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A generalization of this theorem is suggested if
we introduce the factor Q"/2J(2J —1). We there-
fore conjecture

QV

A= 5507 -1

(11)
for arbitrary spin.

The generalized Cabibbo-Radicati theorem, Eq.
(9), can also be written as

acY
= - -0
A 2w( “ ) (12)

where G{ is the isovector part of the physical form
factor G, introduced by Gourdin,? extending for
higher spins the definition of the charge form fac-

tor first introduced by Yennie, Lévy, and Raven-
hall® for the nucleon case.
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We first show that the so-called ‘“kernel subtraction” technique which we used in a previous
paper on the Bethe-Salpeter equation is unnecessary. The simplified equations which result
make it possible to introduce matrix Padé approximants in a straightforward way. These are
found to converge to the same solution that we found in our previous work and more rapidly

than the ordinary Padé approximants.

I. ELIMINATION OF THE KERNEL-SUBTRACTION
TECHNIQUE

If we do not use the kernel-subtraction technique,*
introduced in Sec. IIE in Ref. 2, everything goes
as in Ref. 2 with the following minor and simplify-
ing exceptions. The last term in Eq. (29) is un-
necessary. Equations (32) and (34) remain valid,
but they are equations for ¢(p, ip,, a) and
o(p, E— E(p), a); that is, the primed ¢’s are not
introduced as they are in Eq. (24) of Ref. 2. Also,
in place of Eqgs. (37)=(41), there is a single, sim-

pler equation,
E ~ .
tan5=—2; »(50,1;p,0,1), (1)

provided that, in the integrals over ¢ in Eqs. (32)
and (34), the principal part is taken.

The principal part is taken in this way. The inte-
grals over ¢ have two contributions, one from the
double integral and one from the single integral on
the right-hand side of Eqs. (32) and (34). The sin-
gle integral with p as upper limit contributes to
one side of the g integration (that is, the side ¢
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< p), and the double integral contributes to both
sides (g < p and ¢> p). The two parts go together
in such a way that a principal-part integral occurs
with the singularity at ¢ =5 (this fact is explained
at greater length in connection with the reduction
of the Bethe-Salpeter equation to a Schrédinger
equation immediately below). The principal part
is taken by choosing a mesh symmetrical about
this singular point and omitting the singular point.
[In order to make this last remark perfectly pre-
cise, we note that the integral,

bodx
L 1-2x"

(2)

can be calculated numerically by using a mesh with

equally spaced points, one point being x=%, and

omitting the infinite contribution of the point x— 3.]
Therefore, Eq. (42) has to be replaced by

1+u
T1-u

q b, (3)
so that the singular point is #=0, which we always
take to be a mesh point. Equation (43) has to be
replaced by the same thing, since the double and
single integrals combine to make the principal
part and must be treated in the same way, that is,
subjected to the same transformations. Finally,
after the variables are transformed according to
the new Eqs. (42) and (43), that is, according to
Eq. (3) above [and Eqs. (44)-(46) of Ref. 2 for the

J

q, integrations] the principal part is taken very
simply by omitting the point #=0.

1t is possible in certain approximations® to re-
duce the Bethe-Salpeter equation to a Schrdodinger
equation with a potential, and it may help explain
the above discussion if this is done in a particular-
ly simple approximation as follows.

The propagator S(q,ig,,1,1) is

1

S(g, iq., LH—m .
A Schrédinger equation results if (1) all negative-
energy states are ignored, (2) it is assumed that
¢(q, iq,, 1) varies slowly with g, when compared to
this propagator, and (3) K(p,0,1;q,iq,, 1) varies
slowly with g, when compared to this propagator.
Then only ¢(g, 0, 1) need be taken into account, and
the integrals over g, in Eqs. (32) and (34) may be
done analytically. These integrals are

(4)

= 1 N 1
fo 443 (E(@)-E]*+q2 2" |E(Q)-E| - )

This equality is the basis of the often used approx-
imation*

1 N 1
[E@-E]+q2 %" 1E(@-E|

5(‘14) . (6)

Equations (32) and (34) of Ref. 2 become identical,
and both are

- 7 1 . 1
¢(p’01 l)_G(p7071’p90’ 1)'*'277_/‘; qu(pyO,]"q)O’ 1) IE(q)—El ¢(q’0’ 1)
13 . 1
v daK(p,0,150,0,1) G 60,0,
- 3 P " . __1
=6(p,0,1;5,0, 0+ [ 0 G(p,0,1;4,0,1) 55— 9(0,0,1), 6

which is a Schrddinger equation.

From this result it is clear how the double and
single integrals over ¢, in Egs. (32) and (39) of
Ref. 2 go together to make a principal-part inte-
gral. Furthermore, it is clear that the singular-
ity dealt with is not too severe to be taken into ac-
count in the manner described above. The kernel-
subtraction technique is unnecessary.

Il. MATRIX PADE APPROXIMANTS

We go back to the full Eqs. (32) and (34) of Ref.
2 (for unprimed ¢’s). We define ¢(p, ip,, a;p,0, 8)
and ¢(p, E - E(p), a; p, 0, B) by using in the inho-~
mogeneous terms in Eqs. (32) and (34)

r

G(p, ips, 3,0, B) and G(p, E~ E(p), ; $,0,8).
Then we define a tangent matrix,

(tané)afz% ¢($,0,a;5,0,8) . (8)

We claim that this procedure is a straightforward
extension suggested by analogy with coupled-chan-
nel Schrddinger equations with potentials.®

By iterating Eqs. (32) and (34) of Ref. 2 as ex-
plained in Ref. 2 using the meshes described in
Sec. I above, we obtain the expansion

2 2\2

The matrices 7T may be compated rapidly to any
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TABLE I. Some elements of the symmetric tangent matrix, 1S, state, E,, =100 MeV. The 3P{ state (o =4) has been

neglected in all calculations.

n (tan6)) (tand)) (tand)) (tand)§) (tané)§) (tans){)

1 —4.26x1072 -2.61 -2.61x 107! —4.26x 1072 2.61x 10! 1.05

2 9.90x 1073 7.38x1072 8.14x 1073 4,54x1071 ~8.69%x 1072 —2.96x1072
3 —2.,11x 1073 -1.80x 1072 -1.35x1073 -1.03x 101 -5.63%x1073 3.30x1074
4 6.59x 107 4.28%x1073 3.08x 10~ 3.12x1072 1.92x1073 7.61x1075
5 -1.97x107* -1.30x1073 -8.65x 107 -8.02x1073 -5.11x1074 -2,70x 1075
6 6.10x107° 3.83x107¢ 2.47x107° 2.45x 1073 1.53x1074 8.77x 1078
7 —1.85%x107° -1.17x10™4 —7.35%1078 —7.23x1074 —4,51x1075 —2.68x1078
8 5.62x 1076 3.51x107° 2.19x 108 2.20x1074 1.36x107° 8.22x 107

desired order (we have computed through 16th nyDy=dy Ny . (13)

order in the present work). Some elements of the
T matrices are given in Table I.

A [2,2] matrix Padé approximant (for example,
the generalization to higher orders is obvious)
was defined by requiring that

(tans) =[N(1)<§_;>+ N(2)<%2'>2]

1
17 D'V (g?/47) + D (g?/4n)?

1
= X = 0
N, X (10)
agree with the series expansion of (tan6) through
fourth order. By cross multiplying one gets

T(l) =N(1) ,
T(l)D(1)+T(3) =N(z) ,

(11)
T(Z)D(1)+T(1)D(2)+T(3)=O ,

T(S)D(1)+T(2)D(2)+T(4) =0,

which can be solved for the N’s and D’s. It is
necessary to have the D’s on the right of the T’s
in Eq. (11) since matrix multiplication is not com-
mutative; care must be taken to make the order
of all products correct. We could have put the de-
nominator on the left in Eq. (10). The order of
factors in Eq. (11) would then be reversed, and
the resulting N’s and D’s would have been differ-
ent. However, the result is exactly the same as
we prove now. Let n, and d, be the numerator
and denominator [both of order M in (g?/4n)] when
dy stands on the left, and let N, and Dj be the
numerator and denominator when D stands on the
right [as D, does in Eq. (10)]. Then we ask wheth-
er the equality

1 1

d_u Vlu=NM_D_M (12)

is correct. By cross multiplication we see that
this Eq. (12) is equivalent to

In Eq. (13), no terms of order greater than 2M in
(g?/47) occur. But the left- and right-hand sides
of Eq. (12) agree to order 2M since both agree
with the series expansion Eq. (9) through order
2M. Therefore, Eq. (12) is exact. This proof dif-
fers in no way from the proof that diagonal Padé
approximants to the S matrix are unitary.®

II. RESULTS OF CALCULATION

Calculations were done for the 'S, state, at E,,
=100 MeV, with pseudoscalar-pion exchange, as
in Ref. 2. Only the 'S;, 'S5, and 3P¢ states were
included (see Ref. 2) because the ®PJ-state contri-
bution is known to be negligible.?

5 s o R ,
N MATRIX PADE APPROXIMANTS
o E 17100 Mev
8
l.‘
w
s Or ]
2 2 ]
aF ]
3 3
[ 8
_2 Lt Ny P L PRI, B Ly L
=20  -15 0] 5 15 20

o4

FIG. 1. Matrix Padé approximants. tand(!Sy vs g*/4r,

E,, =100 MeV.
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FIG. 2. Ordinary Padé approximants, tané(Sy) vs
g/4n, E; =100 MeV.

The convergence of the [M ,M] matrix Padé ap-
proximants is shown in Fig. 1. The result to which
they converge is the same as the result found in
Ref. 2.

By applying the method of Padé approximants to
the (1, 1) element of the tangent matrix with ordin-
ary Padé approximants, the results shown in Fig.
2 are obtained.

We conclude that the matrix Padé approximants
converge more rapidly than the ordinary Padé ap-
proximants. The [1, 1] matrix Padé approximant
is far more reasonable than the ordinary Padé ap-
proximant, and the [2,2] matrix Padé approxi-
mant locates the nearest singularities of tand(S,)

as a function of (g2/4n).

[We conclude in Ref. 2 that these nearest singu-
larities are branch points of tan6('S,) as a function
of (g%/4w). This has been disputed,” but we think
incorrectly in view of the arguments of Mandel-
stam.® It is not our purpose to pursue this dis-
cussion. |
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