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The 0 term in K-p scattering is calculated using on-mass-shell dispersion relations, avail-
able data on the E P total cross sections, and real parts of the forward scattering amplitude.
The subthreshold contribution is minimized by introducing a factor which vanishes at the Yo*&

peaks; this also yields information on the Po &PK coupling constants. Our result o ~- 160
MeV is rather insensitive to the choice of the ApE and ZPI|. coupling constants. Within the
(3, 3*)+(3*,3) model our value for tT ~ favors small values of 0~~.

I. INTRODUCTION

It is widely believed that the strong-interaction
Hamiltonian can be meaningfully separated into a
part that is invariant under SU(3) xSU(3) and a
part that breaks this symmetry. The most popular
model, due to Gell-Mann, Oakes, anil Renner'
(GMOR), suggests a symmetry breaking of the
type (3, 3*)+(3*,3) which involves two nonets of
scalar and pseudoscalar operators, u,.(x) and v, (x),
respectively.

In this model the energy density is of the form

H =H, -uo(x) —cu, (x),

where Ho commutes with the generators of SU(3)
xSU(3). The parameter c has been estimated by
GMOR to be about -1.25. The GMQR model can be
tested in meson-nucleon scattering where the ma-
trix element (Niuo+ cu, i N) is related to the so-
called cr term, the equal-time commutator of an
axial charge and the divergence of an axial-vector
current Since (N. iu, i N) =170 MeV, as obtained
from the octet mass splittings, the determination
of the o' term in a single reaction will fix (Niuoi N).
This means that the 0 term in K-N scattering will
be uniquely determined within the framework of the
model.

Unfortunately, in spite of the large amount of
data on n-N scattering there seems to be no con-
sensus on the value of the m-N a term. ' Values
range from 25 MeV (Ref. 3) to 110 MeV (Ref. 4).
The predictions for the K-N 0 term will vary ac-
cordingly from about 200 to 1300 MeV (for c
= -1.25).

In this note we shall evaluate the K-N v term di-
rectly from on-mass-shell dispersion relations.
We hope this will allow one to discriminate be-
tween the theoretical predictions even though the

data on K-N scattering are less abundant. The 0

term is proportiorial to the K-p scattering ampli-
tude at the point where both kaons have zero 4-
momentum. There have been previous attempts"
to calculate the K-N 0 term from off-mass-shell
dispersion relations using the elegant method of
Fubini and Furlan' which relates the current-alge-
bra soft-meson point to the scattering amplitude
at threshoM. It was however pointed out by Brown,
Pardee, and Peccei' that threshold is not a suitable
point to relate the 0 term to, since the contribution
of the essentially unknown continuum in the disper-
sion integral is of the same order, (m/M)' (where
rn is the mass of the %meson and JI/I that of the nu-
cleon), as the o term itself. A better method would
be to determine the amplitude at

(P+P') (q+ q')
v —0,

I

v, =--q'q =0 q =q"=~2
2M

where p (p') and q (q') denote the momenta of the
incoming (outgoing) baryon and meson, respective-
ly, by on-mass-shell dispersion relations, and then
to use a linear expansion in q' and q" to go off the
mass shell.

The purpose of our calculation is to incorporate
as much information as possible about the forward
E-N scattering amplitude. Following a calculation
by Adler, ' we carry out the extrapolation to the un-
physical point v = v~ =0 in two steps: First in the
forward direction from v = m, vs = -m'/2 M (thresh-
old) to the point v=0, ve =-m'/2M and then to the
point v= v~ =0. The first part of the extrapolation
can be done quite reliably using the accurately
known totaI cross-section data. ' The second, over
a much smaller distance, is done in a narrow-
resonance approximation.
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One complicating factor in K-N dispersion rela-
tions is the contribution of the unphysical region
below the elastic threshold. This contribution is
expected to be dominated by the Y'f(1405) and
Y;*(1385). A way to handle such a difficulty is to
multiply the amplitude by factors which vanish at
the peak of the resonances, ' thus minimizing their
contribution. By comparison with the original dis-
persion relations this method will also yield infor-
mation on the YO*PK a,nd Y,*PK coupling constants.

Another difficulty comes from the uncertainty in

the ApK and ZpK coupling constants. As we shall
see, however, our results are quite insensitive to
their exact values.

II. THEo TERM

We continue the amplitude for the process
K"(q) +P(p) —K'(q') +P( p')

off the mass shell by means of the definition"

T' (v, ve, q', q")=i, 4(m'- q')(m'-q") Jt dy e" "(P(P')I TD (y)D'(0) IP(P)),
K

T "~(0, 0, 0, 0) = -o4~), (2)

where

o'~~~=-i dye" ~5 yo

where D" = s ~A, '„' with (g, b) = (+, w) and f» is the
kaon decay constant defined by

(0~D"(0)~K") =f«m', f«=125 MeV.

The generalized Ward- Takahashi identity relates
the amplitude [Eq. (1)]at q= q' = 0 to the o term:

2

terms are however expected to be small" and are
therefore not likely to change our result drastical-
ly.

III. DISPERSION RELATION IN v

We start this section using forward dispersion
relations to relate T(v=0, vs=-m'/2M, q' =m ) to
the total cross-section data. As mentioned in the
introduction we shall minimize the uncertainty aris-
ing from the contribution of the unphysical region
by considering the function'4

x&P(p') I [&'.(y), D'(0)]
I P(p)) (3)

v2 v2
T(v) = T(v) (5)

o" is symmetrical, o' b=o'"=v. As has been
pointed out in Ref. 7, a consistent calculation of
the o term should make use of the even amplitude

T cannot be measured directly at the current-alge-
bra point q=q'=0. However, it can be related to
the Cheng-Dashen point v=v~ =0, q'=q"=m',
which can be reached by on-mass-shell dispersion
relations, via the reflection property

T(0, 0, 0, 0) = -T(0, 0, m', m') + O((m/M) ) . (4)

To obtain an estimate of the o term we shall have
to neglect the part O((m/M)4). Since o itself is
expected to be O((m/M)') this approximation intro-
duces an 3(P/p erro-r. We think this constitutes
one of the major sources of uncertainty in our cal-
culation. The assumption of the existence of a )in-
ear expansion in qn and q'2 on which Eg. (4) is
based has been recently questioned" in view of
yossible appearance of logarithmic terms. These

rather than T itself. The value of the parameter
vo is chosen such that T vanishes at the position of
the resonance. As the masses of the Yg(1405) and
Y~(1385) are very close, one such multiplying fac-
tor suffices. The denominator is introduced in
order to keep the asymptotic behavior unchanged.
The dispersion relation is evaluated for 39 differ-
ent values of v all. lying on the physical cut where
ReT(v) is known. "

Using the fact that T is even under the substitu-
tion v- -v and subtracting at v=0, one can write
the dispersion relation

v -vo v
2 2 2

T(v=0) =ReT(v) —, ;—,ReT(v)

m (v' —v )v''

We next separate explicitly the contribution of the
A and Z Born terms, use the optical theorem to
express the continuum in terms of total cross sec-
tions, and obtain at v=m

m2 v -v M -Elf-v
—2 2 v2 . 2 v2 v (v

2 m2) hPK v 2 v2 v (v 2 m2

P i
dv' „,,

( „1)„,[ o»+( v) +« ~( ')],
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where v~ z =(MA z'-M' —m')/2M.
The contribution of the unphysical region from

the An to the elastic threshold (v=m) is being ne-
glected. We believe this approximation to be quite
safe since the multiplying factor vanishes at the
peak of the virtual bound states and changes sign
there, thus leading to cancellations.

To evaluate the principal-value integral reliably,
we subdivide the fitting curves to the total cross
sections in the region between threshold and v' = 55
Ge7 into small intervals over which the cross sec-
tions can be approximated by a straight line and
the integration performed analytically. For the
asymptotic region we assume 0"~(v') =o."~ (55
Gev) as indicated by recent data. " At any rate,
for reasonably well-behaved cross sections, the
contribution of this region is small as the disper-
sion relation converges rapidly. In this way we
calculate T(v=0) for 39 different values of the
"subtraction point" v ranging from 790 MeV to
1320 MeV for which ReT(v) is known. " The result
is shown in Fig. 1 for the particular choice of
G~r'/4n = V.O and Gz ~'/4n =2.1, a choice which is
consistent with the input for ReT(v). 'o" It is seen
that T(0) is remarkably stable with respect to vari-
ation of v. Taking the average of the 39 values for
T(0}we obtain

T(0) =35V+1V.

The error is statistical and does not include the
error due to neglect of the subthreshold contribu-
tion to the dispersion integral. However, the latter
should be negligible since the part of the integral
which we have taken into account is itself small
(--10 for Tr ~).
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FIG. 1. The amplitude A(v =0, ve =-nP/2M} for
different values of the "subtraction point" v and GA&E /4m
= 7.0, G&&@2/4' =2.1. The error bars trace back to
errors in the real part of the forward scattering ampli-
tude at v=a.

IV. EXTRAPOLATION IN v~

Our next task is to reach the point v~ =0 from
ve = -m'/2M keeping v=0 fixed. This extrapolation
is more ambiguous in principle since we cannot
make use of as much physical data as in the pre-
vious section. Fortunately the distance over which
we extrapolate is much shorter (-25%). We think
this justifies the sole use of the hyperon Born
terms and narrow-resonance Yo~ and Y,* terms in
effecting the extrapolation in v~. We get

4M '
A(0) =A(-m2/2M) —

(

4Mm 4@m'
(Mz+M)(Mz —M -m ) (Mr+ —M)(Mrg -M —m ) o

0 0

8M j. m' m2 ~, 2 m' m'
M~ " 3M '-M'M s

where &(ve) =—T(v=0, ve) and

(~(P)I~.II *, (~)& =- "~"~„(p)~(&)(~-~)".
M~+

This result is obtained by writing for A(v, ve} an
unsubtracted dispersion relation in v for arbitrary
v~ and saturating it with the A, Z, Yo, Y*, poles.
The approximation made is equivalent to retaining
only the corresponding Feynman graphs in pertur-
bation theory. Though the dispersion integral is

not expected to converge, Eq. (8) should be a rea-
sonable approximation for the variation of 4 be-
tween two relatively close points. " The contribu-
tion of the Y*, was calculated using only the non-
ambiguous pole part of the spin- —,

' propagator. The
variation of the model-dependent nonpole part of
the spin- —,

' propagator between the points v=0,
vs= m'/2M, and v=0,-vs=0 was found to amount
to less than 5% of the variation of the pole term in
the three specific models discussed for instance by



ESTIMATE QF THE (r TERM IN K'-p SCATTERING

Achuthan, Hite, and H5hler. ' Substituting numer-
ical values for masses; Eq. (8) becomes 100—

GAp G»z
A, (0) =A(-m2/2M) —46

4
—18

G ~*,ere G ~+E
2 2

—29- —10-
4n' 4m

O
II
tQ~ 50-

O
II

V. DETERMINATION OF COUPLING CONSTANTS

To obtain a numerical value for A(0, 0) one needs
the coupling constants GA ~, G»E, G„~~~, and

0
G ~+~~, none of which is accurately known. The

I.
Y*, is a p-wave resonance, and it is argued' that
G „~~» can be taken from SU(3) and the knowledge
of the Y*,-Am width since the centripetal barrier
keeps the particles within the short-range SU(3)-
invariant interaction potential. Then

2G Y+pIC
'= 5.6.

On the other hand, G ~~~~' being an s-wave reso-
0

nance can differ markedly from the SU(3) value. 'o

Qur method of dealing with the subthreshold con-
tinuum allows the determination of this coupling con-
stant in a simple way:

Equating A(0, -m'/2M) of our analysis to a value
obtained by keeping the K~0 and F*, poles, one gets
a relation between the coupling constants. G~~
and Gz~~ can be taken from independent dispersion-
theoretical calculations available in the literature"
though the values obtained there differ widely (e.g.,
G~»'/4n may be somewhere between 4 and 15).
Fortunately A. (0, 0) is quite insensitive to the exact
values of G~» and Gz~». Taking Gz~»'/4w
=0.3G~»'/4m, which follows from SU(3) and which
is consistent with most dispersion-theoretical cal-
culations, we determine A(0, 0) for values of
G~»'/4v ranging from 1 to 15. The results are
shown in Fig. 2. We also obtain G„*~»'/4m=0. 43
quite independent of the assumed va/ues of
G~»'/4». This result agrees with other empirical
calculations. ' '

VI. RESULTS AND CONCLUSION. S

Using Eqs. (2) and (4) and the values of A(0, 0)
taken from Fig. 2 we are now in a position to cal-
culate the K-p o term

o = -4.0A (0, 0) MeV .
o varies from 200 MeV to 100 MeV corresponding
to a variation of G~»'/4v from 4 to 15. H we adopt
G~»'/4» = 7.0 obtained by Restignoli and Violini'0
who used a method similar to ours, we find

0
0

I

10

G„' „lcmApK

15

FIG. 2. Variation of A(w =0, v~ =0) with GA&z /4~
taking Gyp~2 =0.3 GAp~2.

o =160 MeV (10)

The error in result (1) is rather difficult to esti-
mate. As mentioned in Sec. II, the neglect of
terms O((m/M)') may introduce an error of -30'%%uo.

The second major source of uncertainty lies in the
extrapolation in v~. However, more sophisticated
methods of extrapolation are not likely to yield
more accurate results since they require as an in-
put more accurately known experimental data than
are available.

We test our method by applying it to n-N scatter-
ing. Using the value of the even m-N amplitude at
v=0, v =-m, ~/2M, qm=q" =m 2 given by Samar-
anayake and Woolcock" we obtain

o'~=35 MeV.

It is interesting to note that our results for o ~ and
o "~ are consistent with the GMQR model; they also
agree with the ones of Kim and von Hippel, who
used the method of Fubini and Furlan.

Qther more recent calculations of o~~ by Thom-
son' and K5pp, Walsh, and Zerwas, "using differ-
ent methods, obtain o~ =-3'70 MeV and o~ =+380
MeV, respectively.
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