with p p=1; the points
Cj and C2 are the proj ections of the rank-2 state s
WMl p y p and p, = 2, respectively.

For a complete study of the spin-2 even polar-
ization domain we refer the reader to Ref. 2 a or

2b, and for the study of the spin--', even polariza-
tion domain to Ref. 2 a.

C. Production of Bosons with j"=1'When the
Natural'- Parity Trajectory Dominates

Recently there has been considerable interest'
in studying the polarization properties of particles
with j = 1' (A„Q mesons) in high-energy reactions.
Since the Pomeranchuk trajectory can dominate,
such a study provides information concerning the
nature of this singularity which is one of the least
understood problems in hadronic interactions. As
stated in Sec. IIC 1, if one studies only the angular
distribution 8((), {p) of the normal to the decay plane
of 1'-0-+0 +0, one measures only even multi-
poles and hence only even polarization. Also such
an angular distribution is independent of the de-
cay dynamics.

If we assume that the production of the 1' par-
ticle is dominated by a Pomeranchuk singularity
which can be represented by a single Regge pole
with factorizable residues, then from the parity
relations (3.14) and (3.15) since q =+1 and o's =+1,
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with

TpO

1 -1 1 1X=-,
1 1, Y'=0, and W=~&

(4.8)

In transversity quantization, the density matrix
rp deduced from "p by (2.33) is

y, —(i/W2)yo

p = yl (i/W2)yo [r~~+(i/V 2 )yo, yl+(i/W2)yo~ 0]

(rl+-(i/v 2 )ro)'
0

0 . (4.9)
0

FIG. 5. Projection of the domain of B-symmetric even
polarization for spin 2, on the plane of matrices which
are diagonal in transversity quantization. The triangle
Co Cl C2 is the projection of the domain of density ma-
trices which are diagonal in any helicity quantization.
The three coordinate axes which are drawn correspond
to parametrization of the density-matrix element in the
transversity frame. Note that these three coordinates are
not independent (they satisfy ~p 0+2 p &+2 ~p 2=1).
The coordinate ( p 0, p~&, p 2) of the points are 0

=(- — —)sj 4s 16

the amplitudes c and d are

Equations (4.6) and (4.9) exhibit clearly the rank
1 of the density matrix. Note that the matrix ~p

has the general form (3.20)

W 0p=oo'

i

1'pl
i

rpl rp-l (4.10)

Therefore in Fig. 3 the representative points
should lie on the circle which bounds the basis of
the cone. Likewise, for the matrix elements of Hp

we have

where the 2x2 matrix A has rank 1. Furthermore,
note that because of (4.V} there is only one free
parameter to describe the density matrix.

In transversity quantization the rank-1 condition
of A, reads

c =
Yl

(4.5)

Hpl ~ Hpl

(Hpl )2 Hpl llp0
(4.11)

Yl

In helicity quantization, the density matrix Hp

defined by (3.11) is

2
Yl Y1

HP= -»
Yp Yo Yl

2
Yl

Yl

Yo Yl

Y1YO

Yl~o
2

Yo

(4.6)

We note that the order of indices is m, m'
=1, -1, 0, and that the trace-1 condition implies

0 + 2Y1 (4.7)

(l)(-) X iW '

i%'

For j = 1, the unitary transformation D~'~(R) has
the form (2.45)

Let us assume that t-channel coordinates are used
(e.g. , the so-called Gottfried-Jackson frame which
is the t-helicity quantization frame}. If t-channel
helicity is conserved, in addition one has

"p', =0, i e., y, =0 and pp (4.12)

Then all the points should be confined to the point
P, . If s helicity is conserved, the points should
be in the transformed of P, by the s- and t-depen-
dent rotation of crossing.

In Figs. 6 and 7 we have plotted for the Q meson,
results from Ref. Sa for even polarization. In
this experiment the odd part of the poIarization
has also been measured and the results are com-
patible with zero. We see immediately from these
plots that some experimental points are compatible
with the exchange of a single trajectory of natural
parity and with t-helicity conservation.
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Tr 2

)i o
'r 2

)i "o
r 2
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7„2
), "o

l
2 P2

T„2
2

2
p2

r„2"2
T 2

P2

(c) c)

T 2

j -2

P
r2

P 0, 1

' Tf'2

3

2
I

FIG. 6. Plot of experimental data of Q-meson polariza-
tion measured in s-channel frame. (a) Projection of the
the cone of Fig. 3 on the meridian plane containing P&
and P2. (b) Projection of the same cone on a plane
perpendicular to its axis. (c) Meridian triangle generat-
ing the cone, with x =[( r ) +(Tr )~]i 2 The ex-
perimental points 1, 3, 3, represented in (a), (b), and
(c) are taken from Ref. 3 a. They correspond to a beam
momentum of 8.25 GeV/c and successive intervals of mo-
mentum transfer. The points barely satisfy positivity
conditions [to be inside the triangle (c)]. The three points
are compatible with the prediction of the exchange of
natural-parity trajectories [to be in the circle P &P2 pro-
jected on (a) and (b)], and the points 2 and 3 with the
predictions of a single-trajectory exchange of natural
parity (to be on the boundary of the circle). They are
not compatible with the prediction of s-helicity conser-
vation [to be on the straight line P20 of (a) and (b)].

D. Production of a Boson with j"=1 When the

Natural-Parity Trajectory Dominates

In this case, since q = -1 and os =+I, the parity
relations (3.14) and (3.15) imply for the amplitudes
c and d

Hp

yl

b„r„01= r, ' r, ' o (4.14)

0 0 0 0

The trace-1 condition implies
polarization is then fixed. This
ization state represented by the
cone:

y, ' = 2. The whole
is the pure polar-
vertex P, of the

Hpl Q Hpl Hp 1 Hpl (4.15)

In this case there is no possible helicity conserva-
tion in any channel.

In transversity quantization the density matrix
has the general form (3.21)

FIG. 7. Plot of the same experimental data as in Fig.
6, measured in the t-channel frame. For the comparison
with Fig. 6, recall that both parts (c) have to be identical,
and that the points in both parts (b) are rotated from each
other by twice the crossing angle y, which is (Ref. 3 a)
0 & X&30' for point 1, 30 &)(&60' for point 2, and 45'
& X & 70' for point 3. Points 2 and 3 are compatible with
the prediction of the excbange of a single natural-parity
trajectory (to by on the boundary of circle P&P2) and
moreover with the prediction of t-helicity conservation
(to be on the stra'ight line P20).

(4.13)d= [0].
yl

So, in helicity quantization, the density matrix "p
defined by (3.11) is

0 0
000

Tp OOQ
0 8

0 0 1

(4.16)
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i.e., the only nonvanishing element is

Tp' =10 (4.17)

from «p by (2.33) is

0
If unnatural-parity trajectory dominates it is

clear that all the calculations made for 1' (with
o«=+1) becomes true for 1' (with o«= -1).

E. Production of a Boson with j"=2' When the

Natural-Parity Trajectory Dominates

From the parity relations (3.14) and (3.15), since
q =+1 and o~ =+1, the amplitudes c and d are

y1+ Zy

i.e., rp has the general form (3.21)

(4.22)

c= 0
y1

yld
(4.18)

I, o 0
Tp

0 B

so that the matrix ~p is where the 2x 2 matrix Bhas rank 1:

y2

p = -r t.r2 o -r.»l. rl)

(r, +2r,)'
(4.23)

»om (4.19), (4.20), and (4.23) one can see im-
mediately the whole structure of the density ma-
trix when a single natural-parity trajectory is ex-
changed. In helicity quantization we get

2 2
y2 0 y yly yly2

0 0 0 0 0
pm +( )n«pm 0 y ~

(4.24)
y

2 0 y2 -y1y2 -y y,
2 2

y1

2 2

(4.19) (Hp2 )2 Hp2 pl

and in transversity quantization

with the trace-1 condition

y1+y2 -2 ~ (4.20)

rpl =rp 1 =
~

&pl

p „=0 for m or n=+2, Q. (4.25)

For j=2, the unitary transformation D~2~(A) has
the form (2.45) with

Equation (4.24) or (4.25) gives the circle of pure
state which is projected on point P2 of Fig. 5. In
this case there is no possible helicity conservation
in any channel.

F. Production of a Boson with j"=2 When the

Unnatural-Parity Trajectory Dominates

1 1
y 1

2
1 1

(4.21)
In this case, since q = -1 and o« =+1, the parity

relations (3.14) and (3.15) imply for the amplitudes
cand d,

1 -1
0 0

y2
y1

C= y0 ~
d=

yl
y2

(4.26)

In transversity quantization, the matrix rp deduced so that the matrix H~ is
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Yp

y2'

) P) 2

&P&2

Yp 'Yp'Y2

Yp&2
2

y2

Y1 ~1Y2 Yp+1 Yl Y2

2
Ip Y2 L Y2 Yp Y2», —Y13

I 1Y2 Y1Y2

Yp&1 &p~1

Y1Y2 Y112

2 2
Y1 Y1

(4.27)

Y ~ -F1 -r,r2 -»' r1

with the trace-1 condition

y.'+2(y '+y. ') =1 .
In transversity quantization, the matrix Tp has the general form (3.20)

z, A 0~p= with rank A=1,
wi

(4.28)

where the 3x3 matrix A is given by

-2y, —2VYy2

2y. —~yo+ 4iy,

[2y2- Wyo+4i y» -2&y2-2yo, 2y2- Wyo-4iy, ] (4.29)

prom (4.27), (4.28), and (4.29) one can easily
get all the relations between spin-density-matrix
elements. For instance in helicity quantization
one gets

G. Production of a Fermion Isobar

Let us consider B-symmetric reactions of the
type

p„—() p „=0 vmn,

( p2)2 H 2 H 0

(Hp2 )2 Hp2 Hpl

(Hp 1 }2 Hp 1 Hp0

and in transversity quantization,

)
Tp2

(

2 Tp2 TpO

Tp2 (2 (Tp2 )2

arg p 2=2alg p p

p „=0 for m or n=+1 .

(4.30)

(4.31)
Hp (4.32)

j1+ 2 23+2 p

such as, for example, N* production from a nucleon
target.

As we have seen in See. IIIA1, if the reaction is
dominated by the exchange of a simple trajectory,
the density matrix p(j ) has the following structure:

(i) p(j) has only even polarization, i.e., in the
separation order of indices, the density matrices
~p and ~p are

Equations (4.30}or (4.31}give the surface of pure
states which is projected on the segment P,P, of
Fig. 5. Only one point of this surface is compati-
ble with helicity conservation in any channel. It is
projected on Cp and has as coordinates in the
transversity and helicity quantization correspond-
ing to this channel:

Tp2 Tp2 ~3 Tp2 3

p p=1, other p „=0 .

with

A = V(C+ e' "~D) V.

(ii) Rank p(j) =2, hence

rank A =1,

and from (4.33)

rank (C+e"~D)=1.

(4.33)

(4.34)

(4.35}

As in the spin-1 case, it is clear that if unnatu-
ral trajectory dominates all results for 2' (with
oH =+1) are true for 2' (with cH=-I).

Let us now apply these results to spin —,
' and —,'.

Note that in these applications the matrix elements
are denoted by p',„instead of p „.
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~

Tp3 (2 Tp3 Tp-l (4.36)

with

Z. SPin ~

In this case the matrix A, is a 2x2 matrix. Hence
the rank condition (4.34) reads detA =0, i.e., the
matrix elements of Tp satisfy

with

p „=real urn, n and p' + p' + p 3

The first three relations are those of Ringland
and Thews. ' The number of relations increases
with the spin value but the corresponding relations
can be computed in the same way for any half-in-
teger spin.

Tp3 ~ Tp-l
V. CONCLUSION

(Hp3)2+(Hp3)2Hp3Hp l (4.37)

with

p „=real @ryan, n, p', + p ', = —,'.
This result has been already noted by Ringland

and Thews. '
Relations (4.36) or (4.37) mean that the point

which represents the polarization density matrix
(see Fig. 4) must be on the sphere, i.e., on the
boundary of the polarization domain.

Z. Spin —,
'

In this case the matrix', is a 3&&3 matrix. By
writing the rank-1 condition for the 3x3 matrix A. ,
we get in transversity quantization

i
Tp5

i

2 Tp5 Tp-3

)
Tp5 )2 = Tp5 Tpl

(
Tpl (2 —Tp 3 Tpl

Tp5 Tp1 Tpl Tp5

(4.38)

with

Tp5 + Tpl ~ Tp 3 l

In helicity quantization the rank conditions (3.28)
and (3.29) give the relations

(Hp5 )2 + (Hp5 )2 Hp5 Hp 3

( Hp5
)2 + (lip 5

)2 Hp5 Hp1

(Hpl )2 + (Hpl )2 Hp 3 Hpl

Hp5 Hpl Hp5 Hpl + Hp5 Hpl

Hp5 Hpl + Hp5 Hpl Hp5 Hpl

(4.39)

The corresponding condition on the density-ma-
trix elements of "p is obtained from the rank condi-
tion (4.35) which reads det(C —ia) =0, i.e.,

We have studied two-body (or quasi-two-body)
parity-conserving reactions

1+2-3+4
with unpolarized beam and target.

From the general consideration of angular mo-
mentum and parity conservation we have derived
the structure of the density matrices of the final
particles 3 and 4. We have emphasized the fact
that the structure of the density matrices is more
simple in transversity quantization than in helicity
quantization. We have also noticed that it is very
convenient to choose the separation order for the
lines and columns instead of the usual order. All
these results on the strucutre of the density ma-
trices have been summarized in Table I.

We have studied the predictions of a single Regge
trajectory exchange model for the density matri-
ces. Our aim was to derive all the consequences
of reality and factorization of the residue func-
tions, and of parity conservation at each vertex.
The results have been summarized in Table Q.

The particular form of energy dependence of
Regge amplitudes is irrelevant for our conclusions
thus, more generally, other models ean yield some
of these conclusions. For instance any model in
which all helicity amplitudes have the same phase
[e.g., exchange of several particle members of
same multiplet pf a symmetry group, e.g. ,"
SU(6) ~] will also predict a lack of odd polarization
in a B-symmetric reaction.

As an example, we have applied these consider-
ations to experimental results in the case of 1'
particle and, on this example, we have discussed
the usefulness of the geometrical plots. When ex-
perimental results are plotted in this way, one can
see clearly to what extent the results are meaning-
ful (i.e., if they represent the properties of a par-
ticle of given mass, spin, and parity), and to what
extent they are consistent with the model in which
a single Regge-pole exchange mechanism domi-
nates. With experiments in progress for the de-
termination of density matrices for high spin iso-
bars, it should be clear that such considerations
will play an important role.
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