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To test the multiparticle, zero-width bootstrap, we have constructed a six-pion amplitude
by modifying the general chiral pion amplitudes of Neveu, Schwarz, and Thorn. We show
that imposing the chiral constraints to the six-pion dual amplitude does not fix the mass of
the ~. The masses and widths of the low-mass resonances (e.g., p, co, f, A2, g, A&, H, a,
and ~') are given in terms of two masses (m„and m~), one coupling (g - I'&), and a univer-
sal trajectory slope (e'). We estimate I'(~-3r) =-6 MeV, I'(A& p~) =154 MeV, and I'(A2

p7r) =7.5 NeV. Further phenomenological investigations are recommended.

I. INTRODUCTION

Shortly after Veneziano' wrote down a dual am-
plitude for vw- w&o, Lovelace and Shapiro' (LS) ex-
tended the idea to aft- mm, producing an elegantly
simple narrow-resonance model that embodied
many of the characteristics that would please a
phenomenologist: a realistic mass spectrum for
the particles w, p, f, g, o, etc.'; reasonable decay
widths for the p, f, g, and v; and even a surpris-
ingly good fit to the data for p8-3g.

One could suppose that the reasonable properties
of the I.S amplitude were a consequence of the
following bootstrap constraints (a)-(d) combined
with the chiral constraints' (e), (f):

(a) At low energies, factorizable resonances with
no ghosts (g'&0) and no tachyons (m'&0).

(b) At high energies, Regge behavior.
(c) Leading trajectory duality [i.e. , finite-ener-

gy sum rules (FESR's)]' connecting (a) and (b).
(d) Exact crossing.
(e) Adler zeros. '
(f) No exotics (I ~ 2).
Since the early success with four pions, there

have been many attempts to write down higher-
order pion amplitudes bearing a resemblance to
hadronic reality. Brower' took the initial step by
combining chirality and duality in an N-pion am-
plitude with an A, at m'-1 QeV' and a cr at m'- —,

'
GeV but was unable to eliminate the tachyons while
preserving the other bootstrap constraints.

Neveu and Schwarz' (NS) constructed a prototype
,V-pion amplitude with a mechanism which elimi-
nated the tachyon on the leading p trajectory and
which introduced an (d at m' =-,' GeV'. Also there
mere enough gauge conditions to cancel all the
ghosts'; the mass spectrum did not have either an
.4, or a cr and required unrealistic masses mp
and m, ' = ——,'. Subsequently, a may of modifying

the Neveu-Schwarz model was discovered" which
would permit physical pion and p masses and pos-
sess the Adler zeros. Both an A, and g reappeared
as a concomitant of chirality, ' but the price paid
mas the introduction of ghosts, with masses at
m'~ —,

' GeV'. The model of Neveu and Thorn, and
Schwarz, (NTS) satisfied all the constraints (a)
through (f) but possessed a glaring defect in its
spectrum: As in the NS model, the co-A., trajec-
tory was a half unit below the p ftrajector-y.

In the past, it was thought that such a defect
was inevitable. In fact it was conjectured by
Ademollo, Veneziano, and Weinberg" that the con-
straints (c), (e), and (f) implied that in a transi-
tion a+w —5, e'm, ' and o. 'm, ' must be separated
by half integers. The conjecture was based on the
assumption that the Adler zero must arise as a
"dynamical" zero as in the I 8 amplitude where
the I" function in the denominator blows up at the
Adler point,

However, observe that the Adler zeros in the
~- 37t amplitude of Veneziano,

are "kinematical" in origin, and the mass of the
~ is unconstrained. In this paper, by a suitable
modification of the NTS model, me show that in a
six-pion amplitude the ~ mass is still uncon-
strained. Furthermore, if it is assumed that there
is no ~' degenerate with the A.„and if the leading
trajectory duality of the NTS model (see Fig. 1) is
maintained, then the coupling of the co is deter-
mined by the bootstrap.

Our model has a reasonable spectrum (see Fig.
2), where all the masses are calculated from
three parameters, m, m ', and o.', and where



PHENOMENOLOGICAL SIX- PION AMPLITUDE

k4

k4

ki

ki

k5
~ ~ ~

FIQ. 1. Leading-trajectory bootstrap. The low-mass
resonances in the three-pion channel (~, (d, A&, . . .) are
dual to leading Hegge poles (p, f, o, . . .). This require-
ment of (inclusive) finite-energy sum rules is imposed
by putting the leading trajectories into the same B6 func-
tions.

the widths are related to a single coupling constant,
g'-1"P (see Table I). The residue of our ampli-
tude in a three-pion channel on the m pole is a
product of LS (4v) amplitudes, and the residue on
the &o pole is a product of Veneziano (&u3z) ampli-
tudes.

There are obvious weaknesses in our approach.
It is not clear that the six-pion amplitude is consis-
tent with a generalization to N pions. More im-
portant, it has not been demonstrated that our
amplitude is the unique solution to the leading tra-
jectory bootstrap [conditions (a) to (f)] for the six-
pion amplitude. However, at present the equiva-
lent program of steinberg using effective Lagran-
gians and FESR's is difficult to implement for
multibody processes. "

In Sec. II, the amplitude is expressed in a sim-
ple form, indicating how it arises as a modifica-
tion of the NTS model, and there is a discussion of
how the bootstrap constraints are preserved. In

0 0.5
I I

I0 j5
M' (Gey')

2.0 2,5

F/G. 2. Particle spectrum. All the states at or below
m& which occur in our six-pion amplitude are indicated.
The only ghost below 2 Gey is the 0' at m = m&, which
also occurs in the LS amplitude (for m~2& 0).

Sec. IQ, the decay amplitudes are listed for the
lowest-lying odd-Q-parity states in the model:
co, A„H, m', and A2 together with the factorization
on the m pole. In Sec. IV, we suggest some phe-
nomenological tests of our amplitude. Finally, the
Appendix describes alternate ways of expressing
the amplitude that may make it more amenable to
some calculations.

II. THE AMPLITUDE

Our chiral six-pion amplitude is written as follows:

N-2
A„(k„a„'.. . ; k„,a„)=, QTr(7, , 7', )B„(k„.. . , k„)

by setting X=6. The ith pion has momentum p, and isospin label a, . The coupling constant g has units of
inverse mass, and a is the universal slope for the Regge trajectories. Isospin has been introduced via
the familiar Chan-Paton procedure, "which guarantees factorization in isospin and the absence of exotic
I=2 states. " The sum is over permutations I' of the order of the external pion legs, where it is under-
stood that cyclic and anticyclic permutations are not to be included.

The dynamical factor B, is written in Koba-Nielson variables {z,) (Ref. 15):

B (k k )
+&=a & ~f '

lz z ln'a, ag-e'(a(+gJ+a(g+g)
6 1 6 d (d

dzPz~dz,
Iz. -z~llz~-z. llz. -z. l

'
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(3c)

the factors p,~(a, b) are productS of projectively

TABLE I. Meson spectrum. The expeiimental mass-
es and widths are in square brackets, and are taken
from the geview of Particle properties. '

Name I~(J+)
Mass

M (MeV)
Partial width

j' (MeV) Mode

137b [137]
760 [-80O]
7«[76S]
784 b [784]
1060[NE]
i.060[990]
1060[1070]

1 (O-)
0 (0)
1+(1 )
o (1)

(0 )
0 {1)
1 (1')

0' 756[»100j
p 145"[145]
CcP 6[9] 3r
7r' 1100[NK] 3x
H 180['P] 3'

Ag 154 pjr
2 Col

165[100-200] 37r
o' 0+ (0+) —17 2g

1'(1 ) 45[NE] 2n

f 0+(2') 124[125] 2x
[12]' 4~

A, 1'(2') 7.5[75] p~
Fg 1 (2 ) P.08]' 37r

1'(3 ) 48[64] 2m'

[«l'
' Particle Data Group, Phys. Letters 398, 1 (1972).
b Free parameter of model fixed by experiment.' NE indicates no experimental evidence for that meson.

The p bands account for almost all the events, but
interference should be accounted for.

The e' is a ghost which is also present in the LS
model.

~ The authors have not yet calculated the 4n decay
widths of the f and g, or the 37r decay width of the mz,
although such widths ere calculable in the model.

1300'
1300[NE]
1300[1269]

1315[1310]
1500[1640]
1670[1680]

The metric used is g« = -g„= 1 (k' = —m, '), the
variables z, are ordered on the real line, z, & z„„
in one-to-one correspondence with the external
pions, and lz„z„z,] is an arbitrarily chosen sub-
set of fz,]. The variable c' is related to the pion
massy 2c = 2+ Q m~

When F=1, (2) is simply the Koba-Nielson gen-
eralization of the beta function for six legs with
the internal trajectories parametrized as n(s)
=1 —2c'+ e's. Our factor I" may be expressed
most si~ply as a sum of three terms involving
determinants, ""
F(a, b, c;~) =

II a„(o,o, c)II"' (3a)

+x[lla„(o, b, o) II"' — lla&, (a, b, o}ll"']
=F"&(c)+&SF(a,b)+ ~ ~, (3b)

where the matrices a,&(a, b, c} are defined by

p,, (a, b)[n'k, k; —c (b;„,+ &( g, g)]

invariant cross ratios which have the effect of
moving trajectories in selected three-pion chan-
nels,

5(a+ 35)/6

P ~ ~+jqa, bg =
/ La/3
&+'&,i+i&

(~. )(a 3+b)/6
4 -1~4

f,i+1 i+ l, i+2/

1
p, „,(a, b) =, 5 0/3+1j+~ ~+~~j+Q j+3/

and where the cross ratios are defined as

(3d)

(3e)

(3f)

(z» —.ztf 2)(zf+3 Zl+1)
(z„,—z, )(z„,—z, ,)

Q~4g25Q36 )

where P,(n) means to add the n other cyclic per-
mutations of the preceding expression. When
X = c =0, the amplitude becomes the NS dual-pion
model. When X =0 and c' =~(1+2n'm„'), the am-
plitude acquires Adler zeros and becomes the
ITS chiral model. The first two terms in the ex-
pansion (4),

Qg2034' ' Qg g g + +3+4 ' '
Qgg ~

are equivalent to the chiral model of Ref. 8, but
with tachyon-eliminating factors added: a«„ is
proportional to a(s, „,). By themselves, these two
terms introduce ancestors, which are neatly can-
celed by the remaining terms in the determinant.

In our six-pion model

X =(2+2a'm, ') ',
c' =-,'(1+2n'm „'),
a =1 —n'(m„*-m, '),
5&1.

Recapitulating, all three terms in F(a, b, c, X) are
simple modifications of the NS amplitude for six
pions. In the NTS term, F~o'(c), when the pion
mass is moved by taking c'&0, additional particles
are produced: A„H, and m' at a„(s)=-', —2c'+a' s
=1 and a o at n~(s) =1-2c'+a's =1. However, the
~ is a1.so at o.„=1, and the ~-A, trajectory con-
tinues to lie a half unit below the p-f' trajectory

The other two terms which give a contribution
proportional to X are expressed as a difference,
5F(a, b}. Each term separately vanishes at the

The determinants II a„ II"' may be exyanded as the
sum of 15 terms,

II a„ II
"'= [a~a„a56 + P,(1)] + [a„am, am+ P, (2)1

+ [azmaMa45 + P (2)] —[a&2~5a~ + P&(5)]
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Adler point, and the difference of the two, 5E(a, b),
satisfies the bootstrap constraints of no tachyon
and no ancestors. Because c' =0 in 5E(a, b), there
is no contribution to the A„ II, and m'. There is,
however, an co pole with negative coupling at a, =1
and a co pole with positive coupling at n + g =1."
The constant X is adjusted to exactly cancel the
(d pole in Eto)(c) leaving a single (d pole at n„+a =1.

The correction term 5E(a, b) also introduces a
J~(E a) = 1'(1 }particle and a J~g a) = 1'(0 ) ghost
at n,' —b =1. The parameter b does not affect the
two- and three-pion couplings discussed in Sec.
III.

Therefore, the six-pion amplitude possesses an

Q„ Il, and p' at cy~ =1, and an + at a~=n~+a=1
nondegenerate with the A,.

III. DECAY AMPLITUDES

The full six-pion amplitude (2} may be factorized in a three-pion channel at either n„(s») =N for poles on
the m-A, trajectory and its daughters, or at n„(s») + a =N for poles on the &u-A, trajectory and its
daughters,

4

A6(k„a„'. . . ; k6, a, ) -=—,g g Tr(v, r, 7 +el)B(k,kmk, —k) ~ —,g Tr(w/r, T, 7', )B(kk4k, k,), (6)
Q

I=O P
1 2 $1S-Pg Q Pf

I 04 05 06

where

7'() =1, k =(k, +k2+k~) = (k4+k-, +k, ), m~ =-km,

and the sums over P and P' exclude cyclic and anticyelic permutations. At n„(s») =0, there is only a
Ia(JP) =1 (0 ) pole with the residue function of the (123) permutation proportional to the 7/w- ss amplitude
of LS,

1 I'(1 —n()(s)) I'(1 —n„(t))
B(pxpmps —k) = L(s& t) 2~2 I'(1 — ( ) — (t)}P P

where the Mandelstam variables are s =-(p, +p, )', t =-(p, +p, )~ and the p trajectory is n~(s) =1 —2e'+ n's
Thus our model reproduces the 2z decay amplitudes and widths listed by Shapiro.

At n„(s») =1, faetorization yields three particle states: an Ia(J~) =1 (1') pole identified with the A„a
0 (1')H, and a 1 (0 ) 7/'. The residue functions corresponding to the (123) permutation in (6) are

I 2 1/2

B„, „(s,t) =
4 e„,~ k,B(1—np(s), 1 —np(t)),

I 2 1/2

Bs ~~(s& t) =n'
~ e qk//„[k (k2), -k~)" —(k, —ks)" km ] B(1—n (s), 1 —n (t)),

6 '1/2

(8)

(10)

At n, (s»}+a=0, the residue vanishes. At n„(s»)+a =1, there is a single particle 0 (1 ) identified with
the co. The residue function is proportional to the 7tm- m~ amplitude proposed by Veneziano:

1/2

a, ,„(s,t) ( ka, ts, st&=,"kssk)tst(s1-a (), t —a, (t))s.s

At n, (s»)+a=2, there is anA2 meson on the leading trajectory Ia(JP) =1 (2') and an (d' below it (see
Fig. 2):

(n') )), „() -k,„(2k, k, +1 —2c )+k,„(2km k, +1 —2e~)
3&(( & } (I 4 ))kl/3 sL )t (&Sykl kg kf 2k k 1 B(1—n p(S)& —np(t))+ C g 1 S+

(12)

Of course, the full amplitude for the decay of these resonances must include isospin factors and the ap-
propriate sum over permutations as indicated by Eq. (1}for N=4.
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IV. MASSES AND WIDTHS

B,(s, t) =[2ep(m, ') —n p(s) —n, (t)]

xB(1—n (s), 1 —o.p(t)} (14)

has Adler zeros for any m ', and reduces to LS
only if the sum rule holds. Our model indicates
that for M=6, there is a constraint on the p mass,
but none on the & mass. For N& 6, the bootstrap
may indeed fix the &o mass. (It is certainly fixed
in the NTS model. )

The second sum rule (13b) reduces for m„' =0 to
Weinberg's mass ratio m„ /mp= &2.'P The last
two sum rules are consequences of exchange de-
generacy (no exotics} and a universal slope param-
eter (n').

The widths given in Table I are all normalized
to the p width. Factorizing the LS amplitude (7)
on the p pole yields the decay amplitude for p- 2g,

2 g 2%1/2
pena

( t)1/2(2)1/4 (mp 4ma ) /abc

expressed in the center-of-mass system of the p.
The width is then calculated from the general
formula,

All the masses in Table I are calculated by
fixing m, ' and m ~' at their experimental values
and using a universal sl.ope parameter a' =0.90.
GeV '. The model contains many sum rules:

a'(mp' —m„') =-', , (13a}

2(mp'-m„') =(m„,'-m„') (13b)
= (m, ' —m, *) (13c)

=(m~'-m '). (13d)

The first sum rule (13a) is equivalent to half in-
tegral spacing between the g and p trajectories,
np(s) —n, (s) =-„which is inherited from the alge-
bra of the NS model, and appears to be a conse-
quence of the NTS implementation of chirality and
no tachyons in a dual model. It should be empha-
sized that there is no such constraint on the p mass
in the four-pion amplitude, since

np(s) =1 —2c'+ n's+iy(s —4m„')'",

where

Q Alp I p

(m '-4m ')'" '
p

The width predicted by our model, 6 MeV, is
slightly smaller than the experimental value. Ac-
tually, one would expect threshold effects (e.g. ,
the presence of cuts) to add to the width, increas-
ing the predicted value.

The three-pion widths for the A„A, H, and w'

were also calculated on the computer. In the cases
of the A, and A„ the decay widths for pm and m
may be calculated analytically by factorizing the
amplitudes at o.p(s) =1. For example, the A, -pv
amplitude is

p
= —,c(2)'/ae„, e (/1, k„).e (X', k p) . (17)

We are investigating the viability of the p-A,
spin correlation given in (17).2o At first glance,
the absence of the (e„jp)(op P~) term (D wave)-
appears inconsistent with experimental data, "
but the data for the 3m system must be reanalyzed
in view of the background, particular to our model,
arising from exchanged w poles (Deck effect)" and
from a broad resonance x'.

The A, - p1/ amplitude is

lated from the two-body phase-space integral,

g'(m '-4m ')"'
48~21/n'm '

P

Thus, the experimental value for the p width can
be used to fix the coupling constant g', determin-
ing all the widths in the model.

The two-pion partial widths calculated for f, g,
0; p', and o' are necessarily those found by
Shapiro. ' However, this model does give the four-
pion partial widths for the f, g, and p', although
we have not calculated them in this paper.

The partial width for ~-3n was calculated from
the amplitude (11) on the computer. In the com-
putation, the p trajectory was parametrized by
adding on imaginary part, to account for the widths
of the p and f,

d kl d It,„
(211)'2(u, (2v/)'2(u„'

where M is the mass of the decaying particle and
nz, are the multiplicities of identical particles pro-
duced in the decay. The p width is easily calcu-

A g 3+4c' —2a
A2 pa (2)1/4 1 + 4 2

E'
lab

l (q ~p)'/I'+/I'. (q &«p) ]~A'

as expressed in the rest frame of the A„where q
is the momentum of the p.

The parameters in the model have been fixed at
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the following values:

m, 2 =0.019 GeV',

I '=0.614 GeV',

I"p=0.15 GeV,

a'=0.90 GeV '.
These values determine the other constants used
in this paper:

a = 0.4V,

c =0.26,

g =46.6 GeV

(b)

Ic)

p

The principal defects in the spectrum of the six-
pion amplitude at low energies (m'& 3 GeV') are es-
sentially those of the four-pion amplitude: (a) a sca-
lar ghost (o') at m = 1300 MeV whose coupling to
two pions vanishes as the pion mass approaches
zero; and (b) a strongly coupled vector particle
(p') at m =1300 which has not been detected ex-
perimentally.

Some negative-G-parity states introduced by the
model are of questionable experimental stature,
but there are no glaring deficiencies: (c}a pseudo-
scalar (v') at m =1060 MeV, whose predicted
width is so large that its experimental existence
is easily overlooked.

Finally the model makes some statements about
a few controversial aspects of the experimental
spectrum: (d) an axial-vector (H) at m =1060 MeV
(vs no resonance at all); (e) an axial-vector (A, )
at m =1060 MeV (vs a threshold enhancement in the
mp system); (f) an unsplit tensor (A, ) at m =1315
MeV (vs the possibility of a split A, ); and (g) a
pseudotensor (w„) at m =1500 MeV (vs a threshold
enhancement in the mf system).

V. CONCLUSION

Clearly more detailed comparison of the six-
pion amplitude with experiment should be carried
out. The four-body "vertices" in the model have
been examined in the calculations of the three-pion
decays (~-3v, A, -3v, A, -3m, etc.) indicating
reasonable agreement with experiment. In addi-
tion, the Reggeon -3m vertex can be extracted
from production data mN- nmN using factorization
on the m and ~ Regge exchanges.

However, to explore the rich many-body (N&4)
structure, one should at least investigate five-
particle processes. For example, the four-pion
decays (p', f,g, etc. -4w) may be calculated, and
at least in one case (g-4v), there is enough exper-
imental evidence for an unambiguous comparison.

N N

FIG. 3. Regge-4~ vertex. The coupling of the natural-
parity sequence {p,f, o, . . .) to four pions can be tested
in three separate kinematical regions through (a) partial-
vrave analysis of annihilation (NN 4~), (b) Regge analy-
sis of production (mN —mmxN), and (c) Mueller analysis
of inclusive reactions (nN —mX).

More promising is a detailed study of the natural
parity-4n "vertex" through the following process-
es: (a) annihilation NN-4w, (b) exclusive
sN-mswN, and (c) inclusive vN- v+ anything. (See
Fig. 3.) Although the annihilation process (a} re-
quires extrapolations from the s-, and P-, and d-
wave resonances (o; p, and f ), a similar compari-
son of the LS amplitude to Pn- 3m data has proved
useful. m Factorization of vN- vms (b) gives the
Regge (p, f)+v-3m vertex for three outgoing pions,
and the Mueller analysis on the Begge-4m vertex
for two ingoing and two outgoing pions can be corn. -
pared to the inclusive process (c). These three
separate kinematical regions provide a severe
test of the four-pion coupling to the natural-parity
sequence.

Finally it is tempting to account for the diffrac-
tive component by simply displacing the f0 inter-
cept to unity [o.(0)=1]. In particular, the wp mass
enhancement in mN- xpN can be studied in a full
Reggeized model. The idea of anf'-dominated
Pomeranchukon' gives some justification for this
procedure, and also suggests similar applications
to the diffractive or scaling part of inclusive reac-
tions. "
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APPENDIX

z -z, -0, x, -z,/z„
z, -z,- 1, x, -z,/z„
Z -Ze ~ Oq x3 —Z4.

(Al)

The expression for our six-pion amplitude (2}
and (3) is relatively simple and elegant, but often
not suitable for calculations.

It is sometimes convenient to express the am-
plitude in Chan variables (x,j rather than the Koba-
Nielson variables (z,). The change of variables is
defined by taking

The volume element transforms as

dz f 2=dz2dz3dz4 Zg
(d

dX1dX2dX3 ~ 3Z4Z6
2

and the integrals over the variables x„x„and x,
are over the unit interval [0, 1]. If we define the
shorthand notation,

k, k~ —-o. 'k, k) —c (5„,q +5, ~„) with k~= —,',
(A3)

t, = (k, + +k,)',

then it is a simple matter to transform the product
in (2):

Z 2

~z, - z,~'~'~ =x, -"-'x -'3-'x -"-'(x,z,)-'
k. Z

fW j i& j
(A4)

The determinant terms are easily modified, and contribute z, '. Since the volume element contributed z,'
and the product contributed z, ', all the terms involving z, cancel.

The final result, reexpressing the six-point beta function' in Chan variables, is
1 -n - -a 1B5(k, k5)= dx, dx3dx3x, "k3(l-x,) 33x3 "&3 '(1-x3) "34x, (l-x,) "45

0

rx(l-x,x3) 34'33' 34-'(l-x,x,)-'35' 34"45 '(l-x, x,x,) "«- 34'"34' »"Y(k, x),

where the trajectories are defined as

Q) gkk
= 1 —2C —(kg +k)kk)

(A5)

1n, „3—3 —2C —(k)+k(„+k„3),
and F(k, x) is the sum of three terms corresponding to the three terms in (3),

F(k, x) = Z(k, x; 0, 0, c) + P,[Z(k, x; 0, 5, 0) —Z(k, x; a, t), 0)] . (A6)

Each Z function is the sum of 15 terms corresponding to the expansion of the determinant ( (a,(a, 5, c)( ~'",

( , 3; k, ccc) =k(k, k, k, k, k, k, '*-" *' + P,(l) + k, k, k, k, k, k, " " " + &.(k))
12 14 34 12 45

1-a b

+ [k, k k k k, k, (c„c )' 'c~„+ P,(k)) —(k, k, k, k, k k ' "" + P, (5))
12

-k, k4 k3 k, k, 'k5 (uk334343435)

where the cross ratios u, &
prove convenient since a factor of (34,&))' in the factor Z corresponds to a lower-

ing of the trajectory a, j by an amount y,

u„=x„u„=(l-x,)(l-x,x3) ',
Nk3 x3) 3(34 (1 xkx3)(1 xgx3x3} k

+k4 x3k 35 (1 x3x3)(1 x3x3x3)

u„= (1 —x,x,x,), 3445 = (1 —x,)(l —x,x,) ',
u»=(l-x3)(l-x, x3x3)(l-x3x3) '(l-x, x, ) '.
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Production of heavy p-type leptons in inclusive neutrino reactions is studied phenomen-
oIogically by means of a Monte Carlo calculation. The single-particle inclusive spectrum
is found to be distorted in a characteristic fashion when lepton locality is violated by the
production of a heavy (excited} lepton, Various tests are presented which are sensitive to
heavy leptons with masses up to 3 GeV.

I. INTRODUCTION

Since the theoretical relationship a'mong the
known leytons is completely unclear, in contrast
to the hadrons, which fit neatly into the familiar
SU(3) internal symmetry scheme, the existence of

other yet unknown leptons is a real possibility.
These so-called "heavy leytons, " if discovered,
can fall into two distinct categories': (1) They
may h3ve their own characteristic quantum num-
ber, being neither electron- nor muon-type„and
occur inpairs much like e and v„p and v„,


