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A generalization of this theorem is suggested if
we introduce the factor Qv/2 J(2Z —1). We there-
fore conjecture

qv
2J'(2 J —l)M' '

for arbitrary spin.
The generalized Cabibbo-Radicati theorem, Eq.

(9), can also be written as

(12)

where Go~ is the isovector part of the physical form
factor Go introduced by Gourdin, ' extending for
higher spins the definition of the charge form fac-
tor first introduced by Yennie, Levy, and Raven-
hall' for the nucleon case.
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We first show that the so-called "kernel subtraction" technique which we used in a previous
paper on the Bethe-Salpeter equation is unnecessary. The simplified equations which result
make it possible to introduce matrix Pade approximants in a straightforward way. These are
found to converge to the same solution that we found in our previous work and more rapidly
than the ordinary Pade approximants.

I. ELIMINATION OF THE KERNEL-SUBTRACTION
TECHNIQUE

If we do not use the kernel-subtraction technique, '
introduced in Sec. IIE in Ref. 2, everything goes
as in Ref. 2 with the following minor and simplify-
ing exceptions. The last term in Eq. (29) is un-
necessary. Equations (32) and (34) remain valid,
but they are equations for p(p, ip„a)and

Q(p, E- E(p), o.); that is, the primed p's are not
introduced as they are in Eq. (24) of Ref. 2. Also,
in place of Eqs. (37)-(41), there is a single, sim-

pier equation,

tan5= —p(g 0, 1;p, 0, 1),

provided that, in the integrals over q in Eqs. (32)
and (34), the principal part is taken.

The principal part is taken in this way. The inte-
grals over q have two contributions, one from the
double integral and one from the single integral on
the right-hand side of Eqs. (32) and (34). The sin-
gle integral with p as upper limit contributes to
one side of the q integration (that is, the side q
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& p), and the double integral contributes to both
sides (q & p and q& p). The two parts go together
in such a way that a principal-part integral occurs
with the singularity at q =p (this fact is explained
at greater length in connection with the reduction
of the Bethe-Salpeter equation to a. Schrodinger
equation immediately below). The principal part
is taken by choosing a mesh symmetrical about
this singular point and omitting the singular point.
[ln order to make this last remark perfectly pre-
cise, we note that the integral,

(2)

can be calculated numerically by using a mesh with
equally spaced points, one point being x=-,', and
omitting the infinite contribution of the point x ——,.]

Therefore, Eq. (42) has to be replaced by

1+u
P ~

so that the singular point is u=o, which we always
take to be a mesh point. Equation (43) has to be
replaced by the same thing, since the double and
single integrals combine to make the principal
part and must be treated in the same way, that is,
subjected to the same transformations. Finally,
after the variables are transformed according to
the new Eqs. (42) and (43), that is, according to
Eq. (3) above [and Eqs. (44)-(46) of Hef. 2 for the

1 x 1

[E(q) —E] '+ q,
'

I E(q}—E I

This equality is the basis of the often used approx-
imation' 1, 1

[E(q)-E]'+q,' ' IE(q)-El (6)

Equations (32} and (34) of Hef. 2 become identical,
and both are

q, integrations] the principal part is taken very
simply by omitting the point u = 0.

It is possible in certain approximations to re-
duce the Bethe-Salpeter equation to a Schrodinger
equation with a potential, and it may help explain
the above discussion if this is done in a particular-
ly simple approximation as follows.

The propagator S(q, iq„1,1) is

1
S(q iq4 1 1)

[ ( } ]
A Schrodinger equation results if (1) all negative-
energy states are ignored, (2) it is assumed that
Q(q, iq„1)varies slowly with q, when compared to
this propagator, and (3) K(p, o, 1; q, iq„1)varies
slowly with q4 when compared to this propagator.
Then only p(q, 0, 1) need be taken into account, and
the integrals over q, in Eqs. (32) and (34) may be
done analytically. These integrals are

&j&(p, 0, 1) = G(p, 0, 1;p, 0, 1) +— dqK(p, 0, 1;q, 0, 1), p(q, 0, 1)
1 1

271
Q IE q —El

P 1
+— dq A ( p, 0, 1; q, 0, 1) —.. . p(q, 0, 1)

7T Q E,,e
= G( p, 0, 1;p, 0, 1) +— dq G( p, 0, 1; q, 0, 1) p(q, 0, 1),p 1

7T Q

which is a Schrodinger equation.
From this result it is clear how the double and

single integrals over q, in Eqs. (32) and (39) of
Ref. 2 go together to make a principal-part inte-
gral. Furthermore, it is clear that the singular-
ity dealt with is not too severe to be taken into ac-
count in the manner described above. The kernel-
subtraction technique is unnecessary.

II. MATRIX PADE APPROXIMANTS

We go back to the full Eqs. (32) and (34) of Hef.
2 (for unprimed g's). We define p(p, ip„o.;p, o, p)
and p(p, E —E(p), u; p, 0, p) by using in the inho-
mogeneous terms in Eqs. (32) and (34)

G(p, ip, o.'; p, 0, p} and G(p, E—E(p), u; p, 0, p) .
Then we define a tangent matrix,

(tan6)„,=—y(p, O, ~;p, O, p) .

(tan6) =T" g +T"& g + ~ ~ ~ .exp Otg 4 ag 4 (9)

The matrices T may be comp~ted rapidly to any

We claim that this procedure is a straightforward
extension suggested by analogy with coupled-chan-
nel Schrodinger equations with potentials. '

By iterating Eqs. (32) and (34) of Ref. 2 as ex-
plained in Ref. 2 using the meshes described in
Sec. I above, we obtain the expansion
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ix ~S state, E =100 MeV. The 3PO state (e =4) has beenTABLE I. Some elements of the symmetric tangent matrix, 0 s a e,
neglected in all calculations.

~tane)(,",) (ta ~)(,~) ~tane)(",) (tant)(,") (ta ~)(,",)

1

3
4
5
6
7
8

-4.26x 10~
9.90x 10

-2.11x10 3

6.59x 10
—1.97x 10

6.10x10 5

-1.85x 10
5.62x10 ~

-2.61
7.38x10 2

-1.80x 10-2

4.28x10 '
-1.30x10 3

3.83x10 4

-1.17x 10-4
3.51x lo '

-2.61x 10-'
8.14x10 '

-1.35x 10 3

3.08x10 4

-8.65x10 '
2.47x 10

-7.35x 10 8

2.19x 10-8

-4,26x10 2

4.54x 10
-1.03x10 i

3.12xlQ 2

—8.02 x 10-'
2.45x10 ~

-7.23x lo 4

2.20x10 4

2.61xl0 i

-8.69x 10
-5.63 x 10

1.92x10 3

-5,11x10
1.53 x 10

-4.51x 10 5

1.36 x 10

1.05
-2.96 x 10
3.3Qx 10
7.61x 1Q '

-2.70 x 10 5

8.77xl0 ~

-2.68 x 10 8

8.22x10 '

desired order (we have computed through 16th
order in the present work). Some elements of the
T matrices are given in Table I.

A [2 2] matrix Pads approximant (for example,
~ ~ ~the generalization to higher orders is obvious)

was defined by requiring that

(tani!)= N ~(—)+N '(—)
1

1+D'"(g'/4m)+D' ~( g' /4w)'

=Z x—(10)
1

2 D

agree with the series expansion of (tan5) through
fourth order. By cross multiplying one gets

T'" =N'"
t

T'"D'"+ r(" =N(",
T(2)D(l) T (l)D(2) + Z

(3) 0

T ' D ' + Z' ' D ') + y ') = 0

(13)n~D~ =d~N

In Eq. (13), no terms of order greater than 2M in
(g'/4w) occur. But the left- and right-hand sides
of Eq. (12) agree to order 2M since both agree
with the series expansion Eq. (9) through order
2M. Therefore, Eq. (12) is exact. This proof dif-
fers in no way from the proof that diagonal Pads

6approximants to the S matrix are unitary.

III. RESULTS OF CALCULATION

MATRIX PADE APPROXIMANTS

EIpb 100 MeV

Calculations were done for the 'S, state, at E&,b
= 100 MeV, with pseudoscalar-pion exchange, as
in Ref. 2. Only the 'S,', 'S, , and 'P', states were
included (see Ref. 2) because the 'P', -state contri-
bution is known to be negligible. '

which can be solved for the N's and D's. It is
necessary to have the D's on the right of the T's
in Eq. (11) since matrix multiplication is not com-
mutative; care must be taken to make the order
of all products correct. We could have put the de-
nominator on the left in Eq. (10). The order of
factors in Eq. (11) would then be reversed, and
the resulting N's and D's would have been differ-
ent. However, the result is exactly the same as
we prove now. Let n& and d~ be the numerator
and denominator [both of order M in (g'/4w) j when
d„stands on the left, and let N~ and D„bethe
numerator and denominator when D& stands on the
right [as D, does in Eq. (10)j . Then we ask wheth-
er the equality

1 1—n~=N

O

8

'2 ~L
-20 -15 -10

~-LZ~J- I I I I I ~ I I

0 5 10 15

g~/47r

20

is correct. By cross multiplication we see that
this Eq. (12) is equivalent to

FIG. 1. Matrix Pade approximants. tan6( So) vs g 4,s 24m

E„b—-100 MeV.
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