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The soft-pion and soft-kaon mass differences are calculated in the Weinberg model of
weak and electromagnetic interactions. Both are found to be finite without using the second
spectral-function sum rule. In addition several comments are made about mass differences
of massive hadrons.

I. INTRODUCTION

The problem of the divergences which arise when
one attempts to calculate the mass difference be-
tween particles that belong to the same isotopic
multiplet has been with us for some time. Recent-
ly, models have been constructed which unify the
electromagnetic and weak interactions into a re-
normalizable theory. ' ' It might be hoped that
such models would remove the divergences in the
mass differences. Some work has been done along
these lines. '

From a purely phenomenological point of view it
is clear that before one uses these models to calcu-
late mass differences one must first answer the
question: How do the masses of the hadrons arise'?
The masses of the leptons and intermediate me-
sans are generated through the couplings of these
particles to the scalar mesons Q when the symme-
try is spontaneously broken. If the masses of the
hadrons are generated by the same mechanism
then there are two possibilities. If the zeroth-
order masses of the members of an isotopic mul-
tiplet are unequal then the mass difference need
not be finite. 4 If, on the other hand, the zeroth-
order masses are equal, then we need to know the
precise hadron Qcou-pling in order to calculate
the self-energy terms involving the P.

There does seem to exist one case, however,
where the precise nature of the hadron-P coupling
can be avoided. That case is the calculation of
mass differences of massless hadrons. Of course,
the fact that the hadrons have no zeroth-order
r,",ass does not necessarily mean there are no

hadron-P couplings, but at least there is no need,
a Prior, for such couplings. We will return below
to the question of which hadron-P couplings we are
assuming to be absent.

The ca1.culation of the electromagnetic mass dif-
ference of soft pions was done successfully sever-
al years ago. 6 The electromagnetic mass differ-
ence of soft K mesons was also calculated. ' Both
calculations depended for convergence on the

validity of both the first and second spectral-func-
tion sum rules. ' As is well known, the second
sum rule is model-dependent, ' and for strangeness-
changing currents is even contradicted experi-
mentally

In this paper we calculate the soft-pion and soft-
kaon ma, ss differences in the SU~(2) x Yz gauge
model of Weinberg. ' In order to incorporate the
hadrons, we shall consider the SU(4) quark
scheme. "'" As is well known, the simpler SU(3)
quark model leads to unobserved neutral strange-
ness-changing currents. Actually, for the (zero-
mass) pion-mass-difference problem, we may, if
we wish, disregard the strange hadrons altogether
and use the much simpler model discussed by
Weinberg, "which incorporates the nonstrange
hadrons only. In fact, for the pion-mass-differ-
ence problem it is easy to see that our results in
this model are the same as in the SU(4) quark mod-
el. For the kaon problem, the consideration of
strange hadrons is obviously essential, and as
mentioned we choose to work with the SU(4) quark
model. Several other models exist in the litera-
ture, but we believe that the SU(4) qua, rk model
offers a rather simple and instructive example for
the study undertaken here.

In order to be more precise about the role of the
hadron-P couplings, we would like to present the
following consideration. In the SU(4) quark model,
we take, to start with, the strong-interaction La-
grangian density to be SU(4) x SU(4)-invariant in
the Nambu-Goldstone sense. We then assume that
the spontaneous breaking of the SUz(2) x Y~ sym-
metry, which arises when P acquires a nonvanish-
ing vacuum expectation value, also leads to terms,
through the hadron-g couplings, which break the
chiral SU(4) symmetry of strong interactions.
The advantage of this mechanism, "'" is that the
spontaneous breaking of SU~(2) x Y~ symmetry it-
self generates the explicit terms that break the
Nambu-Qoldstone chiral symmetry of strong inter-
actions, and leads to nonzero masses for pseudo-
scalar mesons, consistent with our usual ideas.
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Obviously, the nature of these symmetry-breaking
terms depends on the hadron-Q couplings intro-
duced in the theory. If the pions are considered
massless, we may drop any pion-P coupling and
require the strong interactions to be invariant un-
der chiral SU(2) symmetry. To be sure, other
suitable hadron-Q couplings will exist, such that
the spontaneous symmetry breaking of SU~(2) x Y~
effectively reduces the symmetry of strong inter-
actions from SU(4) x SU(4) to SU(2) x SU(2). As
usual, the chiral SU(2) symmetry is taken to be
realized in the Nambu-Qoldstone fashion, with
zero-mass pions, and with a vacuum state for
strong interactions invariant under SU(2), the
usual isospin group. Similarly, in the case of the
massless kaon, we require the strong-interaction
symmetry to be broken only to SU(3) x SU(3). This
may be achieved by dropping the pseudoscalar-
meson-P couplings, but as before, we cannot pre-
clude the existence of other appropriate hadron-P
couplings which eventually leave the strong I.a-
grangian SU(3) x SU(3) invariant. Consistent with
our usual ideas, we shall assume that the SU(3)
x SU(3) symmetry is realized in the Nambu-Gold-
stone manner, with the vacuum state invariant un-
der SU(3) symmetry.

Indeed, SU~(2) x Y~-invariant models can be
written down where, through the introduction of
appropriate hadron-P couplings, one can reduce
the strong-interaction symmetry to any arbitrary
level. For problems involving massless pions
and kaons, the important simplification is the ab-
sence of pseudoscalar-meson-p couplings. The
weak and electromagnetic interactions of hadrons
may then be expressed by

ec(I 11 'l2 ~11+'l2)+ c st(I 12+'

where ec is the Cabibbo angle. The SU(4) quarks
and A. matrices are given in the Appendix.

The coupling constants g, g', and e satisfy the
usual relations

~ =tan
(&2+ &&2)1/2 ~

g +g'
8 m~2 8m2'

where C is the Fermi coupling constant.
In Secs. II and III, we use the interaction (I) with

the currents given by Eqs. (2), (3), and (5) to
study the m'-m' and K'-K' mass differences in the
limit of zero pion and kaon masses. The main
result of our investigation is that these mass dif-
ferences are finite in second order, without using
the second steinberg sum rules. The n'-m' mass-
difference problem for massive pions is studied
in Sec. IV. For this purpose we consider a special
model for introducing the pion-P coupling, as was
first suggested by %'einberg ' and recently studied
by Palmer. " To second order the n'-m' mass dif-
ference is found to be finite again. In the end, we
make some comments on mass differences of other
hadrons.

II. MASS DIFFERENCE OF SOFT PIONS

+ 2(g + g )~//~S —e&2~

4 —I/jl + (1)1/2I/O (2)1/2I/'2 (2)

In the SU(4) x SU(4) model the electromagnetic cur-
rent is given by

The electromagnetic mass difference between
the charged and neutral pions is given by the fa-
miliar expression, correct to second order (here-
after understood),

g
(m '-m ') = — — —g"'-X V"

471 (2v)'. q' q'

The currents which couple to the Z and W mesons
are given by

g 2 —P[I/2+ ( )1/ P'2 ( )1/ I/'fJ ]

where A. is arbitrary and V&'„ is the covariant time-
ordered product

—[A."+(—')'"A,"—(-', )"'/i,",], (3)

where P is a function of the Weinberg angle,

P = 1 —2 sin26I&,

(8)

The contribution to the mass difference from the
Z-meson interaction is



MASS DIFFERENCES IN A UNIFIED THEORY OF. . . 527

g+g1 1
( 4 0)z 4 4 (2 )3

d p v

x ' g0 q ' (p v" +~-)
g -m pv pv

Z z

(PCAQ) in the form

v'(x) = —, s „A,"(x),1

Z, m, ' ~' (13)

and use the equal-time commutation relations of
the local chiral SU(2) x SU(2) current algebra. We
find

where A'„', is the analog of V'„', for axial-vector
currents, and P is given by (4). It is important to
notice that

V33 (q) ~33 (q)

[gV(3,3)(q) gA (3,3)(q)j
2

(14a)

(14b)
—,'(g'+ g")(P' —1)= e'. - (10)

where
We will use this repeatedly. Finally there is the
contribution from the W meson

r
~ v" "'(q) -=d'x e""(0~(V'(x)V', (0)),~O). (15)

g cos' L9c 1
(m, '-mo )w 4 4 (2 )3

x, q, g0' q q, (v;—,+~„-,).CP

W

mph'

+- = 33V„=-V„
A+~, = -A.33„. (12)

Now we reduce in the pions, take them to be soft,
use partial conservation of axial-vector current

We have, of course, kept only those parts of the
currents (2), (3), and (5) which can be combined
to give a change in isospin of two. It is now a
trivial exercise in Clebsch-Gordan coefficients to
show that for this 6 I= 2 part

, p'(m') q q,??„".(??)=-?J ?(???', , ?;„- ","),
0

(16a)

i?????)???"(m')

(16b)

and substituting these into (7) and (9), we have

We see immediately that the contribution to the
mass difference from the W meson is zero, while
the contribution from the Z meson is proportional
to -e'.

Using the spectral representations of the (co-
variant) propagator functions

3ie' 1 d q
"

3 p (m') —p"(m'), 3ie' 1 d4q 3 pv(m') —p"(m')
(17)

The first term in both (17) and (18) is zero by the
first spectral-function sum rule. ' The total mass
difference is then

Sie 1 d q rnz
(2v)' E,' q' q'-m '

of the g contribution. If this contribution were not
present, the finiteness of (17) would require both
the first and the second spectral-furiction sum
rules.

We may approximate the spectral functions with

p and A, poles
p V(m3) pA(m3)

q'-m'

(19)

which is finite urithout the use of the second sPec
tral function sum rule -Note in part. icular the role

p (m') = gq35(m3 —m03),

p" (m') = gA35(m3-mA3) .

The mass difference is then

(20a)

(2ob)
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3e 1 gg m2
m+ mQ , ln

4m Z, 47) m —m„m
g~ mz mp

2 n
mz mp ms

If we use the content of the second spectral-func-

tion sum rule to set m„'=2mp' and g„'= gp' and in
addition use gp = 2Mp'E ', we recover the mass
difference of Ref. 6 plus a negligible correction,

2 2

mz mp

(22)

III. MASS DIFFERENCE OF SOFT E MESONS

The contribution from the electromagnetic interaction to the AI=1 mass difference between the charged
and neutral K mesons is(:— ') = —

~

'~"'- ~ ' ' I(-')'"~"(q) - (-')"'p' "(q))E+ /{ P 4~ (2v)3 q2 q2 3 )JU 3 ((v

where we redefine V'„'„as

v'„'„(q) = jt d'x e""[&z'~(v'„(x)v', (o)),~z'& —(z'- Jc')] .

(23)

The interaction with the Z meson contributes

X (PS [(L)1/Sl/3'8(q) —(2 )1/2@3'15(q)]+ [ ())1/2g3 '8(q) —(2 )1/2~3 '15(q)] (25)

Finally, using the W-meson current given by (5), we have

g 1 1 d g ~v g g

)( fsin2e [@4+i5,4-i5(q) g +i 4, +5(54(q) + i/11 (1 +11-2(12(q)+gll+il 11-2(12(q)]} (25)

where there is no contribution from the term Vl„'„"' "-/i'„;"' "in Eq. (5) because the isovectors I = l,
I3=-1 and I=1, I, =+1 cannot be combined symmetrically to give I=1, I,=O.

We now use PCAC for the K mesons, taking them to be soft, and use the local SU(3) x SU(3) commutation
relations. The photon contribution comes out proportional to

e2
(/) ) (3&3)+g&(8 8) 2/) A(4 4) ~2g)'(8 15))

QV PV ]l V~ sc

where we neglect the & terms in the commutators. This is, of course, correct only if chiral SU(3) is exact.
Given the photon result it is easy to see from (2) and (3) that the Z contribution must be proportional to

a'2 + n'I 2P5
P5

) /)2/g V(3,3) +/) )'(8,8) 2~A (4,4) ~2/) F(8,15)$ + /gA (3,3) ~gA {S.S) 2/) F(4.4) ~2gA (8,15))')
PV PV PV I X JlV PV PV PV

K
(28)

The W-meson contribution is

[syn~g (/ ~(~ 3) qg ~(8 8) + 2g ~(4 4)+ g& (3 3) 3/& (8 8) + 2g& (" 4)
4~ 2L Q& Pv ' Pv PV PV PV PVE'

2/) )'(ll, ll) 2gA (ll, ll) + 2~V(13,13)+2gA(13.13)$] (29)PV PV PV PV
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Now, as discussed in the Introduction, for mass-
less kaons we consider the strong interactions to
be SU(3) x SU(3)-invariant, with the vacuum state
symmetric under SU(3). Then

+ V(3,3) + VN, 8)
PV PV

g V(4,4)
PV

gA (3,3) gA (8,8)

gA (4,4)
PV

g V(8 315) —0PV

~A (8,15)
PV

g V(ll 311) g V(13 313)
pV PV

gA (ll 311) gA (13313 )
PV PV

Thus the W-meson contribution is again zero. The
photon contribution is

2 2
(gV(3,3) gA (3I3))

2 PV PV&'z

which, using (4), is the negative of the Z contribu-
tion. Using the SU(3) relation F, = E», the soft-K
mass difference is precisely equal to the soft-m
mass difference. Of course, this must be true be-
cause we have assumed exact SU(3)." Note in par-
ticular that without the g contribution the photon
contribution itself would not lead to a, finite result
unless we assume tne second spectral-function
sum rule for the SU(3) x SU(3) group.

IV. MASS DIFFERENCE OF PHYSICAL PIONS

As we discussed in the Introduction, any attempt
to calculate the mass difference of physical (mas-
sive) particles must specify the precise method of
generating the masses themselves and therefore
the interactions of the particles with the scalar
mesons, P. This general question is beyond the
scope of the present work but we would like to
make a few comments about the mass difference
of physical pions.

If the interactions of the pseudoscalar mesons
with P can be neglected, then the convergence of
the pion mass difference can be seen from (7), (9),
(ll), and (12) and the BJL limit to depend on the
following commutators having no 6 I= 2 parts:

8(x,) f [8,V,"(x), V',(0)]+[8,A,"(x),A,"(0)]), (32a)

8(x,)[8,D3(x), D$(0)], D, (x) = 8—qA3r . (32b)

~a =&aacvtS~ &c ~

A," = rr, 8 "o —rr8" m, —(v),8"rr, , (34)

which we can use to calculate the canonical com-
mutator s explicitly:

Now we could attempt to calculate the pion mass
difference from (7), (9), and (11.) by using the
hard-pion model of Qerstein, Schnitzer, and Wein-
berg. " But such a calculation would be divergent
because the hard-pion model is consistent with the
algebra-of-fields expression for (32a),M and in the
field-algebra model this commutator has a AI=2
piece. We could, of course, modify the hard-pion
model so that the commutator had no b, I=2 part
and then use the modified model to calculate the
mass difference. The results would then be finite
but, since the model could be modified in different
ways, " the answer would not be unique.

We cannot calculate the 4th-order contribution
to the mass difference of soft pions for the same
reasons because we need a hard-pion model to
evaluate some of the 4th-order terms. ' For ex-
ample, the 4th-order off-mass-shell term involves
the derivative with respect to the mass of the sec-
ond-order mass shift. Since in the usual hard-pion
model the divergent terms in the mass shift must
be proportional to the mass, this 4th-order off-
shell term would be divergent.

If we choose to consider an explicit model where
the pions do not couple to the scalar mesons we
could take the SU(2) x SU(2) cr model discussed by
Palmer. " Here the term which breaks SU(2)xSU(2)
(and generates the pion mass) is not an intrinsic
term linear in the a field but is an induced term
which arises from a coupling of scalar fields P to
the m and a fields. However, after a suitable gauge
transformation, the pions are decoupled from the

Thus the pion mass difference depends only on
the y, Z, and Winteractions, and the question of a
divergence depends only on the commutators (32)
which we can calculate from the explicit form of
the currents.

In particular, the model has PCAC; so, using
the canonical commutation relations, the com-
mutator (32b) has no I=2 piece. Further, we have

[8,V.'( ),xV', (y)]8(x' —y') = 2ie,„,c„,—(8„' (rr)8x„'rr, (x)8'(x —y) — ( rr)8x„'8,' (v)8x'(x y)—
(+ r)r'xrr, 8( )8t x8'(x —y) ——,'rr, (x)rr, (x)8„' 8,' 6'(x —y)

+ —,
'

[w, (x)8„' rr, (x) —rr, (x)8„' rr, (x)]8'„8'(x—y)j (35)
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(the index c is summed over), and

[s,A,'(x), A,'(y)]5(x' —y') = 2i-(s„'m, (x)s„'m, (x)5'(x —y) —w, (x)e„'s„'v„(x)54(x—y)

+ v, (x)a„'m, (x)s,'5'(x-y) —-',v, (x)w, (x)B,'S', 5'(x- y)

+ —,
'

[w, (x)s,' w, (x) —v, (x)a„' m, (x)]s', 5'(x —y) + 5„f (o)5'(x —y)j, (36)

where f(o)is a'function which involves only the o
field. The sum of (35) and (36) for a= 5= 3 has an

isopsin structure 7T
~ m, i.e., is an isoscalar. The

same is true for the commutators of the zeroth
components of the currents. Thus, from (32) the

pion mass difference is finite. Again notice this
would not be true if we did not have the g meson
which contributes the axial-vector term in (32a).

A similar argument does not work for the proton-
neutron mass difference. In this SU(2) model the
currents are
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APPENDIX

The currents given in (2), (3), and (5) can be
thought of as

em 3 3 87

pvt'+-( p —1)—v," -A,",1

~ W ~l+i2 1+$2 '

The photon graph is proportional to

(37)

(36)

v~ qr~-

&." - 4r"r'-.~.0

where the wave functions are given by

where V'„,", is given by (24) with the proton and neu-
tron replacing the K' and K', respectively. The g
graph goes Rs

(P, X, and X are the usual SU(3) quarks, and (P' is
the fourth quark with charm quantum number |"=+1.
The 4x 4 X matrices are

while the R' contribution is zero by the isospin
argument which follows (26). The total mass dif-
ference therefore has a divergence

e'
y3 &8

q 2 cos 8g
(40)

which is simply (2cos'6~) ' times the divergence
which occurs if we consider only the photons. '
The commutator

[s,v&, v,'] (41)

does have a nonzero I = 1 part in the linear 0 model.
It would appear that the problem of P-n mass dif-
ference requires more care. It shou'0 be noted
that, in the model under consideratior~, whereas
the finite pion mass arises from the spontaneous
breaking of SU~(2) x Y~ symmetry, the origin of
the nucleon mass is quite different and arises by
spontaneously breaking the SU(2) x SU(2) symmetry
of the strong Lagrangian. Qne might then expect
that a proper handling of the p-n ma, ss-difference
problem would require a unified theory of strong,
electromagnetic, and weak interactions.
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The mechanism of Li and Pagels is used to discuss the 8-wave nonleptonic decays of me-
sons and baryons. It implies that the decays Z+ n7t'+ and K+ —x+7t do not occur and thus
the AI =2 rule and the Lee-Sugawara relation hold. Moreover, it also yields a relation be-
tween the F/D ratio for nonleptonic hyperon decays and the F/D ratio for the semileptonic
decays.

I. INTRODUCTION

We extend the threshold-dominance hypothesis
of Li and Pagels to both meson and baryon matrix
elements of the parity-conserving weak Hamilto-
nian 3C'„'(0). In other words, we assume that the
techniques of Ref. 1 may also be applied to ma-
trix elements of X~'(0). We shall see that this
implies octet enhancement for these matrix ele-
ments as well as a relation between the F/D ratio
for nonleptonic hyperon decays [denoted by (F/D) ]
and the E/D ratio for semileptonic decays [denoted
by (E/D)„]. Upon combining the relation so ob-
tained with that derived in Ref. 1 between the
F/D ratio for the baryon octet mass splitting [de-
noted by (E/D)s] and (F/D)„, it then follows that

(EID)~
S [I-3(F/D):]

Sly ~ Slg
mA mp

in excellent agreement with experiment.
The technique here employed may be summa-

rized as follows. ' One assumes that both baryon
and meson matrix elements of R"„'(0) obey an un-
subtracted dispersion relation, so that

(X 100 (0) ~XS) = —f —Im(X'„(00~ (0}IXg) .
Cp


