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We examine the scaling properties of a four-dimensional scale-invariant solvable theory.
We find that the scaling laws of the fields and the propagator behave quite differently from the
two-dimensional situation. The fermion field scales with a noncanonical dimension while the
propagator does not.

I. INTRODUCTION

The recent interest in scaling laws and approxi-
mate scale invariance in high-energy physics has
produced in the literature a discussion of anoma-
lous dimensions in quantum field theories. The
existence of anoma, ious dimensions has been ex-
hibited in several solvable models' and in per-
turbation-theory calculations. ' Unfortunately the
exact solutions have been for two-dimensional .
field theories with one space dimension. Such the-
ories have been shown not to be the best proving
ground for discussions of scaling laws. 4 In this
note we examine the scaling properties of a four-
dimensional solvable field theory which is the
scale-invariant analog of one of the two-dimension-
al models previously discussed. We find that the
scaling laws of the fields and the propagators are
quite different from the two-dimensional situation.
In particular the fermion field possesses an anom-
alous dimension which does not however appear in
the fermion propagator.

In Sec. II we discuss the model and compare the
scaling laws of the fermion propagator with the
existing results for field theories in two dimen-
sions. In Sec. III we examine the underlying canon-
ical structure of the model and show how it can
give rise to an anomalous dimension which is pure-
ly imaginary and hence cancels out in structures
which are bilinear in the spinor fields.

and the Okubo models' given by

&= ~fr "()„4 '()"y-()„-q +fr"4()„F(q) (2 2)

for the special choice F(qr} =gy, are both formally.
scale-invariant in a two-dimensional world with
one space dimension. The two-point Green's func-
tion for both models is of the form

G. (x) =- ~&ol &(4(x)4(o)) I o&

Go (x)e(5[5+ (x)- 6+(0)]
+

where

z) )'()„(.",(x) = ()'(x),

2~0 (x) = ()'(x) .

(2.3)

The constant 5 depends on the method of solution
as follows:

for the canonical solution of both models,

b = (g '/)()(1 —g '/4)(') '

for the Johnson-type nonlocal solution of the self-
coupled model, '7 and

b =g'(1 —g'/2)() '

for the Johnson-type solution of the one-dimension-
al Okubo model' with

II. SCALING OF GREEN'S FUNCTIONS

IN TWO AND FOUR DIMENSIONS

& = &7())'"s„4+g(4 Y"0)' (2.1}

We begin by summarizing the results of previous
work on the scaling behavior of two solvable field
theories.

The self-coupled fermion model described by the
Lagrangian'

so that the renormalized Green's function is

G,„(x)=G', (x)e"~+('). (2.4)

The formal scale invariance of the Lagrangians
implies the existence of a time-independent dilata-
tion transformation U such that

In both models the wave-function renormalization
constant is

-lb', (0)0
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Applying the invariance transformation to the
Green's function gives the well-known result

e kE-( o}qi

cast into the form

&'(0' y) =&0'rue q —,'suys

(3.1)

(3.2)

d= z+f}/4w. (2.5)

The anomalous part 5/4v is nonvanishing both in
the local canonical solutions and the Johnson-type
point-splitting solutions.

We shall now examine the situation for the choice
of E(9})which gives a formally scale-invariant
Qkubo model in three space dimensions. The par-
ticular choice is

The fields (' and y are easily seen to be canonical
free fields and the transformation given by Eq.
(3.1) can be generated by a formal unitary mapping.

We shall discuss the scaling properties of the
interacting field g in terms of the free fields.

In particular, we construct the dilatation trans-
formation U = e' for the free fields. Where

Ug'U-' = s-'"g' —x
~

1
s ]

E(rp) =gin(y) . (2.6)

Ignoring the question of the precise meaning of
such an expression as lny, we have from Qkubo's
formal canonical analysis that the Green's function
for this case is given by'

G, (x) =G', (x)(cosh 2}}g) ' cosh(g sin '[a', (x)/ao (0)]).
(2.7)

The wave-function renormalization constant is

Z = (cosh 2)) g) '

so that the renormalized Green's function is given
by

G+„(x)=G', (x) cosh(g sin '[4', (x)/&'„(0)]). (2.8)

U9}U '=s 'yi —xi,
Es )

writing s =e", we have for the free-field system
that

D=Q dX T XXU -P7Tgi X X —g@ XP X

(3.3)

Since there is no need to use an "improved" ten-
sor' we have for T&" the canonical tensor. The
dimensionality of g will be calculated by consider-
ing the commutator

[D(s'), (1)(x)].,=„=,, ;=.

The Green's function given by Eq. (2.8) can be
seen by inspection to scale as G', (x) and hence with
no anomalous dimension. In contrast with the one-
dim'ensional choice, E(y) = gy, we see that here
the quantity &', (0) is not removed by wave-function
renormalization. However, it is just the presence
of the bP, (0) in the renormalized propagator which
maintains the scaling to be nonanomalous. In our
analysis there has been no nonlocal treatment of
the bilinear structures in g and (I); however, in the
one-space-dimension models there was an anoma-
lous behavior in both the Johnson-type solutions
and the local canonical solutions.

In the next section we consider the canonical
structure of the Qkubo models to determine if the
nonappearance of anomalous dimensions in G, s(x)
really implies no anomalous dimensions for the
field g(x).

III. ANOMALOUS DIMENSIONS OF

THE FERMION FIELDS

The Lagrangians of the form

~= 7r"s„C- '»ys„y Cr"ts-„E(y)

are by the transformation

By means of the transformation Eq. (3.1) the above
expression can be written as

[D(})'),((x)]=[D(3'), e' '*'0'(x)]. (3.4)

Evaluating the free-field commutators we obtain

[i)(x'), O(o)]x, , = in (-,
' + io O(o) .

Bp
(3.5)

Equation (3.5) tells us that the interacting field g
scales as

g(x) s-tsn+o&a I a~}~}~ 1
(3.6)

O(x)-x ""'"iO —x) .1
s (3.7)

when

x"-sx".
The calculation has produced an anomalous di-

mension which for an arbitrary E(y) is an anti-
Hermitian q number. For the scale-invariant
choice, E(y) =ging and therefore (SE/Scp)y =g.
In this case the anomalous part is the c number
ig. Thus in the scale-invariant four-dimensional
Qkubo model the interacting-fermion field scales
as
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The appearance of the purely imaginary anoma-
lous dimension serves only to multiply the field g

by the phase t. '~~'. This behavior is consistent
with our previous result that the Green's function
exhibits no anomalous dimension.

The result obtained above can also be shown to
hold to all orders in perturbation theory.

IV. SUMMARY

We have shown within the framework of a local
analysis that the fermion field in a scale-invariant
four-dimensional solvable model possesses an
anomalous dimension which takes the form of a
phase transformation on the field. For this reason
observables of the fermion field, since they are
bilinear in g and g, do not exhibit an anomalous
scaling in the model. This result is quite different
from the behavior of the analogous two-dimension-
al theory. In the two-dimensional case the local
solutions exhibit a nontrivial anomalous dimension
which does not cancel in structures bilinear in g
and g.

where

G, (» y) = i& oI &(4(«)4(y)) to&. (A4)

1'(5, x, y) -=i& o I &(q (5)4(x)7(y)) I o&,

1"„(5,x, y) = i&0I ~(y, „(4)4(x)Tt(y))l0&

(A5)

Since y commutes with g and ( at e{lual times we
have

r„(g, x, y) = {)~r(g, x, y) . (A6)

In this theory the fields and the conserved fer-
mion current are related by

(A7)yoP-gP+ g jP

Since fj '(x)d'x generates phase transformations
we must have

In order to solve this equation we define, follow-
ing Johnson, the vertex functions:
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and

[P(&} &( }1 ="= 5((- )0( ),
(A8)

APPENDIX: NONLOCAL SOLUTION OF THE
TWO-DIMENSIONAL SCALE-INVARIANT

OKUBO MODEL

In one space and one time dimension we choose
for E(y) the function

where a and a are to be determined. Putting this
all together we find that

,'I'(g, x, y) =ag[5'(t'-x) -5'((-y)]G, (x, y)

(A9)

which integrates immediately to give

which yields a formally scale-invariant Lagran. -
gian. For this choice we have the equations of
motion:

and hence

(A10)

y" —.{)„tl)(x)=gcp „(x)y"g(x} and 'y =0. (A2)

The equation of motion for the Green's function is

y" —. e„G,(x, y) = 5'(x —y)

+ gy" i& o I 1"(y,„(x)4(x)4(x))I o&,

(AS}
I

(x y) Go (x y)cato[8 {x-v)-6 {o)] (A12)

In an exactly analogous manner we can compute
the four-point function and find

r„(g, x, y) =a@et[~:(~-x)-&', (g-y)]G, (x, y).

(A11)

Substituting E{l.(11) into E{l. (3) and integrating
gives the result:

G(xx'yy') =exp{iag'[&o(x —x') —&o (x —y') +&o(y —y') —b, ', (y —x')]]G', (x, y)G', (x', y')

-exp(iag [&o+(x —x') —&o+(x -y) —ho+(y -y') —ho+(y' —x')]]Go+(x, y')Go+(x', y) . (A13)

A vertex similar to (5) may be defined with the current j "=gy{'g replacing y „. This vertex may
likewise be evaluated with the aid of E{l. (8) to get',

i& o
~ ~(j"(t)y(x) e(y})~ o& =(aZ"" +a y o&"")e.' [&'(g «) —~o+(( ——y)1
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The constants a and a are now determined by the
requirement that in a well-defined limit we have

&~,G(xx yy ) = f(ol 7'(q "(~)y(x)7(y))l 0) .
'(A15)

Comparing with Johnson's limiting procedure'
we see that

y,".G(xx'yy'), t, = [(1+ag'/2x)g"" +y, e""]

xa.'[~;(~ -«) - A;(& -y)l.

(A16)

Comparing Eq. (16) with Eq. (14) we get finally

a= 1,~2
and a=1. (A17}

Here we see that the interaction modifies a but
not a; whereas in the Thirring model a and a are
both affected in a symmetrical way. In both the-
ories the axial-vector current is the dual of the
vector current for the fermions. In the Qkubo
model, however, it is the field y „which appears
in the vertex (A5}. It is the appearance of the cur-
rent j" in the vertex of the Thirring model which
brings in a and a in this symmetrical way.
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We present the calculation of one-loop corrections to the one- and two-point functions in the
renormalizable SU3 a model with a symmetry-breaking term L sg =&p&p+68op. We renormal-
ized at the masses of n, K, g, g', a, and f~. The second-order corrections are found to be
small compared to tree-approximation values. The measure of octet breaking, b= (os)/
W2 (o.p), changes less than 5%. The value of a =e8/~2 &p is insignificantly changed. The
scalar-meson masses are shifted by less than 10%, with the exception of the a'. The widths
are large, with the exception of the zz. We calculate corrections to fz/f~, the wave-function
renormalization constants, mixing angles, and the renormalized m and E propagators at
q2 0

I. INIODUCTION

Numerous Lagrangian models of strong interac-
tions have been constructed with currents that sat-
isfy chiral algebra and with current divergences
that are proportional to fields. ' In addition to pro-
viding a convenient method Of imposing current-
algebra constraints, these models have been used
to study low-energy dynamics. The majority of
work on the latter has been confined to the tree-
graph approximation. Among these models we
consider the renormalizable SU3 o model to be
most attractive. Not only does it give quite a good

account of spin-zero mesons, ' but also provides
a framework for calculating higher orders. %e
present in this paper calculations of the one-
closed-loop contributions to the one-point and two-
point functions. The details of the renormalization
formalism are given in a separate paper ' referred
to as II. %'e find that the corrections to masses
and symmetry-breaking parameters are quite
small, generally less than 10%%uq. This is surpris-
ing considering that we are dealing with strong in-
teractions and large BU, mass splittings. The
second order corrections supyly two-body analy-
ticity without changing the essential features of the


