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fourth-order graphs A~J in Fig. 7 uv-convergent in the
Yennie gauge. However, with this choice of A,, it is
impossible to find a finite value of A, that will render
the same class of graphs uv-convergent in sixth order
due to the uv-divergent subgraphs K—S illustrated in
Fig. 7. Thus, in his scheme, A still requires an infinite
renormalization in fourth and subsequent orders of its
expansion in ey,

213. C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951);
Phys. Rev. 84, 897 (1951). See also T. T. Wu, #bid. 125,
1436 (1962).
280ur proof is based on a procedure originally devised
by Yang and Mills for treating overlapping divergences
in photon self-energy graphs with multiphoton interme-
diate states. An outline of their prescription is given by
T. T. Wu, Phys. Rev. 125, 1436 (1962).

29The two-photon-rung ladder graph with finite inser-
tions continues to diverge in the infrared for finite ¢ with
p andp’ = 0. However, since I'j(s,0)=s,/C and
s*T% (s +q,q) = (s* + 25 * q)/C in the gauge in which Z, is
finite, it is trivial to show that this graph diverges in the
uv region as InA%. The two-photon annihilation graphs
belonging to

K@D (h 0; X5, ee, X gy )

with finite insertions can be made infrared-convergent
by giving the photon a small mass. By setting p = 0 and
differentiating these graphs with respect to the photon
mass it is easy to show that these graphs likewise
diverge no worse than InA? in the gauge in which Z; is
finite to order a " 1.

30Had we not assumed k = 1 and invoked the asymp-

totic hypothesis, then Eq. (5.6) would have contained an
additional term

Jdclk 62 (Y €A, eh) (e’ Dyuy (k)
o(e? Dy, (%)) 6 (P g2)

In order to solve (5.6) we would have needed an additional
equation for 80,/ & obtained from the functional
differentiation of the polarization operator expanded in
terms of the full D and A functions. The asymptotic
solution of this coupled pair of integral equations goes
beyond the scope of this prelimin-ry study.

31We are now in a position to prove the assertion in
Sec. IO that all uv divergences in Z, are isolated by
neglecting 4 provided it vanishes with power-law be-
havior. The contribution to I (p,p) when any one of the
internal photon lines of I'fj(p,p) is replaced by the non-
asymptotic part of ¢?Dy,, is

fd*e o ., op BB\ h(EY/m% )
._?J'—Z—;)-z B_);‘-Co‘ﬂ(p’k)(g B_?_)(_(__mx_> .

( k?

An application of Weinberg’s theorem to the graphs
defining C gz (p,#) shows that to any finite order of
perturbation theory and for 22 > p? and

0
<'5;; C&a(p,k)>k ~-k£2“- x (powers of Ink?).

Therefore, the above integral is uv-convergent provided

rRYmi, @)~ (mP/RY),
k2>>m2

where « > 0.
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We write the most general classical formulation of Poincaré-invariant action-at-a-dis-
tance theories and review their classical applications. We stress their bootstraplike
properties. In particular, we try to view dual amplitudes in terms of the radiation reac-

tion of “dual atoms.”

I. INTRODUCTION

The study of the strong interactions in the limit
of short separations has led to the revival of the
conformal group.! Yet, the physical applications
of this group have been hampered by the noninvari-
ance of the sign of x* under its finife transforma-
tions, thus causing an apparent violation of causal-
ity. To circumvent this difficulty, modern “con-
formists” require only infinitesimal conformal in-
variance and break the full invariance by the spec-
ification of physically reasonable boundary condi-

tions (for instance, through an ie prescription).
As it is evident that conformal invariance must be
broken in some way, it may prove useful, as well
as instructive, to consider alternatives to this
procedure. One such alternative is provided by
the classical treatment of electrodynamics through
action at a distance,? as formulated by Feynman
and Wheeler.® Their formulation, as pointed out
by Professor Giirsey,* is conformally invariant;
in it particles interact by means of a symmetric
combination of advanced and retarded signals, in-
stead of the usual retarded interaction. Causality
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can be restored if one adopts the view that radia-
tion is not just an emission, but a transmission
process, that is, there is no such thing as unab-
sorbed radiation. Under this assumption, Feyn-
man and Wheeler show that the force of radiation
reaction on a given particle can be understood in
terms of the advanced signals emitted by the par-
ticles that have absorbed those sent by the original
particle. In short, by assuming perfect absorption
of all radiation, they have shown their formulation
to be equivalent to the field treatment of electro-
dynamics.® In addition, and perhaps more impor-
tant, their treatment does not give rise to infini-
ties since in action-at-a-distance theories parti-
cles do not act on themselves. Unfortunately, this
beautiful and elegant alternative view has resisted
all attempts at quantization,® thereby explaining its
fall from prominence. It is nevertheless instruc-
tive to speculate on how a quantized action-at-a-
distance theory would compare with its quantized
field theory (QFT) analog. First of all, we see
that photons (the radiation) are never allowed to
be on mass shell so that only the charge carriers
(electrons, say) can be on mass shell and conse-
quently have asymptotic states.” This presents a
clear restriction over QFT where particles are
free to exist on or off mass shell. Yet, by an
appropriate interpretation of the nature of the ab-
sorber, one can produce QFT effects such as vac-
uum polarization and pair production. Thus, if
such an asymmetry between electrons and photons
can be made tenable, one would have to say that

a quantized action-at-a-distance theory will be
equivalent to the renormalized quantum electro-
dynamics.

In strong interactions, there are in fact many
particles which do not have any asymptotic states:
the resonances. For example, one usually treats
(theoretically) both the p and 7 mesons as particles
even though one of them does not exist outside of
the strong-interaction region. If the absorber of
Feynman and Wheeler can be made to absorb
everything except the ground states of the various
Regge trajectories, it would then be tempting to
take action-at-a-distance theories seriously. In
this paper, we take this attitude. In view of the
extreme difficulties with quantization, we shall
present a general classical treatment at first for
arbitrary action-at-a-distance theories. Then,
we will consider their possible application to dual
resonance models (DRM) which we will use as a
guide for quantization. Unfortunately we have not
yet been able to determine what type of interaction
corresponds to dual models. In Sec. II we describe
the general formalism of action-at-a-distance
theories. Section III will deal with possible appli-
cations. Section IV will stress the similarities

of the formalism with dual models when some
dynamical restrictions are applied.

II. CLASSICAL FORMALISM

We specifically consider an arbitrary number of
scalar particles interacting with one another by
means of action-at-a-distance forces.? By this
we mean that the force acting on any given parti-
cle is due only to the other particles; thus there
is no self-interaction as well as no degrees of
freedom other than those carried by the particles
themselves. This presents a clear alternative to
the usual field treatment of relativistic interac-
tions. In the following, we expand the relativistic
description of such systems.

Every particle will describe a world line with
line element

ds;*=g,,dx{dx} (=dx; -dx,), (2.1)

where ¢ is the particle label, g,, the Lorentz met-
ric taken to be (1, -1, -1, —-1), and %! is a Lorentz
four-vector describing the position of particle <.
It is convenient to introduce a scalar parameter

A; as a label, monotonically increasingly along
the world line. In addition, we set

i
dx;

ult .
AN,

11

(2.2)

As in all beautiful physical formulations, the
behavior of the system is derivable from an ac-
tion principle. We postulate the action function®

S=%,m;c| ds;
i

D dxifdx,R“'“(x};,x;.l,ut;,ug). (2.3)
¥

Note the absence of a self-interaction term. Also,
RE:) g required to be symmetric under inter-
change of 7 and j in order to preserve the symme-
try of the action. The dependence of R(**#) on the
path functions is restricted up to first derivatives.
Of course the interaction is nonlocal. The require-
ments of translation and Lorentz invariance as
well as symmetry of the action are ensured by
taking R“*+¥) to be functions of the variables

s§ = (= x) - (v, = %),

S(li,j) :ui .uj ’

s$ D) = (u;=u;) - (v~ x;), (2.4)
s§ ) = (o - (o= ) luy - (= )1,
iV = (uy u)u; uy),

s =y cuyru;
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These are related through the relations

w.n_ 1/ d d) @9

$27 To\an, Ta, )%

X 1 dS“'”)(dS(i’j))

G,i) ({220 (%20

Ss 4< an, a, 1’ (2.5)
o _1_da> 4.5

51 2 dnan, O

The (classical) physical motion of the particles
is defined to be that for which the action is an
extremum. Consequently, a small variation away
from the physical motion will not alter the value
of S. Assuming that this variation tends to zero
at infinity, we obtain the equations of motion

Floerid

1o U;)

G,i) @,7)
5SS Gan)]
&~ 9%y A\ Uy

i=1,2,.... (2.6

Unlike their nonrelativistic counterparts, these
are integrodifferential equations, since the right-
hand side depends on integrals over the whole mo-
tion. This novel feature is due to the fact that
signals cannot propagate instantaneously. To see
this more explicitly, it is convenient to rewrite
these equations in terms of the new variables.
Straightforward algebra yields

(Mu )= Efd)\ x; —x uFt j)({s(' j)})

Jj*i

(2.7
where
9R
@, u) +Efd)\< +2u; . u,as4> (2.8)
and
@1 _9OR __d? ?ﬁ_(..é_ A \2R
F —2830 drgdx; 8s,  \dx +d7\j 39S,

1

(2.9)

We have omitted the (7, j) superscripts for con-
venience. We see that the interaction gives rise
to a generalized mass or momentum (distinct from
the usual generalized momentum). In addition,
F%9)({ s} is manifestly invariant under the inter-
change of ¢ and j, rendering the integrand on the

'Eg',[”i'(xf' )335]_3%[% (x, x)—a-s—J

right-hand side of Eq. (2.7) antisymmetric under
i—~j. This corresponds to a generalization of New-
ton’s law of action and reaction which is made
possible by the presence of retarded and advanced
interactions.

Up to now, we have said nothing about the r,’s
except by requiring them to be Lorentz-invariant
labels of the world lines (translation invariance
was not required as they appear only as infinitesi-
mals in the action). An obvious (but not unique)
way of identifying them with some concrete prop-
erty of the particle’s world line is to set them
equal to the path lengths of their respective world
lines. This procedure, however, is not always
compatible with the equations of motion. We see
from Eq. (2.1) that our choice requires that

uycu;=1. (2.10)

On the other hand, by multiplying the equations
of motion (2.6) by u,,, we obtain, after several
manipulations,

ke 1) = dh;fdhé‘% uﬁ)
(2.11)

Thus, consistency requires that

(1 Ugy = 5y, )Zfd)\,R constant . (2.12)

j=i

Obviously not all interactions will satisfy this cri-
terion. One obvious way to satisfy it is to make
R%:7) homogeneous in «; of the first order. This
is a sufficient but not necessary requirement.
Note that if R is homogeneous in u;, of any order
other than one, there can be no interaction com-
patible with our identification of X; since then the
interacting action can be rewritten as a sum of
free particle actions by using Eq. (2.12).

Now, it is reasonable to require that the physical
behavior of our system be unaltered by an arbi-
trary change in the parametrization of the world
lines. The free part of the action, just being an
arc length, is invariant under such a change while
the interacting part is (@ priori) not. It is easy to
see that the invariance of S is satisfied if Eq. (2.12)
is obeyed, by performing an arbitrary change X,

- X; +02; in the expression for the interacting part
of S. Hence, on physical grounds, we must re-
strict ourselves to interactions that satisfy Eq.
(2.12).

The invariance of S under translations and Lo-
rentz transformations has been guaranteed by our
construction. Such transformations form a ten-
parameter group (four for translations and six for
rotations in Minkowksi space), the Poincaré group.
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We then expect to have ten conserved quantities. We can obtain them either by looking at the response of
the action to infinitesimal translations and rotations® or directly by looking at the equations of motion.
The four generators of translations are given by

_ ' ) l © )‘j_ Aj e ’ o) G ,3i) / 2.13
P, Z‘:M,um()x,)+c Z(j;{ /;w j_; j;j >d7\,d>x,(x‘ )y FO (s . (2.13)

i<j

They are constant in A;’s as can be seen directly by differentiating the above and using (2.7). It is impor-
tant to remark that the total four-momentum of the system is not just the sum of the particles’ individual
four-momenta. (Recall that P, is an energy which for a system in interaction contains an extra term, the

interaction energy). Similarly, the six generators of Lorentz transformations are given by

My, =3 (x;, d'P, - x,,d'P,),
i

(2.14)

where d@' refers to the variation induced by a small change in ;. It is evident from this that the ¥ w S are

constant. They can also be written as

1 w© N i .
M, =E M,-(xiuu,-,,—x,.vuip)+zz<f)\ f _f ‘f >d}t{d7\; (x,fux,’,,—xg,,x;“)F(z (s}, (2.15)
i i<j i T I

Again, notice the presence of an interaction angu-

lar momentum. These interaction terms, both in
P, and M,,, correspond to the fact that the inter-
action is not instantaneous which means that we
have some momentum (or angular momentum) in
transit,’ having left a given particle and not yet
arrived to another one. These lie at the origin of
the no-go theorems of relativistic particle dynam-
ics.!’ Suppose we postulate some Lie brackets
between x;, and p;, (=m;u,,); then it is not clear
whether P, and M, will satisfy the brackets of
the Poincaré group. This will depend on the inter-
action which itself depends on %*;, and p;, . Hence
the emergence of consistency conditions between
the boundary conditions (Lie brackets) and the
equations of motion. This is symptomatic of all
action-at-a-distance theories where the path of a
particle at a given time depends on the path of
other particles taken at different times. This is
in contradistinction with the usual Hamiltonian
formalism®? where the line evolution of the sys-
tem is independent of the boundary conditions.
This fact seems to suggest that action-at-a-dis-
tance theories can be regarded as the subset of
field theories which satisfy certain bootstrap re-
quirements.

III. EXAMPLES

We illustrate the formalism of Sec. II with some
special examples. All cases will be describing
the interaction of scalar particles. When building
their interaction we will restrict ourselves to
those which admit a consistent definition of proper
time (path length). Consequently we omit the vari-

ables s§+’) and s¥+/) from our models since they
are not homogeneous in the velocities.

A. Scalar Interactions

This theory is the analog of the field theory
mediated by a massive scalar meson.'®' ¢ It ig
derivable from the action S with

RV = =g, g/l ")V2 Dy (m? 5§ 7), (3.1)

where g; and g; are the coupling constants and
Dy is the Green’s function of the massive Klein-
Gordon operator that is symmetric in time:

Dsym(mz; so) - _;_(Dadv_{_Dret)
=2[6(s ) = B(sy) s (mV5y) | (3.2)
0 0 2\/5*0 1 o/ |- .
Introduce the function

¢(j)(x) =gjfd)\j (uj 'uj)l/z Dsym(mz; (x - xj)z)a

(3.3)
which obeys
(0% -m?) ¢ (x) = ~4mp(x) (3.4)
with
o (x) =g,-fd)xj 6(4)(x—x,) . (3.5)

We see that ¢{/)(x) plays the role of the field and
p)(x) that of the scalar current. Unlike field
theory, however, ¢")(x) is just a convenient con-
struct, not a physical entity with degrees of free-
dom of its own. Then we can write the interaction
action as



7

Si"t="%,2_[d>xi (u; 'ui)l/zq)i(xi)’ (3.6)
where

2(x) = T 67x) 3.7

is the scalar “field” felt by the particle 7 resulting
from the action of all the other particles.

B. Vector Interactions

There are several ways to write such interac-
tions. The most popular one, due to Van Dam and
Wigner,!® lets

R(i'i)=gigjsii'j)f(5g'j)), (3.8)

with f(s,) arbitrary. If we take f to be the sym-
metric Green’s function of Eq. (3.2), the vector
“field”

AP =g [ dN iy Dymn®, (=) (3.9)
automatically satisfies

(@2 - m?) A Ax) = - 4mj(P(x) (3.10)
with

jL‘)(x)=gifd)\i gy 8 (x = x;) (3.11)

being the vector current. The special case of
physical interest corresponds to letting m=0 in
the above. Then we obtain the Tetrode-Fokker
action® which contains the whole of classical elec-
trodynamics. The field strengths are introduced
through

Fi)=8,A5 —5,A", (3.12)

which explicitly satisfy Maxwell’s equations. The
equations of motion obtained by varying the action
S are

d .
my ==ty =e, > Fdut, (3.13)
1 P
where we have used Eq. (2.10). Following Feyn-
man and Wheeler,® we observe that
2 F;(xf;) - % Z (F;(li,)ret +F§1{,)adV)
i

i=i =

— E Ffl{})ret+é(F£i)ret _Fl(-ui’)adV)

j=i
- Z; %(F;(l{’)ret_ F’(‘{j)adv) . (314)
all j

The last term vanishes outside the absorber be-
cause complete absorption of the radiation is the
hypothesis of their interpretation. If so, being
nonsingular on the particle’s world lines as well
as a solution of Maxwell’s equations, it must also
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vanish inside the absorber; it vanishes every-
where.

The second term has been shown by Dirac® to
give the force of radiation reaction. Thus, with
the Feynman-Wheeler reinterpretation, one ob-
tains the Lorentz-Dirac'® equations of motion. In
conclusion, both the classical field and action-at-
a-distance formulations give rise to the same
theory in the case of infinite-range vector interac-
tion. It is significant that such agreement disap-
pears in the case of short-range interactions.'®
The difference lies in the force of radiation reac-
tion for which the two formulations give different
expressions. In the field theory case, the radia-
tion reaction turns out to depend on the previous
motion of the particle, which means that the force
felt by the particle at a given point in space de-
pends on how it arrived at that point. This pre-
sents a clear conceptual difficulty in the meaning
of a local field. In the action-at-a-distance case,
similar effects are found, but they do not pose any
problems of interpretation. We view this as a
hint that an action-at-a-distance formulation of
short-range forces might be preferable to that of
a field theory.

For a vector interaction, the interacting action
is then given by

st =} Z)[dxi wl Ay(x,), (3.15)
where
Aglxg) = Efd)\iuful)wm(mz’ si()i'j)) (3.16)
i=i

is the total vector “field” felt by particle 7.
Let us note an alternate way of writing vector
interaction corresponding to

RV =g,g; s f (s 1), (3.17)

which reduces to the previous one.”
Finally, we emphasize that the vector “field”
(3.9) satisfies

A (x)=0 (3.18)

automatically, thus eliminating the scalar degree
of freedom, and corresponding to a conserved vec-
tor current. We see that there is a definite choice
of gauge made by specifying the form of the action.
This result is important in constructing actions
for tensor interactions.

C. Tensor Interactions

One of the nicest features of action-at-a-distance
theories lies in their ability to describe higher
spin interactions in terms of the existing degrees
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of freedom, i.e., without introducing new degrees
of freedom attributed to a given resonance, as in
field theory. We start by looking at the second-
rank tensor interactions (which are important in
their own right). Such interactions will involve
couplings to the energy-momentum tensor of the
particles. This tensor is obtained by varying the
free particle’s action with respect to the metric
tensor. The result is (for particle 7, say)

740 (x) =mc dx,.5<4>(x—x,.)(7“—i%g. (3.19)
i i

This form suggests then the following possibilities
for the action:

(&g stsa (s, (3.20a)
RO = —gig5,5,8,7 Y2 f5(so) (3.20D)
-218553283 7V 3(s0) s (3.20c)

where we have dropped the (7, j) superscripts on
the s variables. The actions corresponding to
these choices can all be written in the form

fd4x THEP™ (6), a=1,2,3 (3.21)

i<j

with
P (x) = g,fdk,—%—fl( x=x,)%), (3.22a)

w(]);ﬂ/(x) g]fdk,%

Uu; '(x—xj)fz((x-x,')z); (322b)

¢(3f>pu(x) :g.fdx.(x—x) (x—x~)

oy =2

-1——-—~—g———f3((x %;)%). (3.22¢)

These couplings differ by the presence of deriva-
tive couplings, as can be seen by integrating by
parts the above expressions. The differences be-
tween the various actions can be written as

AS= Zfdh,——%ﬁ"vgw—B(’)“ x),  (3.23)

i<j

where BY"(x) is some field construct. This ex-
pression can then be recast in the form

AS——ZfdA, BY(x;)=—

i<j

[W} . (3.24)

In this way, higher derivative terms can make
their appearance in the action. We will comment
on this point in Sec. IV.

Physically, it means that these couplings differ
in their vector and scalar contents. It is well

| =3

known that in the theory of high-spin fields it is
needed to introduce subsidiary conditions in order
to eliminate the spurious components that always
appear as a price for using manifestly covariant
constructs. Action-at-a-distance theories have a
much more clever and economical way to solve
these problems.

Consider the coupling (3.20a). A similar form
was introduced by Whitehead!® as an alternative
to the linearized form of Einstein’s equations.
The important difference is the presence of the
factor s,~Y? in our form. As we have shown, such
a factor restores the homogeneity in the action
that is needed for the parametrization invariance
of the theory. This has important physical conse-
quences. In Whitehead’s theory, the “field” cor-
responding to Eq. (3.22a) has ten independent com-
ponents which then couple to the matter tensor ’
(3.19). In our case, however, we can use the con-
straint equation (2.10) in the expression for the
“field.” We can, for example, eliminate u;, in
favor of the three-vector part 4;, thus reducing
the number of independent components to six. We
still need an additional constraint for a massive
spin-two theory. We require the tracelessness of
the “field,” which is easily implemented by adding
the extra coupling term

R(e;u;) =18i8; s§! 'j)fl(so) . (3.25)

In field theory, this would correspond to the intro-
duction of a scalar field.’® The nature of the for-
malism forces us to add these new couplings which
simulate the field part of the energy tensor. We
see that the constraint equation (2.10) plays exact-
ly the same role as that of the subsidiary condi-
tions of field theory. This is part of the beauty

of these theories. Still-higher-spin interactions
can be introduced through coupling terms of the
form

R =g.8; sl""s 1 s4-(n-1)/2ft ’,,(s) ,

1=0,1,...,n, (3.26)

which correspond to spin #n.

In conclusion, it would seem that action-at-a-
distance theories provide a much more economical
way to describe high spin interactions, since one
does not have to add new (stable) particles in
order to have tensor forces. This suggests the
desirability of casting theories of strong interac-
tions in this language. Furthermore, as indicated
earlier, these probably correspond to bootstrap
theories. In Sec. IV, we try to pursue this pro-
gram by investigating the connection with dual
models.
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IV. DUAL MODELS

Let us start this section with several general
remarks concerning the applicability of action-at-
a-distance theories to the quantum domain.?® In
this formalism, the interaction is nonlocal in
character - thus the requirements of crossing
symmetry, spin statistics, ..., do not follow auto-
matically and must therefore impose strong re-
strictions on the type of interaction (probably in
terms of gauges). Also the requirement of total
absorption of the radiation must be included as a
constraint in the quantization procedure unless
one is prepared to obtain nonunitary answers.® At
the moment, we do not know how to solve these
problems. Conceptually, any alternative (or sub-
set) of field theories where particles can be re-
stricted to exist off mass shell is definitely wel-
come in the description of the strong interactions.
In addition, the commitment of the theory to a non-
Hamiltonian form, as shown by the interdepen-
dence of the boundary conditions with the equations
of motion, raises the possibility of a bootstrap.

As a partial answer to these questions, we shall
try, in the following, to obtain the results of dual
resonance models,?! starting from an action-at-a-
distance formulation. This should be regarded as
an exercise which might throw light on how to
quantize this type of theory on the one hand, or on
the nature of dual models on the other.

We consider scalar particles of the same mass,
m, interacting by means of the action (2.3). At the
moment, let us choose (with hindsight !)

o0 n
i,i) , , - -(n-
RUVH = 230 xz\sg(i" I)ggn I)Sln 183184 (n-1)/2
n=0 i=

X Dym(mo® +nw; s,) 4.1)

which is very general, but includes linear trajec-
tories, and will not be sufficient to lead to the de-
generacy of dual models. We use this form as a
prototype for the moment. In order to make con-
tact with dual models, we further assume that
these trace out periodic paths, i.e.,

T
xi“(xi+T)=xiu(Ai)+Eﬂm. (4.2)

This very strong restriction to the type of solu-
tions we want may not be consistent with the inter-
action (4.1). Since we do not have enough informa-
tion at this stage to answer this consistency ques-
tion, we relegate it to the end. Physically, this
means that all the scalar particles are performing
periodic motions with the same period. This uni-
versality requirement may be regarded as a phe-
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nomenological input. Define the kinematical mo-
menta

Py =m Zaalha), (4.3)

which are therefore periodic functions of A;. Fur-
ther, it follows that

1 T
H‘f?fo aPy() . (4.4)

The parametrization invariance of the action al-
lows us to choose the )\;’s such that

P,-P,=m?. (4.5)

In view of the periodicity of P;, this equation is
equivalent to the set
1

T
?f dn, e /T Py (M)PY(N) =m?5,
o

n=0,+1,+2,.... (4.6)

These are classical equations. To generalize
them to the quantum domain, we should impose
them only for n negative, as in the case of the
Lorentz condition in the electromagnetic case.

In our theory, the only degrees of freedom come
from the particle’s motion. Thus quantization will
take the form of specifying the commutator be-
tween two x;,(};) taken at different points of the
same world line. Since we do not have a Hamilto-
nian formalism, x,,(};) and P,,(};) are not con-
jugate variables; in fact we can show that if they
are conjugate, then the requirement that the ex-
pressions (2.13) and (2.15) satisfy the commutation
relations of the Poincaré group leads to no inter-
action between the particles. Still, we see from
Eq. (4.2) that our particles are translated in space-
time. We consequently identify II,, with the four-
momentum of the particle,?? which allows us to
write??

[x{u(hi)’niu]z—iguu . (4.7

To see what this identification means, let us
write the Fourier expansion of the position coor-
dinates as

. . + o0 .,
x,-p(k,-)=%n‘r[m+ T x (D N/T (4.8)
1= o0

in terms of which one of the constraints (4.5) is
written as

; 473m?
I, I =m? - ﬂTz

,i Pl (x40 + x40 ], (D)],
(4.9)

where we have used Eq. (4.3) as well as the re-
quirement that x be real. This means that the
physical momentum of one particle can have dif-
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ferent values. In group-theoretical terms, one
“particle” spans a reducible representation of the
Poincaré group. It is more like a collection of
states, i.e., more like an atom than a particle.
These “particles” we call “dual atoms.” We can
specify their level structure further by appealing
to the existence of linear Regge trajectories, lead-
ing to the requirement that the infinite sum in the
above equation have successive integer eigenval-
ues. This is satisfied if we take

(T \* Ly
5D =(30)  7rad, (4.10)
with
[a,,,(n), a;ru(l)]z_gpubn,l ’ (411)
[aiu(n)r aiu(l)] =0.
It follows that?*
[xlu()\i)’ xiu()\;)]
. T 2 2
=—igy, Som 6<7n()\{ - 7\,’)) m0d<—,17,r->,
(4.12)
where
, (+1, x>0
€(x) —{_1’ £ <0. (4.13)

These commutation relations, in turn, impose
severe constraints on the interaction, as can be
seen from Eqgs. (2.13) and (2.15). We are assuming
all along that consistency is achieved. By differ-
entiating the above, we see that

[x.-u(h,-), P,’y(}\{)] =0,

which shows that the dual-model commutation
relations cannot be obtained from a Hamiltonian
formalism, expressed in terms of space-time
quantities.?

It is not very instructive to write down the equa-
tions of motion explicitly. Their consequences
are of course interesting. Our ‘“dual atoms” ac-
celerate since they perform periodic motion. It
follows that they will radiate, the nature of the
radiation being dictated by the form of the action.
As an example, let us look at the vector interac-

(4.14)

(n)

mn

D : 1 . T W
A’g;)ad_ u"(x)zg’_ 2(217)2 fd'lkezk xs(ko)é(kz_moz_nw)j: dxipﬂll...Pi“n =ik x,()\,)’

which corresponds to the emitted “particle” lying
on the mother trajectory.

As noted in Sec. III, the timelike components of
these tensors may be eliminated by means of the

tion. The potential due to particle ¢ can be written
as

; dx
Af,')(x) =g‘fdh‘7}fg Dyl + w; (x = x,)?]

- %[Al(li)m +A‘(‘i)adv] , (4.15)

where we now take the integration between 0 and
T, making use of our periodicity assumption. The
radiation reaction, on the other hand, is given by

A’Si)rad(x)=%[A‘(ji)ret_A‘(1i)adv]- (416)
Since for the vector interaction,
1 .
Lipret _ padvy _ 47, ,ike x —m 2
L(Dret — i) 2(2ﬂ)3ifd ket % (k) o(k2 =me? - w),
(4.17)

it follows that

Afi”'ad(x)=2(21;%fd4k€”’"e(ko)ﬁ(kz—moz—w)

T .
Xf ar, Piu()\i)e-lk.xi()\i) )
b
(4.18)

This is nothing but the dual vertex for the emission
of a spin-one particle,?® up to the normal ordering,
to avoid infinities. The mass-shell constraint en-
ters automatically because we are looking at the
radiation. In this light, the dual trees can be
thought of describing the radiation from an accel-
erating “dual atom.” Duality comes in by requiring
that the emitted radiation be resolved in terms of
the states of the “dual atom.”?” Namely, given the
hypothesis of equal spacing as expressed by the
commutation relations, duality requires that this
spacing already be present in the action so that

all the states implied by the commutation relations
and parametrization invariance be explicitly dis-
played in the action. This is the embodiment of
the interdependence between boundary condition
and equations of motion. Hence we should set

(4.19)

Similar expressions for the radiation emitted
through tensor interaction may be written, e.g.,

(4.20)

constraint (4.5) (Ref. 28); in the quantum case,
however, (enormous) difficulties arise because of
the normal ordering.?® The daughter vertices,
which are known to include higher derivatives of
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P;, arise by means of the “derivative coupling”
mechanism outlined in Sec. III. It is unlikely,
however, that the degeneracy of the dual models
can be obtained from one action, which means that
there is a lack of consistency between the action
and the commutation relations. This can probably
be seen in terms of the expressions for the Poin-
caré generators. Another constraint, tacitly as-
sumed, is that the position coordinates transform
as Lorentz vectors. Finally, there are nonlinear
constraints on the coupling constants, obtained by
demanding that the generators (2.13) and (2.15)
form the Lie algebra of the Poincaré group.

So far we have brushed aside the question of
crossing symmetry. However, when we compute
the amplitude for a “dual atom” to emit certain
types of radiation, we find, as is well known,*
that crossing symmetry of the amplitude exists
only for m?=-1. This means, in our approach,
that for a real period, the energies of the “dual
atom” in various excited states are complex. There
does not seem to be any simple way to overcome
this difficulty.3!

In terms of specifics, we must regard our at-

tempt at describing dual models in the form of
action-at-a-distance theories as a first step
towards writing the action for the system. We
see, at least, that by requiring a strictly space-
time description, we are naturally led away from
a Hamiltonian formalism. More important it
raises the possibility of expressing such models
in terms of bootstrap theories. It should also give
some incentive for the study of the scattering of
two “dual atoms” where one might expect to simu-
late core effects, thus leading to a description of
diffraction.

Note added in proof. After completion of this
work, the existence of a Trieste report by P. Cor-
dero and G. C. Ghirardi came to my attention with
which this paper shows much overlap.

ACKNOWLEDGMENTS

The author thanks Professor F. Giirsey, Dr. S.
Orfanidis, and M. Kalb and C. Marshall for many
interesting discussions.

*Research supported by the U. S. Atomic Energy Com-
mission under Contract No. AT(11-1) 3075.

1G. Mack and A. Salam, Ann. Phys. (N.Y.) 53, 174
(1969); D. J. Gross and J. Wess, Phys. Rev. D 2, 753
(1970); C. G. Callan, S. Coleman, and R. Jackiw, Ann.
Phys. (N.Y.) 59, 42 (1970); D. Boulware, L. Brown, and
R. Peccei, Phys. Rev. D 2, 293 (1970); 3, 1750 (1971);
G. Domokos and S. Kévesi-Domokos, Johns Hopkins
Report No. C00-3285-2, 1972 (unpublished); S. Adler,
Phys. Rev. D 6, 3445 (1972).

K. Schwarzschild, G&ttinger Nachrichten 128, 132
(1903); H. Tetrode, Z. Physik 10, 317 (1922); A. D.
Fokker, ibid. 58, 386 (1929); Physica 9, 33 (1929); 12,
145 (1932).

SR. P. Feynman and J. A. Wheeler, Rev. Mod. Phys.
17, 157 (1945); 21, 425 (1949).

4F. Giirsey (unpublished). The Weyl invariance of the
Fokker action has been noted by C. M. Andersen and
H. C. von Baeyer, Phys. Rev. D 5, 2470 (1972).

5This equivalence is strictly true up to a field coming
in from infinity, which cannot be experimentally dis-
tinguished. See P. Havas, Phys. Rev. 74, 456 (1948).

5To see the ferocity of these attempts, see R. P.
Feynman’s elegant remarks in Science 153, 699 (1966).
Modern attempts are by F. Hoyle and J. V. Narlikar,
Ann, Phys. (N.Y.) 54, 207 (1969); 62, 44 (1971); and by
P. C. W. Davies, Proc. Cambridge Phil. Soc. 68, 751
(1970).

"Professor Giirsey has pointed out the existence of the
mirror theory where only photons can be on mass shell

and therefore have asymptotic states (private communi-
cation).

8Action at a distance with finite velocity was first
discussed by Gauss. Articles in Ref. 3 contain refer-
ences to earlier works.

%0ur action is of the same form as that of J. W. Dett-
man and A, Schild, Phys. Rev. 95, 1057 (1954).

04, Van Dam and E. P. Wigner, Phys. Rev. 142, 838
(1966). —_

Up, G. Currie, T. F. Jordan, and E. C. G. Sudarshan,
Rev. Mod. Phys. 35, 350 (1963); D. G. Currie, J. Math.
Phys. 4, 1470 (1963); J. T. Cannon and T. F. Jordan,
ibid. 5, 299 (1964); H. Ekstein, Université d’Aix-Mar-
seille report, 1964 (unpublished); H. Leutwyler, Nuovo
Cimento 37, 556 (1965). For a nice review and many
more references, see P. Havas, in Statistical Me-
chanics of Equilibvium and Non-Equilibvium, edited by
J. Meixner (North-Holland, Amsterdam, 1965).

12p, A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

13p, Havas, Phys. Rev. 87, 309 (1952).

Y4Amnon Katz, J. Math. Phys. 10, 1929 (1969); in this
reference the action contains an arbitrary function of
S not the specific Green’s function we have written in the
text.

1Y, Van Dam and E. P. Wigner, Phys. Rev. 138, B1576
(1965); 142, 838 (1966). —

16p, A. M. Dirac, Proc. Roy. Soc. (London) A167, 148
(1938).

1"This alternative has been noted by Katz in Ref. 14.

18A, N. Whitehead, The Principle of Relativity (Cam-



458 P. RAMOND 1

bridge Univ. Press, New York, 1922); also, J. L. Synge,
Proc. Roy. Soc. (London) A211, 303 (1952).

guch a field was introduced by J. A. Dyer and A. Schild,

J. Math. Anal. Appl. 4, 328 (1962). A physical interpre-
tation of this scalar field was given by F. Giirsey, Ann.
Phys. (N.Y.) 24, 211 (1963).

Ngee E. C. G. Sudarshan, Fields and Quanta 2, 175
(1972), where the relation with indefinite metric theo-
ries is presented. Also E. C. G. Sudarshan, University
of Texas Reports No. CPT 81 and No. CPT 122 (unpub-
lished), and A. M. Gleeson, University of Texas Report
No. CPT 151, 1972 (unpublished).

2y, Allessandrini, D. Amati, M. LeBellac, and
D. Olive, Phys. Reports 1C, 269 (1971); P. Ramond, in
Boulder Lectuves in Theoretical Physics, edited by
A. Barut and W. E. Brittin (Colorado Univ. Press,
Boulder, Colo., 1972), Vol. XIV A.

22p, Ramond, Nuovo Cimento 4A, 544 (1971). We can
say that if T is sufficiently small, one can only mea-
sure the average over the period.

Bgtrictly speaking, one has to include. dilatations in
order to consider such position operators.

243, Fubini and G. Veneziano, Nuovo Cimento 67, 29
(1970). We are assuming at this stage that the positions
of two different particles commute, which we cannot
really justify.

%0One can restore the Hamiltonian formalism by
assuming the existence of an internal space in which
there are an infinite number of degrees of freedom

which represent a string. Then the trajectory function

of the “dual atoms” is interpreted as the amplitude of
the Nambu string. See Y. Nambu, Copenhagen Lectures,
1971 (unpublished). The definitive treatment of the string
formalism has been formulated by L. N, Chang and

F. Mansouri, Phys. Rev. D 5, 2535 (1972).

%L, Clavelli and P. Ramond, Phys. Rev. D 3, 988
(1971). P. Campagna, S. Fubini, E. Napolitano, and
S. Sciuto, Nuovo Cimento 24, 911 (1971).

2TOne should not attach too much importance to the
word atom, otherwise we would have to consider a
hydrogen atom which emits other hydrogen atoms to
deexcite itself.

B our formalism, we see explicitly how the para-
metrization invariance of the action eliminates ghosts.
See F. Mansouri and Y. Nambu, Phys. Letters 39B, 375
(1972).

230nly lately has the no-ghost proof been given by R. C.

‘Brower, Phys. Rev. D 5, 1655 (1972), and P. Goddard

and C. B. Thorn, Phys. Letters 40B, 235 (1972).

S0M. A. Virasoro, Phys. Rev. D 1, 2933 (1970).

31 This condition, together with that of linear trajec-
tories, requires the presence of a spin-one, massless
“field, ” which is the price one pays in field theory for
having local gauge invariance. Only a nonlinear pro-
cedure, like spontaneous symmetry breaking, is known
to remedy such ills. Thus it seems that one must
understand the spontaneous breaking of the parametriz-
ation invariance.



