
750 W. P. PETERSEN AND J. L. ROSNER

Conference on High Energy Physics 1972, Chicago,
Illinois (unpublished).

R. P. Feynman, M. Kislinger, and F. Ravndal, Phys.
Rev. D 2, 2706 (1971).

36. Gustafson, Nucl. Phys. B40, 205 (1972).
~4F. E. Close and F. J. Gilman, Phys. Letters 38B,

541 (1972); F. E. Close, F. J. Gilxnan, and I. Karliner,
Phys. Rev. D 6, 2533 (1972).

PHYSICAL REVIEW D VOLUME 7, NUMBER 3 1 FEBRUARY 1973

Linear Regge Trajectories with a Left-Hand Cut

N. G. Antoniou*
CERN, Geneva, Szvitzerland

and

C. G. Georgalas and C. B. Kouris
Nuclear Research Center "Democritus, "Aghia Paraskevi Attikis, Greece

(Received 14 June 1972)

The properties of boson Regge trajectories u(s) with a left-hand cut for s & 0 are studied,
with the following assumptions: (a) Reu(s) is linear in the physical regions of the s and t
channel's. (b) The imaginary part is asymptotically smaller than the real part. (c) At s
= 0, G, (s) has a branch point due to the existence of a Regge cut 0,, (s) in the angular momen-
turn plane, with n, (0) = n(0). The branch point is attributed to the collision of the physical
pole n(s) with a second-sheet pole 5(s), at s = 0. (d) The function n(s) is analytic in the s
plane. Under these assumptions the imaginary part for each boson trajectory is obtained in
terms of a parameter A and a parameter-free universal function determined by solving an
integral equation numerically. The parameter A is determined by requiring that the first
meson of each trajectory have the observed width. The model gives imaginary parts in-
creasing almost linearly with s for large ~s). The widths of the recurrences increase
linearly with their mass. The results support exchange degeneracy p-f, K*-K~, ~-A2.
The imaginary part, for s & 0, is compared with the phenomenological results of other
authors.

I. INTRODUCTION

The possibility that Regge poles a(s) are com-
plex for s &0 has been investigated recently. ' '
This means that Regge trajectories develop a left-
hand cut for s &0. The mechanism of production
of this cut is the collision of two Regge poles."
In relativistic scattering the mechanism of gener-
ating complex poles is strongly related to the ex-

. istence of cuts in the angular momentum plane.
The colliding poles are expected, on physical
grounds, to lie on different Riemann sheets of the
angular momentum plane for s &0, whereas for
s &0 they are complex conjugates of each other on
the same sheet, which is assumed in this paper to
be the physical (first) sheet. There is therefore
a strong pole-cut relationship based on analyticity
in the angular momentum plane. ' Hence the study
of complex poles is connected to the investigation
of the properties of the Regge cuts. In particular,
it turns out that the effect of Regge cuts can be
simulated by a pair of complex poles in a satis-
factory way. '

The new quantity entering into the Regge-pole
description of the high-energy two-body reactions
in the complex-pole model is the imaginary part
of the trajectory n, (s), along the left-hand cut
(s &0). The form of the function n~(s) is unknown
and only a crude phenomenological determination
can be achieved. On the other hand, since the
nature of the cuts in the angular momentum plane
is not yet known in detail, any information for
o., (s) from the pole-cut relationship is necessarily
model-dependent.

In the present work an integral equation for the
discontinuity function has been established by the
use of analyticity in the s plane together with some
general properties of Regge poles and cuts. The
solution of this equation is then determined nu-
merically and the results are compared with the
widths of the boson recurrences and with the phe-
nomenological left-hand absorptive part.

In Sec. II the assumptions are stated and the
equations of the model are derived and discussed.
In Sec. III our results are compared with the ex-
perimental data and the phenomenological results
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of other authors. In Sec. IV the conclusions are
briefly discussed.

II. THE MODEL

We consider a generic boson trajectory u(s) for
which we make the following assumptions:

(a) The trajectory u(s) is analytic in the s plane
with two cuts -~ & s &s~ and sp &s &~, where s, is
the lowest threshold for the trajectory and s~ is
the point where n(s) collides with a second-sheet
pole in the / plane. '

(b) The cut is weak and s~ approximately coin-
cides with zero owing to the property n, (0) = n(0),
where n, (s) is the absorptive cut associated with
the pole n(s). In the case we consider, both the
l-plane and the s-plane branch points lie on the
real axis. It follows then from the analysis of Ref.
2 that the threshold behavior of the imaginary part
of n(s) for s &0 is n, (s) -(-s)'~', s -0 .

The available information regarding the behavior
at the physical threshold s = sp is rather ambiguous
because it comes from nonrelativistic arguments
(potential scattering) and it relies heavily on the
value of the intercept n(0). ' Moreover, the exact
threshold behavior at s = s, suggested by potential
scattering is not consistent in general with our
assumption (c) below, that the Ren(s) is linear. '

On the contrary, near the left-hand threshold
the trajectory is known to behave like'

n, ,(s) = n(0)+ ns+ bs'~'+ ~ ~ ~,

which is consistent with linearity of the real part.
We therefore consider it more safe to assume

at the beginning only the threshold behavior at
s-0 .

We shall see later that a behavior (s —so)'~' at
the physical threshold can be deduced from our
assumptions for Imn(s).

(c) The real part, na(s), of the trajectory is
linear in the physical regions of both s and t chan-
nel (s&s, and s &0) as suggested by the phenome-
nological study of-the Re gge poles. In general the
two linear parts (for s&s, and s &0) may be paral-
lel but they do not necessarily coincide, since a
small splitting is not excluded by the data.

Hence we write

Ren(s) = n" + b"s (s & s,),
Ren(s) =n +b s (s &0) .

(d) The imaginary part Imn(s) for s &s, satisfies
the relation Imu(s) & s' ' for s-~.

This hypothesis is less stringent than it may
seem. In fact, n(s) -s for s-+~, as will be dis-
cussed in detail in the Appendix. This implies
Imu(s) 6 s. Our assumption (d) therefore only ex-
cludes the possibility e=0.

Technically, this implies square integrability of
the function f(u) defined by Eq. (14) below. Phys-
ically, however, for sufficiently small ~, the de-
viation of Imn(s) from linearity may not even be
observable. In fact, our explicit calculation will
show that asymptotically, Imu(s) does not differ
appreciably from linearity.

Using these assumptions we write once-sub-
tracted dispersion relations for the functions F,(s)
=n(s)/v s and F,(s) = n(s)/(s, —s)'~'. Denoting by
nz(s) and Imn(s) the imaginary parts of u(s) for
s &0 and s & s„respectively, we obtain

nI (S) nR(Sg) S —s~ ~
V —S ~Sg 7T

Imn(s')ds'
(s' —s)(s'- s,)v s' w „(—s')'~'(s'- s)(s' —s, )

(s &0), (2)

Imn(s) ns(s, ) s —s, &
"

(n + b"s')ds' s —s,
(s- s,)'" (s, —s,)'~ m, , (s'- s,)'"(s'- s)(s' —s,) v

u, (s')ds'
„(s,—s')'i'(s' —s)(s' —s, )

(s & so), (3)

where 0 &sy +sp For simplicity we take s, = —,'s, .
Equations (2) and (3) are coupled integral equations for the unknown functions nz(s) and Imn(s). Substi-

tuting the expression (2) for n, (s) in (3) we finally obtain the following linear integral equation:

Q(s) = &f&o(s)+ G(s, s")$(s")ds" (S &So), (4)

where

( )
Imu(s)

(S—a So)(S—So)
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2(s ——,'s ( s(s ——,'s )(s —s )'i' s s —(s —s,)'S') (6)

From Rqs. (2) and (9) we have

s ——,'s, " Imu(s')ds'
8 —8 8 —@so 8

(10)

The threshold behavior u, (s) -(-s)' ' leads then
to the condition

~s
" Imu(s')ds'

2v, (si ——,'s, )(s')'~' '

Substituting (11) into (6) and introducing the new

variables

we transform (4) into the following integral equa-
tion:

1

f(u) =1+ K(u, v) f(v)dv,
0

(12)

where

The constants A and B are
x/p

[(2u" —u~) + ', s, (2-b" b~—) —u(-,'s,)],
(6)

x/a
B= — [u~+ ,'b~s, -u( ,'s—,)]-.

Sp

bounded and has no singularity at u= v. Equation
(12) has therefore a unique solution in L', which
we determine numerically. The assumption that
the solution f(u) is square-integrable is equivalent
to assuming Imu(s) c s' ' for large s.'

The solution has been obtained (a) by the Fred-
holm method (approximation by a system of linear
algebraic equations) and (b) by the method of suc-
cessive iterations. The second method is applic-
able since our kernel is an L' kernel, P,(u) = 1, is
a square-integrable function in the interval [0, 1]
and ~)K(u, v) (I &1. The results of both methods co-
incide and the function f(u) thus obtained is shown
in Fig. 1.

III. RESULTS AND COMPARISON WITH DATA

The function f(u) has a universal character for
all boson trajectories From. the fact that f(u)
tends to a constant for u-0 or s- s, and from Eq.
(14) we obtain a behavior Imu(s) -(s —s,)'~' near
the physical threshold.

The Imu(s) given by (14) has been determined
for each trajectory (p, ur, K*) from Eq. (14) by the
requirement that the first meson of each trajec-
tory have the experimental width. We observe that
the Imu(s) increases almost linearly with s. The
results are shown in Fig. 2. The model gives then
the following expression for the width function:

2 2

K(u, v) =,w'(v' —u') (1+v')

1+'g 1- Q 1+0 1- 5

Imu(s)
F(s) — R~ ~

s

The results are shown in Fig. 3, plotted along

(16)

and f(u) is defined by

lmu(s) =-,'A(s —s,)'~' f(u) .
The quantity al is then given by the relation

(
A~s, ' u'f (u)du

7T(u( —1) o u —u(

where

u= ' s&O.

(13)

(14)
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The kernel (13) is square-integrable but not FIG. 1. Plot of the universal function f{u).
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IV. CONCLUSIONS

With some general assumptions concerning the
behavior of boson trajectories with a left-hand cut
we have written two coupled integral equations for
the imaginary parts of n(s) in the regions s &s„
s &0. These equations lead to expressions for the
imaginary parts and the width functions in terms
of a universal parameter-free function f(u) where
u = [(s—s,)/s] '~'. This function has been deter-
mined numerically. The only parameter A in-
volved i.n this model affects the size of the discon-
tinuity but not its form and it can be determined
in each case from the width of the lowest member
of the trajectory. The width function calculated is
compared with the experimental widths. Consis-
tency with exchange degeneracy is observed and
discussed.

Finally the absorptive part along the left-hand
cut is determined and plotted and a comparison
with the phenomenological curves of other authors
for the p trajectory is made.

In view of the differences among the curves of
Fig. 4 we believe that a phenomenological analysis
of the high-energy reactions, based on theoretical
models for corn. plex poles such as the one pro-
posed, might be useful.
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with the additional properties that 6(x) = 0 on the
real axis where no cuts occur and has no discon-
tinuities greater than or equal to m in magnitude.
We now consider

f(s) =—o.(s) —N, (A3)

( )-aA( )~/~ (A4)

In our case, for s & s„ Im f(s) =1m'(s) & 0,
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interval (s„~) such that Re f(s) = 0, Ref(s) &0 for
s, &s &s and Re f(s) &0 for s &s. We have also
6(s,) =0. Then
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and
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where N is an integer with the correct signature.
Obviously f(s) satisfies (a), (b), and (c) above.

The function (A3) has no poles [by assuinption
(a) in Sec. II above] and no zeros on the first Rie-
mann sheet of the s plane, since such zeros would
correspond to particles with spin J=N which are
allowed only on the second Riemann sheet. By the
discussion of Ref. 10, the absence of zeros implies
that assumption (d) is also satisfied. Hence (Al)
and (A3) give
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Similarly, for s &0, Imf(0) =0 and Ref(s) &0.
Using also 6(0) = 0 we have --,'ii & 6(s) &-,'~ and,
therefore,

1 1—p7r & T & 2'tT (A6)

APPENDIX

(A1)

where pg and m are the number of zeros and poles
of f(z), respectively,

o = lim 6(x), T= lim 6(x) .

The phase 6(x) is defined by the relation

Ne shall use a result of Sugawara and Tubis" in
order to show that o.(s) - s for Is I-~ .

Consider a function f(z) with the following prop-
erties: (a) f(z) is analytic in z everywhere except
for cuts which occur on the real axis and a finite
number of poles; (b) f(z) is real in the sense that
f(z)*=f(z*); (c) f(z) is bounded at IzI=~ by a
finite polynomial in z; (d) the phase 6(z) of f(z)
(defined more precisely below) has finite limits
6(+~) as z-+~.

With the assumptions (a)-(d) it has been shown
in (8) that for

I
z I
-~

f(z) -z" "(-z) ' "(z)' "

By (A2) and (A4) we can write, for large positive
S~

Reo. (s) -cos[ lim 6(s)] s

Since Rem(s) -s, we have the following two pos-
sibilities:

(I) cos lim 6(s) w0

and

lim [6(-s)—6(s)] = w;
S~+ oo

(11) cos lim 6(s) =0
S~+ 00

lim [6(-s) —6(s)] &w .
S~+ oo

However, case (II) must be excluded because, by
(A5),
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cos[ lim 6(s)]=0

implies

Then by (A6) 0 ~ T o-&m, which is inconsistent with
(II). Therefore 7. o-= w and from (A4) we get o. (s)
-s. This result along with the assumed linearity
of the real part implies Imo. (s) s s.

These conclusions justify the fact that we have
written once-subtracted dispersion relations in (2)
and (3) of Sec. II.
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Glauber theory, including the complications of spin and isospin, is applied to high-energy
nd scattering. We compare theoretical predictions with recent experimental results on total
and differential elastic cross sections. Particular attention is given to the suggestion of new
experiments which bear on possible modifications of the Glauber picture.

I. INTRODUCTION

The classic picture of high-energy hadron-
nucleus collisions developed by Glauber' has by
now reached a high degree of sophistication, and
is well known to account for the basic features
observed experimentally. ' At the same time,
Glauber theory has yet to be given a justification
in terms of quantum field theory in the cloak of
Feynman diagrams, 3 and periodic suggestions are
made for its improvement. The history of the sub-
ject discourages the hope that a swift theoretical
conclusion might be forthcoming, so we have un-
dertaken a benchmark calculation of total and elas-

tic differential cross sections for z'd scattering
in terms of the "best available" pion-nucleon scat-
tering amplitudes and deuteron wave functions. In
so doing we have been able to make quantitative
comparisons with recently published data and to
recognize the need for additional experimental
studies.

Our calculations of elastic differential cross
sections represent in part merely an updating of
earlier work by Michael and Wilkin4 and by Alberi
and Bertocchi. ' In addition we treat briefly some
modifications to Glauber theory proposed lately
by Cheng and Wu. ' A comparison of our calculated
total cross sections with data obtained at Serpuk-


