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The mechanism of Li and Pagels is used to discuss the 8-wave nonleptonic decays of me-
sons and baryons. It implies that the decays Z+ n7t'+ and K+ —x+7t do not occur and thus
the AI =2 rule and the Lee-Sugawara relation hold. Moreover, it also yields a relation be-
tween the F/D ratio for nonleptonic hyperon decays and the F/D ratio for the semileptonic
decays.

I. INTRODUCTION

We extend the threshold-dominance hypothesis
of Li and Pagels to both meson and baryon matrix
elements of the parity-conserving weak Hamilto-
nian 3C'„'(0).In other words, we assume that the
techniques of Ref. 1 may also be applied to ma-
trix elements of X~'(0). We shall see that this
implies octet enhancement for these matrix ele-
ments as well as a relation between the F/D ratio
for nonleptonic hyperon decays [denoted by (F/D) ]
and the E/D ratio for semileptonic decays [denoted
by (E/D)„]. Upon combining the relation so ob-
tained with that derived in Ref. 1 between the
F/D ratio for the baryon octet mass splitting [de-
noted by (E/D)s] and (F/D)„,it then follows that

(EID)~
S [I-3(F/D):]

Sly ~ Slg
mA mp

in excellent agreement with experiment.
The technique here employed may be summa-

rized as follows. ' One assumes that both baryon
and meson matrix elements of R"„'(0)obey an un-
subtracted dispersion relation, so that

(X 100 (0) ~XS) = —f —Im(X'„(00~ (0}IXg) .
Cp
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(In the above, X„is used to either denote a
baryon B„ora meson P„.)

It is then stated that the dominant contribution
to the dispersion integral in (1.2) is given by the
two pseudoscalar-meson states in the threshold
region. In this way the matrix element
(X I X'„'(0)IXS& is related to the integral up to a
certain cutoff M of a bQinear form in the 8-wave
scattering amplitudes for X„XB-P&Pq and the
matrix elements &Py IX~'(0) IP~&. One then calcu-
lates the amplitudes for X„XB-PyPqin the SU(3)

SU(3) limit by computing the baryon-exchange
contribution in pseudovector coupling theory
(when X =B„and.XB=BB)or by using Weinberg's'
treatment of meson-meson scattering (when X
= P, XB=Pq). Furthermore, the threshold is low-
ered down to zero. In this fashion, the matrix
elements (X„I X~'(0) IXS& are thus expressed in
terms of an arbitrary parameter M and the ma-
trix elements (Py IX~„'(0)IP~&. Considering the
case X~ =B and XB=B&, the baryon matrix
elements (B„IX~'(0) IBB& are thus expressed in
terms of the meson matrix elements (Py lx~„'(0)IPq&.
To determine the latter one sets X =P„andXB

One thus obtains a set of bootstrap-type
equations for (P IX~'(0) I PB) which determine
completely the ratio between any two of these ma-
trix elements. Returning to the equations relating
&B.lx: (O)IB,&

to &P.lx: (0)IP,&, the ratio between
any two matrix elements (B„IX~'(0)IBB&is then
also completely determined.

II. NOTATION AND CALCULATION

Upon making use of partial conservation of axial-
vector current (PCAC) and SU(2) invariance, the
matrix elements for the 8-wave nonleptonic hyper-
on decays may be written in the standard fashion'
as

&B.~Six'."(o)IB,&
= ——~ &B.. I[@5', x"."(0)]IBy&

A(A')+ vYA. (A', ) =0,
(2 2)

If one furthermore assumes SU(3) for
(B„IX~~'(0) IBB), then the relation'

2A(= ) =A(A' )+ W3A. (z') —(-')"'A(z,") (2.3b)

also follows ~

Equations (2.2) are nothing else but the AI= —,
'

rule for the A and .decays. On the other hand,
Eq. (2.3a) would be equivalent to the &I = ~rule
for Z decays provided that A. (Z,') = 0, in which
case Eg. (2.3b) furthermore reduces to the I ee-
Sugawara relation. We shall show that under our
present assumptions A(z', ) =0 in fact follows so
that the I ee-Sugawara relation and the &I = —,

'
rule hold. Moreover, we shall see that Eq. (2.3b)
[with A(z,') =0] follows from the I i and Pagels
mechanism without needing to make any SU(3)
assumptions about the matrix elements
&B„lx"(0) IB,&.

We next make use of Eq. (1.2) and the procedure
discussed in Sec. I to arrive at

-=i A(By -B„yyg), (2.1)

where X""(0)and X~'(0) denote the parity-violating
and parity-conserving parts of the nonleptonic cur-
rent-current weak Hamiltonian. From Ecl. (2.1)
one then obtains the well-known' sum rules

("-'lx„"'(o)IA&=(const)[&~' Ix."(0)IA'&(-')"'(3+ «' —I») +&~'I x".(o) IA'& (3+«' —»~)/~3

+ (n'Ix„"(o)If''& (-3+4~)],

& A
I
x.„(0)I ~& = (const) [&w'

I
x".(o) I A'&(-,')"'(3 —an') +&~'I x„"(o)I A'&(3 —4n')/Ws

+(q'I x ~'(0)
I
K') (-3 —4n' + 8n)],

& z'I x."(o)In) = (const)[(~' I
x".'(o) I

A'& (3+4+' —8n) ~2+(mo
I
x".'(0)

I
A'& ~(-3+4+')

+(q'lx."(0)lz'& (3+4m' -8~)/Ws],

(2.4)

and
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&
~' IX"'(0) IP& = (const) [&m' I x „'(0)IK '& &(6 + 16o"—24n) +&z'

I
x"'(0) IK') (3 —8n +4o")~2

+&@'IX"(0)IKo&(2)xi2(3 ~4o. 2 8o.)]

where o. is related to the F/D ratio for semileptonic hyperon decays [denoted by (F/D)„]by (F/D)„=(1—o.')/

In order to compute the meson matrix elements in Eq. (2.4) we once again make use of Eq. (1.2) and the
procedure discussed in Sec. I. In this way we obtain

&~' Ix'."(0)IK'& = ~a&~' IX:(0)IK'&+
4

-

2
&~olx&'(0) IKO&+

4 2- &n'Ixp.'(0) IK0&,

&~'IX'„'(o)IK'&=.
4 2

&~'IX"(0)IK'& ——,'a&~'IX" (0)IK'&+ 8-a&q'IX"'(o)IK'&, (2.5)

and

&n'IX". (0)IK'&=
4 2

a&~'IX';(0)IK" &+ 8-a&~'IX". (0)IK'& —pa&@'IX".'(0)IK'&,v3, , „vY

where a (which is related to the cutoff) must be
positive in order to reflect the attractive charac-
ter of meson-meson scattering in the chiral limit. '
In order for Eq. (2.5) to have a nontrivial solution,
the determinant of the coefficients must vanish.
This leads to the cubic equation

3a'+8a' —4a —16 = 0

whose solutions are

(2.6)

&m' Ix~'(0) IK"&
= W3&m'IX f(0) IK'& (2.9)

&q'IX."'(0)IK'& =- —,&~'IX:(o)IK'&. (2.10)

Note that Eqs. (2.9) and (2.10) imply octet domi-
nance of &P„lx'(0)

I PB) [i.e., &P„lx~'(0)IPg& is
proportional to d,„z].Since the matrix elements
in Eqs. (2.9) and (2.10) are octet-dominant, the
~I= —,

' sum rule for the A- mm decays then follows
by symmetrically reducing one pion. In fact, car-
rying out this calculation one obtains the desired
sum rule, i.e.,

a(K'- m" m') =0

(2.11)

(2 8)

Since a& 0, it then follows that a = ~ is the only
physically acceptable solution of (2.5). Upon sub-
stituting the value for a from Eq. (2.8) into Eq.
(2.5) one thus arrives at

a(K'- m' m ) + W2 a(K'- m'm') = 0,

where c is defined by

&v"~'Ix~„(o)IK'& = i a(K'- ~"~') . (2.12)

( =' IX
' (0) I A& = —(const)& n'' IX„'(0) I

K'&

x (3 —16n +12o.'),

& A IX„'(0) I
n& = (const)& m

' IX '(0) IK'&
3

x (3 + 4n —8o.'),
&g'IX"'(0) In& =';(const)&m'IX '(0) IK') (2.14)

x (9 —28@ + 16a'),

Incidentally, note that Eq. (2.9) could directly
be derived from PCAC in both the quark model
[where X„"'(0)is proportional to the scalar densitya, ]
and the current-current models. On the other hand,

Eq. (2. 10) follows from PCAC in the quark model
but not in current-current models. In fact, in the
latter models, PCAC for the matrix element
&
q'IXP'(0) IK') would imply

& ~'IX."(0)IK'& = -&3
&
~'IX".(0) IK') (2.13)

rather than Eq. (2.10). However, since in the real
world both q and K' are considerably heavier than
the pion, and since, furthermore, q does not de-
cay into K~ [so that the matrix element
& qlX~'(0) IK') does not have any immediate physi-
cal interpretation] one could argue that the result
(2.13) does not actually need to hold even if X~'(0)
is of the current-current type.

Having derived our results for the mesons, we
now substitute Eqs. (2.9) and (2.10) into (2.4). We
obtain
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write, for example,

&&'I&"(o) IP& = (const)& &'I36'„'(0)IA'&
3 2

x(9 —28o. +16a.').
and

(=-'iz."(0)IA& = -(-,')"'(D.—3F„)

(A'iÃ„(0)in) = (-, )'"(D„+3F„).
(2.18)

From Eqs. (2. 1) and (2.14) it may then be immedi-
ately seen that also the baryon matrix elements of
K '(0) are octet-dominant, since

Upon combining Eqs. (2.14) and (2.18), we imme-
diately obtain

A(~;) = ——[-&PI&". (0) IE'&+ ~2& I36".'(0)
I
~'&]

(2.15) with

10 (F/D)„
D „31 —3(F/D)„' ' (2.19)

2A (:- ) = A (A' ) + M3A (Z,'), (2.17)

and is nothing else but the Lee-Sugawara relation
for the S-wave nonleptonic hyperon decays. ' Thus
this relation follows immediately from the I i and
Pagels mechanism without needing to make any
SU(3) assumptions about the matrix elements
(B IX„'(0)IBq&.

If we furthermore assume SU(3) for
(B„i&~'(0) IBB), Eqs. (2.14) then also allow us to
compute the F/D ratio for the nonleptonic hyper-
on decays in terms of the F/D ratio for the semi-
leptonic hyperon decays. For this purpose, we

Furthermore, from Eqs. (2.2) and (2.3a) [with
&(g', ) = 0] we see that the AI=-2 rule for the S-wave
nonleptonic hyperon decays also follows. More-
over, from Eqs. (2.14) we also immediately obtain

2&"='I30."'(0) IA&+« I&".'(0) ln& = ~3& ~'I&"(o) In&

(2.16)

which upon making use of A(Z,') =0 may also be
written as

(F) 1 —a

Making use of Eq. (2.19) together with the rela-
tion obtained in Ref. 1 for the F/D ratio for the
baryon octet mass splitting [denoted by (F/D)s] in
terms of (F/D)„, we then arrive at

10 (F/D)„
T 1-3(F/D)„'
2 SZp' Mg
3 PPl A

(2.20)

Note added in Proof. After submission of this
paper we received a report by Riazuddin in which
similar ideas are discussed.
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