7 CLOSED-LOOP CORRECTIONS

SK. Symanzik, Commun. Math. Phys. 16, 48 (1970).

8J. L. Basdevant and B. W. Lee, Phys. Rev. D 2, 1680
(1970).

'J. Zinn-Justin, Phys. Reports 1C, 55 (1971); L. Copley
and D. Masson, Phys. Rev. 164, 2059 (1967); D. Bessis
and M. Pusterla, Phys. Letters 256B, 279 (1967); Nuovo
Cimento 54A, 243 (1968); J. Basdevant, D. Bessis, and
J. Zinn-Justin, Phys. Letters 27B, 230 (1968); Nuovo
Cimento 60A, 185 (1969).

8p. Carruthers and R. W. Haymaker, Phys. Rev. D 6,
1528 (1972).

%K. Wilson, Phys. Rev. D 3, 1818 (1971).

10The reason for this is that in discussion of symmetry
limits it is customary to hold the symmetric Lagrangian
constant as symmetry-breaking terms go to zero. Yet
in our procedure the Lagrangian parameters have second-
order counterterms that depend on the masses.

!'we use standard definition for A; , d;;, and fiz, €.g.,
see Ref. 1.

125, Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,
2239 (1969).

131n the Padé calculation of Basdevant and Lee, Ref. 6,
a o-pole position in this region 400-500 MeV gave a

TO THE SU, X SU, ¢ MODEL. . . 415

w1 S-wave phase shift passing close to 90° around 700
MeV.

4particle Data Group, Phys. Letters 39B, 1 (1972).

15We must have a divergent mass counterterm in this
model arising from the det(M) term unlike the SU, model.
Further we do not use normal ordering which then gives
rise to an additional divergent mass counterterm coming
from the f; couplings.

18Note the remarks about the determination of  through
the K mass in Sec. II

1. Okubo [Phys. Rev. D 3, 2807 (1971)] and L.-F. Li
and H. Pagels [Phys. Rev. D 4, 255 (1971)] have derived
independently a rigorous bound for f, (0):

If. )] = 16 TA(0) )1/2
* _(m,(—m,,)(\/rﬁ;(_*'m,,) 3(m1{+m7r) )

However, the numerical bound |f, (0)]=1 is based on an
estimate of A(0) by a model-dependent extrapolation which
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We have carried out the renormalization procedure for the SU; o model through second
order in the presence of symmetry-breaking terms. We show explicitly that no new diver-
gent counterterms are needed other than those required in the symmetric theory. The
theory can be completely determined in terms of known masses and the decay constantf .

1. INTRODUCTION

Most of the results of current algebra'-? can be
obtained from the tree approximation in the SU,
o model.®* That is, the currents in the model sat-
isfy chiral algebra, their divergences are propor-
tional to fields and in the tree-order amplitudes
are approximated by poles as is the case of cur-
rent-algebra extrapolations. If we adopt this mod-
el as a starting point for doing dynamics it would
be very interesting to see how higher-order cor-
rections affect these results. We propose to do
this by calculating corrections in standard per-
turbation theory. This paper presents the renor-
malization formalism for this model with sym -
metry breaking through second order. The ex-
plicit calculation of one- and two-point functions
is done in a separate paper.®

It may very well be doubtful whether perturba-
tion theory is meaningful for strong interactions.
However we are encouraged by the recent suc-
cesses in similar models which indicate that sec-
ond-order corrections indeed may be sufficiently
small.’” Lee and Basdevant’ have shown in the
SU, o model that the perturbation expansion pa -
rameter turned out to be about 0.1. They show
that the Padé approximant to second order already
gives interesting results for nw scattering. The
SU, o model is much richer in predictive power
than the SU, counterpart. It would be interesting
to see if the same program can be carried out in
SU,. This would provide a dynamical model to
study further the breaking of SU,.

We focus most of our attention on the one- and
two-point functions where most of the renormali-
zation difficulties occur. This will not only pro-
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vide the groundwork for doing a Padé calculation
of phase shifts but also give rise to predictions at
this level that can be compared with experiment.

The SU,XSU, algebra is defined by the equal-time
current commutation relations

[V?(x), V(;(y)] =ifiin Vg(x)ﬁ(x—y) s
[Vx), A%p)] = if; ;n AUX)B(x =) ,
[A%(x), AS()] = if ;0 V 2R 0(x =) .

The most general chiral-invariant renormaliz-
able spin-zero meson Lagrangian is

£5=~3Tr(0,M0,M") =3 Tr(MM ")

+gl(detM +H.c.)+ f,(TrMM "V + f, Tr(MM " MM Ty .

Here M is a 3X3 matrix transforming as (3, 3), de-
fined by

M =%§)o Ao +ig,) ,

where 0;, ¢, are nonets of scalar and pseudosca-
lar fields and A’ have the standard definition.*
The renormalization procedure for this model has
been worked out by Crater.®
"~ If we restrict the symmetry breaking to trans-
form like (3, 3) +(3, 3) and further that the diver-
gence of the currents be proportional to fields,
then the most general form of symmetry breaking
is given by

Lsp=— €00~ €05 .

We define perturbation theory as an expansion in
powers of A which is defined through the relation®**

£(M,A)=$£(A M) .

A is introduced for the purpose of power counting
and is set equal to 1 in the end. This is in effect
an expansion in the number of closed loops. In-
troducing A into the Lagrangian gives (M =field)

£~>~2M“+AM3+M2+iM .

Since the maximum power of the fields in the La-
grangian is four, i.e., A%, the theory is renormal-
izable in the usual sense.

We would like to point out that classifying pos-
sible symmetry-breaking terms as to their power
of A gives valuable information on the renormal-
izability of symmetry-breaking parameters. For
example if the symmetry-breaking term goes like
1/x (as in our case) then no new divergent counter-
terms other than those in the symmetric theory
are needed. Hence it is possible to calculate cor-
rections to €. However, if the breaking term goes
like A° then an additional divergent counterterm

to the symmetry-breaking Lagrangian would ren-
der the model renormalizable. But in this case it
would not be possible to calculate corrections to
the symmetry-breaking parameters since they
would depend on the cutoff. Finally if the breaking
went like A then divergent counterterms would be
required that are not already present in the La-
grangian and thereby completely obscure the role
of chiral symmetry in the dynamics. The first
type, 171, is the only one that has operator partial
conservation of current (PCC), i.e., the diver-
gence of the currents is proportional to a field
when they are not conserved. This means that op-
erator PCC is not only attractive for current alge-
bra calculations but also serves to limit symmetry
breaking to the most attractive form.

In Sec. II we introduce a notation which is con-
venient for dealing with the large number of par-
ticles. In Sec. III we examine the tree approxima-
tion and show how to fix parameters. Section IV
reviews the renormalization procedure in the sym-
metric limit to second order. In Sec. V. we give
the formalism to calculate second-order correc-
tions in the broken theory. We show the cancella-
tion of divergences and outline a specific renor-
malization procedure.

II. PARTICLE LABELS AND DEFINITIONS

For the purpose of summing over internal lines
it is convenient to have one label for all 18 parti-
cles. Hence we define

¥ =¥(a,)
= <°i>
¢/’

where I represents (a,:), where a =1 for scalars,
a =2 for pseudoscalars, and {=0,...,8. Using
this label, the Lagrangian can be written,

£5=3(8,9,) - 37,2

+ 5 F ok VU W ¥y + Gy ¥, 0y
Lsp=—€, 9,

where F, G, and € are defined through the follow-
ing expressions:

K _ pv.e
Drs D(oc,i)(B,i)

dijr a,B,y=lora,p=2y=1
Sfip a=1,8,y=2
=fieg B=l,a,y=2

0 otherwise,



AIQ

Firrp =07s0kr+ 015050+ 0128,k ,

F3 k1 =DY;D¥y+ DixDY + DY DYy ,
Froxr=fiFisks+3fa Flrke (2.1)
hijk =—é—€abc)\ziza' Nlib’ )\gc' €arprc’ s

Grrx =G, )8, (7,0

hijk C!,B,'}’=1
=2gX{~h;;, one index=1 (2.2)

0 otherwise,

€1 = €a,i)
=080,(€0050+ € 0;3) -
Note that F;;x; and G,; are totally symmetric in
their indices. The Feynman graphs are given in
Fig. 1.

It has been shown that the perturbation expansion
in A preserves the current algebra and partial con-
servation of current (PCC) order by order. Intro-
ducing A into the Lagrangian gives

Ls =%(3u‘1’1)z - %MZ‘I’IZ
+ )‘Z%FIJKL'I’I L 2273 SRRYCr30s 7 2 IO
(2.3)

1
£SB=—X € ¥, . (2.9)

Tree graphs correspond to lowest order in this ex-
pansion.

III. TREE APPROXIMATION

We first examine the one- and two-point func-
tions in the tree approximation as a starting point
for doing renormalization. We review the pro-

_____ x -i €
I 81y
Ke-p?
A
-~ 6i Gryx
“
I, K
\\\ // X
A 8i Fryke
7z \,
J7 L

FIG. 1. Feynman graphs in the symmetric limit.
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cedure for solving the model in this approximation
and show how the parameters can be fixed in terms
of masses and the pion decay constant f, .1
We start from a Lagrangian which allows fields

to have nonzero vacuum expectation values, (y)=#0.
The physical fields ¥, are defined in terms of the
previously defined y, by a translation

=¥, -& ,
where

<lp1 >= 0 ’

<‘I’1> =& .

In terms of the fields y,, the Lagrangian becomes

£:%(aud)1 Y= zm® by + %FIJKL brivsprdy

+Qux¥r¥sdx—Ery; (8.1)
where
Qrx=Gru+5 Frrxiky , (3.2)
m® ;= 0’0, = 6Gyxtx=4 Frrxbxky (3.3)
Ep =€+ P8 ~5 Frrarbsbuty = 3G xkrée -
(3.4)

The vanishing of the vacuum expectation value of
Y; implies that

E, =0, (3.5)

hence giving an equation for &;.

The Feynman graphs for the new Lagrangian
Eq. (3.1) are given in Fig. 2. Also shown are
graphical representations of Eqs. (3.2)-(3.4) re-

e = 1#261 (a)
o D (b)
3N 2| “e I
| . |
I J '\ !’
R i T i (M2 -2 8p,) (c)
T N LR Vo o (d)

I—< + —é« = 6iQpk (e)
I K
>< = 8iFr kL (f)
J L

FIG. 2. Feynman graphs in the presence of symmetry
breaking, including equations relating these rules to the
symmetric rules. The combinatoric factors could
have been included in the definition of Feynman rules
when particles go to the vacuum, but this is not com~
mon practice. For a further discussion see Ref. 14,
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TABLE I. Tree mass matrix. The mass-squared ma-
trix m?;; Eq. (3.3) is tabulated, where

2g
mpy =01, =28 f1AY, — 262 f, A, —ﬁgoA?iJ .

a,d) Al A, A,

T 2(1+2b2) 2(1+b)? (1-20)
K 2(1+2b%) 2(2--b +1) (1+b)
Moo 2(1+2b?) 2(1+2b? -2
Tlgg 2(1+2b?) 2(3b2—2b+1) (1+2b)
g0 0 2/2b(2-b) VZb
Ty 2(1+20%) 2(b +1)? —(1—2b)
K 2(1+2b%) 2(b%=b+1) —(1+b)
T 2(3+2b2) 2(1+2b%) 2
Tgg 2(1+6b?) 2(3b%—=2b+1) —(1+2b)
ag 46v2 2V2b (2 -b) —/2b

lating the new rules to the rules derived in terms

of ;.
For the purpose of strong interactions we take

£ =
=0,160(8 50+ V2bb) ,

where b=£,/V2 &, The mass matrix, Eq. (3.3) is
summarized in Table I. We wish to use the masses
to fix as many parameters as possible. There are
six parameters in the Lagrangian u%, f, fi, &, €o»
and ¢;. For the purpose of this discussion let us
eliminate €,, €, in terms of &,, &, Eqgs. (3.3)-
(3.4) giving a simple relation between them

eﬁ—j%- =m,2E(1+D),
(3.6)

€
€ —ﬁ =mlE(1-3b) .

The procedure we use to fix parameters is as fol-
lows: The m, K, 1, and n’, masses determine the
four quantities:

[1? = 4(g2f)(1+207)],
5ozfz’ §0g, b.

From these we can predict n, 7’ mixing, the 7w,
and K masses. Finally u® can be determined from
the mass of one of the isoscalar o’s. This then
determines the other ¢ and the scalar mixing. Note
that the masses are functions of only five param-
eters in the tree approximation.

The sixth parameter £, can be fixed by f,, which
is defined through the matrix element

|3

<OIA?|¢;)=FO{1”§%7§, i=1,8 .

It follows that
s 2
8,4 | ¢,) =m LB 3.7
<0| uAi |¢J> (21)0)1 2(271)3 2 ( )
In our Lagrangian we can calculate the operator
relation
auA“,. =-€d;pd;, i=1,8.

Taking matrix elements in the tree order and com-
paring with Eq. (3.7) we obtain

fom2==(3)12 <€0+ %) : (3.8)
Using Eqs. (3.6)-(3.8) we find

fr==(3)/25,(1+0) .

Since b is determined by the masses, &, is fixed

by f.

All six parameters are thereby determined. fx
can be predicted and is given by the following ex-
pression??:

meK2=—(%)l/z <€o" 237)

fr==(0)2g(1-30) .
The ratio fx/f, depends only on b:

fr (1+0) )

IV. RENORMALIZATION IN THE SYMMETRIC LIMIT

All divergences can be grouped into a redefini-
tion of the Lagrangian parameters f,, f,, g, and
1%, The counter terms required in the symmetric
theory, (i.e., €;=0 and no spontaneous breaking),
are sufficient to cancel all divergences in the
presence of symmetry breaking. We summarize
in this section the renormalization in the symme-
tric limit.

The Lagrangian, Eq. (2.3) with the counterterms
present’® becomes

£5=3(0,¥,7 -3(u®+ 2047y,
+ N2 5(F+X26F) 1y k1 Y0k U
+ MG +2*6G) 1k b1 ¥ ¥ (2.37
where
6F=F(61,,6%,) ,
8G =G(dg) .



The functional dependences of F and G on the im-
plied variables are given in Eqs. (2.1)-(2.2). Since
the wave function renormalization constants are
finite we choose not to renormalize the fields at
this stage. The counterterms have been calculated
by Crater® and a manifestly chiral symmetric der-
ivation is given in the Appendix. The results are

0fi=Dfi+Af;

og=Dg+Ag,

éuz =Du2+ Ap.z s

Df,=8(13£,2+12f, £, +3/,2)B , (4.1)
Df,=48(fi+ 1) ;B ,

Dg=24(f,-1,)¢B ,

Dp?=16(5f,+3f,) A- 16g°B ,

where A and B are the divergent integrals

A=if(%ni)4(k2—p2+ie)'l, (4.2)
B=if(%1;’§—4(k2-u2+ie)-2 . (4.3)

A graphical representation of the divergent part of
the counterterms Df;, Dg, Du® are shown in Figs.
3(a)-3(c). The linearly divergent integral in Fig.
3(d) is in fact zero due to the index summation in
the loop. (This is trivial in the formalism used in
the Appendix and we comment on it there) The sep-
aration of 6 into D and A is of course arbitrary.
However, by choosing the integrals A and B with
specific finite parts, the A terms are well defined.
The finite parts Af;, Ag, and Au® can be deter-
mined once the particular renormalization proce-

° = 2 (a)
(("\\'
T Y T S (b)
P.= O
\l
2 o - ST K
“AiDG,, = P, | + crossed (c)
J
Pz 0

2 . NN
-A BiDF, ,, = P , + crossed (d)

FIG. 3. Graphical representation of divergent counter-
terms. All graphs are evaluated at all four-momenta
equal zero. “Crossed” in both cases refers to two addi-
tional graphs obtained by crossing lines.
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dure is chosen. The choice of values for these
quantities corresponds to choosing certain quan-
tities to be fixed under the perturbation. One par-
ticular procedure is to fix the values of the two-
and three-point functions, and the F' and F? types
of the four-point functions for all four-momenta
zero. Then these four finite parts would be zero.

To recapitulate: Second-order counterterms
are included in the Lagrangian. The calculation
to second order, including the counterterms, of
all physical quantities yields finite results. The
particular choice of fixed points under the pertur-
bation determines the four finite contributions to
the counterterms Af,, Af,, Ag, and Ap®.

V. RENORMALIZATION WITH
SYMMETRY BREAKING

We now wish to consider the full Lagrangian with
symmetry breaking and with all second-order
counterterms present. The Lagrangian before
translation is

£ =£S +£SB ’
where £ is given by Eq. (2.3) and £g is

1
£SB=—>:(E,+)\26€1)\II, .

This serves to define 6¢;,. However, it is more
convenient to use the translated form of the La-
grangian, which now becomes

L= %(8“1111)2 = 3(m? + 2X20m )Y Y,
+5 N (F g +N0F i )r by
+ M@ +X20Q k)Y Yk
1
=% (E; +238E)) ¥, -
The 6 terms are now given by the following expres-

sions, where the implied functional dependence is
given in Eqgs. (3.2)-(3.4) and Eqgs. (2.1)-(2.2):

0F 1k =Frsxs(81;) , (5.1a)
0Qrsx=Qx(0f;,08) +3F k108, , (5.1b)
om? ,=m?,(5f,,0g,6u") ~6QrxdEk , (5.1c)
0E;=E;(6f;, bg,81°, 6€)+m?,6&, . (5.1d)

The 6 terms have two parts 6 =D+ A where D cor-
responds to the infinite part and A to the finite
part in the same way as Eq. (4.1). We take De,; to
be zero and show that all second-order calculations
are finite.

Lee' and Symanzik'® have shown in similar
models that no new divergent counterterms are
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FIG. 4. Cancellation of divergences in the nonsym-
metric theory. The graphs in curly brackets arise
from the counterterms in the Lagrangian. The expan-
sion of the solid lines in terms of dashed lines shows
that the integrals are finite (see text). The one-line
graph with a single dashed loop is zero.

needed in the presence of this type of symmetry
breaking. The proof is almost parallel for the
present model and we shall restrict our discussion
to show this explicitly in second order in Part A.
In addition we derive formulas for the one- and
two-point functions. In Part B we carry out in de-
tail our particular choice of renormalization pro-
cedure.

A. Second-Order Corrections and
Cancellation of Divergences

We start by examining the one-point function
(¥;). The requirement that this vanish, i.e., that

-}

. dk
E,J(p2)= szlJ ~4F; k1 lf(‘z'ﬂa(kz—mz)lq

Separating off the divergent part of 6m?,; and
using Eq. (5.1c) and Eq. (3.3) we find

d k[ GKL +(m2KL_IJ~26KL)]
il -2 (%2 = u2)?

2
Dm®;=4F k8

o -18Q,KLz'fd4k ?;2"'(“;)2’ Qxpry . (5.4)
Substituting Eq. (5.4) in Eq. (5.3) gives finally
Z(p?) =am?,,

=4F 1k (m% ;1= 120, )( By = BO; 1)

-1+18Q,KLz‘fd“k (p-r)P

the physical fields have zero vacuum expectation
value through second order, is as follows:

. rd'k -
E +)\6E;-3Q,, & xzsz (# = m?) ,;'=0.
(5.2)

However, since E,=0 for the tree result Eq. (3.5),-
we obtain an equation for the A% part. To show that
this equation is finite, we write

SE;=DE;+AE,

DE can be evaluated through Eq. (5.1d) and Eqs.
(3.3)-(3.4) to give

[ dR[ 6 (M5 =675 11%)
DE1=3Q”"Z./(211)"[k2J—Ku2+ (;g—u;)g '

Hence Eq. (5.2) can be written
AE-3Qk(m?;p —u26,,)(BLgk-Bb.x) =0,

where

B =ifd4k (kz—mz)”'l
” @mn)* (-

The equation for A E is manifestly finite and gives
a relation between A€, and A{;. The cancellation
of divergences can be seen in Fig. 4(a). The
graphs in curly brackets come from the counter-
terms in the Lagrangian (Fig. 3). That these
graphs cancel the divergence can be seen by noting
that they are in fact the first few terms in the ex-
pansion of the solid line (nonsymmetric propaga-
tor) in terms of the dashed line (symmetric propa-
gator), shown in Figs. 2(c) and 2(d). Further
terms in the expansion give convergent integrals.

The second-order mass term Z,,(p*) can be
found in a similar way:

—m®) g (B _mz)LL’..l Qrrrg -

(5.3)

+18Qxp [Brx: 11/ (P?) =BOyydp 1@k s »

where

B].r KL(P ) ./(217)4 ((k p)z 2)Il-l(k2 - mz)KL-1
The cancellation of the divergence is illustrated in
Fig. 4(b) in the same way as the one-point function.
A similar procedure can be carried out for the
three- and four-point functions. They are simpler
since the single-particle irreducible graphs are at
most logarithmically divergent. One can easily



check that counterterms would remove the diver-
gence in exactly the same manner. Single-parti-
cle irreducible #-point functions for »> 5 are con-
vergent.

Now that we have a finite equation for the self-
energy, we can find the masses to second order.
The unrenormalized propagator D is

D7)y =805 =m?py = Zps(s) .

D is almost diagonal; there are two 2x2 blocks
corresponding to the 0,8 components of the scalar
and pseudoscalar mesons.

The masses M,? are given by the location of the
poles of D which correspond to

s=m;2=2(s)=0 (5.5a)
for the diagonal parts and
det[s -m?-3(s)]=0 (5.5b)

for the 2X2 submatrices.

If the solution exists for s above the lowest two-
body threshold then M,? is complex and the corre-
sponding particle is unstable. In this case Re(M)
is the mass and -Im(M;) is the half-width. If the
width is small then to a good approximation we can
find the masses from the zeros of the real part of
Eq. (5.5). For very large widths, the zeros of Eq.
(5.5) are not very meaningful, yet =, contributes a
continuum contribution to the propagator.

It is convenient to use Eq. (5.6) to rewrite Eq.
(5.5) in the form

DIJ(S) = 6I.I[S"IWI2 ‘21(3) + E[(Mlz)] -1 ’

where the once-subtracted mass term becomes
explicit.

The properly renormalized second-order propa-
gator can be defined similarly with a twice sub-
tracted mass term.

Df.)'(s) =0,,{s - M,?

-[Z,(s) "EI(MI %) —(s "'Mlz)z (M, 2)]} -

and is related to the unrenormalized propagator
by the relation (valid up to second order)

Df=D1/ZI s
where
ZI=[1 - Ef(MIZ)] !

is the wave-function renormalization constant.

The PCAC (partially conserved axial-vector cur-
rent) relation in terms of renormalized fields is
given by
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0,Al=2Z, 12 dije ‘Pf(e,- +A€), i=1,8.

Taking matrix elements and comparing with Eq.
(3.7) we obtain

1
fam, 2= —Z,,’/z(%)l/z[eo +2%A 7y (eg+ AZAGS)]

1
meKz ==2Z, 1/2(§)1/2[€0 +2%A € ‘_zﬁ (€s+ )\era)] .

B. Renormalization

Apart from the divergence difficulties dealt with
above, the renormalization procedure itself refers
to choosing a set of variables to be fixed parame-
ters in the model. This means that all higher-or-
der corrections to these variables are zero. The
Lagrangian contains six parameters {x;} = f,, f, &,
U2, €, €. In lowest order, we can determine these
six parameters in terms of six physical quantities
{P;}. In next order we can further determine the
{Ax,.} through the renormalization procedure such
that the second-order contributions to six quan-
tities {@,} vanish. The choice of {Q,} need not be
the same as {P;}. With the {A x,} determined then
the calculation of all other second-order correc-
tions is fixed.

We first describe the procedure that we used in
Ref. 5. The {P;} were chosen to be the masses of
7, K, n, 1’ and one isoscalar ¢ and f, as described
in Sec. III. The experimental situation dictates
this choice of { P,;}. Although fx is known perhaps
better than the 0 meson, it can be predicted from
the pseudoscalar masses and f,, and hence is not
an independent quantity.

It is natural to choose the {Q;}={P,}, i.e., to
hold fixed the experimental parameters that are
used to fit the model in lowest order. A conse-
quence of this choice is that once the fitting is
done in lowest order no further fitting need be done
in higher order. A further advantage is that by
renormalizing at the masses of the lowest-lying
mesons, the two-particle thresholds involving
these particles occur at the correct position. This
can be quite important if a resonance occurs in
the neighborhood of these thresholds.

One of the many alternative methods is to choose
{Q,} to be the masses of 7, K,n and &, &, yet keep-
ing {E} the same as before. Inthis case the value of
these variables will be the same as their tree val-
ues in second order. There will be finite correc-
tions to f, and m,,. However, this means that in
order that f, and m,.take on physical values, their
tree values will be changed in such a way that their
values through second order be physical.
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APPENDIX: DIVERGENT RENORMALIZATION
CONSTANTS

All divergent integrals occuring in »-point func-
tions in this model have the same SU,xSU, trans-
formation properties as tree-graph »n-point func-
tions constructed from the symmetric Lagrangian.
In other words the internal loop summations are
invariant contractions under the chiral group. It
is therefore advantageous to use chiral tensor
indices to calculate the divergent part of the re-
normalization constants.

The non-Hermitian fields M as defined in Sec. I
are appropriate for this purpose. They are not
fields of definite parity, but this is of no conse-
quence in doing internal summations. We define

8

M= Ay,
i=0
8 :

M'I' :»E A XT
i=0

The Feynman rules for these fields are given in
Fig. 5. We have used the shorthand notation:

{tjrl}=Tr(\ M A%AY)

.. - i J k
[ljk] = €pchaa’ Xy’ Moo’ €avprct -

Although these expressions can be written in terms

48, 8

ik

_><‘

Lo+ as8,)

+2if, ( {ikjt} + {iljk} )
J
f<k .

gif[ijk]
Is|Jk|

Is|Jk|

= .sllk
|+©+j = ‘971

AL e

i

FIG. 5. Feynman rules in the symmetric theory for
the non-Hermitian fields M. Also shown are integrals
needed to calculate counterterms. The arrows are
needed because we use non-Hermitian fields. The in
arrows correspond to y and the out arrows to xT.

R. W. HAYMAKER 1

of f;;» and d,;, it is advantageous to leave them in
terms of the \’s.

We need to calculate the integrals g! - ¢ ° shown
in Fig. 5, for all four-momenta zero since they
will give the counterterms in the Lagrangian. [It
is clear from the arrows that one cannot construct
the graph in Fig. 3(d).] The calculation of these
integrals is straightforward. The following iden-
tities involving the X matrices are useful

Tr(x'A%) =26, ,
)‘;a’ x’;b’ =28,4 041y
The results are as follows:
91 == 16iB[4(f,2+ £;2)(8,,0,;,+5;,6,2)
+2 fiGikitk+{itjk})]
Fjn == 16iB[4(11 £+ 12 f, £, + 2 £,)6,, 0,
+4£,26,,6,,+ 21,1, + 312 {ikil}+ {iljk})],
83 ==8iBg( f, - fo)ijk] ,
gi,=-16iBg?5;; ,
93,=i(80f,+48£,)6,,A .

The integrals A and B are given in Sec. IV, Eqgs.
(4.2)-(4.3).

The one-loop corrections to the single-particle
irreducible four-point function are

G+ Sijmt Sje -
This is equal to
-16iB(13 f2+3 f,2+ 12f1f2)(46,.k6” +46,;,0;)
-96iBf,(f,+ f)Uikil}+{iLik}) . (A1)

By comparing the chiral tensors in Eq. (A1) with
those in the Feynman rules we can identify D f;,
Df, as the negative of the coefficients

Df,=8(13f2+3£2+12f,1,)B,
f.=485,(fi+£)B .
For the three-point function we need
Gint I+ G
which is equal to
-24iBg(f, - f,)[ijk] .

Hence the counterterm Dg is

Dg=24Bg(f, - f,) .
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Finally in the same way Du® is

Du?=16Bg®~ (8f,+48f,)A .

We give the coupling-constant renormalization
constants to second order:

Zf1=1+)‘2Df1/f1 ’
Zfz =1+)\2Df2/f2 ’

Z,=1+2*Dg/g .
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It is shown that if Z; (where Z; is the photon wave-function renormalization constant)
is assumed finite and the nonasymptotic part % of the renormalized photon propagator
vanishes with power-law behavior, then all the remaining renormalization constants in
scalar electrodynamics can be made finite order by order, except the charged-meson self-
mass 6m?. The condition that é6m? be finite forces the asymptotic coupling o to satisfy at
least one eigenvalue equation. A second eigenvalue condition for a, emerges from the re-
quirement that the theory have a Hermitian Lagrangian. Finally, on the basis of the re-
normalization group, we expect that the initial assumption of a finite value of Z; is self-
consistent only if @, satisfies a third eigenvalue condition. Hence, we conjecture that a
completely finite, closed theory of scalar electrodynamics is probably internally inconsis-
tent, Assuming that % falls off sufficiently rapidly, we are able to show that the meson
propagator has a very simple asymptotic form for momenta much greater than its physical
mass.

1. INTRODUCTION AND SUMMARY OF RESULTS the most quantitative success - quantum electrody-
namics. One of the most systematic attempts to
answer this question in quantum electrodynamics,
considered as a closed theory, has been the series
of papers by Johnson, Baker, and Willey' published
over the past eight years. Their main conclusion
is that all of the renormalization constants of
quantum electrodynamics are finite provided (a)

the electron bare mass m, is zero and (b) the

The development of relativistic quantum field
dynamics during the past quarter-century has been
largely dominated by the recurrent question of
whether a completely finite, pathology-free local
field theory, with some claim of describing physi-
cal reality, exists. Attention in this regard has
naturally focused on the one theory which has had



