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We cannot find a closed form for this relation. The
curve in Fig. 2 has been constructed from the asymptotic
formulas
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Note that Mz, (0) = M@,(-0) =M&(~2m —0).
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It is shown that the first-order isospin-antisymmetric amplitude for the scattering of iso-
vector photons on a spin J' ~ ~ target is determined by the i,sovector charge radius, magnetic
moment, and quadrupole moment of the system.

Beg' has studied the non-Abelian Compton effect
on nucleons to first order in the frequency ~ of
the incident photon and showed in particular that
the well-known Cabibbo-Radicati sum rule follows
from the obtained first-order theorems.

In this paper we extend these theorems for J
& -', and obtain a generalized expression for the
Cabibbo-Radicati theorem which relates the first-

order isospin-antisymmetric spin-independent
amplitude to the isovector charge mean-square
radius of the system. On the other hand, the spin-
dependent part is shown to be given by the isovec-
tor magnetic moment and quadrupole moment of
the system.

Our starting point is the relation

+ iV(E /m)'~'e "8&(p'
I
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where U„"~ and E„„are, respectively, the unexcited- and excited-state contributions to the f -matrix am-
plitude T„B, where
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Equation (I) is a consequence of current conservation and the basic equal-time commutation relations~ of
the current operators J„". In these equations n and p are isotopic-spin indices, k' and k (p' and p} are out-
going and incident "photon" (target} momenta with p =0.

As is well known, E008 is of order ~' and therefore it cannot compete for the determination of E,&8 to
first order in co.
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To calculate the known part on the right-hand side of Eq. (1) we need the J= —,
' isovector current matrix

element, 2

where q=p'-p and F", (q') =Ff (q')I" are the isovector form factors: E»(0) =1, E, (0)+E,"(0)=i(» is the iso-
vector magnetic moment in units of 1/2M, F»(0)+F, (0) = Q» is the isovector quadrupole moment in units of
1/M', and E4(0) contains these and the octupole magnetic moment of the system. One obtains for the iso-
spin-antisymmetric part of Eq. (1)

(4)

where we have already written the right-hand side in J space with the help of known relations. The iso-
spin-symmetric part has not been written down since it gives a trivial extension of the general results
obtained by Pais for physical Compton scattering. We write now the tensor decomposition,

Note that the third element is an irreducible sec-
ond-order tensor. In this way the generalized
form of the Cabibbo-Radicati theorem will involve
only the spin-independent amplitude A,

Substituting Eq. (5) in Eq. (4) and comparing co-
efficients, we obtain

where Ii, is the isovector Dirac form factor.
We also quote the result for the case~ J'=1 (di-

vided by 2M):

A, (0) =—

(6a)

(6b)

(J=1)
( 3M

where here4 E»(0) = p. ».
For the case J =0 one immediately obtains

(6c)

where E," = [dF, (t)/dt], .
By the usual method we compute the isovector

charge mean-square radius'

=i'Vlim lim V~'(p'~ Jo jp).
P=o P =P

Using Eq. (3) we obtain'

(6)

A, =-(2F )~ (J =0),

where F»(q') is the isovector charge form factor.
Using Eq. (7) with the corresponding expressions

for the current matrix element it is easy to check
that all factors present in these amplitudes for
J ~ 1 are equal to —,'(r')», as in the ease J = —,'. We
therefore conjecture the following generalization
of the Cabibbo-Hadicati theorem:

»
Ag=

3

for arbitrary spin.
Theorem (6b) satisfies the generalized theorem

which is exactly the factor present in Eq. (6a).
Therefore, the spin-independent part A, is given
to first order by the isovector charge radius and
the spin-dependent part of the amplitude is given
by the isovector magnetic and quadrupole moment
of the system.

Theorem (Ga) corresponds to the Cabibbo-Rad-
icati theorem for the nucleon case' which reads

(10)

that has been conjectured before. '
Theorem (6c) is a, generalization to spin ~ of a

similar theorem' for spin-1 targets, which (divid-
ed by 2M) reads
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A generalization of this theorem is suggested if
we introduce the factor Qv/2 J(2Z —1). We there-
fore conjecture

qv
2J'(2 J —l)M' '

for arbitrary spin.
The generalized Cabibbo-Radicati theorem, Eq.

(9), can also be written as

(12)

where Go~ is the isovector part of the physical form
factor Go introduced by Gourdin, ' extending for
higher spins the definition of the charge form fac-
tor first introduced by Yennie, Levy, and Raven-
hall' for the nucleon case.
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We first show that the so-called "kernel subtraction" technique which we used in a previous
paper on the Bethe-Salpeter equation is unnecessary. The simplified equations which result
make it possible to introduce matrix Pade approximants in a straightforward way. These are
found to converge to the same solution that we found in our previous work and more rapidly
than the ordinary Pade approximants.

I. ELIMINATION OF THE KERNEL-SUBTRACTION
TECHNIQUE

If we do not use the kernel-subtraction technique, '
introduced in Sec. IIE in Ref. 2, everything goes
as in Ref. 2 with the following minor and simplify-
ing exceptions. The last term in Eq. (29) is un-
necessary. Equations (32) and (34) remain valid,
but they are equations for p(p, ip„a) and

Q(p, E- E(p), o.); that is, the primed p's are not
introduced as they are in Eq. (24) of Ref. 2. Also,
in place of Eqs. (37)-(41), there is a single, sim-

pier equation,

tan5= —p(g 0, 1;p, 0, 1),

provided that, in the integrals over q in Eqs. (32)
and (34), the principal part is taken.

The principal part is taken in this way. The inte-
grals over q have two contributions, one from the
double integral and one from the single integral on
the right-hand side of Eqs. (32) and (34). The sin-
gle integral with p as upper limit contributes to
one side of the q integration (that is, the side q


