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The no-ghost theorem of Brower for the conventional dual model (intercept no = 1) is ex-
tended to the Neveu-Schwarz model, and its spectrum-generating algebra is constructed.
These conformally invariant generators (A.„,B,) are obtained by a systematic use of the
gauges 6„. As a consequence it is demonstrated that particular dual models having res-
onances with positive-definite norms and masses are possible.

I. INTRODUCTION

For several years, dual models with the confor-
mal gauge symmetry of Virasoro' have been con-
jectured to be free of negative-metric or ghost
states. Only recently, Brower' has presented a
proof of this "no-ghost theorem" for the conven-
tional dual model (CDM, intercept o.,= 1).

The critical step was the realization of a set of
generators A.„' for the longitudinal physical states,
whose algebra

[A'„',A„"]=(m s)A:-'&„+2m'5„,„, (1.1)

is identical to the conformal Lie algebra' of the
gauges (L,) apart from c numbers. They close
algebraically with the -transverse operators A„of
Del Giudice, Di Vecchia, and Fubini (DDF),' to
form the full spectrum-generating algebra in light-
cone variables [P,='(P, +P,)/V2, P = (P„P,)].

Here we extend this construction and the no-
ghost theorem' to the Neveu-Schwarz' model
(NSM). In this model we have both G-parity-pre-
serving operators (A„' Ai'i) and G-parity-changing
operators (B„' B~'~) to generate the full physical
spectrum. '

Considerable care has been taken to present the
construction as a logical extension of the earlier
techniques" ' employedfor the CDM. Inthe conven-
tional model, the conformal gauge invariance
(commutativity with L, ) is manifest for the opera-
tors of DDF

This 6 representation combined with a sort of
conformally invariant derivative gives the correc-
tion terms inA„' and B„' as well.

II. ALGEBRA AND GHOST CANCELLATION

Introducing the complex Koba-¹elsen variable

z = exp(v + i8), (2.1)

the CDM is constructed from the "fields" Q„(z)
and P„(z)=is, Q„(z), which satisfy local equal-v
commutation relations

[Q„(z,),P„(z,)]= 2 wig„, 5(8, —8,), (2.2)

[o.",n„"]= mg""6,„,,

(b„",I,")=g""5„,.„[~~,t„"]=a.
(2.5)

where goo= -1 and g =+1 (0=1,. . . , D —1) in a D

dimensional Lorentz space. The NSM supplements
these fields with a conformal spin-3 field H& (see
Ref. 8). These new fields satisfy the relations

(H„(z,), H,(z, )'j = 2'„„6(8,—8,),
(2.3)

[H„(z,), q„(z,)]= 0,
and can be expanded in two infinite sets of four-
vector annihilation and creation operators de:-

fined '
. by

e„"=(z"P"(z)), t „"=(z"H "(z)), (2.4)

where n is any integer and x is a half-integer.
Hence they obey

A„'=(P' v„) (1.2)
The amplitude in the CDM is

simply because P' V„ is a conformal spin-one ob-
ject.' In the NSM we express A'„(or 8'„)in the
"G representation, " where P = 1 and

A„'=(z '(G„,X]) . (1.3) V, =:exp[iv2 p, ~ Q(z, )]: .

Gauge invariance or commutativity with 6, can be
made manifest by demanding (1) that z "(G„,X)
is independent of r and (2) X is a conformal spin-
—,
' object.

The NSM makes the replacement"

V,(p, z)-(z "G„,V,(p, z))= vYp H(z)V, (p, z),

(2.7)
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with P'= —,', where the new gauges |"„are

6, = (z'Pq(z)II "(z)& (2.8)

The Virasoro gauges (L,) defined by

(~ra ~s]'=2~r+s+~BD(4+ 1)~r+s 0 (2.1o)

are redundant. Alternatively they can be ex-
pressed in terms of the fields as

I,„=—,'(z":(P' —aa):&

and obey

[I. , I.„]=(m —n)I, ,„+—', Dm(m' —l)6„.
[I...G„]=(-,'-m r)G.„-. (2.12)

Two sets of spectrum-generating operators are
needed in the NSM: A„and B„, with positive and
negative 6 parity, respectively. In Sec. III we will
exhibit the construction of these operators which
commute with the gauges.

The transverse operators obey the algebraic re-
lations of (nonrelativistic) harmonic oscillators

[A. *.',X„']= mr„a„... ,

(a„',a.') = 0„a„„,, [a„',a„']= o,
(2.13)

where i, j=1,2, . . . , D -2 label transverse compo-
nents. Thus we have the isomorphism

The algebra for the longitudinal operators is sim-
ilar to that for the gauges

[W&:&,a&'~] =(m -n)W&„'j,„+m'~. ,„,,

[a'„',a„", ~] =(-,'m -~)a'& „.
(2.15)

These relations are consistent with the isomor-
phlsms

and the vertex does not depend on x.
We wiU construct the on-shell physical states

g,» in the F, formalism' where the lowest state
0„,P) is the "pion" (P'=-', ). These states satisfy

the on-shell gauge conditions

(2.9)
and

(Giy26-i'm-1)l(»& =2(L.—2)lt, » =o .

I o„p&-I o&,

where Z„and 9, are the ga.uge operators con-
structed from oscillators with eight spatial (posi-
tive-metric) components. The equation S,l 0) = 0
corresponds to the linear c-number term in
Aio'~IO„P) =--,'IO„P). Hence we can set P, =O,
drop the liQear term ln Sfl po Qff RQd use only
spatial oscillator s.

The algebra of the physical-state operators
closes by virtue of the following:

[ '. ',W„]=n „,„, ( „',a,')=W,'„,
[w". ,a„']= (-', m+ r)a„'... [w'. ,a„'&]=ma„',.

Because the metric tensor' (norm of a physical
state) is calculated solely by use of the commuta-
tion relations, the isomorphisms (2.14) and (2.16)
allow us to represent the metric tensor in a posi-
tive definite space, for D ~10. Thus all eigen-
values (norms) are either positive or zero.

It is possible to show that we have constructed
all physical states by showing that these states
are linearly independent and span the space. Any
state,

I&,» = II( ".)'" II (f",)'"I o. , p&,

where

gnX„"+ P~~„"=~
n, P r, v

and e = 0 or 1, can be expanded in terms of the
physical-state operators A„,B„and the auxiliary
operators 4„, y„ in exactly the same way as
done in the proof of the no-ghost theorem in the
CDM. ' These auxiliary operators are defined as
4„=(V„& and y, =(II P '~'V„&, where V„
=exp(in@ ). C„and X, commute with themselves
and with the transverse operators A„' and B„'. They
close algebraically with the longitudinal operators

[w'„', c„]=no„... b„a,'&] =c„.. .
[~','„'~, ~„]=(-,'m+~)~„... [e.,a&'~] =m&.„.

Since this augmented set of operators generates
all states and is linearly independent, the subsets
A„and B„which generate physical states have no
linear dependencies either. Thus an arbitrary
physical on-shell state can be constructed as

ly,.»= II(&'-.)'"II(a'-, )'" (&".')"(a".'„I.)"-"".(&' )"(a'- I.)"&
I 0.,p&,

n, f r, f
(2.20)

PnA„'+P~ re„'=.H (e =0 or 1),
summing over i=0, 1,2, . . . , D —2&8. %'e can
identify the null states as those with Aj or ~,'
40; this follows from the eigenvalue equation
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A, 'i~ O, P)= --,'~ 0„,P) and the commutation relations
forA ' and B ', Eq. (2.15).

At the critical dimension D=10, new null states
appear. Defining the operators

B,'=( z-[G„,H a P ~'V. ]&. (3.4a)

Using the algebra of the gauges and fields we see
that

(2.21)

B,'=(a's "v, -a p'p "v,
+ ,'a'a-a p '"v.

& . (3.4b)

X ' =(B ' )' and Ai' = ,'(Bi—')„Bi;/,),
we obtain longitudinal. generators (X„',8„' ) which
commute with the transverse generators (A„',B„').
and form the subalgebra

(B„+,B,+ )= 2X„+,+—'(10 -D)(4 —1)5„

[&.",4'] =(m — )n&'„',„+l (10 -D)(m'-m)6„, „„
(2.22)[&",B„")= (-,'m r) B-",„.

At D =10 all c numbers are absent, and since
Aol ow p& = 0 these operators create null states.
Since these statesdecouple, " the operators B„(g„)
act like a new set of G„(I„)gauges. Both here
and in&he CDM' the A. is a true representation of the
conformal Lie algebra, without c-number anoma-
lies.

III. CONSTRUCTION OF SPECTRUM

GENERATORS

A. Transverse Algebra

A„'=(p'V„na'a V„). (3 1)

It is illuminating to reformulate this operator as

A„' = (z "[G„,H' V„)) . (3.2)

This "G representation" is x-independent and
makes conformal gauge invariance transparent:

[G„(z "JG„,X)&]=(z '[L„.,X]) =O, (3.3)

if X has conformal spin z and z "(G„,X) is r-in-
dependent.

Comparing (3.1) and (3.2) we note that G„ in-
creases conformal spin by —,

' and reverses the G

parity of any object. Therefore, to find the other
set of transverse physical-state operators B,', we

must find a photon-type (i.e. , containing V, ) oper-
ator with conforrnal spin —, and positive 6 parity
that is independent of r when commuted with
s "G„. The simplest choice satisfying these cri-
teria is

Following DDF' and Brower and Goddard' we
seek to construct "photon" (i.e. , zero-mass vec:-
tor-meson) transition operators for the NSM. "
In the CDM the p-meson ("photon") vertex operator
A„' =(P'V„) is obtained by coupling two ground-state
vertices together. ' In the NSM Rosenzweig" coupled
two ground-state ("pion") vertices to get the p ver-
tex, which we can write as

By construction this commutes with the gauges
and these transverse "photon" operators satisfy
the following relations:

(A„')'-A'„, A„'~ O,& =O, n&O

(B,') =B'» B,'i 0~& =0, s&0
(3.5)

and the commutation relations (2.13).
Note thatA„' can be considered as a strongly

interacting "photon" transition operator (i.e. , it
allows transitions between states with the same
G parity whose mass and spin differ by integers)
and it has the same properties (3.5) and commuta-
tionrelations (2.13)asA„'did inthe CDM. Friedman
and Rosenzweig' have shown that these few prop-
erties are all that are needed to derive sum rules
and low-energy limits for "Compton" scattering.
Therefore we can state that there is a universal
"charge" and "magnetic moment" for all states
connected by "photon" transitions in the NSM also.

8. Longitudinal Algebra

Following Brower and Goddard' we consider the

operators
A„'=(z-'. (G„,a, V„j:&,
B,'=(-z ":[G„,a,a S' "V,]:),

(3.6)

[G„,A„]= nr(z"H V-„)
(3.7)

(G„B,'] =-,'(r'--.')(z"(p '"+ ', a a S '~'-)V, )

sr(z"(P-+z H H P ~ )V, )

These anomalies can be expressed in the "G rep-
resentation"

[G„,A„'] = nr ([G„,V-„]&,

fG„B.'] =-'( '--.'X(G„H p - ~ v,&&

sr((G„,a-p '~'V, ]& .

(3.8)

It is useful to extend the 6 representation to ob-
jects

C„=(z '[G„,X„""],),
where X„depends on r and has conformal spin

which are the longitudinal parts of A„" and 8,"
(k„B,"=0,k„A„"=0for neo). Commuting these with

the gauges gives nonvanishing anomalies which

arise, as in the CDM, because of the normal ordering
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J relative to L,„. This ensures that

[G„,C,],=(g "[f.„„,Xi't"] ) =0. (3.9)

In prder tp obtain pbjects X we npte that the
"covariant derivative" D,« —= 8,+2rJ when acting on
a conformalspin-J field'X ~ gives D,«X =X„
which is an r-dePendent conformal spin-(J'+ 1) ob-
ject relative to I,„.

P

[z "L,„,D„~Xi ~]=z" z +2r(8+1) D,„~X8

(3.10)

[P,",V„]=[&P,&, V„]= nv„-. (3.16)

In particular the correction terms E„(Ai'i= A„
+F„) and E, (Bi+i=B, +E,) must satisfy

E =-—([P E])1

An unambiguous deductive procedure can be for-
mulated for the correction terms to@„and B,
based on their Poincarb properties. Poincarb
translations require that any "photon" operator
(e.g. , V„ itself) that takes P, into P, =P, +nk [ k
= 2(1,0, 0, 1)] satisfy the condition

for each r.
For example let XPt'i=(D„H )P 'V„. then Z, =-—([P„Z,]& .1

(3.17)

[G„,(g "(G„,(D, H )P 'V„)&]= 0 .

This gives the identity

(3.11)

[G„,(2rv„+(P P ' nH H P-')V„&)=0 .

We can derive an explicit expression for
[P,(6), E„] (or [P, (6),E,]) by expressing gauge
invariance in terms of the densities I' ~ H andI"+H H. For example,

We can rewrite Eq. (3.7) as

[G„,A„+n(r V„)]=0

(3.12)
2[P+, F„]H +2[H, , F„]P = Pz "[G„,A„]=g„,
2[P„E„]P+[H„E„]H +H [H„E„]

and then use the identity above, Eq. (3.12), to get
an r-indePendent expression for the longitudinal-
physical-state operator, A.„':

Note that the known quantities g„and l„do not
depend on x and that z ' fG„,g„)= I„. We can elim-
inate [H, , E„]from the left-hand side and derive

Ai &=(, "tG„,H,-V„)&=,'n((P P ' nH H P-')V„&I.

(3.13)
[P, , E„]=g„H P ' —8,(g„P ')P 'H

+l„P '(1 —H H P '), (3.19)
We can find the correction to 8, in exactly the

same way. The simplest choices for X ' ' are
P 't'V, and H (D„H )(D„P )P 't'V, which give
the needed identities. One might have considered
H (D„H )P 't'V, or (D,„P )P 't'V, but they give
identities redundant with I' ' 'V, . The needed
identities are

(~ "[G p "v]&=,'r(H p-'"v,
&

—,'&s, (H P ')P 't'V,
&

and

(z '[G„,H (D„H )(D„P )P -'t2V, ]&

2~'(H P 't2V-,
& 2~s(H -P 't'-V, &-

+([H H H P '"+s,(H P ')P P '"]V.),
(3.14)

which anticommute with G„by construction. The
terms rH P 't'V, and r'H P 't'V, in Eq. (3.8)
can thus be reexpressed as r-independent terms,

B,"=&z ":[G„,H, H P '~2V, ):&

=;([H H H P '"+s,(H P ')P P "]V,&

++([H P '~'
+82,0( PH ')P 't']V, &.

(3.15)

and similarly for [P, ,E,). Thus by (3.17) we get
A~'~ (and B,'i) simply from the Poincard proper-
ties of the physical-state operators.

IV. CONCLUSION

Several new features are present in this con-
struction:

(i) The introduction of the anticommuting opera-
tors B„(or b„) removes the tachyon on the leading
trajectory (n, = 1). Hence in the G =+1 sector or
by displacing the "pion" trajectory (G = -1) as sug-
gested by Halpern and Thorn, models with positive
norms and no tachyons appear. Indeed giving posi-
tive signature to the leading trajectory results in
a spectrum with positive definite norms and mass-
es.

(ii) The transition operators A„and B„corre-
spond to zero-mass "currents" with the quantum
numbers of p, o, and m, A„respectively. How-
ever, since only the zero-mass p occurs in the
theory, we see that the existence of these genera-
tors with lightlike momenta does not'require the
existence of zero-mass particles.

(iii) The construction can be applied to the fer-
mion sector of Ramond" by replacing H" by r"
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throughout. Positivity for these states leaves the
intercept on the leading fermion trajectory uncon-
strained.

Although we have not stressed the point, clearly
the Lorentz covariance and closure properties of
the algebra allows many of the generators to be
derived from each other. For example given B„'
we have Az1,'1—=

. (Bi')' and using appropriate Lorentz
generators gives A.„' and B„'. A systematic study of

these relationships is underway.
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