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A method previously used for deriving Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin
(KSRF) -type relations is applied here to the radiative decay p+ 7(+x y. Comparing the
amplitude calculated with the hard-pion technique to its exactly calculable (photon) low-
energy limit, one obtains as consistency conditions the first Weinberg sum rule, the mod-
ified KSRF relation, and the magnetic moments of A& and p+. The value for the last one is
further investigated in a model devoid of the single-particle approximation, the result con-
sisting of upper and lower bounds for it, namely, 16w2nmg&2/(m&4~fo~+, „ds-) & p& & 2.

I. INTRODUCTION

It has been shown recently' that by considering
the low-energy limit for the process p'- m' p y in
conjunction with the amplitude calculated by the
hard-pion technique, a modified Kawarabayshi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation is
obtained as a consistency condition. The method
suggested in Ref. 1, which was applied there to
radiative decays of various neutral vector mesons
in order to derive KSRF-type relations, consists
in short of the following. Terms up to order zero
in the photon momentum k„of the radiative ampli-
tude V-P+P'+y (where V denotes a vector me-
son and P,P' denote pseudoscalar mesons) are
exactly calculable in terms of the strong vertex
I"~.~, by virtue of the low-energy theorem. '
On the other hand, an explicit calculation of the
V- P +P'+ y process is performed by the use of
current algebra, partial conservation of axial-
vector current (PCAC), and the hard-pion tech-
nique as developed by Schnitzer, %einberg, and
Gerstein. " Equating the terms to order k ' or to

order k' of the two calculations, KSRF-type rela-
tions with all particles on the mass shell were ob-
tained, ' thus overcoming certain ambiguities pres-
ent in previous derivations.

In the present work we apply in Sec. II this
method to the appropriate radiative decay of
charged p mesons, namely, p'- 7['m'y. Equating
the terms to order k ' and k' of the amplitude cal-
culated by current algebra and the hard-pion tech-
nique to those obtained from the low-energy theo-
rem expansion, we derive as consistency condi-
tions (i) the first Weinberg sum rule, ' (ii) the
modified on-mass-shell KSRF relation, (iii) the
magnetic moment of p', (iv) the anomalous mag-
netic moment of A y.

The results of Sec. II are obtained by using sin-
gle-particle dominance for the various propagator
functions involved. In Sec. III we do not make this
approximation and we study further the p' mag-
netic moment with the aid of Nutbrown's model'
for the three-point function of three vector cur-
rents. Our results are summarized and discussed
in Sec. IV.

II. COMPARISON OF THE HARD -PION AMPLITUDE AND THE
LOW-ENERGY EXPANSION FOR p'~ n'n y

According to the low-energy theorem, ' terms up to order zero in the photon momentum of the radia-
tive amplitude p'- w'w'y are exactly calculable in terms of the strong vertex f~„(m~', m, ', m, ') We also.
recall that the radiative decay amplitude can be separated into an inner-bremsstrahlung part and a direct
part, which are separately gauge-invariant. The latter has only terms of order k' and higher"', thus the
low-energy theorem involves essentially the first two terms of the expansion of the inner-bremsstrahlung
part. We use the following definitions for the interaction among w 's, p's, and the electromagnetic current
J @ i, with self-evident notation (throughout this article we employ units in which 5= c = 1):

(2w)'(w (p)l&i~™(»lw'(q)&=«((p —q)')(p+q)„, K(0) = 1 (l)
t(2w)'(w'(p)w'(q) I p'(0), » =f,~(p -q) e(~), (2)

(2w)'(p'(p), X, l
Ji il p'(q), Ag =e(p ~ s(A.,)q ~ s*(A.,)T,(t)(p+q)„—e*(X,) ~ s(A.,)T,(t)(p+q)„

+ [ (Xe, ) (&e,) q+ s„*(X,)s(X,) p] T,(t)),
where e(X) are the p' polarization vectors and t=(p —q)'. The form factors T,(t), T,(t), T,(t) are related
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to the static multipole moments of the charged vector meson by'
1

T,(o) = (9, +1 —~,),
P

T,(0)=1,
&2(0)= p[

(4a)

(4b)

(4c)

(u& is the magnetic dipole moment of the charged p meson (in units of p magnetons) and Q& its electric
(luadrupole moment (in units of m~ ').

Now using (1)-(3) and the low-energy theorem, we find the following expression for the amplitude p'„(Q)- v'(P)+s'(q)+y~ (k), where Q, P, q, k are the four-momenta of the particles and ]].„X,are the helicities:

&g, g, (p'- x'w'y)

=et'„, I(}t—2) e(tt„t)) p e*(X„k) Q e*(X„k) [k ~ e(X„Q)][p e'(A.„k)]
P'8

+2"' 2[s. (2 2)[, (z„s) e(s„t))1 [(2-2) e (s„s)] Is.e(s„t))I]Iso(s)e." .

(5)

~."(x)= g,p."(x),
9„4,"(x)=E,m, 'v, (x) . (7)

p,"(x),v, (x) are the extrapolating fields for the p and s mesons, and J,"(x),A,"(x) are the vector and axial-
vector currents. For the electromagnetic current one takes

J'& (x) =e J2&(x) + z,"(x)1

W3

Using formula (38) of Ref. 6 for the four-point function as well as the same notation as these authors, we
arrive at the expression for p'- v' v'y, of which we present here explicitly the terms to order 1/k and k':

+ +, eg~' C&Cv
-1

1"»,(p'- v'v'y)= .' . — " .' [(2+6)(e* q)(e P)-(1+5)(~* P)(e.q)-(e* ~)(P q))+ ' —(e* ~)

C~ '
y[2(e. k)(e* (p -q))+2(e*~ (p+q))(e (P —q)) —2(e* e)(k ~ (P —q))]4k Q

(6)

(8)

CACv+ 2 (E+' q)(e P) —(f+ f) m& —m + 5 + 5((t+'P)(e' q) —(e+' q)(f ~ P))
mQ

(I —2eC ')2 —
I

+[2 terms] O(2}+e (8)

We note that in (5) the terms of order k ' and k' are separately gauge-invariant and f z is the strong
coupling constant with all particles on the mass shell, i.e. , f ~

=f~ (mz'—,m, ', m ').
In order to apply the technique' outlined in Sec. I, we now need the expression for the p'- m'm'y calcu-

lated by using current algebra and the hard-pion technique. Such a calculation was already performed by
Chaudhuri and Dutt. " Those authors obtained the radiative p'- m'm'y amplitude with the aid of the hard-
pion current-algebra technique developed by Gerstein and Schnitzer. In arriving at the expression for this
amplitude one uses the SU(2)(3)SU(2) chiral algebra, as well as the field-current identity and partial con-
servation of the axial-vector current in the form, respectively,

In (8) we used the following abbreviations:

e*=e*(A»k)s c =e(X»Q)s y=1-(1+6) " » x=C„——,'Cv .
Cvm

Cv, CA are defined in terms of vector (axial-vector) spectral functions

" da
Cv, A pv. A(e)
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and 5, the anomalous magnetic moment of A„ is defined in Eq. (47) of Ref. 6. One should remark that
there are no contributions from JS in (9), as only the I= 1 part of the current is allowed in the electromag-
netic transitions involved.

If we now require the identity of the coefficients of the O(k ') terms in (5) and (9), we obtain from the
(1/kQ) term the modified KSRF relation

3 1
2 2 2 gP ~Vf~„(Sf',m, , m, )=, ,y,

7r mP

and from the (1/k p) term the first Weinberg sum rule

F +Cg =CV
2

(12)

(13)

[In comparing (12) with the identical result of Ref. 1, one has to identify (in the single-particle approxima-
tion) C» =gf)'/mf)', gf) =m()'/f R, C„=g„'/133„', g„=mz'/f „].

Comparing now the O(k ) terms in (5) and (9), and using (12), we arrive at two additional consistency
relations:

(14)

and

15=-2 . (15)

In obtaining these relations we assumed that the following commutation relation holds for the v term:

[A, (x), sR A.SR (y)] 5(x —y ) = 5„(R(x)5(x —y) . (16)

Thus, the c is taken to be an isospin scalar and belongs with the pion to the (-'„-',) representation of SU(2)
~SU(2).

At this point, we want to emphasize that relations (12) and (14) are contained in the formalism of hard
pions with current algebra, and our procedure is an alternative way of their derivation, free of various
ambiguities in previous derivations. Furthermore, relation (13) is a consequence of Ward identities, and
as such is again already built into the four-point function we used. Relation (15) could be changed in prin-
ciple if the o term had an I= 2 component.

III. MAGNETIC MOMENT OF CHARGED p MESONS

The value p. p=2 for the total magnetic moment obtained in the previous section is obviously dependent on
the single-particle approximation for the propagator structure functions used in Ref. 6. In this section we
shall use Ward identities and the symmetry properties of the three-point function for three vectors, in
order to obtain maximum information on y, &, which follows from the SU(2) current algebra.

The three-point function is defined as

d-:,(O„O„O,)= f~ " d" ~ "*(o{r(d."(d')J,"(y)J,'{z)){o)dddydz, (17)

Pl +PS+PS —0 ~

We reduce the functionA. &'„'z in the symmetry and Lorentz indices, and we define, with Ref. 6,

+fl(pfluP p))2)+ncaa' (Pl)+bb' (PR)+cc' f{'u'X' (Pld PR)PS)

Decomposing now the three-point vertex function I"„„'),(p„p„ps) in terms of invariant amplitudes H,
= H, (p,', p, ',p,'), we have

~R l(pl& Pu2) PS) I {f){u (pl)'kHf +gf) u (PR)X 2 +If{1X(pl) S+ (ugf{ X)(PS) 4+guu X(pl)){HS

+g„„(PR)„HS+terms of the form (pf)„(pf)„(p,)„Fff„]. (19)
Because of the symmetry properties of the vertex, one can express the various H; in terms of H, . For ex-
ample, the following relations hold:

H3(P1 xp2 &PS ) 1(P3 )Pl &PR ) 1(PI &PS dpR )

s(pl dpR tPS ) 1(PR dpR ~Pl ) H2(P2 dPS )Pl ) '

Using SU(2) current-algebra relations and the conservation

(20b)

of the vector current, we obtain the following
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Ward identities:

(Pl +Pl P2)H1+(P2 +Pl'P2)H2 [+T (Ps) +T (Pl )] V (21a)

[+111(pl +Pl P2) + 112(P2 +Pl P2)] + (Hs + 2) 2 +T (Pl)cv [+T(P1) v]
P1

with

~p.((,) (vg. 0"D")~ (p)
P"(I"

v j v ( )
(

I. 0"P")u,

(21b)

(22)

Now comparing the decomposition (18),(19) with (3) we can identify the expression for the magnetic mo-
ment of the P' (taking p,',p, '-mp', p, '-0) as

Ts(0) = (up= Hs(mp, mp 0)gp Cv

From Eqs. (21a) and (20b) we obtain in the limit p,',ps'- mp', p,'- 0

H, (m ps, mps, 0) = -gp 'C„' . (24)

Thus, H, (mp, mp, 0) has the same form as that obtainable in the single-particle approximation, in which
case the relation C„=gps/mp' holds.

Further, using (21b) and the symmetry relations (20) we arrive at
2

mp
(25}

from which we finally have the alternative expression for the total magnetic moment of charged p mesons:
2 1

Pp- 2 Hl(0, mp, mp )gp C„A &~ 2 2 2 (26}
P

In the single-particle approximation all H, 's are constant, in particular H, = -gp C„', and with C„=gps/
mp', Eq. (26) reduces to the result obtained in the previous section, Eq. (14).

Gener" I considerations applied to (26) already give us more information on p, p. As pv(a) is positive def-
inite, continuum contributions increase the value of C» [Eq. (11)] and thus decrease the first term on the
right-hand side of Eq. (26). No information is obtainable onH, (0,mp', mp') from current algebra alone,
but we expect pz to decrease when including the continuum contributions in the second term as well.

It is obviously desirable to confirm the last statement in some model which has all the current-algebra
constraints in it, but is not restricted to the single-particle approximation. A model fulfilling these re-
quirements was suggested recently by Nutbrown. ' In his model, the amplitude A, '„„'),(P„P„Ps) reads as
follows:

gusv g q usvCg-1 d dsP»(u)P»(S) guu' (Pl)u(P1)u'/u gvv' (Ps)v(ps)v'/ gal' (Ps)x(ps)),'/S
S —P 2

1 2 3

where

x[g„,„,(P, -P,)„.-gz. p. (P,)„+g„.„.(Ps)z.]+cyclic permutations, (27)

,

I' P (s) d,v 0 S2
S ~

Using representation (27), we obtain the following expression for Hs(p, ',p, ',p,'):

s(pl ps ) ps )=br (pl)rlT (ps)aT (ps)CV 2)( 2)( 2) PV(u)PV(s)duds .

Evaluating Eq. (29) in the limit p, '=p, '=mp', p,'=0, one finds

2 2 = 2
Hs(mp, mp, 0)=

&~~~vmp

Inserting (30) in Eq. (23) we obtain for the magnetic moment

2gp
"&=C m'ymp

(28)

(29)

(30)

(31)
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In the single-particle approximation p„(s)
=g~'5(s-m~'), and we recover the value p. =2.
In general, however, C», )g~'im~', and there-
fore with the aid of Nutbrown's model we confirm
our previous assertion that

(32)

IV. SUMMARY AND DISCUSSION

In the first part of this wo'rk we obtained several
known relations, Eqs. (12)-(15) (KSRF modified
relation, Weinberg's first sum rule, and magnetic
moments of A, and p), from the requirement of
consistency of the hard-pion amplitude with the
exactly calculable low-energy limit of a radiative
amplitude. Besides being free of difficulties pres-
ent in various previous derivations (which were
analyzed in Ref. 1), our procedure throws inter-
esting light on the physical significance of these
relations. In particular, within the framework
used in Sec. II, we found that deviations from Eq.
(15) are possible only from an I=2 component in
the 0 term.

In Sec. III we pursued an analysis of the magnetic
moment of charged p mesons within the context of
SU(2) current algebra, without assuming, however,
the single-particle approximation for the vector
spectral functions, and we obtained the general
alternative expressions (23) and (26) for it. In a
fairly model-independent approach, we concluded
that p, ~ would be decreased from the value in Eq.
(14) by the continuum contributions p~(a). This
conclusion is substantiated by using Nutbrown's
representation, ' which then leads to expression
(31) for g~.

It is also possible to obtain a lower bound for
pp by considering the information on pv(a) obtain-
able from the e e —hadrons process. Let us con-
sider the one-photon-exchange process e'+e y- n hadrons, whose amplitude E is given by

Z =2ver(P„Z, )y"~(P„Z,)
xD (q)(0lg (0)ln)5(q p„),

where
l n) are all hadronic allowed states, con-

taining both I=1 and I=O states. The cross sec-
tion for e'+e - n is then given by"

4@2
o„(s)=, A, (s), (34

where

p~ = (2w)'P(0l z", (0) l n)(nl J'," (0) l 0)5 (p„—q),

q' = s (35)
includes summation over isoscalar and isovector
states. Thus the isovector part of the spectral
function, which is of interest to us, fulfills (only
the isovector part enters in the expression for p~)

Ss
,p~(s)(, o, +,— „(s) . (36)4m'e

Using (36) in conjunction with (28) and (31), we
obtain

(37)

An evaluation of the lower limit must obviously
await better experimental knowledge of fo,+,- „ds.

It is of interest to compare our result (37) with
previous estimates for p.z. Gluck and Wagner ' re-
view theoretical quark and composite models for p
and show that they give values in the range 1& p.z
&4.7. On the other hand, information on p,

&
can be

obtained" from an analysis of charged p photo-
production. Levy et al. ' recently analyzed the
experimental data for yn- p P with photon energies
1.4&E&&2.5 GeV, and using a Born approximation
for the calculated amplitude they obtain an esti-
mate p.z-—2p.„for the magnetic moment of charged
p mesons. This value is slightly lower than our
upper limit exhibited in (37).
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