PHYSICAL REVIEW D

VOLUME 7, NUMBER 2

15 JANUARY 1973

£-Limiting Process in Spontaneously Broken Gauge Theories*

Kazuo Fujikawa
The Envico Fermi Institute, The University of Chicago, Chicago, Illinois 60637
[Received 17 July 1972)

We show that the ¢-limiting regularization process of Lee and Yang can be recognized as
a nonlinear gauge condition in the general non-Abelian gauge theory. The {-limiting process,
however, differs from the general gauge-invariant formulation of the spontaneously broken
gauge theories for finite £. Some of the problems related to the implementation of general

gauge conditions are also briefly discussed.

I. INTRODUCTION

Following the pioneering work of Weinberg,!

’t Hooft,? and Lee® the spontaneously broken gauge
theory (SBGT) has been established as a renormal-
izable and unitary theory of massive vector parti-
cles.*'®

The practical applications of SBGT have been
tried by various authors.®™'° Jackiw and Weinberg®
and also Bars and Yoshimura’ found ambiguities in
the finite quantity calculated in the U gauge; they
used the weak correction to the muon magnetic mo-
ment as an example of these ambiguities.

These kinds of ambiguities have been resolved
by the n-regularization method by ’t Hooft and
Veltman,' and also by the R, -gauge formulation
of SBGT.*?

In the present note we would like to show that the
£-limiting process’® by Lee and Yang applied to
the U-gauge Lagrangian can be recognized as a
nonlinear gauge condition in SBGT. It is interest-
ing to see that the £-limiting process, which has
been proposed independently of the general non-
Abelian gauge theory, can be nicely accommodated
in SBGT as a limiting form of a nonlinear gauge
condition. This explains why the &-limiting pro-
cess always gave the correct answers®™'2 when
combined with the U-gauge Lagrangian of SBGT.
This also provides an interesting practical ex-
ample’* of the nonlinear gauge condition.

The ¢-limiting process, however, differs from
the general gauge-invariant formulation of SBGT
for finite £. For this reason we expect that the re-
normalization program of the U-gauge Lagrangian
with the £-limiting process'® may not be so con-
venient. The general gauge independence cannot
be maintained by the &£-limiting process at the in-
termediate stage of the renormalization program,
although we expect that the final result based on
this prescription is finite and non-Abelian-gauge-—
independent in the limit £-0.

I3

II. ANONLINEAR-GAUGE CONDITION

A. Review of the Linear-Gauge Condition

We first briefly review the covariant linear-
gauge condition (R, gauge) used in the previous
study.'? We consider the Lagrangian by Georgi
and Glashow'® as an example. This Lagrangian is
based on the group O(3), and it has the following
form:

£= 'é' lvp¢|2 - V(‘P) —;1;(3“§V -9 vﬁp _gﬁy xﬁu)z
+fermion part. (2.1)

The potential V(¢) induces the spontaneous break-
ing of the vacuum symmetry. The real triplet
scalar ¢ takes the following form after this sym-
metry breaking:

st 0
o=\ ov+v | , (P)=| v . (2.2)
S~ 0

The covariant derivative in Eq. (2.1) is defined by
v, 6=, +igB, T, (2.3)

where

B, T=\-w; o w; (2.4)
0 W, -A,
and
Wi=— (Bl %iBY),
(2.5)

A,=B}, g=-e.

The fermion part of Eq. (2.1) is not important for
the following discussions; the potential V(¢) is
given in Appendix B.
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The linear gauge condition for the R, gauge'®
can be written as

9,A% =C¥x),
(2.6)
8, Wk +i gvs =CH*x),

where C3(x) and C*(x) are arbitrary functions. Fol-
lowing ’t Hooft? we can implement the gauge condi-
tion (2.8) by adding the following gauge term to the

symmetric Lagrangian (2.1):

iev

2
‘gé:_%(auA“ Poglowre eSS @)

To get a meaningful S matrix by this prescription,
we have to impose several restrictions on the form
of C(x) in Eq. (2.6). This will be discussed in
Appendix A.

B. Nonlinear Gauge Condition

The nonlinear gauge condition which corresponds
to the classical £-limiting process by Lee and
Yang'® can be written as

8,A% =C%x),

e (2.8)

o, WHE —ieA W*H +i— E C*(x).

The only difference between Eq. (2.6) and Eq. (2.8)
is that the derivative of W} is now replaced by a
‘“covariant” derivative (8 p —ieA”)W*“ in Eq. (2.8).
The gauge term is given by (see also Appendix A)

= 1 CAMY2 +U + U . ev +2
£c-—§E(a‘,A ) —&3“W —zeAuW +1,-£—S

(2.9)

Thus we finally get the effective Lagrangian from
Egs. (2.1) and (2.9):

Ler=L+L,
=[0,S* +ievW} +ieW p—ieA,S* [
+3 [P P —ieW;S™ +ieW S*P
-3, Wy -0, Wi+ie(W A, -WiA )]
~-il0,A, —8,A, —ie(W W, - W W}) P

—Elo, Wt —ieA W +ze;’ s*

- ﬁ(a 4AF)? ~V(¢) +fermion part.
(2.10)

The quadratic part of £ is given by

[

quad

Lo =19, S+'2—“les+lz (8,9 —3m 2P

-z Wi -8, Wil +MP Wi~ £fo, WHHP
-3(0,4,-8,4,) _—1—(3 AF),
(2.11)

where M =e¢v. The propagators for the various
particles are identical to those in the R, gauge'®:

2
Wy (—i) B =Rk LQA0 8 (g y9)
Ay (—i)g"”'(k‘;e’ﬁi/i’i)(l’“) , (2.13)
FITSP S S (2.14)

k% - (1/E)M? +ie °

The W propagator in Eq. (2.12) is the one first de-
rived by Lee and Yang.!® The difference between
the R, gauge and the present nonlinear gauge is
given by
AL =eMA W S +A WHHST) — te®|A WHH
+ieE(@ ,W™VA W 3 WHPA, WTH).
(2.15)

The net effect of the nonlinear gauge (2.8) is to re-
place the trilinear coupling in the R, gauge,

—eM(A,WHS + A, W*EST), (2.16)

by the interaction

—e*E|A WP viet(d WVA WHE =0, WA, WTH) .

(2.17)

Note that the interaction (2.16) which exists in the
R, gauge is absent in the present nonlinear gauge.
The gauge-compensating term is also modified by
the nonlinear gauge condition, as we will discuss
later.

Equation (2.17) is identical to those extra terms
introduced by the £-limiting regularization into,
e.g., the U-gauge Lagrangian of SBGT. Therefore
the electromagnetic vertex of the vector boson is
identical to that of the ¢£-limiting process, and it
has the form (see also Sec. III)

Ve = (@) 8ol + 1)y =g gy = loBus
+(8auds — &opde) + ELs8 e + 18 up) ]
(2.18)
for
Wo D) +y,(q) -~ Wi(l).

The major difference between the present formu-
lation and the £-limiting process applied to the U-
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gauge Lagrangian is the following: We have unphys-
ical scalars S* in Eq. (2.11) to cancel the unphysi-
cal poles in the vector-boson propagator, whereas
the U-gauge Lagrangian with the £-limiting regular-
ization contains no unphysical scalars. The S-ma-
trix element evaluated in the present nonlinear
gauge is therefore independent of £, and it is uni-
tary for arbitrary £.!® On the other hand, the uni-
tarity is restored only in the limit £=0 by the £-
limiting regularization of the U-gauge Lagrangian.

Those unphysical scalars S* are expected to de-
couple from the system in the limit £~ 0; they ac-
quire an infinite mass in this limit. The gauge
term in Eq. (2.9) also imposes the condition

IS*=0 (2.19)

in the limit £=0. The perturbation theory, how-
ever, could show “anomalous” behavior in this lim-
it. In fact we encountered such an example when
we discussed the neutrino static charge. The un-
physical scalars with an infinite mass gave a finite
nonzero static charge to the neutrino.!?

(i) The nonlinear gauge condition (2.8) imple-
mented by Eq. (2.11) gives rise to an S-matrix ele-
ment which is independent of &, i.e., gauge inde-
pendent.'®

(ii) The nonlinear gauge condition (2.8) and the &-
limiting regularization of the U-gauge Lagrangian
agree with each other in the limit £ -0 if the per-
turbation theory behaves as well as the formal
manipulation indicates.

We have thus established that the classical &-
limiting process can be regarded as a limiting
form of the nonlinear gauge condition (2.8) in the
general framework of SBGT.

We would like to conclude this section with some
comments on the formulation of SBGT. The effec-
tive action of SBGT is given by

Sm=fd4x£m+s’, (2.20)
where S’ is the gauge-compensating term. It can
be written as (see algo Appendix A)

We can summarize what we have learned as fol- §'=(=)Trin(l+8+7), (2.21)
lows: where
- b
-(a2 +A£—ie> 0 0
£
0 —(82% -i€) 0 + 8 =6*x~1y) (2.22)
0 0 - (82 +E —i€>
£
- -
and
YEY1+Y2, (2.23)
with
ied At —%lzp —ieauw*“+§-2—!s" 0
Y= —ied ,WH 0 ied Wt 6*(x —y) (2.24)
0 ied, WH + %MS' —ied A¥ _gg_ﬂf ¥
and
A, - W) [P +ieAbd, ieW*Ho, —e’AFW) W Wt
Y2 = 0 0 0 6% x —y) . (2.25)
i e*w,wt —ieW™ha, —®AMW, A, -e* W, [ —ieA 8

Note that 8 ,A¥, for example, in the matrix y,, stands for 3 A¥=(8,A")+A"8 . y, corresponds to the lin-
ear gauge condition (2.6), and v, is the additional contribution from the nonlinear term in Eq. (2.8). For
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13

sufficiently small £, we have the following form'” for §-y:

1 —-eM
-(32+g'1M”-ie)< & )11) 0

Gy~ 0 0

0 *(x —y). (2.26)

0 0

—(0% + g'llM2 —i€) <—ZM >¢

This is the regulated form of the well-known gauge compensating term for the U gauge.> The “fictitious”

particle has the propagator

i i

~J
Pl rie o ()

(2.27)

It should be noted that the unphysical scalar propagator in Eq. (2.14) and the fictitious particle propagator
in Eq. (2.27) both have the same structure as the unphysical part of the W-boson propagator in Eq. (2.12).

III. DISCUSSION

The vector-boson propagator in Eq. (2.12) has
the following property

(i) B =l (1= /O — g8)

k% = M? +ie
& —k R,/ M
Sy e pan R CR Y

It takes the canonical form at the physical pole
position. This property is important when one per-
forms an actual calculation; we can use the canoni-
cal form of the projection operator for the exter-
nal vector boson. For the internal lines of the
vector-boson propagator, the following choice
(£=1) of the propagator simplifies the calculation:

S 3-2)

This corresponds to the generalized Feynman
gauge discussed by ’t Hooft.2 For this special
choice of £, the vertex function in Eq. (2.18) takes
the interesting form

Vﬂua= (ie)[gaﬂ(l"' l’)p +2(gaqu "'gqua)] . (33)

The charge-conservation condition is manifestly
satisfied by Eq. (3.3); the gyromagnetic g, =2 is
also explicit.

For simple lower -order calculations, Egs. (3.2)
and (3.3) provide very convenient Feynman rules.
We have, however, an extra photon-S-S coupling
compared to the U-gauge Lagrangian to preserve
non-Abelian gauge independence. The unphysical
scalar S™ has the electromagnetic vertex

(=ie)(1+1), (3.4)
for
S +y,(@)~S7(1).

For higher-order calculations, the limiting form
at £~ 0 may be convenient; the gauge compensating
term takes the simplest form in this limit.

The renormalization program in the present non-
linear gauge can be best studied if one combines
it with the n-regularization method by ’t Hooft and
Veltman.!’ The £-independence of the physical S-
matrix element provides a convenient check of the
calculation.
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APPENDIX A

In this appendix we shall review the prescription
to implement general gauge conditions first dis-
cussed by ’t Hooft,? and discuss several conditions
we should impose on the gauge functions C(x) in
Eq. (2.8). We discuss the gauge condition on the
W boson:

8, W*H —ieA, W** +ie?” §*=C(x). (A1)
We denote the S-matrix in this gauge by (S), .

Thanks to the gauge independence of the S-matrix,
one may replace (S), by
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J(de)(®), exp(-iBJa‘x|CG) (42)
[(de)exp(~iB[d*x IC(x)P)

where B is an arbitrary constant, and (S), is inde-

pendent of B. The exponential factor in Eq. (A2)

corresponds to the gauge term

(s)=

2
£, =B, W*H —ieA,W*H +ie?”s+ . (A3)

The limit 8- « reduces the gauge condition to
C(x)=0. However, one may lose the gauge condi-
tion in the limit 8=0, and the theory may become
“underdetermined.” The special choice, g=¢,
adopted in the present study resolves this diffi-
culty; it also simplifies the theory by eliminating
undesirable cross terms in the free part of the
Lagrangian. By this special choice of 8, the gauge
condition is retained for arbitrary B (=£). We can
thus smoothly interpolate between the U gauge and
the general R gauge.'® The gauge invariance of
the underlying Lagrangian is now characterized by
the ¢ independence of (S).

To get a meaningful (S), we should make sure
that there is actually a gauge which satisfies Eq.
(A1) for C(x) with the constraint |C(x)[><1/B.

This is important for nonlinear gauge conditions
(see, e.g., Ref. 21).

To make the perturbation theory well defined,
we should also satisfy the following requirements:

(i) The gauge function C(x) in Eq. (A1) should
contain one or more linear terms in gauge fields.'®

(ii) Propagators for gauge fields should be in-
fluenced by the gauge term added to the Lagrangian
[our simple form in Eq. (A3) satisfies this condi-
tion]. The physical poles in the propagator, how-
ever, should not be modified by this gauge term.*

In the present framework, therefore, it is diffi-
cult to handle a special class of nonlinear gauge
conditions such as A “A“ =) =constant of Dirac and
Nambu?®!; a straightforward exponentiation of
A, AP - following Eq. (A3) shifts the physical pole
of the photon propagator.

One way to handle the condition A A¥ =) is to go
back to the basic formulation of the general gauge

theory, and treat it as a Landau-type condition®

5(A° — (A +£2)12) +5(4° + (2 +K2)/2)
200 +K2)1/2 .

84 A" —2)=
(A4)

If one eliminates A° from the Lagrangian and ex-
pands every term in the Lagrangian in terms of
A/Vx one recovers Nambu’s result.?2 The de-
nominator factor (A +A2)2 in Eq. (A4) is canceled
by a part of the gauge -compensating term.?*

Finally, a brief comment on the gauge compen-
sating term S’ in Eq. (2.21) is in order. Equation
(2.9) in our formulation has an appearance of a
Fermi-type gauge condition. On the other hand the
gauge compensating term S’ in Eq. (2.21) corre-
sponds to a Landau-type gauge condition. The uni-
tarity of the S-matrix based on Egs. (2.9) and
(2.21), namely consistency between these two equa-
tions, can be formally shown by a straightforward
generalization of the method utilized by Fradkin
and Tyutin.’® The existence of an identity due to
the local gauge invariance of the original Lagran-
gian is essential in this discussion. ’t Hooft? also
gives another proof of unitarity based on Ward-
Takahashi identities.

APPENDIX B

The potential in Eq. (2.1) is given by
V(@)= 21”9 + Aol
=3m 2 +A[40Pp(25* ST +9)
+(25°S™ +47)?]
+ (" +40PN)(S*S™ +oy) (B1)
where
my?=p? +1200°.
U< 0 and we have the condition
U2 +4021 =0 (B2)

in the tree approximation.
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