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Charge-Exchange Scattering
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In a previous paper, we proposed a dual resonance model for meson-baryon scattering.
It is shown here that this model can account for the existing high-energy pion-nucleon charge-
exchange scattering data.

I. INTRODUCTION

One of the most appealing features of the Vene-
ziano model in its original and simplest form' is,
in principle, the formal relation between the low-
energy resonances, the high-energy forward, and
the high-energy backward scattering. Obviously,
this triple connection could and should be tested in
simple and direct two-body scattering processes,
such as meson-baryon scattering.

Unfortunately, for these processes one cannot
draw a firm conclusion from various calcula-
tions' ' which use this model. For example,
Berger and Fox' found it impossible to relate the
magnitudes of the baryon resonance widths to
the sizes of the forward and backward differential
cross sections. Similarly, Fenster and Wali' have
shown that if one uses the model to fit the widths
of the baryon resonances in a limited low-energy
region and the forward high-energy scattering
data, then the predicted backward differential
cross section is 2000 times larger than the exper-
imental data.

One could argue that introduction of enough sat-
ellite terms would improve the situation. How-
ever, beside the fact that the predictive content of
the model is then weaker, the satellite terms are
expected to play a role at most in the low-energy
region where the unitarity corrections must also
be taken into account. Since at present there is
no reliable way of evaluating those unitarity cor-
rections, in order to make a more clear-cut test
of the Veneziano model for two-body scattering
processes, one should adopt a less ambitious at-
titude, namely to confine oneself to studying the
correlation between the high-energy forward and
backward scattering. In the usual Regge-pole

model, such a correlation is not compelling and,
for instance, the meson trajectory and the baryon
trajectory contributions are unrelated in the ex-
isting phenomenological fits.

In the present work, we shall show that the dual-
resonance-type model that we proposed in a pre-
vious paper' is suitable for describing such a con-
nection. We apply our model to pion-nucleon
charge-exchange scattering in order to avoid un-
certainties due to the contribution of the Pomer-
anchon.

II. THE INVARIANT AMPLITUDES FOR
PION-NUCLEON CHARGE-EXCHANGE

SCATTERING

In Ref. 7 we showed that the replacement of the
usual partial-wave expansion in terms of Appell-
Pochhammer polynomials (which we believe to
yield a "natural" basis for the dual resonance
model) leads to a Veneziano-type series for the
scattering amplitude. This result was obtained by
following the usual procedure used in the deriva-
tion of the Regge representation, and by requiring
the general properties of the dual resonance mod-
el to be satisfied.

When only those leading contributions which are
due to the degenerate (p, P') system, to the nucle-
on, and to the ~ trajectories are taken into ac-
count, the "minimal" form for the A and B in-
variant amplitudes can be written as

(2.i)

B~ L y~~" B~z(1, 2) + [(yps ),+ t(y~~ ),]B~~(1., ~),
(2.2)
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where

r(m- np(t)) r(n- n»(s))B',„m, n) =
r(m+ n- n, (t) —n»(s))

1(m- n, (t))r(n- n„(u))
r(m+n- n, (t) —n„(u))

(2.3)

(
r(m- n, (t)) r(n —n„(s))
r(m+n-l-n, (t)-n„(s))

r(m- np(t))r(n- n„(u))
r(m+ n-1-n, (t) -n„(u)) ' (2.4)

Ao —= A, (m p-z n) = —&2A~ ~ (2.5)

and all y's are constants.
The expressions for B'~ and C ~ can be deduced

in a self-evident way.
Formulas (2.1)-(2.2} are obtained from formulas

(3.19), (3.20), (3.34), and (3.35) of Ref. 7 by using
the exchange-degeneracy property of the (p, P')
trajectory.

The Ao and B, amplitudes describing the pion-
nucleon charge-exchange scattering are then given
by

and

Bo=—B,(w P-w On} = —&2B (2.5)

In order to get a nonvanishing polarization in
m p-m'yg, in the framework of the Regge-pole
model, Hogaasen et al.' invoked the existence of a
p'-meson trajectory with the same quantum num-
bers as the p trajectory. Subsequently, a p'-me-
son trajectory was advocated by several authors;
for instance, by Sertorio and Toiler' from O(4)
symmetry and by Dolen, Horn, and Schmid' and
Barger and Phillips" from finite-energy sum rules
and high-energy fits. The p' contribution has been
also considered by Joshi and Pagnamenta' in the
framework of a Veneziano-type model.

For the same reasons, we included the contribu-
tion of a nonleading meson exchange-degenerate
(p', P") trajectory by adding to Eqs. (2.1)-(2.2)
similar expressions where p is replaced by p'.

As already mentioned, we restrict ourselves to
high-energy scattering. We can therefore consider
only the asymptotic limits of the complete ampli-
tude (as usual, these limits are obtained by al-
lowing the trajectory functions to have suitable
imaginary parts "):

t fixed, s-~:

A, /~&=p r( 1- np( )t)gp( )t( n' )s""+p r(1 —np (t)) $, (t)(n's) ''",
B',/VY= -(p, + tp, )r (1-n, (t)) $, (t)(n 's)"~"'-'- (p, + tp,)r(1 —n, ,(t))], (t)(n's) ~'"

(2.7)

(2.9)

u f2xed~ s

Ao/&2= p,r(-,' —n~(u))(n's)"& "' ' '+ (p + p, —p )r(-,' —n„(u))(n's)"»'"' ' ',
B,'/W2=(1/n')(p, + p,)r(-,'- n~(u))(n's) &'"' ' '- p,r(-,'- n ( ))u(

' n)"»s'"'

(2.9)

(2.10)

pi =r~~'+ r~ p ar~" +»' "

p. =(r."),+ r". , p, =(rg'). ,

p =(r' ) +r'", p =(r' )
(2.11)

and

8~7lop p (t)
P P

(2.12)

Let us make the following two remarks on the
form (2.7)-(2.10) of the amplitudes:

(i) As can be seen from Eqs. (2.1)-(2.2), our
amplitudes contain no (s, u) terms. This is a con-

where the following notations have been introduced:

A'-'(s, t, u) =-A'-'(u, t, s),
B (s, t, u)=B (u, t, s) . , (2.13)

Our amplitudes, since they have no (s, u) terms,
do not possess the signature factor for the baryon
trajectories; the difficulty of N-b, degeneracy,

sequence, as explained in Ref. 7, of a particular
but natural way of imposing the s-u symmetry in
our derivation. In the usual Veneziano-type mod-
els, the (s, u) terms vanish when s- ~ for fixed t,
and give rise to the signature factor for the baryon
trajectories when s-~ for fixed u. However,
these (s, u) terms imply a degeneracy for the N
and 6 trajectories because of the isospin symme-
try and the conditions
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FIG. 1. Small-angle differential cross section for
x P x n (data from Refs. 13 and 14).

however, does not occur here. In the forward di-
rection, they have essentially the same behavior
as those considered in Refs. 2-6. Anyway, as long
as we are not interested in the polarization in the
backward direction, one can fit, even without the
signature of the baryon trajectories, the differen-
tial cross section in the backward direction by
using effective parameters for N and 6 trajecto-.
ries.

(ii) Concerning the residue functions appearing
in formulas (2.7)-(2.10) it can be observed that
once the parameters P„.. . , P, are fixed by a fit of
forward data, the 6 contribution in the B,' ampli-
tude is completely determined and the N and 6
contributions in the A.D amplitude are correlated,
namely, they depend on only one free parameter.

This strong quantitative connection obtained be-
tween the forward direction and the backward di-
rection is a reflection of the duality built into the
model, in the sense that the meson and baryon
Regge residues are correlated in this Veneziano-
type representation, in contrast to what is ex-
pected in the nondual Regge-pole model. Also, if
one considers the elastic processes n'p, one has
to introduce ihe Pomeranchon, and this would af-
fect the backward direction. This is an additional
re son to make a fit only of the mN charge-ex-
change reaction and not of the elastic ones, even
in the backward direction.

III. RESULTS AND DISCUSSION
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Our amplitude depends on eight free parameters
(the P, 's).

We first made a fit of the differential cross sec-
tion and of the polarization for a large domain of t
[0 &!t!&2 (GeV/ c)'j at p~ = 5.85-18.2 GeV/c (Refs.
13-17), and then of the differential cross section
for a large domain of u [-1.8 &u&0.05 (GeV/c)']
at p~ = 5.9-13.8 GeV/c (Refs. 18 and 19).

The values of the parameters, corresponding to
y' = 3/point, are the following!(the values of the

P parameters, when multiplied by a factor of 10',
are in conventional units, which express all the
quantities in GeV/c units):

I

n'=0. 89, n (0) =0.48, n (0) =-0.18,
n'g(0) = -0.03, n «+(0) = -0.13,

and

P, =34.5, P, =-21.7, P, =65.9, P, =-5.6,

P, = -19.5, P, = 31.5, P, = -8.5, P, = 37.1 .
10' .IJ

0.5
I

1.0 1.5
I

-t (GeV/c)

FIG. 2. Wide-angle differential cross section for
m p x n (data from Ref. 14).

The values for the slope n' (which is here uni-
versal) and for the intercepts are in rough agree-
ment with the ones usually used in the literature.

The quality of the fit is displayed in Figs. 1-7.
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FIG. 3. Small-angle differential cross section for
~ p neo (data from Ref. 18).

FIG. 5. Small-angle polarization for m p m. n
(data from Ref. 16). The upper dashed curves are from
Ref. 5, and the lower dashed curves are from Ref. 6.

One can observe there a general agreement with
the values and the structure of the experimental
data.

10 A. Forward Differential Cross Section

The sharp dip in do/dt, as well as the zero in
the polarization at t= -0.54 (GeV/c)', are ezc-
plained by the fact that the (p, P') exchange degen-
eracy imposes the Gell-Mann coupling mechanism
of the p trajectory at n (t) =0, in which the p con-
tributions to both the helicity-flip and -nonflip
amplitudes vanish.
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FIG. 4. Wide-angle differential cross section for
m' P nn (data from Ref. 19).

S. Polarization

For small values of t [0 &-t &0.3 (GeV/c)'] we
obtain a satisfactory fit of the polarization data. "'
The polarization computed previously in Venezia
no-type models are either too large, ' or too small
and negative (see Fig. 5). In Ref. 5 a, nonzero
polarization is produced without introducing a p'
trajectory, but at the price of a rather large
"background" (s, u) term. However, according to
the authors, these "background" terms can some-
times be as large as the leading Regge terms,
whereas they should vanish at high energy. In Ref.
6 the p' Regge intercept is chosen to be n =O.07,
and consequently the (p', P") exchange degeneracy
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FIG. 6. (a) Wide-angle polarization for n. p w n at 5 GeV/c (data from Ref. 17). The isospin bounds evaluated at
6 GeV/c are from Ref. 20. The shaded area corresponds to the errors on the isospin bounds, and the dashed curves
are the bounds evaluated using the Barger and Phillips amplitudes (Ref. 20). (b) Wide-angle polarization for x p
z n at 8 GeV/c {data from Ref. 17).
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FIG. 7. Differential cross section for m p & n at
4.83 GeV/c (data', , 0, and 0 from Ref. 23 and Refer-
ences cited therein; are data from Ref. 19 at 5.9
GeV/c). The significance of the curves (I) and {IQ is
explained in the text.

forces a zero in the polarization for small t.
For larger values of t, the model also fits rea-

sonably well the recent data of Bonamy et al."
Recently bounds on the polarization in 17 p- n n

in terms of experimental differential cross sec-
tions, and polarizations in elastic m'p- m'p scat-
terings were derived by Dass et al.' from isospin
conservation considerations. One of the main re-
sults is that, at p~ =6 GeV/c, large negative po-
larizations for 0.2 s j t js 0.4 (GeV/c)' are ruled
out by the bounds. Comparison of our results with
these bounds is shown in Fig. 6(a).

C. Backward Differential Cross Section.

Our model also fits correctly the backward data
(see Figs. 3 and 4).

The reproduction in our model of the experimen-
tal dip in the region u= -0.2 (GeV/c)' is explained
by a zero in Ao'=At+m„Bt (which is the dominant
amplitude in the backward direction) near this val-
ue. Actually, we obtain a dip which slowly moves
to smaller values of j uj as the energy increases,
as the Cornell-group data" seem to indicate. Our
mechanism for the dip in the backward direction
is obviously different from the one which occurs
in the usual Regge-pole model, where one explains
the dip at u~ -0.2 by the wrong-signature nonsense
zero (WSNZ), ns(u) = ——,'. We have no such
WSNZ simply because we have no (s, u) terms.
Our results suggest that dips, in the case of bar-
yonic exchanges, are not necessarily associated
with the WSNZ. This suggestion seems to be sup-
poz'ted by an obsezvation of Bezgez' pt al. , ' who

note that the nucleon WSNZ dip is absent in some
inelastic processes (pp-dm', m'p- p'p, pp- w'X).

It is interesting to study to what extent the for-
ward limit (2.7)-(2.8) and the backward limit
(2.9)-(2.10) of the A and B amplitudes can be ex-
trapolated to the intermediate region. With all the
parameters fixed, as previously described, we
have calculated the differential cross section at
p~ =4.83 GeV/c for large t and large u.

It can be seen (Fig. 7) that the forward limit of
the amplitudes tcurve (I)] gives a very reasonable
description of the very recent data" not only for
06 jt js2 (GeV/c)', but also for 2& jt j &4
(GeV/c)', where the cuts are expected to dominate.
The fact that the data are compatible with the p
trajectory dominance even for large t strongly
suggests that, at least at the energy corresponding
to p~ =6 GeV/c, the necessity of introducing cuts
is not yet compelling. This gives further support
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for using a p+ p' model.
On the other hand, it can be also seen in Fig. 7

that the backward limit of the amplitudes [curve
(II)] gives also a reasonable description of the
data" for large u.

This approximate analysis of the data for large
t and u seems to show that our Veneziano-type
amplitudes given by (2.1) and (2.2) could describe
satisfactorily the whole region between the for-
ward direction and the backward direction. How-
ever, in attempting such a description in the in-
termediate region, one needs an explicit expres-
sion for the imaginary parts of the trajectories,
which, at the present stage of the theory, are ar-
bitrary functions, specified only by their asymp-

totic behavior (12).
As a concluding remark, we could say that, al-

though very little freedom is allowed in the para-
metrization, our model does account for the ex-
isting high-energy data for r p r n scattering.
Perhaps this might mean that the phenomenological
capabilities of even the simplest form of the Vene-
ziano-type model for two-body reactions are not
yet totally explored.
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