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It is shown that if Z3 (where Z3 is the photon wave-function renormalization constant)
is assumed finite and the nonasymptotic part h of the renormalized photon propagator
vanishes with power-law behavior, then all the remaining renormalization constants in
scalar electrodynamics can be made finite order by order, except the charged-mt, son self-
mass Bm2. The condition that 6m~ be finite forces the asymptotic coupling 0.0 to satisfy at
least one eigenvalue equation. A second eigenvalue condition for no emerges from the re-
quirement that the theory have a Hermitian Lagrangian. Finally, on the basis of the re-
normalization group, we expect that the initial assumption of a finite value of Z3 is self-
consistent only if no satisfies a third eigenvalue condition. Hence, we conjecture that a
completely finite, closed theory of scalar electrodynamics is probably internally inconsis-
tent. Assuming that h falls off sufficiently rapidly, we are able to show that the meson
propagator has a very simple asymptotic form for momenta much greater than its physical
mass.

I. INTRODUCTION AND SUMMARY OF RESULTS

The development of relativistic quantum field
dynamics during the past quarter-century has been
largely dominated by the recurrent question of
whether a completely finite, pathology-free local
fieM theory, with some claim of describing physi-
cal reality, exists. Attention in this regard has
naturally focused on the one theory which has had

the most quantitative success —quantum electrody-
namics. One of the most systematic attempts to
answer this question in quantum electrodynamics,
considered as a closed theory, has been the series
of papers by Johnson, Baker, and Willey' published
over the past eight years. Their main conclusion
is that all of the renormalization constants of
quantum electrodynamics are finite provided (a)
the electron bare mass m, is zero and (b) the



424 M. P. FRY

equation E ' (x) = 0 has a positive root, where
E ' (x) is the coefficient of the logarithmic diver-
gence in Z, (the photon wave-function renormaliza-
tion constant) obtained from the sum of all single-
electron-loop vacuum-polarization graphs calcu-
lated with coupling constant x. Since E~'l(x) is
known only to order x', the consistency of a finite,
closed theory of quantum electrodynamics still re-
mains an open question. '

This paper asks the same question of the electro-
dynamics of spin-0 mesons minimally coupled to
the Maxwell field —scalar electrodynamics. Here
there are five genuine primitive divergences en-
countered in the power-series expansion of the un-
renormalized theory, as opposed to three in spinor
electrodynamics. These are summarized by the
meson self-mass 5m', the meson-photon vertex
renormalization constant Z, (=Z, ), the Compton
vertex renormalization constant Z, (=Z, =Z, ), Z„
and the graphs with four external meson lines (M
parts). The equality of Z„ the meson wave-fuzz-
tion renormalization constant Z„and Z4 is a con-
sequence of gauge invariance.

The approach we take to determine under what
conditions, if any, the unrenormalized theory is
finite was suggested by the previous work of John-
son, Baker, and Willey. It is a well-known fact
that the divergences in the basic unrenormalized
Green's functions are closely related to the behav-
ior of the renormalized meson and photon propa-
gators far off the mass shell. Following Johnson,
Baker, and Willey we begin by postulating the as-
ymptotic finiteness of the renormalized photon
propagator, or, equivalently, the finiteness of Z, .
We are then able to make definite statements about
the remaining divergences and the asymptotic be-
havior of the renormalized meson propagator. To
complete our program we must show that the theo-
ry is indeed consistent with the assumed asymptot-
ic behavior of the renormalized photon propagator
and a finite value of Z, .

Specifically, the results obtained here are based
on the following assumptions:

(a) Scalar electrodynamics combined with a
AP 'P' counterterm is a renormalizable field theo-
ry.

(b) The renormalized photon propagator D„,(k) is
asymptotically finite,

By the first assumption we mean that all of the
divergences of the theory can be absorbed in a re-
normalization of mass, charge, and the coupling X.

Significant progress toward the proof of this diffi-
cult program was made by Salam' and by Matthews
and Salam. 4 In the latter paper the authors claim
to have completed the proof of the renormalizabil-
ity of scalar electrodynamics, and to this author' s
knowledge, no paper has since appeared on the
subject. ' Perhaps due to lack of experimental
stimulus' the actual systematic implementation of
this program has not been carried beyond second
order in perturbation theory.

The second assumption is based on the following
considerations:

(1) When A. is expanded as a power series in o.

the divergences in the unrenormalized photon
propagator D„, can be removed by a multiplicative
renormalization in each order of perturbation the-
ory,

Dpv = Zg(A~/m', n)D„„ (1.2)

with Z, the photon wave-function renormalization
constant, and A a suitably defined ultraviolet cut-
off. The propagator D„, is calculated in terms of
the canonical (bare) coupling n, which is related
to n by n =Z,a, .

(2) Define the function d, (k'/nz', o. ) by

k„k, nd, (k'/m', o, ) k„k,

Q
+ ~ ~ ~

127

q(o. ) =ad,"(1,n)

Then the method of the renormalization group can
be used to study the behavior of o.d, (k'/m', o. ) in
the region k'» m'. In this case we obtain a func-
tional equation for the asymptotic part d,

" of d,
analogous to the Gell-Mann-Low equation' in spin-
or electrodynamics,

0',"c &~~/m~, a) g~
ln(k /m') = (1.4)

e(ct) x

with

8
g(q(o')) = o' —d."(x, o')

ax '

where n is the fine-structure constant or physical
coupling, n, is the asymptotic coupling, m is the
physical meson mass, and G is a gauge parameter.

(c) The bare (unrenormalized) meson mass m, is
finite.

—Q + ~ ~ ~

and where n is related to the physical charge e by
o. =e'/4w. The function d,"(k'/m', o. ) is defined as
the sum of the series obtained by dropping all
terms in each order of the expansion of d, (k'/m', o. )
in powers of o. that vanish as k'/m'- ~. Implicit
here is the assumption that the neglected terms do
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q(n) =n. ,

we obtain from Eg. (1.4) the result

nd,
"(k'/m', n) =n, .

(1.6)

(1 7)

In this case, h makes no contribution to the as-
ymptotic part of d, (k'/m', n), indicating that it de-
creases at least as fast as m'/k' as k'/m'- ~.
With Adler, ' we call the case when Eq. (1.7) is sat-
isfied Type 1 asymptotic behavior. The case when

d,
"(k'/m', n) has a nontrivial k' dependence is

called Type 2 asymptotic behavior. Here, we wish
to point out that our results are consistent with

Type 2 asymptotic behavior only if h(k'/m', n) van-
ishes as a power of lP/m' (essentially) as k'/m'

This will become evident below.
To summarize, we expect on general grounds

that our assumption of an asymptotically finite re-
normalized photon propagator is consistent only if
the asymptotic coupling no is fixed to be the first
zero of P(x) as x increases from zero along the
real axis. The physical coupling n is a free pa-
rameter restricted only by the requirement that
n &n, . Moreover, if the zero of g(x) is a simple
one and if g'(n, ) &0, then it follows from (1.4) that
h(k'/m', n) vanishes as a power of k'/m', indepen-
dently of the value of n.

We mention here that many of the techniques de-
veloped by Johnson, Baker, and Willey in their
study of the small-distance behavior of the photon
propagator in spinor electrodynamics' and in the
proof of the equivalence of their approach to that
of Gell-Mann and Low" are applicable to scalar
electrodynamics. Consequently, it is at least
thinkable that a simpler eigenvalue condition on no
than P(n, ) = 0 will emerge in future work as a nec-
essary condition for an asymptotically finite D„„.

Finally, the implication of Adler's recent impor-
tant paper' for scalar electrodynamics is obscured
by the presence of the boson-boson counterterm.

not sum to a function that asymptotically dominates
6c

(3) For some finite value x = n„g( x) vanishes,
and hence nd,"(k'/m', n)- n, as k'/m'- ~ in Eg.
(1.4). Therefore, our assumption of the asymptot-
ic finiteness of D„„may be phrased more specifi-
cally as the assumption that f(x) has a sufficiently
strong zero to make the integral in (1.4) diverge
when its upper limit reaches no.

In the following, we shall require a more de-
tailed statement about the nonasymptotic part h of
d, which we define by

nd, (k'/m', n) =n, +h(k'/m', n), (1.5)

with the boundary condition h (k'/m', n)- 0 as k'/
m2- ~. First, we note that if the value of the
physical coupling n satisfies

C (eo')
g( p~)

p2 -+oo P
(1.8)

where C is a numerical constant that can be calcu-
lated as a power series in e,' (=4~n, ). Next, we

show in Sec. IV that there is a unique power-series
expansion of A. in terms of eo which is finite term
by term and which removes all M-part diver-
gences. The values of the expansion coefficients
are, in general, complex. To regain a Hermitian
Lagrangian, we have required that the asymptotic
coupling be fixed to be a nonvanishing value o.o &0

for which the imaginary part of X vanishes. In See.
V we begin a study of the asymptotic behavior of
h(p'), with finite m, in the region of large space-
like momenta. When D„, has Type 1 asymptotic
behavior, then the sum of the renormalized per-
turbation theory series for h(P'), in the gauge in
which Z, is finite, asymptotically approaches the
function

b, '(p') ~ C '(eo')
p 2 &&m2

X P + 2g QO PPg 2 + 2

(1.9)

Here c, are constants calculated from the power-
series expansion of the renormalized Bethe-Sal-
peter kernel for meson-antimeson scattering. The
constant a(e,') may also be calculated from renor-
malized perturbation theory. The constants e, are
calculated to order eo' and are found to be

In particular, his proof that the conjectured zero
in P(x) in spinor electrodynamics is of infinite or-
der breaks down in the presence of this counter-
term. " Moreover, his proof that there exists a
unique, asymptotically finite solution for D„„ in
addition to the one expected on the basis of the re-
normalization group, provided n is suitably re-
stricted, does not immediately carry through in
scalar electrodynamics due to M-part divergences. "

The third assumption made above requires that
the purely electrodynamic contribution (i.e., ne-
glecting all couplings except the charged-meson-
Maxwell-field coupling) to the mass splitting of an
isotopic multiplet of spin-0 mesons be finite. As
we will see in Sec. VI, this assumption is proba-
bly wrong.

With these assumptions we show in Sec. III that
a gauge exists in which Z, (=Z, =Z, ) is finite to all
orders of perturbation theory. An explicit calcu-
lation of the gauge that renders Z, finite through
fourth order is given. It is also shown that the re-
normalized meson propagator &(P'), calculated in
this gauge, has the asymptotic behavior
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5v'1953+147 ' . 5v'1953 —147 'i2

80m' 2 2

+ 0(e,')

(1.10)

The oscillating part of the asymptotic expression
for 6 introduced by the imaginary parts of c, will
drop out when e, are calculated to all orders with
the value of o., for which ImA. =0. In Sec. VI we
study the meson self-mass and find that the qua-
dratic divergences present in its perturbation ex-
pansion are intrinsic to scalar electrodynamics
unless the asymptotic coupling n, satisfies the
eigenvalue condition

a(o'. ) = o,

where g is the coefficient of the quadratic mass
divergence. The gauge invariance of g is proved
in the Appendix. Due to the inherent ambiguity in
defining a quadratically divergent integral, the
equation for g is not unique.

The two conditions on n„ 1m'(o. ,) =0 for Her-
miticity and g(o.,) = 0 for a ciuadratic-divergence-
free meson self-mass, are in obvious conflict.
When these are combined with the conjectured ad-
ditional condition g(o. ,) = 0 for an asymptotically
finite value of D„„ it appears probable that the
asymptotic coupling is overdetermined. Hence,
we conjecture, provided g(o.,) can be definedunam-
biguously, that a comPletely finite theory of scc-
la~ electrodynamics, considered as a closed the-
ory, is probably intexna/ly inconsistent.

In the next section we write down an equation for
the unrenormalized meson propagator that is the

analog of the Schwinger-Dyson equation for the
electron propagator in spinor electrodynamics.
We then describe an expansion of the meson mass
operator in terms of the exact unrenormalized me-
son and photon propagators, This expansion en-
ables us to obtain a linear integral equation for the
unrenormalized meson-photon vertex I"„, which
will be the starting point of our study of the ultra-
violet divergences associated with Z, .

We mention in closing an analysis of spin-0 elec-
trodynamics similar in spirit to Johnson, Baker,
and Willey's first paper" and the lowest-order
calculations in this paper carried out by Flamm
and Freund. " By replacing the unrenormalized
photon propagator with its conjectured asymptotic
value (1.1) and truncating the Bethe-Salpeter ker-
nel at order n„ they concluded that 5m' cannot be
rendered finite in this approximation. Since they
did not extend their analysis to all orders, no ei-
genvalue condition on n, was obtained as a neces-
sary condition for suppressing the quadratic diver-
gences in 5m'. In addition, their analysis makes
no mention of M-part divergences, which cannot be
neglected in higher-order approximations to the
Bethe-Salpeter kernel.

II. SCALAR ELECTRODYNAMICS

In this section we write down a functional differ-
ential equation for the unrenormalized meson prop-
agator and discuss its expansion in terms of the
exact unrenormalized meson and photon propaga-
tors. We then give a linear, gauge-covariant equa-
tion for the unrenormalized meson-photon vertex
function.

A. Schwinger Equation in Scalar Electrodynamics

The Lagrange function operator describing the coupling of the charged-meson and Maxwell fields is de-
fined here as

(2.1)

(,)
i & o &i l(4 (x)4 '(x)).

l o, o.)
(O, o, lO, o, )

Then from Schwinger's action principle" we obtain a functional differential equation for 4:

I.=--,'i(II„', [(I/i)e~ —e,A" ] y)+H. c. +Iltll"
—m, 'p Q + ,'&"'F„,—,' (F~ '—,s „A,—e,—A,„)+ —,

' zy t'y' + A „g~ + y
t yg,

where (A, B}Isignifies AB +BA, and J„and J are cla.ssical, external currents. The coupling e, is the
canonical (bare) charge, which is related to n, by e,'=4wo, For the present we leave the coupling A, ar-
bitrary.

All dynamical information pertaining to this coupled field system is contained in its Green's functions.
The basic Green's functions are D„„ the meson Green's function ~, the meson-photon vertex function I'„,
and the Compton vertex function I ». Other higher-order Green's functions are functionals of these four
basic functions. Define the meson Green's function by

1 2 6~ ~—.s„—e, (A„(x))+ie, „+ized(x, )-xZ( ) xi'+. + m, ' r (x, x') =5(x —x'),5Jx (2.2)
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where

))
(0, o, ~A. „(x)~0, o, )

&0, cr, ~0, o, )

Equation (2.2) is the scalar-electrodynamic counterpart of the Schwinger equation in spinor electrodynam-
ics.

B. Integral Equation for 6

Equation (2.2) can be cleared of functional derivatives by introducing the photon propagator

D„,(x, x') =, ,
)

&A„(x)),

the meson-photon vertex

(2 3)

Fp(x, x'; $ —
& ~( ))

b x, x

the Compton vertex

(2.4)

(2.5)

and the four-meson vertex

I'(x, x'; $) =-
(

b. '(x, x'),

where

(2.8)

~
d'x" ~(x, x")~ '(x", x') = 8(x —x') . (2 7)

With the help of the auxiliary quantities (2.3)-(2.6), Eq. (2.2) (in momentum space) becomes in the limit
Z =0 Z=O

p

d4s d s
, , =P'+m, '+i A, b, (P s)+iA+. ', „6(P+s)F(P+s,P) —ie,', „D„"(s)

d4
+ie,' J,D"'(s)(2P+s)„b,(P+s)F„(P+s,P)

J s

d4S d4s'—e,', 2, D "(s)D '(s')(2g z)b(p+s+s')F, (p+s+s', p+s)S(P+s)F„(p+s, p)

" d4s d's'
+e,', , D""(s)D„"(s')6(P+s+s')F„,(P+s+s', P+s, P), (2.8)

which is the scalar-electrodynamic equivalent of the Schwinger-Dyson equation for the electron propagator.
In order to make effective use of our assumption regarding the asymptotic behavior of D„„we will ex-

pand I'„, F~„and I' in Eq. (2.8) in terms of the exact b, and D functions. This is accomplished by making

repeated use of the definitions (2.3)-(2.7) combined with Eq. (2.2). It turns out that due to the Qt'P'
counterterm, considerable care must be taken to functionally differentiate all graphs, including tadpoles.
Otherwise, graphs will be generated with the wrong over-all numerical weighting factors. Substitution of
the results in Eq. (2.8) gives

" d' ~ d' d4s
=P'+m, '+2i A. 4 b, (P+s) —ie,', „D„"(s)+Ze,' ~, „D„,(s)(2P+s)"b(P+s)(2P+s)'

+e,', , D""(s)D„'(s')S(P+s+ s')(2g„„)+2k', , b(p+ s+ s')b(s)S(s')s d 2 ds dS

d's d4s'
+2Xe,', , D(s)(2P s)+"b, (P s)b+, (s s'+)(2s'+s)'a(s') ~ ~ +~ . (2.8)
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Equation (2.9) is depicted graphically in Fig. 1.
Let the functional Z(p'; b., e,'D) denote the sum of
all meson proper self-energy graphs without me-
son or photon self-energy insertions and with all
internal meson and photon lines replaced with the
exact b. and D functions. Then Eq. (2.9) may be
written in the form

P+

~ P'), , =p'+ma'+Z(p'; b, , e,'D). (2.10)

C. Equation for I'&

A linear, gauge-covariant equation for I „can be
obtained by transforming Eq. (2.10) to coordinate
space, turning on an external field, and carrying
out the functional differentiation indicated in Eq.
(2.4). The result of this operation, when the ex-
ternal field is switched off, is summarized by the
equation (in momentum space)

d4s
I'„(P+iP ) =2P„+J ( ), K„(P+,P, s+, s+)b, (s+)

+,K„(P„P,s, s )b, (s )
d s-

where

d4s
+

( )4 K(P +Pi~s~~s )

xh(s, )I'„(s„s )S(s ), (2.11)

1
S+ = S +p+ 2Q'p

1S = S +p —2Q'.

Equation (2.11) is illustrated graphically in Fig. 2.

The last entry in Z is a reminder that e,' and D»
always appear in the combination e,'D„, in Eqs.
(2.8) and (2.9). In Eqs. (2.8) and (2.9) the external
momentum P is routed through the ~ functions.
This is equivalent to the convention of routing P
through the base line of meson self-energy graphs
in the absence of X vertices. We shall adhere to
this convention throughout unless otherwise stated.

FIG. 2. Graphical representation of the linear inte-
gral equation for I'&.

The kernel K is the spin-0 meson-antimeson
Bethe-Salpeter scattering kernel which includes
all scattering graphs with neither a single-photon
or a ~'-w (Ref. 16) intermediate state. We also
include in K all graphs with two-photon intermedi-
ate states although they are not directly obtainable
from the functional differentiation of Eq. (2.10) (no
photon self-energy insertions). All internal lines
represent the exact & and D functions and have no
photon or meson self-energy insertions. Some
typical graphs in the series for K are shown in
Fig. 3(a).

The second and third terms on the right-hand
side of Eq. (2.11) are a result of the explicit field
dependence of Z. The functions K„(P„p,s, s )
and K„(P„P,s„s,) may be obtained from
K(P„P,s„s ) by the, following rules:

(1) Divide the graphs defining K into two groups:
those that cannot be bisected by vertically cutting
photon lines (group A) and those that can (group B).

(2) Select from group A only those graphs having
a one-photon emission vertex (polarization v) in
the extreme upper [lower] right-hand corner that
is not joined to the remainder of the graph by a D
function ending on the upper [lower] charged-me-
son line. The function K„(P„P,s, s )
[I;„(p„p,s„s,)] is the sum of graphs obtained
by replacing the vertex in the extreme upper [low-
er] right-hand corner by -2g„,.

—=P +nl + + +

FIG. l. Equation for the meson propagator, including
all graphs through orders e, , e A, , and A. . The solid
and wavy lines represent the exact 6 and D functions,
respectively.

(b)

FIG. 3. (a) Typical diagrams in the series for
E (p+,p, s+, s ). (b) Typical diagrams in the series
for X&(p+,p, s, s ).
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(3) Select from group B all graphs with a one-
photon emission vertex (polarization v) in the ex-
treme upper right-hand corner. Their contribution
to K„(p„p,s, s ) is the sum of graphs obtained
by replacing this vertex with -2g„,. By conven-
tion, the graphs in group B give no contribution
to K„(p„p,s„s,).

A graphical illustration of these rules is given
in Fig. 4. They were obtained empirically. It is
important when applying them to keep the distinc-
tion between direct and exchange graphs in the
series for K„. Otherwise, the cancellations among
vertex graphs derived from K„ that are necessary
to give them their correct over-all numerical
weight will not occur. This distinction is equally
critical for graphs in the series for K. Figure 3(b)
depicts some typical graphs in the series for
K„(P„P,s, s ).

Imagine for the moment that X is represented as
a power series in e,'. Then, because of Eq. (2.4),
the approximate expressions for 6 and F„obtained
by truncating Z in Eg. (2.10) and the kernels K and

K„ in Eg. (2.11) at the same order in e,' will satis-
fy the Ward identity

q" r„(p+ ,'q, p- .'q) =-~ '(p-+ .'q)-& '(p---.'q).

(2.12)

s p+

The work in the following sections does not require
an explicit equation for I „„.Here it is sufficient
to assume that I „„has been calculated from the
truncated expression for Z using definitions (2.5)
and Eq. (2.10). This will ensure its gauge covari-
ance and the validity of the two Ward identities re-
lating I'„, to I"„.

III. Zq AND THE CALCULATION OF C

In this section we prove that a gauge exists in
which Z, is finite. We then give the rules for cal-
culating C in this gauge and conclude this section
with an explicit calculation of the gauge that ren-
ders Z, finite through fourth order.

A. Gauge Dependence of Z2

Beginning with our functional equation for 4, Eq.
(2.10), we replace all internal photon lines repre-
senting the full unrenormalized photon propagator
D„, by the full renormalized propagator D„, ac-
cording to the substitution e,2D»- e2D». Graph-
ically this is equivalent to replacing a prior sum-
mation of all meson proper self-energy graphs
that differ only by their photon self-energy parts
by a single graph whose photon lines are the full
renormalized propagators. Next, we remove me-
son self-energy divergences by subtracting Eq.
(2.10) at p' =-m' and writing it in terms of the
physical mass m:
n. '(p') =p'+ m'+Z(p'; b., e'D) —Z( —m'; 6, e'D).

(3.1)

THEN

s

s p

ta)

~ pR ~

s p s p s

We assume that X is fixed to cancel the ultraviolet
(uv) divergent part of allM-part subgraphs in the
iteration of Eg. (3.1). The iterative expansion of
Eg. (3.1) will in general contain logarithmic uv di-
vergences that are related to Z, . In order to study
the structure of the uv-divergent part of Z, we will
make the assumption that all uv divergences re-
lated to Z, can be isolated in Eq. (3.1) by replacing
e'D„, by its asymptotic limit [Eq. (1.1)]:

2

e D„(k) 'g„.„+(G —1) ","
)
—',

k2 && ~2

-=e,'D'„,(k) .

THEN pR

s p s p s

FIG. 4. (a) Illustration of the rule for obtaining the
contribution to the series for K& (p+,p, s, s ) from a
typical diagram in the series for K{p+,p, s+, s )
without a multiphoton intermediate state. (b) Illustra-
tion of the same rule whenK(p+, p, s+, s ) has a multi-
photon intermediate state.

This will be proved in Sec. VI (see Ref. 31) pro-
vided one makes the additional assumption that h

decreases asymptotically with power-law behavior.
This assumption then allows us to study Z, in a
model of scalar electrodynamics without charge
renormalization (Z, =1) and with coupling constants
e,' and A.(e,').

The renormalizability of this simplified theory
and the existence of the m =0 limit of 4 after mass
renormalization imply that the structure of Z2 in
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an arbitrary covariant gauge G is of the form"

~ (e 2 O)(A2/~2) e(ep G) (3.2)

Here A and g are functions of e,' and G alone. The
uv momentum cutoff A, necessary to define Z, in
perturbation theory, is introduced in our analysis
by replacing each internal momentum integration
jd's by Jd'sA'/(A'+s') with A'»P' and A'» m'. "
Such a cutoff procedure preserves gauge invariance
and, in self-energy graphs without closed loops or
A. vertices, is equivalent to the Feynman prescrip-
tion of replacing the free photon propagator D'„„(k)
by

AD'„,(k, A) =D'„,(k)

It is the presence of the Q
2$2 counterterm in the

theory that nec-essitates this stronger cutoff.
Quantities that would be finite in the absence of a
cutoff, such as photon-photon scattering skeleton
graphs, "remain unchanged as A- ~.

The behavior of the unrenormalized meson prop-
agator ~ under a gauge transformation induced by

D'„,(x)-D'„,(x) + (O' —G)S„S,M(x),

where

I
d'k A' e'" *

J (2w)4 k'+A' (k' —ie)2'

is summarized by the simple relation"

A(x; G') = exp( Zep'(O' —G)LM(x) —M(0)]] &(x; G) .

de A ~ dQA,"--18"J . k k+A

(3 5)

thenM(x)-0 as x'-~. Combining these results
with the x'- ~ limit of E(I. (3.5}gives

Z (Gi) -(ep2(G'-G)N(p)Z (G) (3.7)

If E(I. (3.2) is now substituted in E(I. (3.7), we ob-
tain an explicit expression for the behavior of the
cutoff-dependent part of Z, under a gauge transfor-
mation:

A 2 8'(eo, c} A2 eo (c-Q )/16r2
Z, (G') = W(e,', G)

The condition

(
2 G)

ep (G G) 0

fixes the gauge in which Z, is finite in the limit A

The proof that G can be calculated as a power
series in n, requires a more detailed study which
we will now give.

Suppose the expansion of Z to any order in e,' is
a renormalizable approximation to ~. By con-
struction, the expansion truncated at any order in
e,' preserves the gauge-covariance of h. There-
fore, if the w =0 limit of 6 exists in each order of
the expansion, we expect that the functions G and

g can be calculated as power series in e,'. Ex-
plicitly, the gauge

(3.3) Q~ Q~ (3.8)
The unrenormalized and renormalized meson
propagators ~ and ~, expressed in terms of the
physical mass rn, are related by

~(x) = z,h, (x), (3.4)

Z (G')b (x; G') = exp] ie,'(O' —G)[M(x) —M(0)]]'

where 4 is a finite function independent of A in the
limit A-~. From E(Is. (3.3) and (3.4) we obtain

that makes Z, finite to order n,""is fixed by the
condition

f5+ g
n+y

g"2n+ p &0 —Gpn 4' =0. (3.9)

Here g,„„~,""is the coefficient of the part of Z,
that diverges like a single power of lnA' when cal-
culated to order n,""in the gauge

xZ, (O)3.(x; G). (3.5)
G —G +G ~ + ~ ~ ~ +( (3.10)

The behavior of Z, under a gauge transformation
can be extracted from E(I. (3.5) by letting x'- ~.
Before doing this we imagine that the theory has
been supplied with an infrared cutoff p,

' to make
the singularity in 4 at P' = -m' rigorously a pole.
Then in any gauge

d4P eke '2

„J (2x}4 p2+m2 —2e
'

If we redefine M(x) as

that makes Z, finite to order o.,". The second
term, -G2„(np/47()"", has its origin in the change
in Z, induced by the change of gauge G- G+ G,„(n,/
47()", where G is given by E(I. (3.10). It is the co-
efficient of the term that diverges as lnA' in the
expression for Z, obtained from the graphs de-
picted in Fig. 5(a) when calculated with A(P') = I/P2
and

. (~) (a~)" k„k.
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We expect that the renormalizability, gauge co-
variance, and the existence of the m, =0 limit of the
approximation to 6 obtained by truncating the ex-
pansion of Z at order o.,""will result in the can-
cellation of any higher powers of lnA' present in
Z, in order np"" provided Z, is finite to order np".
We now turn to the proof of these conjectures.

B. Calculation of G

The existence of Z, in each order of the expan-
sion of Z(P'; b, , e'D) is most easily studied with the
help of the equation for I'„(P,p) [=&& '(p')/&p" j ob-
tained by setting q~ = 0 in Eg. (2.11) and replacing
e,'D„,by e'D„, :

r' d's & d4sI' (P, P'j =2P„+
~~i (

4K„(P,s)&(s+P)+, „K(p, s)s(s+p)r (s+p, s+p)~(s+p).27t')~ (3.11)

The quantities K and K„are now power series in
the exact h and D functions. The mass-dependent
part of 6 is assumed calculated in terms of the
physical mass m. Since our method of expanding
Z preserves Ward's identity order by order, Z,
=Z, in each order.

In this section we will prove that Z, can be made
finite in each order of the expansion of Z provided
the approximate expression for 4 obtained by trun-
cating Z at any order in Q. p is renormalizable. The
renormalization-group analysis used to derive Eq.
(3.2) indicates that the uv-divergent part of Z„and
hence Z„ is insensitive to m in a theory of scalar
electrodynamics without charge renormalization.
We expect this to be true in the full theory provided
k (k'/m', n) vanishes with power-law behavior for
k &&yg2. As we will gee below, the m =0 limit of
scalar electrodynamics results in considerable
calculational simplification.

Thus, we begin by taking the nz =0 limit of Eq.
(3.11) and substituting e,'D'„„ for e'D~„taeach in-
ternal photon line. The external momenium P is
taken to be spacelike so that the integrals in Eq.
(3.11) can be converted to integrals over a four-
dimensional Euclidean space. Then in lowest-or-

9e 2

&'l'(0 p)=&p, (&
—

qq,
'. (3.13)

and the m=0 limit exists through order e,'. Also,
from the Ward identity I'„,(p, p, p) = BI'„(p,p)/sp',
we get

9 2
&(')(A u, u|= &g,.(~ -~2;. (3.14)

Finally, after mass renormalization, we get

der perturbation theory, where 6(P') =1/(P'+ m'),

K(P, s) = -ie,'(2P+s)"D'„,(s)(2p+s)',

and

K„(P, s) = 4ie, 'g„D'„8(s)(2P + s)~,

Eq. (3.11) gives in the limit P'» m' and m- 0

2 2
(2) 3ep Gpepr„(p,p)=2p (I —

$2@' 16r'

ds2
+ (G, —3) ', , (3.12)16m' p3 s'

Hence in the gauge G, =3 (the Yennie gauge) Z, is
finite through order e,'. In this gauge

(,),)
1 + 9eo'/32w '

P'+ m' (3.15)

p+k

(a)

p'+ k

p. k

0
p+ k p+k p ~ k

0

(b)

FIG. 5. (a) Diagrams contributing to Z2 in order np"+

obtained from the change of gauge 6 G + G2„(o.p/4~)" .
The crossed, wavy line represents the gauge term
G2„(op/4m )" in D &, . The momentum P' has the magni-
tude p'2 = —m2. (b) Diagrams contributed by the gauge
term G2„(~p/4~)" in D» to the value of Z& in order
Gt, tt+i,

p

thus proving the existence of 4' at m=0. We will
now prove by induction that a gauge can be found
that makes Z, finite to all orders.

I.et us assume that a gauge (3.10) has been found
in which Z, (= Z, = Z4) is finite to order no" and that
4 '", I' „'", and I'„'„" all exist at m = 0. The uv-di-
vergent part of the sum of all graphs in each order
through order np" with four external charged-me-
son lines (M parts) without meson self-energy
parts and with finite vertex and Compton insertions
is assumed to be canceled by the Qt'P' counter-
term. This is required in order that the factoriza-
tion (3.4) will continue to hold in higher orders.
The special subclass of M parts, the graphs be-
longing to the perturbation expansion of K, will
still diverge logarithmically. It vrill be shown be-
low thai this divergence does not interfere with the
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removal of divergences in Z, .
Let the values of K, K„, I'„, and I"„, obtained by

setting rn = 0 be denoted by K', K„', I"„', and I"'„,.
From the assumption that

&""'(p') C/p'
m~0

to order Q. O", we obtain with the help of the local
Ward identities for F„(P,P) and I'„,(P, P, P) the re-
sult

I "'(p, p)=2p, /C,

r'„'„'"'(p, p, p) =4„./C.

Here C is a polynomial of order n in e,' with finite
numerical coefficients: C = 1+C,e,'+ ~ ~ ~ +C2„eO'" .
From Eq. (3.15) we get C = I+9e02/32'(2 in second
order.

Taking the m = 0 limit of Eq. (3.11) gives

I'a 2+2 (P P) =2P + J[ [Ka 2+2 (P S)+(1+C e 2)Ka 2" (P S)+ ' ' '+CKa 2 (P S)]
d4s 1

(2w)4 2 0 P 1 0 0 (p+S)2

+ [Ka(2n+2)(P S) + (1 +C e 2)Ka(2n)(p S) +. . .+CKa(2)(p S)]
+ l

„(2)1)4 2 0 (p+s)' ' (3.16)

(3.17)

(3.18)
m~0

Since the finiteness of C to a fixed order in e0 requires that the m=0 limits of K(P, s) and K„(P, s) exist to
the same order [see Eq. (3.30)] we have only to study the m=0 limits of K'"'"(P, s) and K(„'"")(P,s) as a
preliminary step to establishing the existence of the m=0 limit of I'('"")(P,P). Hence, we require that the
kernels K' '"" and K'„'"" defined by

IimK(2n+2)(P S.g(Ps 2) &2D) K(2n+2) (P S. C/Ps 2
& 2D0) Ka(2n+2) (P S)

m ~0

llmK(2 +2 (P S Q(PI 2) S2D) —K(2 +2 (P S C/Pr 2
& 2D0) —Ka(an+2)(P S)

"d4s
, K'(p, s)s„ (3.19)

exist. The proof of this follow's almost verbatim
the proof of the infrared convergence of
K'('"")(0,s) in spinor electrodynamics given by
Johnson, Willey, and Baker, ' and will be omitted
here. The only graphs in K'"" "(0,s) that are not
infrared-convergent are those with two-photon in-
termediate states, and. these are excluded from
the equation for I"„on grounds of C invariance.
Since K' '"" (0, s) is infrared-finite in scalar elec-
trodynamics, so are K'('"")(p, s) and K„'('"")(p, s).
The latter result follows since the replacement of
a lowest-order one-photon vertex in the upper
right- or left-hand corner of a graph belonging to
K'('"")(P, s) by -2g„„has no effect on the graph's
infrared behavior. Finally, the uv-divergent part
of K' '"" (p, s) may be temporarily suppressed
with a momentum cutoff A, where A'»P', A'» s'.

There remains for consideration those subinte-
grations in Eq. (3.16) involving the external mo-
mentum s of K&(P, s) and K'(P, s). In order to
study the smal. '.-s behavior of these integrals we
make the translation s+P- s, neglecting unimpor-
tant finite surface terms. Thus we are led to con-
sider integrals of the form

have like P ~ s/s' for s'«P' and for fixed A to be
infrared-divergent. Since K'(0, s) is finite in each
order of its expansion and since K' has the sym-
metry property K'(P, s) =K'(s, P), the kernel
K'(p, 0), obtained by letting s„-)(s„with )(-0 in
K'(p, s), is also finite. Hence all integrals of the
form (3.19) converge in the infrared region to or-
der H

The kernel K~(p, s) is uv-finite since the over-
all degree of divergence" of the graphs defining
K'„ is -1 and all insertions are assumed finite. A
simple application of Weinberg's theorem" to these
graphs plus covariance give

1" dQ,; K'„(P, s) ~ —," x(powers of lnP'),
P2)& S2 P

which ensures the convergence of integrals of the
form (3.20) in the region of small s to order (10"".

Therefore, the final integration over s in Eq.
(3.16) is infrared-convergent, thereby establishing
the existence of the m=0 limits of I"&"" (P, P) and
~(2n+ 2)

(p2)
The gauge (3.8) in which Z, is finite to order

(I0"" is conveniently calculated from Eq. (3.16) by
requiring its right-hand side to be uv-convergent.
This requires that

and

d4s
, K'„(p, s). (3.20)

g (2'+ 2)

(2v) " ' ' (p+s)

For integrals of the first type, K'(P, s) must be- (3.21)
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be finite. The sum of the remaining integrals in
Eq. (3.16) is finite since Z, is assumed to be finite
through order ot," T. he requirement that (3.21) be
finite fixes the value of G,„ in Eq. (3.8) and is
equivalent to the condition that

divergent part r'„i'""~(p, p)

Q
n+ y " ds2

+2p„G,„~,=O. (3.22)
47t g~2 s'

The first term is the sum of the ultraviolet-diver-
gent parts of all vertex graphs of order no cal-
culated in the gauge (3.10) that makes Z, finite to
order n,". The second term in Eq. (3.22) is con-
tributed by the three vertex graphs depicted in Fig.
5(b) calculated in the gauge G = G,„(o.,/4w)" with
b. (p') =1/p' and

D'„„(RI=G,„(~)
In lowest order we found from Eq. (3.12) that Go
=3. The value of G, will be calculated below.

It is clear from Eq. (3.22) that this whole pro-
gram will fail unless I"

&

'""~ diverges as a single
power of lnA' when calculated in the gauge (3.10).
For this to happen it is first necessary that
K'~'""~(p, s) be rendered finite after one over-all
subtraction. In this case if the subtraction is made
at the point P„=O, then the second integral in
(3.21) can be written as

" d4
I

Ka(2tl+2)
( h )

Kc(2tl+2) (0 +]
„(27I )' s

~ d4s 2sKa(2n+2) (0 s) P

„(2w)' s

where we have made the translation s+p- s and
neglected a finite surface term. The last integral
above is zero on grounds of covariance, while the
subtraction in the first integral removes the uv di-
vergence embedded in K'~'"'"(P, s).

In our case K' '"+" contains no meson or photon
self-energy insertions by definition. Furthermore,
all vertex and Compton insertions are finite to or-
der o.," in the gauge (3.10), and allM-part diver-
gences to the same order are assumed to be can-
celed by the Q 'Q' counterterm. Therefore, all
subintegrations in the graphs contributing to
K' '"" are finite. On the basis of steinberg's the-
orem we expect the uv divergence arising from the
over-all integration involving all lines of K' '""
to be removed by a single subtraction. "

Second, it is necessary that all subintegrations
in Eq. (3.21) involving the external momentum s of
K' '"'"(p, s) and K„'~'""~(p, s) also be uv-conver-
gent. Now the only divergent subintegrations in-

C. Caiculation of C

The calculation of C to order no"" is most easily
accomplished by first rescaling Eq. (2.11) for
r„(P„P ). 1.st

A, =C X, (3.23)

A(P') =A(P')/C, (3.24)

(3.25)r„(p„p ) =«„(p„p ),
f'„,(p+q+q', p+q, p) =CI'„„(p+q+q', p+q, p).

(3.26)

Then

lim A(p') = 1/p',
m~O

lim I'„(p, p) = 2p„,
m~0

lim f„,(p, p, p) =2g„,
m~O

in the gauge in which Z, is finite. Substituting Eqs.
(3.23)-(3.26) in Eq. (2.11), we obtain an equation
for I'„(P„P ) (in symbolic shorthand):

I'u ——2CP„+CKuh +K~ I'

where

(3.27)

K =c2K(A, r„, r„„~)
=K(A, r„, r„„~), (3.28)

K~ ——CK~(A, r~, r~~, A)

=K„(Z, r„, f„„X), (3.29)

that is, K (K„)has the same functional dependence
on r, r~, I'„„, and X as K (K„)has on 6, I'„, I"„„,
and X.

volving the momentum s and not excluded by the
definition of K' and K'„are Compton subgraphs.
Since these are all of order no" or less and their
sum in each order is finite by prior choice of
gauge, these subintegrations will likewise con-
verge. Hence all subintegrations in the graphs de-
fining I"„'""converge, and by steinberg's theo-
rem, the over-all integration involving all lines of
I"„'""will diverge no worse than a single power
of lnA' (A- ~) provided we average over angles
first.

In conclusion we have established that a gauge
exists in each order of the expansion of Z that ren-
ders Z, (= Z, = Z,} finite and that gives h the asymp-
totic behavior

(,)
C(e,')

P &&m2

where C is a polynomial in the asymptotic coupling
with finite numerical coefficients.
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4

~»~ s
~

I
d~s -, 2(p+s)u' (2) "'(p-) (3.30)

Equation (3.30) indicates that C = 1+C,e,'+ ~ ~ ~

+C,„„e,'""can be calculated to order n,""given
I"„""'.This can be calculated from Eq. (3.27) giv-
en C to order no IQ lowest order we found C= 1
+9e,'/32m'.

I et us summarize our results. By construction
the expansion of Z in terms of the exact 4 and D
functions truncated at any order in n, preserves
the gauge covariance of 6, I'„, and I'„,. Assum-
ing that this expansion is a renormalizable approx-
imation to 4 and that the nonasymptotic part of
D„„(k)falls off with power-law behavior for k'
» m', then the entire uv-divergent part of Z, can
be isolated in the m=0 limit in each order. To
ameliorate the problem of overlapping divergences
we chose to study the equation for I'„(P,P) and the
divergences associated with Z, (=Z, ). Setting m=0
and replacing e D» with e, D» at all internal
photon lines, we proved by induction that a gauge
exists in which Z, is finite in each order. Equa-
tion (3.22) fixes this gauge to order n," provided

After setting q„=0 in Eq. (3.27) and taking the
m =0 limit, we obtain the following equation for C:

C d4s 1
(1 —C)2P„-C ~il

(2 )4K„(P, s)(

the vertex I"&~'""~, calculated in the gauge (3.10)
in which Z, is finite to order 0.,", diverges as a
single power of lnA'. This required that K' '"",
calculated in the same gauge, be rendered finite
after one over-all subtraction. It was also shown
that the m = 0 limit of I'„(P,P), and hence of S(P')
and I „„(P,P, P) exists in each order. Then to order
n,""in the new gauge (3.8) found from Eq. (3.22),
&(P ) -C/P' as m - 0, where the constant C is cal-
culated to order o.,""from Eq. (3.30). We will
now illustrate the above formalism by calculating
the gauge that renders Z, finite through fourth or-
der.

D. Calculation of G2

All graphs that contribute to I'„(P,P) in fourth
order are depicted in Fig. 6. Graphs A.-K are cal-
culated in the Yennie gauge (G=3). Graphs of type
1. are calculated by replacing e'D„, with

G,(e,'/16~')k„k, /k'. The final graph M is contrib-
uted by the P 'P' counterterm. Table I summa-
rizes the ultraviolet divergences in I'„"'(p,p) cal-
culated after setting

k(k'/rn', n) =0

and

a(p') = (1+9e,'/32m')/p'

~ PA Coefficient of Coefficient of
A ~ A

TABLE l. Contribution of' graphs in Fig. 6 to the ultra-
violet divergences in F„' 4 (p, p).

5Ez

} G, c, 5

F, 5

H) )

Cg+ C2

E +E +E
Eg+E2+I 3

G(+ G2

H&+ H2

I g+I2+I3

J&+J, + J,
L(+L2+L3

u
2

2

12

30

G2

F&G. 6. All diagrams contributing to j.&(p,p) in second
and fourth order. The wavy lines in graphs A -E repre-
sent D» in the Yennie gauge. The crossed, wavy line in
graphs. L&-L3 represent the second-order gauge term in
Dpv '

A)+A2+A3
+X( +%2 +X3

2p„2 ln —
2 + finite

Finite in second and fourth
order
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in each graph. The cutoff A is introduced by set-
ting

d4s =
Jg

iA
s'ds dQ„

where 6 is a finite constant calculated from graphs
B-J and L-M. Therefore, if we choose the gauge

2 16~2 (3.31)

where

G, =- —, -38, (3.32)

Z, will be finite through order e,'. Note the sepa-
rate cancellation of ln'A' terms among vertices
where the external photon attaches directly to an
internal photon line. This is a result of the sepa-
rate cancellation of uv-divergent parts of Compton
subintegrations over the external momenta of
K'~ ~(P, s) and K'„~'~(P, s) in each of the two types
of vertex graphs. Whether this separate cancel-
lation of multiple logarithms persists in higher
orders is not yet known.

IV. REMOVAL OF N-PART DIVERGENCES

In contrast to spinor electrodynamics, scatter-
ing graphs in scalar electrodynamics with four ex-
ternal meson lines (M parts) diverge logarith-
mically beginning in fourth order. Any discussion
of the meson self-mass and Z„ for example, must
necessarily be broadened to include these diver-
gences, as they will eventually appear as sub-
graphs of Compton vertex insertions in both g and
the polarization operator II&„beginning in eighth
order. Whether these divergences are suppressed
when M parts are summed to all orders is a tech-
nical question that must await further develop-
ments. '4 Here an alternative approach is given
whose virtue is to render all M parts ultraviolet-
convergent order by order without an infinite re-
normalization. We begin this section with an il-
lustration of the ideas involved by studying fourth-
order M parts in detail. The generalization of our
results to arbitrary order will complete this sec-
tion.

where the subscript F. denotes an integral over
four-dimensional Euclidean space. Summing, we

get

a(4) 9eo 81eo
SR ' rOa4 ' ' )

A. General Considerations

All unrenormalized m+-m scattering graphs can
be obtained from the unrenormalized scattering
kernel K defined in Sec. II by iterating the Bethe-
Salpeter equation

4

A(p, p') =K(p, p') + -2, K(p, s)a'(s')A(s, p')

= K+ KS'K+ Kz'Ka'K+ ~ .
(4.1)

The amplitude 3 is related to the full off-mass-
shell m'-n' scattering amplitude T byiT=A. ~ is
the full unrenormalized meson propagator, The
mass-dependent part of all meson propagators in
(4.1) is assumed calculated in terms of the physi-
cal meson mass m.

We begin our study of the uv divergences in (4.1)
by replacing e, 'D„, with e D~„at all internal pho-
ton lines. Assuming that the uv divergences pres-
ent in each term of the expansion of Eq. (4.1) are
insensitive to m, we set rn =0 and replace K and ~.
with K' and ~' to define a new amplitude Q'. The
kernel IP is the same kernel defined by Eg. (3.17).
This assumption is based on experience with per-
turbation theory and is expected to be valid here
provided the nonasymptotic part of D„„vanishes
with power-law behavior as m -0. The relevant
coupling constants are now e,' and A, .

Next, we take p and p' to be spacelike in order
that the integrals on the right-hand side of (4.1)
can be converted to integrals over four-dimension-
al Euclidean .:-pace. The uv divergences in (4.1)
may be temporarily suppressed by cutting off the
integrals at A, where A'»p', A'»p". The iter-
ated kernels in Eq. (4.1) and the two-photon annihi-
lation graphs in K also contain logarithmic infra-
red divergences which can be rendered finite by
cutting off the lower limit of integration at p., where
p'«p', p'«p", and p.'«A'. These infrared singu-
larities will not interfere with the calculations in
this section.

In the past the ultraviolet M-part divergences
present in (4.1) have been absorbed in an infinite
renormalization of A, ." In this case it is arbitrary
whether X acts as a purely compensatory term or
has a nonzero value after renormalization. Our
method of fixing X will be unconventional since the
power -series expansion of

A. = QA.2„eo"
n=l

will begin in second" instead of fourth order in e,',
with each term A.,„ in the expansion chosen so that
A~'""~(p, p') is uv-finite. The advantage of this is
that every term X,„ in the expansion of X is finite
and well defined.
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The disadvantage of this procedure is that the val-
ue of each e'xpansion coefficient A.,„ is in general
complex, so that the series for A, is of the form

A, = Q (a„aib„)n,",
n=l

with each a„and b„real and finite. Thus, the theo-
ry we are developing here has a Hermitian Lagran-
gian only for those values of up +0 for which

P

P

Q b„o.,"=0.
n=l

This constraint on np appears unavoidable as long
as we insist on expanding the Bethe-Salpeter kernel
K in terms of the exact ~ and D functions, while at
the same time asking for a finite theory of conven-
tional unrenormalized scalar electrodynamics [as
defined by the Lagrangian (2.1)]. Even at this
early stage, the self-consistency of this program
seems doubtful in view of the probable additional
constraint on np required for a finite value of Z3.

B. Calculation of X&

Let us illustrate these remarks by looking at
some low orders of perturbation theory. In second
order we obtain

FIG. 7. All fourth-order n+-m scattering graphs
contributing to A'. The blobs in graphs T and U repre-
sent the three second-order graphs contributing to I'&.
The crossed, gravy line in graph V represents the
second-order gauge term in D& .

~a(2)(p pl) Ifa(2)(p pt)

(4.2)

where A,, is assumed finite. All fourth-order n'-7t

scattering graphs contributing to A' are depicted
in Fig. 7. The numerical weight factors associated
with graphs of type E, I, j, Q, and S are 2, 4, 2,
2, and 4, respectively. Graph 8' is simply
-2iep'A. 4. All graphs containing photon lines are
calculated in the Yennie gauge except graph P
which is calculated with

D'„„(k)=G, (P)
Here —G, =X,'+38 according to E(l. (3.32). Since
the second-order vertex insertions are finite in
the Yennie gauge, only graphs A. -S contribute to
the uv-divergent part of A.". The calculation of
the coefficients of the uv-divergent part of these
graphs is straightforward. Table II lists the re-
sults. Explicitly, for A'»p' &p",

iep4 A'
A'('~(p, p') = —(10k.,'+ 12K, + 12) ', ln

or

X, = -', (-3 ~ is 21) (4.5)

TABLE II. Contribution of graphs A-8 of Fig. 7 to
the ultraviolet divergent part of A

Graph Coefficient of
&

ln

A, E, L, P

8, C, M, N

D, O

E,E

18

remove the uv divergences present in A~4~.

Suppose we wanted to calculate A., in another
gauge. The renormalized m'-n scattering ampli-
tude on the mass shell must be gauge-invariant,
including its divergent part. Therefore, the value
of A., calculated in the Yennie gauge must render

10k,,'+12k., +12 =0 (4.4)

+cutoff-independent terms, (4.3)

so that the values of A., for which

G, H, Q, B

I, S

-6A,
2

-4X,'

-2A, 22
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the fourth-order renormalized n'-n scattering
amplitude finite in any gauge. We may verify this
by calculating the divergent part of the renormal-
ized scattering amplitude in the Landau gauge (6
=0). In this case, account must be taken of the
factors of Z,"' from the four external meson lines.
These were ignored in the Yennie gauge since Z,
was finite.

The renormalized amplitude A. is obtained from
g by introducing renormalized propagators, ver-
tex functions, and coupling constants 5, I'„, I"„„
and X defined by the equations ~=Z, ~™,I'„=Z, 'I'„,
.F„,=Z4 'I'„„, and A. =Z, 'X. We may neglect elec-
tric charge renormalization in this discussion. By
counting internal lines and vertices we get A
=Z, 'A. Thus

& = -2sAS, '+M,

where M consists of all m'-w scattering graphs,
excluding the point-interaction graph, with re-
normalized insertions. In the Landau gauge,

3e A
Z = 1+ ' ln —+.cutoff-independent terms

16m2 m2 t

to second order. Only graphs D, I, J, 0, and $ in

Fig. 7 contribute to the divergent part of M in
fourth order, since k&D'„„(k)= 0 in the Landau

gauge. We find that

AA"' = -(10~,'+12m, +12) ', ln —,
+ cutoff-independent terms,

which leads to the same equation for ~, as in the

Yennie gauge for a finite renormalized scattering
amplitude in fourth order. W'e conjecture that the
value of A. calculated in higher orders by our pro-
cedure will continue to be gauge-invariant.

Anticipating the results below, the value of A.

that will suppress all M-part divergences will be
of the form

x= Q(a„+ib„)o.,",
n=l

with each a„and b„real and finite. The plus (mi-
nus) sign corresponds to taking the plus (minus)
sign in Eq. (4.5) for X, in the calculation of higher-
order terms in A.. Whichever value is selected for
A.„we will require that

Q b„n," =0
n=l

in order to regain a Hermitian Lagrangian and, it
is hoped, a unitary S matrix. We defer until Sec.
VII the discussion of this constraint on the asymp-
totic coupling n, .

C. Calculation of X2„

Beginning in sixth order the equation for X,„(n
& 2) becomes linear. In fact, in order n,"", the
entire coefficient of A.,„ is obtained from graphs
E Band graph-s Q-S of Fig. 7 when X, is replaced
by+'"„, A., e,'". The photon lines of these graphs
are in the Yennie gauge. Retaining terms of order
z,"",we get an equation for X,„given A.""+'~:

2n+ 2 2

uv-divergent part A~'""~(p, p', x„.. . , x,„)= (-20k.,X,„—12K,„) 1', ln
16~2 p2

+uv-divergent part 4 " (p, p', X„.. . , A.,„,)
=0

or, from Eq. (4.5),
2n+ 2 2

y4i~21 X,„', ln —, + uv-divergent part A'~'"+'~(p, p', A.„.. . , A.,„,) = 0" 16n p
(4.6)

for A'»p'&p" ands o 2. The minus (plus) sign in

(4.6) corresponds to taking the plus (minus) sign in
(4.5). The last term in (4.6) is the sum of all uv-
divergent graphs contributing to A""+' that are in-
dependent of A.,„. They are calculated in the gauge
(3.10) that renders Z, finite to order n," and with
the value of A (=Q"„,A.,„e,'") that makes A"'"~ cut-
off -independent.

The success of this calculation requires that the
last term in Eq. (4.6) diverge like a single power
of lnA' in all orders of perturbation theory. The

graphs contributing to

(ptp 9~29 ' ' '7 2 -2)

naturally divide into two groups: those belonging
to K~'"" and those with at least one n'-m inter-
mediate state. The latter class of graphs is ob-
tained from the iterative expansion of A. symboli-
cally summarized by Eq. (4.1). In Sec. III it was
noted that to find a gauge in which Z, is finite to
order o.,"", the sum of all vertex graphs calcu-
lated from the kernels K~'"" and K'„~'"" in the



gauge that makes Z, finite to order z," must di-
verge no worse than a single power of lnA' [see
Eqs. (3.21) and (3.22)]. This in turn required that
K~'"+' be cutoff-independent after one subtraction.
Since

K (p) 0, A,2). . . ) A.2„2)
is infrared-convergent (with the excepton of its
two-photon annihilation graphs), its uv divergence
must therefore be of the form ln(A' jp'). Thus both
groups of graphs contributing to

(P)P ) 29 ' ' ' ) 2n-2)

must separately diverge as lnA'.
The proof of this is hindered by M-M overlaps

and by overlaps between M parts and Compton
vertices. We have studied this problem in detail
in sixth order using an extension of Ward's" meth-
od of differentiation with respect to external mo-
menta to deal with the overlap problem and have
found that both groups of graphs contributing to
A", when separately summed, do indeed diverge
like a single power of lnA', provided A'~' is uv-
finite and Z, is finite to second order. We know
this is true if the calculations are done in the
gauge specified by Eqs. (3.31) and (3.32) and A.,
satisfies condition (4.4). Hence, from Eq. (4.6),
a value of A.4 exists that renders the full amplitude
A." uv-finite. The actual value of A.4 has not been
calculated since more than 300 graphs contribute
to the uv divergent part of A. '~'~.

In higher orders we expect that if

We may give a heuristic proof" that the graphs
belonging to

with at least one n'-m intermediate state do in-
deed diverge no worse than lnA'. We proceed by
induction: (1) We know this to be true in fourth
order. Now assume that the amplitudes

A" (p, p') x, )9 )A"" (P) p') X». . . ) X,„,)
are all uv-finite. (2) Take all graphs belonging to

(P)P 9 2) ' ' ) 2n-2)

with at least one n'-n intermediate state and route
an external momentum q through the bottom meson
line pointing from left to right as indicated in Fig.
8(a). Set p and p' =0. These graphs are now ren-
dered infrared-convergent by the momentum q."
Thus, any uv divergence in these graphs must be
of the form ln (A'/q'). (3) Divide each graph into
two parts by vertically cutting a 7t+-n intermedi-
ate state. (4) Repeat this procedure on the bi-
sected graphs until no further division is possible.
This generates an ordered sequence of scattering
graphs whose two ends and middle pieces are the
kernels K' of order 2n or less linked together by
two charged meson lines as illustrated in Fig.
8(b). (5) Differentiate the bottom meson lines
pointing from left to right with respect to q, The
kernels K' may be differentiated in an arbitrary
manner except that topologically identical parts
must be differentiated in the same way. (6) Re-
group the various differentiated pieces and identi-

is cutoff-independent for

A. = Q A.2 eo

and if Z, (=Z, =Z, ) is finite through order o,",
then the renormalizability of scalar electrodynam-
ics, when combined with the Pt'p' counterterm,
will guarantee that all subintegrations in

A' "+ (p, p', A~). . . ) A2 2)

p+q

(a)

I N-

converge. On the basis of Weinberg's theorem the
final integration involving all lines of the superfi-
cially logarithmically diver gent quantity

I +q I&+q I +q

a(2n)
K

I +q

will be rendered finite after one over-all subtrac-
tion. If in addition its divergence is no worse than
lnA', then a value of A,,„can be calculated from Eq.
(4.6) that will make

A))(z))+2)(p p). g g )

cutoff -independent.

(b)

FIG. 8. (a} Typical graph in the series for Qa(2n+ 2)

with at least one 7t+-7t intermediate state. (b} Decompo-
sition of the graph in Fig. 8(a} into an ordered sequence
of kernels X', each linked together by two charged-
meson lines.
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fy the amplitudes

All subintegrations in the regrouped graphs con-
verge under the assumption that

(X2)y yA (A2y ~ p Ap 2)

are finite. Finally, the integration over all lines
of the differentiated scattering graphs is super-
ficially convergent since differentiation of an M
part lowers its superficial degree of divergence
from 0 to -1. According to Weinberg's theorem,
the differentiated scattering graphs are cutoff-
independent, and hence the original undifferenti-
ated graphs diverge no worse than a single power
of lnh'.

A similar heuristic proof can be given for

by setting p' = 0 and recalling that &'~'""~(p, 0) is
infrared-convergent. " Thus, the uv divergence in

must be of the form ln (A'/p'). Now differentiate
with respect to p. The only possible divergent sub-
graphs in the differentiated graphs are one-photon
vertices, Compton vertices, and M parts. These
are assumed to be rendered finite by previous
choice of gauge and of ~». . . , ~,„,. Thus

n '(p') =p'+m'+g(p', g, e'D) -p( —m', g, e'D) .

(3.1)

Each internal photon line represents the full re-
normalized photon propagator in the gauge in
which Z, is finite. The coupling constant A, is as-
sumed to be a known power series in the asymptot-
ic coupling e, whose finite expansion coefficients
have been calculated according to the method out-
lined in Sec. IV. Because of our choice of gauge,
only one subtraction is necessary to render ~
finite.

Imagine for the moment that h =0 so that nD„,
= o.,D» Ma. king this replacement in Eq. (3.1) and
iterating, we generate the renormalized perturba-
tion expansion for ~ in the absence of charge re-
normalization and with coupling constant e,'. From
this expansion we may define an asymptotic expan-
sion of Q by keeping m fixed and dropping all terms
in each order of the perturbation series that van-
ish Rs p

For the case of finite h, suppose that g(g'/m', n)
behaves like (m'/k')" for k'»m', where g&0. The
nonasymptotic part of D» will always make a con-
tribution to the asymptotic expansion of ~, as we
have defined it, through the nonasymptotic piece
p(-m'). Because the difference in Eq. (3.1) is cut-
off-independent, a scaling argument indicates that
the contribution of graphs having at least one pho-
ton line replaced by h [Fig. 9(a)] to the asymptotic
expansion of ~ is of the form

is cutoff-independent, and hence rn «1. AP (m /p')'+Bm' p2»m' (5.1)

V. ASYMPTOTIC MESON PROPAGATOR

Having defined a procedure for making Z, and M
parts finite we are now in a position to study the
behavior of the renormalized solution for the me-
son propagator b(p') in the region p'»m'. Unlike
spinor electrodynamics, the assumption that the
nonasymptotic piece h, of the renormalized photon
propagator D„, vanishes with power-law behavior
is not itself sufficient to enable us to calculate the
rate of falloff of the nonasymptotic part of A. Only
after making the additional assumption that D„, has
Type 1 asymptotic behavior have we been able to
obtain quantitative information about the asymptot-
ic behavior of ~.

where A and B are constants. Graphs with multi-
ple h-dependent photon lines [Fig. 9(b)] will modi-
fy 8 and contribute additional p-dependent terms
to (5.1) that fall off faster than p'(m'/p')' for p'
»m'. If g~1, then the only effect of h on the

(a)

A. Asymptotic Part of 6

%e begin our study of the high-p behavior of the
renormalized meson propagator by rewriting our
functional equation for ~ expressed in terms of the
renormalized parameters e' and m' [Eq. (3.1)]:

FIG. 9. (a) Contribution to the renormalized meson
ma s operator from one factor of h. The momentum
p' has the magnibxde p'" = -ye~. (b} Contribution to the
renormalized meson mass operator from multiple
factors of h.



440 M. P. FRY

B. Equation for the Asymptotic Part of 6

We have shown that in the limit m-0, a(p')-C(e,')/p'. Because C is calculated from super-
ficially linea. rly divergent integrals (those defining
I"„), its value is ambiguous and depends on how
the external momentum p is routed through the
graphs defining Z and l '„. Accordingly we prefer
to study instead the rescaled propagator a(p')
= a(p')/C(e, '). It is also convenient to define a
new function m(p') by the equation

g '(p') =p'+m(p').

Itewriting Eq. (3.1) in terms of the meson bare
mass m, and replacing a(p') by C/(p'+m) gives

(5.2)

m(p') = (C —l)p'+Cm, '+CZ(p'; CS„e'3) . (5.3)

Suppose that (5.3) is continued to spacelike values
of p', with all integrals defining g taken over four-
dimensional Euclidean space. If Eq. (5.3) is now
subtracted at the point p =p, with po»m', we get

m(p') =m(p. ') +(C —1)(p' -p.')

+CZ(p'; Ch„e'8) —CZ(p, ', Cb„e 'D) .
(5.4)

At this point we make the simplifying assumptions

asymptotic expansion of ~ is to contribute an addi-
tional constant piece proportional to m' in each
order of perturbation theory.

Our aim is to sum all terms in the asymptotic
expansion of ~ and define the resulting function as
the "asymptotic part" of ~. For this procedure to
have any connection with reality the nonasymptotic
parts of ~ that we neglected in each order of the
expansion of (3.1) must not sum to an asymptotical-
ly dominant result. This assumption will be made
here and is hereafter referred to as the asymptotic
hypothesis.

It is unfortunate that the method we use to sum
the asymptotic expansion for ~ is not powerful
enough to work under the mild assumption that
&0. As we will indicate below, this would require
finding the asymptotic solution of a coupled set of
integral equations for 5 and A, which we were not
able to do. Therefore, to make any progress at
all, we have had to make the more restrictive as-
sumption that g& 1 (Type 1 behavior). Then, as
we indicated above, all trace of h disappears from
the asymptotic expansion of ~ except for a con-
stant piece proportional to m' in each order of per-
turbation theory. In the subsequent analysis this
constant piece will be removed by subtracting in
Eq. (3.1) at p=p„where p, '»m', instead of at the
nonasymptotic point p' = -m'.

that z » jI. and that terms contributed by h to the
iteration of Eq. (5.4) which vanish for fixed m' and
for p', p, '- ~ do not become asymptotically domi-
nant when summed. With these assumptions we
set e'8„,= e,'8'„„ in Eq. (5.4) and obtain an equa-
tion for m(p') valid for p'»m' and p, '»m':

8s(p') =A(po') +(C —1)(p' —po')

+cz(p', ca, e,'D') -cz(p, '; cZ, e,'D') .

(5.5)

Differentiation of (5.5) with respect to m(p, )
gives

„=1+C', „-[K*(p,s; CE) -K+(p„s;Cg)]

1 Bm(s')
[s'+ex(s')]' 9%(p,') ' (5.6)

where

K*(p s CZ)=-(2m)'Z(P" C~ "'~)
5{c$,(s')) (5.7)

where X, I"„, and I'„„are related to A, , I"„, and I"„,
by the sealing transformations given by Eqs. (3.23),
(3.25), and (3.26).

It is useful to define a new kernel X* from K*
which remains finite as A —~. We therefore write

The functional K* is obtained from the Bethe-Sal-
peter kernel K defined in Sec. II by excluding all
graphs with a two-photon intermediate state and
replacing e„'D„„and b, with e,'Lf„„and Ca in the
remaining graphs. The former graphs are not in-
cluded in K* since Z contains no photon self-ener-
gy insertions by definition. The existence of the
m =0 limit of K(p, s) implies that the m =0 limit of
K~(p, s), defined by replacing a(p") with 1/p" at
all internal meson lines, also exists in each order
of e,'. The work in Sec. IV indicates that K*~
with finite vertex and Compton insertions, will di-
verge as lnA' in each order of 8,' provided A, is
properly chosen. This divergence in K* is re-
moved by the subtraction at p = p, in Eq. (5.6). For
the moment we cut off the upper limits of the inte-
grals defining K*(p, s ) at A, where A'»(p', s', m').

We ean eliminate C completely from Eq. (5.6) by
rescaling K* just as K was rescaled in Sec. III.
Thus, when K* is expressed in terms of the full
vertices I'„and I"„,the reader may easily verify
that it has the scaling property

c'K*(~, ~, r„,r„„)=K*@., 8„r„,r„„)=E+, -

(5.8)
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lc'(p, s)= -iy(e, ') 8((t' —s')(n( —,)
A

+ e(s' —p') ln —, + X*(p, s),
(5.9)

where we have dropped all terms that vanish in the

limit A'- ~. The kernel 3'. * depends only on A
and the external momenta p and s. The quantity
-iy(eo') is the coefficient of the logarithmically di-
vergent part of all graphs defining K*.

Using the definitions (5.8) and (5.9) and taking
p'&p, ', we can rewrite Eq. (5.6) as

2
Bm (p') y(e, ') ~o, s' p, ' Bm (s') y(e, ') "(", s' s' Bm(s')
Bm(P, ') 16m' „, [s'+Ps(s')]' P' Bi8(P,') 16n' „2 [s'+A(s')]' p' Br%(P,')

2 2

(5.10)

We are now in a position to calculate m(p') for large spacelike values of p'.

C. Calculation of m(p~ ) for p~))m2

The function 8s(p') has the dimension of mass, and we will assume that its mass scale is fixed by m.
Our aim is to calculate m(p') for p'»m'. Since m(p') must vanish at m =0 to be consistent with the re-
sult b, (p') -C(e,')/p' for p' »m', our interest naturally centers on the value of Bm(p')/Mc(p, ') at the point
A(p, ') =0 or, equivalently, the value of Bm(p')/Bm(p, ') at m =0. The assumption that m(p')-0 as m-0
will be verified below. We cannot immediately take the m =0 limit of Eq. (5.10) since the kernel of the
first integral on its right-hand side would behave like 1/s at the origin and become a source of infrared
divergences when the equation is iterated. For the moment we will keep m finite in the first two integrals
in Eq. (5.10).

Let the result of averaging X* over spherical angles in (5.10) be summarized as

"dQ;X"(p, s) =k(p', s', m'), (5.11)

where k is a dimensionless function of p', s', and m'. The existence of the m =0 limit of K*(p, s) implies
that k(p', s', m') becomes a finite, dimensionless function of the ratio p'/s' in the same limit:

lim k(p', s', m') =k'(p'/s') .
m~0

(5.12)

The function k'(p'/s') is calculated by replacing 3,(p"), f'„, and f„, in the rescaled version of K*(p, s) by
1/p", f"„, and I"„„,averaging over s, and subtracting off the logarithmically divergent terms. Further-
more, it is a property of the graphs defining K* that

k'(p'/s') —k'(p, '/s') ~ s'x(powers of lns')
s2 ~ 0

for fixed p' and p,'. Therefore, the m=0 limit of the kernel of the last integral in Eq. (5.10) behaves at
worst as a power of lns' as s'-0, and we shall accordingly take the m=0 limit under that integral sign.
Because of the subtraction at the point p = p, in the last integral in Eq. (5.10), all constant terms in k'(p'/
s') drop out of the calculation of Bm(P')/Bm(P, '). To emphasize this we define the quantity

k, (p'/s') = k'( p'/s') —k'(0) .

Using the symmetry property k(P'/s') =k(s'/P') we can now rewrite the last integral in (5.10) as
""ds' p,' B m (p'p, '/s') B m (s')

s' ' s' Bm(P, ') Bm(P, ')

Substituting this result into Eq. (5.10) and differentiating the entire equation with respect to P twice, we
obtain

Bm(p') r(e,') p' Bm(p') ~"ds'k p,' B ~, B m(p'p, '/s')
Bp Bp' Bm(p, ) 16'' [p ng(+p')]' Bm(p, ') „s' ' s' Bp' Bp' m(p ')

(5.13)
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We are now free to take the rrz=0 limit everywhere in (5.13) and, in particular„ to set rzz(P2) = 0 in the first
term on its right-hand side. Making the change of integration variable f' =P0'p'/s2 in (5.13), we obtain in
the limit nz =0 the homogeneous equation

(5.14)

Letting P- Ap and p, - AP0 in Eq. (5.14), we discov-
er that Brrz(X P22)/ s rrz(A. P202) satisfies the same
equation as dm(P2)/Brrz(P0'). Thus, Bzrz(p )/2

am(P0') depends only on the ratio P'/P„'. Assum-
ing a solution of the form

Z+( p, t ) = -2z qe, '

-te,*(Pet)'(( ),

(5.15)

and substituting it in Eq. (5.14), we obtain the fol-
lowing equation for e in terms of y(e0') and k, :

(5.16) Thus,

which is valid for -1 & c & 1.
From Eq. (5.15) and the condition that m (P') =0

when r)z (p, ') = 0, we get

rrz(P2) = rrz(P02) —,
0

tte (t ') = t((e,')ne'
(—,

where A(e02) is a constant to be fixed below and p'
» m'. %e will now show that Bec & 1 in the weak
coupling (e, /4zz«1) limit, thereby justifying our
assumption that m ( p') - 0 as rrz —0.

D. C81CU4tlOI1 Of C

The graphs contributing to K* in lowest order
are depicted in Fig. 10(a). Explicitly, in the limit
m=0,

k'(t'/P')=-16 . J 2„.X*(P, t)

2', (2X2+3),

k.(t '/P') = k'(f '/P') —k'(o)

Since K* is finite in lowest order, y(e02) =0, and
hence c = 0 according to (5.16).

All graphs contributing to K* in fourth order are
depicted in Fig. 10(b). These graphs are calcu-
lated in the limit rrz = 0 by setting A(P') = 1/P' at all
meson lines and G = 3 in all photon lines except in
the penultimate graph, where

D (k)= ————,(Z +38)—.0 80 2 Izl P Iz!v

16~2 k4

je find that

A AR*(p, f) =-—,(6~,'-3) 9(t'-p')in
—,, +e(p' —f')ln —, + 3:*(p,t), (5.18)

where A is an ultraviolet cutoff and all terms that
vanish in. the limit A'- ~ have been dropped. The
first term in (5.18) is contributed by the first 10
graphs in Fig. 10(b). Comparing Eqs. (5.9) and
(5.18) we see that

e4
~(e0') = 16'„—2(6&.' - 3) (5.19)

~n fourth order. Substxtutxng the value for A2 given
by (4.5) in (5.19) we get

y(e 2) (~)47, z 56 ~P] )
0

0 25 25 16+2 (5.20)

l

Let us assume that c can be expanded about e0 0
and write c =-e2e0 +c4e0 + Inserting this in
(5.16) we find

e4
e 5=(& 2 yZ~5))2]) +0(e )2 0 25 25 (4zz)5 0 (5.21)

Equation (5.21) follows from the fact that the inte-
gral in Eq. (5.16) remains finite as e - 0 while k, ,
as'calculated from X* in (5.18), is itself of order
e,'. Consequently, the second term in (5.16) will
not enter until eighth order. Stated differently, ~,
and ~4 are independent of X*. Thus
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(=-2iX28
2

2 0

(a)

tion of m, and rn is required to achieve this.
In lowest order the graphs contributing to Z are

the first three graphs depicted in Fig. 1. The first
two graphs are canceled by the subtraction at P'
= -m' in (3.1), giving

0 U}X

a '(p') =p'+m'

~ d4
+ie,' 4 D'„,(s)(2P+ s)"b, (P+ s)(2P+ s)'

7T

—(p-p', p"=-m'), (5.23)

(=-2i) e -4iC X e )
4 . 2

40 220

where D'„, is in the Yennie gauge. The first itera-
tion of (5.23) is given by (3.15),

9 2

e '(p')=(( — ', (
' )te)e,e

so that
(b) m(p') = m' (5.24)

FIG. 10. (a) Lowest-order diagrams in the series for
K*. (b) All fourth-order diagrams in the series for g*.
The blobs in the first two graphs on the third row repre-
sent the second-order contribution to I'& . The crossed,
wavy line in the penultimate graph represents the second-
order gauge term in D~&, .

e,' 5 v'1953 +147
80m2 2

through order e,'. This requires that m (p') be a
linear combination of m, and m with equal coeffi-
cients:

(5.25)

The constants(e, ') may be calculated in renormal-
ized perturbation theory by iterating the rescaled
version of Eq. (3.1). Setting & =C/[p'+ m(p')j in
(3.1) we expect, in our gauge,

+0(e,'), (5.22)

where the minus (plus) sign inside the bracket is
taken when e is calculated with A.„(A., ). This
demonstrates the consistency of our assumption
that m(p )-0 as m 0 in the approximation where
the first two terms in the power-series expansion
of K* are retained.

ni(P') = I' e,(e,')+e,(e,') )n(, )
2

+e, (e,'})e'(, +

for m fixed and P'- ~. Expanding (5.25),
2

m (p') = m 'A (e,') 2 + (e, + e ) ln

(5.26)

E. Fjngl Fpgm pf gyes(p )

We have found two acceptable solutions of m(p')
when e is calculated to order e,':

m, (p') = m'A, (e,')( p'/m~)'~,

where e, (e ) is the value of e obtained by taking
the over-all plus (minus) sign in Eq. (5.22). As a
boundary condition on m (P') we require that it join
smoothly with the asymptotic part of 4 calculated
from the iterative solution of (3.1) in which e'D„,
is replaced with e,'D„,. Recall that this is defined
by keeping m fixed and dropping all terms in each
order of the perturbation series that vanish as P2

We will now determine what linear combina-

+ ', ln', + ~ ~ ~

and comparing with (5.26) we get A(e,') = —,'a, (e,').
It should be emphasized that although h (k'/m', o. )
makes no contribution to a„a„.. . in Eq. (5.26)
because of our assumption that )( ~ 1 (Type 1 be-
havior) it does contribute to a, (e,') through the
nonasymptotic piece Z(-m'; s, e'D) in Eq. (3.1).

Finally we cannot conclude that all odd powers
of ln(P'/m') are absent from the power-series ex-
pansion of m(p') since the integral on the right-
hand side of (5.16) could introduce an asymmetry
in e, and e beginning with the eighth-order term
in the expansion of e. A consistent calculation of
this term requires knowledge of K* through tenth
order.
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VI. MESON SELF-MASS

Let us now define the conditions under which the
assumption of a finite meson bare mass m, is val-
id. We begin by rewriting our original unsubtract-
ed functional equation for A, Eq. (2.10), in terms
of the exact renormalized photon propagator D„,
by making the substitution e,'D»- e'D» in
Z(P'; ~, e,'D):

A '(p') =p'+ m, '+Z(p'; b, , e'D). (6.1)

The gauge G is fixed by the condition that Z2 be fi-
nite. We assume that A. is a known power series
in e,' whose expansion coefficients are fixed to
suppress all M-part divergences according to the
procedure outlined in Sec. IV. Finally, we contin-
ue (6.1) to spacelike values of p' and convert all
integrals defining Z to integrals over four-dimen-
sional Euclidean space. We recall here our con-
vention of always routing P through the 4 functions
in self-energy and vertex graphs.

Our plan is to study Eq. (6.1) under the following
conditions: (a) The nonasymptotic part of D„,(k),
k(k'/m', n), vanishes asymptotically as a power of
k'/m', and hence

2 2 0e Dp~ ~ eo D„u.
m~0

(b) The full meson propagator A, calculated in
terms of the physical mass m, has the asymptotic
behavior

Q»m2 P 2P P

(6 2)

where C can be calculated as a power series in e,'
following the procedure given in Sec. III. Starting
with the above assumption regarding the asymptot-
ic behavior of h, we were able to prove in Sec. III
that the m = 0 limit of ~ exists in each order of the
expansion of K. Here we assume Hem &-1 when
calculated to all orders in e,'. lf k(k'/m', n) van-
ishes as (m'/k')' with a ~ 1 (Type 1 behavior) and
the asymptotic hypothesis is valid, then e and

a,(e,') can be calculated as in Sec. V. (c) The
bare mass m, is finite.

Before we can test the consistency of (6.1) with
these conditions, the integrals defining Z must be
made finite and definite by introducing a uv con-
vergence factor. Aside from the requirements
that the convergence factor preserve the gauge-
covariance and original singularity structure of
the integrals (e.g. , no mass singularities should
be introduced), its specific form is arbitrary.
Here we will regularize Z by replacing all inte-
grals jd4s over internal momenta with fd4s[A~/
(s'+A')]'. All integrals now converge and Z itself
can be expressed in terms of a finite function of
A'/m' and P'/m' times an over-all scaling factor.

We isolate the uv divergences associated with the
meson self-mass by studying Eq. (6.1) in the limit
A'»P'» m'. Expanding Z about m =0 and retain-
ing terms of order m', we get

m2 '
C ' P'+ —,'a,m', =P'+ m, '+Z(A'/m', P'/m', A')

l 0+ m', Z(A'/m', P'/m', A')
m=p

d4~ A2 2 86 s

s "s" &te'k(s'/m', n)]
(2v)4 s2+A2 pu(p~ s l~=o s2

R'
s2 sma

(6.3)

where

6Z(P')
CpU(pp s) —X(27)

6( 2DQU( ))
(6.4)

The quantity Z'(P', A') is the m =0 limit of the reg-
ularized meson mass operator. It is calculated by
making the replacements A(P")- C/P" and e'D„,
—e,'D'„, in all meson and photon lines of the func-
tional Z. The quantity K*(p, s) l„,is obtained
from Eq. (5.7) by replacing A(p") with 1/p".

The functional C„, consists of both proper and
improper uncrossed forward scattering Compton
graphs. Looked at from the t channel, C„, is the
sum of all ~'-& uncrossed two-photon annihilation

graphs irreducible with respect to m'-m vertical
cuts. Some typical graphs contributing to C„„are
depicted in Fig. 11. All internal meson and photon
lines in C„, stand for the exact ~ and D functions.

FIG. 11. Some typical graphs in the series for C».
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Z'(P', &') =(C '- l)P'+Z(o'. )A', (6.5)

where g(n, ) is a power series in o, , (=e,'/4w) to be
defined below. There are no terms in (6.5) of the
form

or

A' Z c( „e,' In"(A'/p')
m=2

0&n&m

(6.6)

We assume that we can study the infrared and ul-
traviolet behavior of C„, in each order by making
the substitutions b, (P")-C/P" and e'D„„-e,'D'„„
with G calculated according to the scheme outlined
in Sec. III. The sum of these graphs defines a new
quantity C„', which we define to be the quantity
C„,~, appearing in Eq. (6.3). Substituting the
values of 6 and A., given by (3.31), (3.32), and (4.5)
we find that C'„, is uv-finite through fourth order.
It is also infrared-convergent. In higher orders,
we expect C'„„'" (P, s) to remain finite provided it
is calculated in the gauge that renders Z4 finite
through order 2n and with a value of A, that ren-
ders M parts uv-finite through order 2n —2. The
infrared convergence of C'„P")(P, s) ~, is implied
by the existence of the m=0 limits of I"~&" and
+(2n)

pv
There is one point that requires further consid-

eration. It might be thought that all proper Comp-
ton graphs of a given order must be summed to
obtain a uv-convergent result in the gauge in
which Z4 is finite to the same order. It turns out

that, provided one integrates symmetrically, the
sum of all Compton graphs of order 2n with a m'-

m intermediate state (looking down the t channel)
converges separately from the remaining Compton
graphs in the gauge (3.10) in which Z, is finite
through order 2n. Therefore, C„',(P, s) is well de-
fined and remains finite as A- ~."

We now return to Eq. (6.3) and the term
Z'(P', A'). The only possible form this term can
have in the limit A'»P' that is consistent with the
finiteness of Z„ the existence of the m=0 limit of
6, and the definition of Z is

by the absence of meson self-energy insertions in
K* and C„, and by the asymptotic behavior of 6
and D„,.

The function g((x, ) is the sum of the coefficients
of A' calculated from the regularized expression
for Z in which the substitutions e'D„,- ep'D» and
A(P")- C/i)" have been made and the limit A'
»P' taken. It is shown in the Appendix that if m,
is assumed to be gauge-invariant, then g(n, ) is
likewise gauge-invariant. The gauge invariance
of mp would follow, for example, if it is imagined
to be the mass of a degenerate isotopic multiplet
of spin-0 mesons calculated in the absence of the
Maxwell field.

Taking the result (6.5) and substituting it in
(6.3), we get an equation for the electromagnetic
self-mass 6m2 = m'- mo'.

6m' = m'+g(n, )A'+less singular (6.9)

for A'»P'»m'. In view of our assumptions (a)
and (b) regarding the asymptotic behavior of the
mass-dependent parts of 4 and D„„ the last two
integrals on the right-hand side of (6.3) will be
less singular than A for A»P and A»m
Hence, we obtain the result that no finite solution
for the meson self-mass, calculated under as
sumPtions (a)-(c), exists unless the value of the
asymptotic coupling o., satisfies the eigenvalue
condition

g'(o'0) = 0. (6.10)

Stated differently, the quadratic divergences pres-
ent in perturbation-theory estimates of 5m' appear
to be intrinsic to scalar electrodynamics when
combined with a Q+'(t)' counterterm unless (6.10)
is satisfied. It should be emphasized that the gen-
erality of (6.9) and (6.10) is limited by our expan-
sion of Z in terms of the exact 4 and D functions.

The expression for g(n, ) calculated from the
second- and fourth-order graphs contributing to Z
(the first nine graphs in Fig. 1) is found to be

lim A' Z P„„e,' ln" (P'/m'), (6 7)

lim A2 Z y„„eo' ln" (A'/m')
m ~0 m=2

0&n &m

(6.6)

since BZ/Bm' would likewise contain terms that
diverge as A'. This possibility is also excluded

m ~0 m=2
0&n &m

since according to the local Ward identity I"„(p,p)
= Bb, '(P')/BP", I"~ would contain terms that di-
verge like A . This is inconsistent with the defini-
tion of Z and I'„(no meson self-energy insertions)
and the asymptotic behavior of 6 and D„, for m- 0.
Nor are there terms of the form

2

+[2((2) ——"——, A —32w A ) (~
(6.11)

where g(2) is the Riemann zeta function and A is
given by Eq. (4.5). The value of &, can be calcu-
lated from Eq. (4.6). Unfortunately, g(c(, ) is sen-
sitive to how the regulator mass A2 is introduced
in Z. For example, if instead of a form-factor-
type cutoff the upper limits of all Euclidean space
integrals over internal momenta in Z are arbitrar-
ily cut off at A, then g(o.,) becomes
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for A'»P'»m'. This circumstance is unsatisfac-
tory since the eigenvalue condition that fixes the
value of the asymptotic coupling n p for a finite the-
ory of scalar electrodynamics ought to be well de-
fined.

We recall here that the quantities A.„which enter
the expression for g(n, ) are generally complex.
Hence, the function g(o.,) is real-valued only at
the (conjectured) physical value of n, for which
Imz = 0.

Even if the equation for g(n, ) can be made defi-
nite and a physical value of n, [0&o. & ct,] is found
to satisfy (6.10), additional, less-singular uv di-
vergences will remain in 6m . These are partly
introduced by K* which, according to Eqs. (5.6)
and (5.9), diverges a.s a single power of lnA' in
each order of n p:

K*(p, s) ~ —i, ln —, +finite
. y(o. ) A'

S

for fixed s', P' (&s'), and m. Still more uv diver-
gences in 5m' will enter from the second integral
in Eq. (6.3) if h(k'/m', o. ) vanishes as (m'/k')',
where K ~+ ~.

In this section we have merely shown what is
possible. Any further comment must await more
detailed calculations.

VII. CONCLUSION

sumption of a finite meson bare mass m, is con-
sistent only if a.p is further restricted by the con-
dition g(o.,) =0. Finally, on the basis of the renor-
malization group, we conjectured that Z3 is finite
only if ap is a zero of the Gell-Mann-Low function
P(x) calculated in scalar electrodynamics. It ap-
pears, then, that all of the divergences in scalar
electrodynamics cannot be eliminated without over-
determining n p.

The generality of our reasoning is limited by the
perturbation treatment of the meson mass operator
and by the assumption that the nonasymptotic part
of the renormalized photon propagator D „„vanish-
es with power-law behavior. The ambiguity in the
definition of g(n, ) is unsatisfactory and remains to
be resolved.

Assuming that D „,has Type 1 asymptotic behav-
ior (defined in Sec. I}, we were able to show that
the asymptotic meson propagator has the rather
simple form given by Eqs. (1.9)-(1.10).

The basic problem of obtaining a finite value for
Z, still remains. The speculative remarks in Sec.
I as to how this might be achieved have yet to be
put on a sound footing in scalar electrodynamics.

iVote added in proof. The functional differentia-
tion (2.4) of self-energy tadpole graphs in the se-
ries for 6 ' gives apparent C-violating contribu-
tions to l"„. The nonvanishing of tadpole graphs
with an external photon line is related to the am-
biguities of perturbation-theory integrals in scalar
electrodynamics. Here, we have adopted the con-
vention of subtracting off these apparent C-vio-
lating graphs from I'„. Gauge invariance is main-
tained by making corresponding subtractions in the
equations for ~ ' and I'„,.

We have examined the question of whether a
completely finite, closed theory of scalar elec-
trodynamics combined with a pt')p' counterterm
is internally consistent. We arrived at the con-
clusion that it is probably not.

Specifically, it was shown that if the value of the
charge renormalization constant Z, is assumed fi-
nite, then the renormalization constants Z, (= Z,
= Z, ) are rendered finite order by order in a unique
gauge. It was then shown that the boson-boson cou-
pling A, is uniquely determined by the requirement
that it have a finite power-series expansion in ap.
The expansion coefficients are in general complex.
Consequently, the theory can have a Hermitian La-
grangian only if the asymptotic coupling is a finite
number independent of n fixed by the condition
ImA(u, ) =0. Our study of the meson self-mass 5m'
led to the discovery that the quadratic divergence,
when summed to all orders, is of the form g(o)o)A',
where g(n, ) can be expressed as a power series in
Qf p that is finite term by term. Therefore, the as-
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APPENDIX: GAUGE INVARIANCE OF g(+p )

We show here that the coefficient of the quadratic
divergence in the meson self-mass defined by Eq.
(6.9) is gauge-invariant. Suppose we recalculate
g(o.o} in a new gauge labeled by G'. In order to do
this we need to know the high-P behavior of the un-
renormalized meson propagator b, (p') in the new
gauge O'. This is determined by the small-x be-
havior of the coordinate-space propagator b, (x; G').
Since A(p'; G) is cutoff-independent in the gauge G
in which Z, is finite and exists at en=0, 6(P'; G)
-G/P' for P'»m'. The constant C can be calcu-
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x2 04P2x2 ~ (A1)

The small-distance behavior of a(x; G') is related
to that of h(x; G) by Eg. (3.3):

b, (x; G') =exp(ie (G' —G)[M(x) —M(0)] jb, (x; G),

lated as a power series in np by the procedure de-
scribed in Sec. III. Hence,

& d'p
A(x; G) I,e'~'"b, (P'; G), g (2m)' ' ~„,„a

where y (=0.5772. . .) is Euler's constant. Substi-
tuting (Al) in (A2) and using (A4) we learn that

(g2A2)~
S(x G')

g2 ~P ~ AQ ~ co 4+ X
(A5)

a(P';G')- Id'xe "*a(x;G')
A2»x2

with P =2y —ln4 —1 and e = -(n, /4w)(G' —G). Thus,
for A'»p'»m', we obtain

where

(A2)
4 I 1'+6 1 A

(A6}

d4y AQ 2 ~f0 'x 1('™~J' (2m)4 A +k (h -ie)''
(AS)

For consistency, we have introduced the same cut-
off inM as we used to regularize the integrals de-
fining Z in Sec. Vl. From Eq. (A3) we find that

[M(x) —M(0)] ~,[ ln(A'x ) + 2y —ln4 —1],16m2

(A4)

which is valid for -1& e & —,'.
Suppose that the full finite-mass expression for

b.(P; G') is now substituted in Eg. (6.1) with the
gauge-dependent part of D„„ fixed by the new gauge
constant G'. We assume that the integrals defining
Z(P'; &, e'&) are regularized with the same cutoff
used to define Z in the previous gauge G. Then, in
the limit A'»P'»m' we expect on grounds of con-
sistency that the sum of the graphs defining Z gives
the result

Z(p';&(G'), e'D(G'))-p' C 'e '
4, , —1 +g(n„G')A'+less singular. (AV)

The remaining terms in (AV} are contributed by the
mass-dependent terms in 4 and D„„. Their con-
tribution to the uv divergences in the meson self-
mass is expected to be less singular than A'.
Again, because of the absence of meson self-ener-
gy insertions in Z, the quadratic mass divergence
has the simple form g(n„G')A'. Then, proceeding
as in Sec. VI, the meson self-mass in the gauge

G' is

6m'(G') = m, '+g(n„G')A'+less singular. (AS)

lf m, (G) = m, (G'), where m'= m, '+5m', we obtain
from (AS) and (6.9) the result

g(n. , G) =g(n. , G')

in the limit A2-~.
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covariant expression

(p +@I) [~-1(pi2) g-4(p2)]/(p12 p2)

The solutions they obtained for 6 and D» result in the
uv convergence, for example, of graphs A, E, L, and
P depicted in Fig. 7 in all gauges except the Yennie
gauge. Whether their technique continues to render M
parts uv-finite when the full vertices I'& and I'» are
calculated in the two-particle unitarity approximation
and beyond remains unanswered.
25P. T. Matthews, Phil. Mag. 41, 185 (1950).
2~The idea of beginning the expansion of A. in second

order was first proposed by A. Bhattacharyya, Ph.D.
thesis, Massachusetts Institute of Technology, 1969
(unpublished), Bhattacharyya only requires 7t +-7t

scattering graphs without m+-7t or two-photon inter-
mediate states to be uv-convergent. In particular, we
see from Table II that the choice A2= +(2) ~ renders the
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fourth-order graphs A-J in Fig. 7 uv-convergent in the
Yennie gauge. However, with this choice of A,2, it is
impossible to Qnd a finite value of A4 that will render
the same class of graphs uv-convergent in sixth order
due to the uv-divergent subgraphs X-S illustrated in
Fig. 7. Thus, in his scheme, A, still requires an infinite
renormalization in fourth and subsequent orders of its
expansion in eo .

J. C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951);
Phys. Rev. 84, 897 (1951). See also T. T. Wu, iMd. 125,
1436 (1962).
280ur proof is based on a procedure originally devised

by Yang and Mills for treating overlapping divergences
in photon self-energy graphs with multiphoton interme-
diate states. An outline of their prescription is given by
T. T. Wu, Phys. Rev. 125, 1436 (1962).

2~The two-photon-rung ladder graph with finite inser-
tions continues to diverge in the infrared for finite q with

p and p' = 0. However, since F& (s, 0) = s&/C and
s~ j.

&
(s+ q, q) = (s + 2s q)/C in the gauge in which Z& is

finite, it is trivial to show that this graph diverges in the
uv region as lnA2. The two-photon annihilation graphs
belonging to

Z ~'"'2j (p, o;X, , ..., ~,„,)
with finite insertions can be made infrared-convergent
by giving the photon a small mass. By setting p = 0 and
differentiating these graphs with respect to the photon
mass it is easy to show that these graphs likewise
diverge no worse than lnA 2 in the gauge in which Z& is
finite to order n 0" ~.

3 Had we not assumed K ~ 1 and invoked the asymp-

totic hypothesis, then Eq. (5.6) would have contained an
additional term

@4k
", axo'; CB, , e'8) «e'Dt ..(k))

6(e~D&„(k)) Dm(p02)

In order to solve (5.6) we would have needed an additional
equation for BD

&
/Bm obtained from the functional

differentiation of the polarization operator expanded in
terms of the full D and 6 functions. The asymptotic
solution of this coupled pair of integral equations goes
beyond the scope of this prelimin ry study.

3~We are now in a position to prove the assertion in
Sec. III that all uv divergences in Z2 are isolated by
neglecting h provided it vanishes with power-law be-
havior. The contribution to F&(P,P) when any one of the
internal photon lines of j.

& (p,p) is replaced by the non-
asymptotic part of e D» is

k B 8 k ks h(k /m2. ~)
(2x)4 Bp" ~8 ' k2 k2

An application of Weinberg's theorem to the graphs
defining C ~~~ (P,k) shows that to any finite order of
perturbation theory and for k2»p2 and

( C~„(p,k) — 2" x (powers of ink2).
k

Therefore, the above integral is uv-convergent provided

h(k2/m2 Ql) ~ (m /k2)K
k'» m'

where ~ & 0.
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We write the most general classical formulation of Poincare-invariant action-at-a-dis-
tance theories and review their classical applications. We stress their bootstraplike
properties. In particular, we try to view dual amplitudes in terms of the radiation reac-
tion of "dual atoms. "

I. INTRODUCTION

The study of the strong interactions in the limit
of short separations has led to the revival of the
conformal group. ' Yet, the physical applications
of this group have been hampered by the noninvari-
ance of the sign of x' under its finite transforma-
tions, thus causing an apparent violation of causal-
ity. To circumvent this difficulty, modern "con-
formists' require only infinitesimal conformal in-
variance and break the full invariance by the spec-
ification of physically reasonable boundary condi-

tions (for instance, through an ie prescription).
As it is evident that conformal invariance must be
broken in some way, it may prove useful, as well
as instructive, to consider alternatives to this
procedure. One such alternative is provided by
the classical treatment of electrodynamics through
action at a distance, ' as formulated by Feynman
and wheeler. ' Their formulation, as pointed out

by Professor GGrsey, ' is conformally invariant;
in it particles interact by means of a symmetric
combination of advanced and retarded signals, in-
stead of the usual retarded interaction. Causality


