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The problem of K degeneracy, which has hitherto prevented calculations with nonadditive dual

resonance models, is studied. It is shown that the second gauge condition selects out a unique member

from each K-degenerate family. The vector so selected is not, in general, normalizable, but finite results

can be obtained after renormalization. Calculation of norms and vertex functions is examined and is

shown to be perfectly feasible.

I. INTRODUCTION

While the construction of mathematical dual
resonance models of the $ matrix has been al-
most spectacularly successful, the models con-
structed thus far all possess certain properties
which prevent their application to the real world.
In particular, no one has yet constructed a general
ghost-free model with fermions. Also, the
squares of the masses of particles without an addi-
tive or multiplicative conserved quantum number
are integral, and there is always a zero-mass
vector particle.

A class of models which do not necessarily poss-
ess the above-mentioned properties has been con-
structed by Bardakci and Halpern. ' In such "non-
additive" models, the Virasoro operators L~"&,

and, in particular, the Hamiltonian L", are not
simply the sum of operators involving spin and
orbital degrees of freedom. The models possess
spin-orbit coupling, and, even though resonances
are narrow, the trajectories are not necessarily
linear. ' The Macoowell symmetry does not,
therefore, imply that physical fermions are parity-
doubled.

Nonadditive Bardakci-Halpern models are char-
acterized by the presence of two complete, inde-
pendent, mutually commuting Virasoro algebras
L "' and K'" . The algebra L "' is analogous to the
Virasoro algebra which exists in all ghost-free
dual resonance models, but the second Virasoro
algebra has no analog in the simpler models.
Associated with the L algebra, one has gauge con-
ditions which remove the ghosts that arise from
the orbital degrees of freedom. In models with
spin degrees of freedom there exist further ghosts
which are not removed by the gauge conditions in-
volving the L's. It is natural to hope that the g
algebra may provide gauge conditions which re-
move these additional ghosts. Bardakci and Hal-
pern showed that such gauge conditions do exist
and do eliminate certain states. Whether they suf-
fice to eliminate the ghosts is not yet known, and

we do not propose to examine that question here.
Thus far, not much attention has been devoted to

nonadditive models, probably because calculation
of even the simplest quantities has been hindered

by a problem known as & degeneracy. Since all
representations of the Virasoro algebra are in-
finite-dimensional, and since the K algebra com-
mutes with the Hamiltonian, it follows that the
eigenstates of the Hamiltonian are all infinitely
degenerate. As we have already mentioned, Bar-
dakci and Halpern proposed applying a gauge con-
dition, and they hoped that this condition would re-
move the degeneracy. They did not study the ques-
tion, however, and all they were able to calculate
was the spectrum of eigenstates of the Hamilto-
nian. As they were unable to calculate the signs of
the norms, they could not determine whether the
eigenstates corresponded to particles or ghosts.

Our aim here is to study the question of K de-
generacy further. We shall show that the gauge
condition does indeed select out one and only one
member of each K-degenerate family. The state
vector so selected will not in general be normal-
izable but, with an infinite renormalization, all
quantities calculated in this paper will be finite.
We shall show that calculation of norms and of
vertex functions is perfectly feasible. It is ac-
cordingly possible to determine whether any state
is a particle or a ghost, and to calculate coupling
constants associated with particles or resonances.
Thus, while we do not provide a practical method
for the complete calculation of scattering ampli-
tudes, we do have a large number of quantities
which can be compared with experiment.

In Sec. II we construct the K-degenerate families
and state some of their general properties. In
Sec. III we show that the gauge condition does
select a unique member of each K-degenerate
family. The real states so selected will not be
normalizable, but will be dominated by their com-
ponents with very high sector number. We discuss
the form of the solution of the gauge condition for
such high-sector-number components, we shall
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have to make use of plausibility arguments rather
than rigorous proofs. In Sec. IV we shall study
the equations provided by the gauge condition in
more detail and shall give rough numerical calcu-
lations for the parameters left undetermined in
Sec. III. The calculations of that section should
suffice for the determination of the signs of norms,
provided that certain parameters v and y are not
too large. More accurate calculations can, of
course, be done if necessary. Finally, in Sec. V,
we shall discuss the calculation of vertices.

N N N

K i g K'""'f 10& = Q, + . g K'"'t 10&
r=l r=l r=1

(2.4)

K"'ala& = v„i1a&,

etc. We can form new K-degenerate families

(2.5}

Now let us consider states in the first sector.
Qne of these will be K~"t [0&. The =tates in the
first sector orthogonal to K~"t i0& will be eigen-
states of K~", since K "and S "commute. Let
us call them i la&, [lb&, etc. , with

II. E-DEGENERATE FAMILIES

Nonadditive models have two mutually commuting
Virasoro algebras L~") and Ki"), with

L( ) +g(n) $(n) (2.1)

The operators L~") are the usual Virasoro opera-
tors; L~", L ", and L~ "are associated with the
duality projective group; and L~" + p' is the
Hamiltonian. The operators g~"' form the new
Virasoro algebra which is responsible for the K
degeneracy. 5 "+p' is the sector number; a
state

Each set L "' and K "' satisfies the commutation
relations

[L "', L ']=(n —m)L "' '+,2Pn(n'-1)6„

(2.2a)

[K "', K "i]= (n —m)K "+ '+,2 y n(n -1)6„
(2.2b)

(2.6)

N

IIK "'~la&, n„-n, , r)s. (2.V)

etc. Each member of one of the K-degenerate
families associated with the states [0&, i1a&,
i

lb�&,

. . . will be orthogonal to any member of the
other families, as may easily be shown from the
Virasoro algebra.

In a similar way we can examine the second sec-
tor. The states (Kt"~}'i0&, K"'ti0&, K~"~i1a&,
K~"t

i lb), . . . will be members of the second sec-
tor. From the states of the second sector orthog-
onal to these states we can construct new &-de-
generate families as before.

In this way we can decompose the whole Hilbert
space into mutually orthogonal K-degenerate
families. Each family will consist of states of the
form

has sector number Qn„+ Qm„. Any operator
a~~"', b~~"), L~~"', Kti"', etc., increases the sec-
tor number by n.

The constants P and y in (2.2) are the "dimension
numbers. " For the simple dual resonance model
the corresponding constant is the number of
dimensions of the space involved, but for non-
additive models p and y may be fractional or nega-
tive.

The vacuum is the only state with sector number
zero. From it we can form the K-degenerate
family

(2.8)

The vacuum will be an eigenstate of K~":

K "I0& = v, i0&,

so that

The state ia& will be called the basic state as-
sociated with the family. It is characterized by
two numbers, the eigenvalues of gi' and S ':

K"'ia) = v. ia), (2.8a)

S(' [a) =(n, —p') ia), n, integral.

From (2.1) and the eigenvalue condition

L"'ia& =ia&,

(2.8b)

it follows that

P =pig —v —1, (2.9)

Equations (2.8) may be generalized to arbitrary
states.

N N N

K ' g K"' ~ia&= Q n, +v, gK&"" ~ia&,
r=1 r=l r=l

(2.10a)
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N N

S~'&g K'"'Ia&= Qn, +n. —p' HK'""'Is&.
r=1 r=1 r=1

(2.10b)

Equation (2.9) remains true for all members of
the K-degenerate family.

obtains a complete set if one takes only those n„'s
satisfying n ~ n„r & s. However, it is not diffi-
cult to show that the Eqs. (3.2}, with n„& n, if
r & s, imply similar equations for all combinations
of n„, so that the Eqs. (3.2) are consistent.

On the other hand, if IR) does satisfy (3.2), the
matrix element

III. THE GAUGE CONDITION
N

a gK"'K" R

Bardakci and Halpern suggest that one remove
the & degeneracy by demanding that real states
satisfy the equation

(K'"&-K"&)IR& =o (n&0). (3.1)

This restriction is to be imposed in addition to the
usual gauge restriction involving the L operators.

Let us first demonstrate that this restriction
isolates one and only one member from each K-
degenerate family. We do so by finding the scalar
product between the vector IR & and the vectors
&oIg„=,K"' (¹0),which span the subspace as-
sociated with the g-degenerate family. Thus

~

N N nr-1
0 II tc" s = n Q n. ~ )r=1 s =1

(3.2)

Since the scalar product of the vector IR) with a
complete set of vectors is determined, the vector
IR& is unique. In fact, the vectors (0IQ", ,K~""'
form an extremely overcomplete set, because one

1

(
N

,

n-1
II Ic 'R = "0 II Ic "'K"' R) [by (8.1)]
r=1 r=1

N-1 N 1

Q s, +v 0 Q K' 'R), "
s=1 r=l

by (2.4) applied to the bra vector (0 I g"„:,'K ""'.
Repeating this procedure, we obtain the result

is independent of l. It follows that the vector
(K "-K")IR) has zero scalar product with all
members of a complete set, and it must be identi-
cally zero. Thus the vector IR) satisfies the re-
quired condition if and only if (3.2) is true, and
the existence and uniqueness of a vector satisfying
(3.1) is proved.

We have not shown, however, that the vector
IR) is normalizable, and we shall now give argu-
ments which indicate that IR), in general, di-
verges logarithmically as the sector number is in-
creased. Let

IR) = Q IR)„,
n=Q

(3.3)

where IR)„ is the component of IR) with sector
number n. We first show that

IR&„=(n+ v) 'K"'~ IR &„„n-~. (3.4)

Our demonstration of (3.4) will be a plausibility
rather than a rigorous argument. We shall further
verify that, in certain cases where IR) can be
calculated exactly, (3.4) is true, and, in Sec. IV,
we shall show that some of the consequences of
(3.4) are at least consistent with our calculations.

Let us determine the scalar product of the right-
hand side of (3.4) with a general vector. Thus, if
Q n„=n,

N N s-1 N

a g K&""'K '&t R = Q (n, +1) a
r=1 n-1 s =1 r=1 r =$+1 n-1

N s t~1 N r-1
Q(n, +1) g Q n, +v P Qn, +v —1 [by (3.2)]
s=l r=l t=1 r=s+1 t=l

N s r-1 N r-1
gn, +u g g n, +vg gn, +v-

s=1 t =1 r=l t =1 r=s+1 t =1

s-1

N

n, +p

N

(n+ v) P

s-1 r-1 N r-1
tlg+v g Qsg+v g Qsg+v-

r=l t =1 r=s t =1

N r-1
g n, +

r=l s=l

(3 5)

If n is large, the factor n+ v in the first term will be much larger than the factor v in the second term.
Also, if there are a large number of factors Q n, + v, the product in the first term will be much larger
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than that in the second; if all the n„'s are equal to 1, the terms will differ by an additional factor n. On

neglecting the second term of (3.5) we notice that the scalar product of the vector (n+ v)K")~ IR&„,with

any other vector is equal to the scalar product of IR)„with that vector. Equation (3.4) is thus proved.
We shall not attempt to justify further the dropping of the second term of (3.5), but shall assume that we

can do so and study the consequences.
First let us determine how the norm of the state IR)„varies with n when n is large. Using (3.6), we may

write

(R I„„IR)„„=(n+1+v) '(R I,K "K" IR),

=(n+1+) )-2(2 &R I„K"'IR).+(R I.K""K'"IR)„)

=(n+1+ v) '(2(R I„K"'IR)„+(RI„,K "K"'IR)„,) [from (3.1)]

=(n+I+)) '[2(n+))(R I„IR)„+(n—I+) )'(R I„,IR&„,].
We assume that the norm of IR)„varies smoothly with n and write

(3.6)

(R I.„IR&„„=(RI.IR&„+~ (R I„IR&„+0(n '),

(R I, IR &„,= (R I, IR )„—~ (R I „IR &, + 0(n ') .

From (3.6), we thea find that

or

&R I„IR&„=~-'.

(3 'I)

It follows that the )s)rn) of Q~, IR )„ increases logarithmically with N, so that the state IR) is not normal-
izabl4. .

Let us write the vector IR)„ in the form

IR&
—n-& {n)}- [c (K& )t) +c (K& )t)&-2K& )t+c (K& )t)&- K& )I'

4. c (K&')t)"-4K & )tK& 't 4.c (K&')t)"-4K&4)) + . . ~ ] Ia) . (3.8)

If Eq. (3.8) is accurate for a large value of n, it follows from (3.4) that it will be accurate for all larger
values of n. Thus, by taking a sufficiently large number of terms in (3.8), we can obtain an accurate rep-
resentation of IR) for all sufficiently large values of n. When n is large, (3.8) will be substantially equal
to the vector

IR& =(c n '(n)) '(K"' )'+c (n —2) " '[(n —2)!] '(K"'t)""K"
+c (n-3) " '[(n —3)!] '(K" )" K + }la&,

or (3 9)

IR&= (cn '+cn ' 'K ~+cn " 'K 't+ ~ ~ ~ )la&n1 x 2 3
tl =

Eq. (3.9) being interpreted in the sense that it is valid for the large-n components IR &„. As the vector IR &

is, in general, not normalizable, it will be dominated by its large-n components, so that (3.9) may be re-
garded as an essentially correct equation.

If v is equal to 0 or 1, the second term of Eq. (3.5) is strictly zero, and our treatment is exact for all
values of n. Ne may therefore write

ca &1)g nIR)=Q, Ia), ) =0 (3.10a)

a &1)t)n
IR& = Q I, Ia&, v=1.

The value of the norm of (K&"t)"la) may be found by commuting a factor K " through the K "s:
(3.10b)
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(p ~(K!i&p(K!i&g)n ~a) 2 g (p ~(K&&&p-i(K~i&t)~-iK&0&(K!i&t)" '[a)

so that

= 2 g (n -v + v) (0 [(K ' )" '(K "~}"' [a) [from (2.4)]
T=1

= n(n —1+2v) (0 [(K '&)" '(K'!"t}"' ~a),

(0
~

(K!'&)"(K&' t)"~a) = n!I'(n+2v)[I'(2v)] '.
If v=p, the factor [I'(2v)] ' in (3.11) implies that all components of [R) other than ~R), have zero norm.
However, if v is small but not: precisely zero, Eqs. (3.10a) and (3.11) show that the square of the norm of
~R)„ is equal to n '[I'(2v)] ', in agreement with (3.7). If v is equal to 1, it follows from Eqs. (3.10) and
(3.11) that the square of the norm of (R)„ is (n+1) ', again in agreement with (3.7).

It is not difficult to verify directly that the vectors on the right-hand sides of Eqs. (3.10) satisfy (3.1)
when v is equal to 0 or 1, respectively. We also notice that Eqs. (3.10) are special cases of Eqs. (3.9).

If v is equal to zero, the basic state ~a) itself satisfies the equation

(3.11)

K'"' ~a)=0, n ~ 0

so that it satisfies the gauge conditions (3.1}. In that particular case the state ~R) is normalizable. Ii may
happen in other special cases that the constant c in (3.7) is zero, i.e., that the state ~R)„approaches a
zero-norm state as n approaches infinity. We would then require higher negative powers of n in (3.7), and
the state [R) would again be normalizable. We shall show in the following paper that such is the case for
the simplest nonadditive model without any internal degrees of freedom.

If a model possesses both normalizable and non-normalizable states, we would expect the normalizable
states to disappear after renormalization. In particular, the Pomeranchuk trajectory, which is always
present, even in nonadditive models, ' has v=0. Thus, if the model possesses any non-normalizable tra-
jectories, the Pomeranchuk trajectory will be renormalized away.

IV. DETERMINATION OF THE REAL STATES

In this section we shall calculate explicitly the vectors ~R)„ for n ~ 4. We shall show that the norms do
appear to be approaching the limits inferred in Sec. GI, and we shall also conclude that the calculations
are sufficient to determine the signs of the square of the norms if v is not too large.

We write

(R) =)a) +bK!' [ta)+c(K' t)'(a) +dK! &~ (a)+e(K!'&t)')a)+ fK!' tK (a) +gK& &" )a)
+ k(K 'n) [a) +k(K '")K t [a) +1K '~K ' [a) + mK ' )K! n [a) +nK 4 ~ [a) + ~ ~ ~ . (4 1)

In order to illustrate the method of determining the
constants, we apply the gauge condition (3.1) to a
few of the lowest sectors. The simplest equation

K ' IR), =K "IR)0.
Equation (4.3a) gives

(4.3b}

K!"IR), =K!"IR)0

cK "(K!"~) (a)+dK 'K!'n)a) =bK K"
) t),a

or, after commuting K~" through to the right-hand
s lde)

bK! &K! & [a) =K! & [a) .
We commute K!"with K&'&, since K&'& ~a) =0:

2bK! ~a) =K! ~a)

or (4.2)

2c(K 'K '~~a)+K "tK!"~a))

+3dK ~a) =bK K" ~a),

l.e.)

2c(2v+1)K '~ ~a) +3dK "~~a) =b(v+1)K '~ ~a),
whence

For the second sector, we require two equations 2(2 v+1)c+3d = 3(v+ 1)b . (4.4a)
K )R)2 =K )R)„ (4.3a) From Eq. (4.3b),
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or

cK (K '~t) la)+dK~ ~K~ ~tla)=K Ia), n = (2DiD2) ' [-2n (v+ 3) + 2(3 v + 26 v + 33)

—75 v —237 v —45] . (4.6k}

3cK "K ' t
I a) + d(4K&" + —,

'
y)l a) =K& &

I a },
x.e.,

6vcK"' Ia)+d(4K "+2y} la) =K "Ia),
from which

6vc+(4+ 2y)d= v. (4.4b)

Equations (4.4) enable us to determine the con-
stants c and d.

The constants e, f, and g associated with the
third sector, and the subsequent constants as-
sociated with the higher sectors, may be deter-
mined in a similar manner. In general, the com-
plete series of conditions (3.1) will give us a re-
dundant set of equations, but the equations will al-
ways be consistent, since we know that there ex-
ists a vector which satisfies all the gauge condi-
tions.

For stating the results of the solution of the
equations, it is convenient to define

By comparing the calculations of the present
section, insofar as they apply to the fourth sector,
with the fourth-sector components of (3.9), we can
obtain rough values of the constants cy ~ ~ ~ c5.
More accurate results would necessitate taking the
calculations of the present section to higher sector
numbers.

Having found the states IR)„(n ~ 4), we can ca,l-
culate their norms. This may be done fairly sim-
ply by making use of (3.1). Thus, to take IR), as
an example,

(R I2 IR), =(R 12[c(K~' ")' Ia) +dK"n Ia)].
Now, by (3.1),

&R laK ' t =&R I
gK"'

=(1+v)&R I„
(R I2(K~ )2 = (1 + v)(R le

= v(1+ v)(a I,

o, = zy+4v,

D, = n(2v+1) —9v,

(4.5a)

(4.5b)

Hence

(R I2 IR)2 = cv(1+ v) +dv.

D, =4(2n —1}[-5n(2v+3)+32v +101v —33]. By using this equation and a similar equation for
IR)„we find

(4.5c) (R I~IR), = 2v, (4.7a)
Then

b=—1
2 y

c =(4D,) '[n(v+1) —6v],

d = (2D,} '
v( v —1),

e=(24D, ) '[n(v+2) —9v],

f =(4D&) 'v(v-l),
g=0,
h = (24D,D, ) '[-10n'(v+2)(v+3)

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

(4.6f)

+ n~(32 v'+353v'+617 v —102)

+ n(-448v' —1749v'+271 v+66}

+18v(3v+ 5)(8v —3)], (4 6g)

h = (2D~D2) '[-10n2(v+2)+ n(32v~+137v+1)

—64v' —135v+ 9],
l= (2D,D,) '[5n'+ n(-30v —61)

+6(6v +32v+3)],

(4.6h)

(4.6i)

m = (2D,D2} ~ [2n(-5 v —7 v —6) + v(37 v+ 101)],

(4.6j)

(R I, IR), =(4D,) 'v[n(v+1)' —4v(v+2)], (4.7b)

&R I, IR), =(24D,) 'v(v+2)[n(v+1)(v+2)

—3v(v+5)]. (4.7c)

The norm of IR), becomes somewhat unwieldy if
written down in terms of v and n. In terms of the
coefficients in (4.1), it is

&R I4IR)4= v[h(v+1)(v+2)(v+3)

+h(v+2)(v+3) + l(v+3)

+ m(v+2)+n] . (4.7d)

The algebraic results for the expansion parame-
ters of the vector IR), and for the norms, become
rather involved as the order n increases, but one
can always perform the calculations for particular
values of v and +.

We shall now use the above calculations to verify
the behavior of the norms calculated in Sec. III.
For v=0 or 1, we have seen that the results of
Sec. III are exact. Let us therefore calculate the
norms for v=-1. Negative values of v are of in-
terest in that the norms are not necessarily posi-
tive, so that the & degeneracy may convert ghosts
into particles. We shall take y =4, though the be-
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havior of the norms is not very sensitive to the
value of y. We then find the following results for
v=-1 y=4:

(R I2IR)z =-0 09.1, 2(R I2IR)2=-0.182,

(R I, IR ),= -0.045, 3 (R I, IR ), = -0.135,

(R I, IR ), = -0.029, 4 (R I, IR), = -0.118 .
While one cannot, of course, infer the asymptotic
behavior of (R I„IR)„from values of n & 4, the re-
sults are at least consistent with the behavior
(R I„IR)„=cn ' Th.ey could in fact be better
represented by the formula (R I„IR)„=c(n —1) ',
which is asymptotically equivalent to the formula
(R I„IR)„=cs '.

It is also of interest to calculate the positions of
the zeros in the norms, since the sign of the
square of the norm determines whether or not the

E degeneracy converts ghosts to particles and
vice versa. The norms have zeros at v=0, so that,
for small negative values of v, the K degeneracy
does interchange ghosts and particles. For y =4,
me find the next zeros at the following positions:

(R I.IR&, =0,

(RI, IR), =0, if ) =-2

(R I4IR)4=0, if v=-2.2.
Since the norm of IR) diverges logarithmically as
n increases, the sign of its square will be deter-
mined by that of IR)„ for large n. Thus, for y =4,
we can say that ghosts and particles mill be inter-
changed for values of v between 0 and about -2.2.
The squares of the norms have further zeros at
larger negative values of v, but one would have to
calculate the norms for values of n larger than 4
to determine their position. The number of zeros
on the negative real axis increases with n, and it
is likely that the square of the norm (R IR) has an
infinite number of zeros.

We may mention that the square of the norm
(R I, IR), has a pole at v = --', for y =4, due to the
vanishing of the factor 2z —1 in D, . However, the
residue at the pole is approximately 2@10 ', and
the square of the norm, after changing sign at v

= --', , changes sign again within a distance of 10 '
to the left. Thus, unless v is exactly equal to --',

or extremely close to this value, the pole is of no
significance.

Another remark we may make concerns the com-
bination of values v= -&, y = —~2, values of v and

y which occur in the simple nonadditive model to
be studied in the following paper. For y = —'

—,', we
find zeros of (R I„IR)„at the following values of v:

(R I2 IR)2 =0, for v = -0.42

(R Iz IR), =0, for v= -0.478

V. VERTICES

In Sec. III we examined the states which satisfy
the gauge condition (3.1}. It is now necessary to
construct vertex operators which represent the
coupling of such a state with two other states.

We shall treat the simplest state satisfying the
gauge condition, i.e., the state (3.9) where Ia)
is taken to be the vacuum state. The treatment
may be extended without essential modification to
any state Ia) on the leading trajectory. To begin,
we consider the first term of (3.9), and we neglect
the factor n '. The vertex corresponding to the
state

(1)}n
(5.1)

is simply the canonical vertex

Y=snp W2k P(~ —~ }n

where normal ordering of the a's is implied. In
order to justify this statement, we have to prove4

~ 1.(p) a(") a("»
limz~ exp u2kg ~ —~ I0)
g ~p vn vn

g (K""}"
I0&

Now it is not difficult to prove the identity

(5.2)

() ()t
exp v2yg ~ —~ I0)=Q, I0).

(5 3)

On applying the factor zz (z -0) to the right-
hand side of (5.3), commuting it through the fac-
tors S"», and using (2.1), the terms f,('» drop
out, and we are left with the state (5.1}. Our as-
sertion is thus proved.

To express the vertex corresponding to the
state

(K( )t)
(5.4}

we define a quantity

[K(' . V]

(R I, IR)4=0, for v=-0.492.

The position of the zero appears to be converging
to v = -z as n becomes large. The vector IR) then
has finite norm. As the only values of v which oc-
cur in the model in question are v =0 and v= —~,

the norms are all finite.
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which is a generalization of the multiple commu-
tators of K "with V. In a representation where
Z&" is diagonal,

(k,"'
l
[K'" v] „lk,"'}= (k,"'—k,"'}&

x (k(')
I v lk('».

(5.5)

If )/. is a positive integer, the definition (5.5) just
gives us the [K"' ~ ~ ~ V]„commutator. The ver-
tex corresponding to the state (5.4) is

tex operator between two real states. We shall
find that the vertex is symmetrical in the three
particles, a property which is necessary for dual-
ity, but which we would not expect in a nondual
amplitude.

It is not difficult to construct vertices corre-
sponding to the higher terms of (3.9). To take the
second term, for instance, we use the identity

K(2)t l0) —g g K(~)t ( } l0}nt nr
n=0 ill =2 ll =0

[K(') ~ v] (5.6)
(5.8}

When such a vertex is applied to the vacuum as in

(5.2), k(" will be equal to n+ v and k(" to )/, so
that the factor (k(') -k(") " gives us the required
factor n ".

We also require an equation corresponding to
(5.2) when our vertex is applied to the vacuum

from the right. In that case k,' is equal to 0 and

k2t to n, and we pick up an extra phase factor
e '"". We can adjust the phase factors correctly
by adding a factor e"""to (3.9). The correspond-
ing formula for the bra vectors would contain a
phase factor e '""", and (5.6}would be replaced
by the vertex

&ivv/2[K(0) . . V] (5.7a}

In order for an amplitude constructed from the
vertex (5.7) to be dual, it is necessary that the z-
dependent vertex

&i vv/2 [K(0). . . V(Z)]

where

V(z) =z' Vz-'

(5,7b)

be local in z space. In Appendix A we shall argue
that the vertex is in fact local. The argument will
be based on the fact that when our vertex is sand-
wiched between non-normalizabie states lR }, only
those matrix elements (5.5) where k(" —k," is
large are significant. ' We shall have a consistency
check of the duality properties of our vertices
when we calculate the matrix element of the ver-

It follows that the vertex

V, =- Q (K ~ V+ VK' '}+ 2(K "V+ VK "),
fS =),

(5 9)

which is local. The extra terms added to (5.9)
make no difference when matrix elements such as
(5.5) are evaluated between states where kP' —k(0'

is large, as may easily be verified from the cal-
culations of the matrix elements which wiQ be
performed further on in the present section. The
vertex corresponding to the second term of (3.9),
including the factor n " ', may be constructed as
before; it is

Zi Irv /2 [K (0) V ] (5.10)

one can construct vertices corresponding to the
subsequent terms of (3.9) by a straightforward ex-
tension of the above reasoning.

We shall now calculate the matrix elements of
the vertices between two states of the form (3.9).
To begin, let us calculate the matrix element of
the vertex (5.6) between two states represented by
the first term of (3.9).' In other words, we re-
quire the matrix element

Q (K')t V+ VK("))
1$=Q

corresponds to the state (5.8). This is not quite a
local vertex, but we can replace it with the vertex

(5 ( ~]b~ (u (j )&hill

~(
f 1 f 1

nf "~ mt
fl ~ lit

(5.11)

The states (al and l 5) are the basic states of the K-degenerate family in question. The two families, as
well as the family corresponding to the vertex, have different v's which have been denoted by v„v„and
v„respectively.

The commutator between K~"' -&"and V will first be required. We note that L "' contains a term
-2aL("', and K ") a term (1+2a)L,"', where the constant a depends on the particular model, and L0("' is the
operator L&") for the simple dual resonance model with no spin degrees of freedom. Hence it is easy to
verify that

[K("'-K(",V] = -nk'(1+2a),
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where k is the momentum of the vertex. For the K-degenerate family of the vacuum

2ak' = 1

so that

[K("' -K(", V] = -n(1+ k'),
i.e.,

[K'"'-K"', V] = nv, V,

from (2.9), as the sector number of the vacuum is zero.
We now calculate the matrix element

&a I
V(K"'t) Ib&

which may be written as

(a I V(K""-K ")(K 'n)" '
I b& + ( a I VK "(K 'n) '

I b) .
Using (5.12), and remembering that K('" =K' ", we may set this expression equal to

v, & a I (K "t) '
I b) + (a I (K ' "-K ")V(K "t) '

I b) + (a I
VK("(K "t) '

I b) .
Thus, from (2.10a), we may write

(al V(K ' ) lb) =(m —1 —v, + v, +v )(a I(K" ) 'Ib),
since &a IK('&t =0. By using (5.13) repeatedly, we obtain the equation

&aIV(K'&t) lb&= [r(m v, +va+v, )/r(-v, +v, +v, )]&al Vlb&.

The more general matrix element

(5.12)

(5.13)

(5.14)

(5.15)

The last term of (5.15) can be found by commuting IC(" through the factors (K("t) until it reaches Ib),
where it gives zero:

K(1)(K(1&t)ml b) 2 Q (K(1&t)&-1K(o)(K(1&t)m ) lb)
1 =1

= m(m —1+2v,)(K('«) '
I b) [from (2.4)] . (5.16)

( a I (K ' )"V(K ' «t)
I b )

can be calculated by similar reasoning. Writing the last factor K~" as K~" -K~"+K~", and commuting
through V, we find

&a l(K"')"V(K"") lb& =&a i(K"))"-'K")V(K"") ib&+ v. &a l(K"')"-'V(K"') ib)

-(a I(K( &)" 'VK(')(K('&t)mlb) + (a l(K('))n-'VK(')(K('«)')m Ib)

On calculating the first and third terms on the right of (5.15) from (2.4), we obtain the result

(a I (K ' )"V(K '~)"
I b &

= (n —m+ v, + v, —vt) —1) & a I (K ' )" ' V(K ' ~)
I b)

+ m(m —I +2vv) (a I(K(")" 'V(K(')t) ' lb) . (5.1(}
If n ~ m, we may apply (5.16) repeatedly, and reduce the matrix element to a sum of terms of the form
(5.14). Thus, the difference equation (5.1!)together with the boundary condition (5.14) for n =0 enable us
to calculate the matrix element for n ~ m. The details are given in Appendix B; the result is

m!I'(2v, +n)I'(m-n —v, + v, + v, )
(m —n}!I'(2v, )I'(-v, + v, + v, )

x 2F2( v, + v, —va, 1+ v, —v, —vv, -n; 2 v„m -n+1; 1) & a I V I b) (n ~ m) . (5.18}
When m, n, and m-n are large, the generalized hypergeometric function in (5.18) may be replaced by

an ordinary hypergeometric function, so that

I (K(1))n (K(1)«)m n2va-l(m n)-va+vc+va

nt

(5.19)
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Equation (5.19) is an obvious consequence of (5.18) only if n& m-n, but, by expressing (5.18) as a sum of
two other generalized hypergeometric series and converting them to ordinary hypergeometric series in
the asymptotic limit, one can prove (5.19) subject only to the restriction n & m.

If m~n, we can obtain the matrix element by interchanging m and n, and v, and v„on the right-hand
side of (5.19).

We now carry out the summation over m, for a particular large value of n, in (5.11). The summation
can be replaced by an integration, and there will be two terms, one for m& n and one for m& n. Thus'

n "~-' m —n)-"""2-'m-2dme''( " "&'"2" F v, + v, + v2, 1+v, —v, —v2; 2v„(a
~

V )b)I'(2v, )I'(-v, +v, +v,) ' ' ' ' ' 2' " n —m

n +a(n m)v2 v() 1m~-1
dme'« "2+'~+"»~2 F —v, + v, + v2, 1 —v, —v, + vt);2vt), (a ) V ~b)

2-v -v -u&+2 3/2I C

1 1 I (a I V I b)nI'(-, (v, + v, + v2) }F(—,(1 —v, + v, + vt)))F( 2(1 + v, —v, + v2})F(2(1 + v, + v, —v2))

-=n 'H (v„v„v2) (a ~ V I b) . (5.20)

The details of the integration are given in Appendix B.
On integrating (5.20) over n, we obtain a divergent factor fdnn ', multiplied by the same combination of

1 functions. The divergent factor is just the factor which appears in the square of the norms of the states,
so that the matrix element of the vertex between normalized states is finite.

We confirm that the right-hand side of (5.20) is symmetric in v„v„and v„as is necessary in a dual
theory.

Next we calculate some of the vertex functions involving higher terms of (3.9). Let us begin with the
matrix element

(g ( J, ) )fl ~~t.'&)~s~
(Ic&" ~ -"V] -" -' " ' II& "I)'n! C m! (5.21)

The calculation will be based on the fact that the only properties of the vector (K("t)
~ b) which we used in

the derivation of (5.20} were the fact that it was an eigenstate of K(" with eigenvalue m+ v„and Eq. (5.16).
We therefore attempt to find a vector involving K(2n [b) with similar properties. In fact,

K"'[(K "t)~K 'n
—,'(1+2v, ) '(K "t) "][b)=m(m —1+2v, +4}[(K'n) 'K "t ——,'(1+2v, ) '(K ')") "]~b)

(5.22)
and the vector [(K")t}"K(2)t——,'(1 + 2v, ) '(K('~)""]

~ b) is an eigenvector of K"' with eigenvalue m+2 + v, .
Hence,

~ II(-I«I+I)&+I)()+2)/2 ~ M n-I)2(K (0). . . V] m-I)2-2 ((v (1)t)II)K(2)t 2(1 + 2v )- f (1l)t)vIII+2]

1
H(v„v„v2+2)(a-~ V[K 2~ —2(1+2v,) '(K" ) ]~b).

(5.23}

The matrix element in (5.23) can be found by manipulations similar to those leading to (5.13):

(a(V[K( )~ —2(1+2v, ) '(K(" )'](bt)=[-v, +2v, +v, ——',(1+2v,) '(-v, +v, + v))+1)(-v, +v, +v, }](a)V(b).

(5.24)
To obtain (5.21) from (5.23), we have to subtract the matrix element involving the second term on the
left-hand side within the square brackets. This may immediately be obtained from (5.20), since, for m
large, we may write m 2(m!) '=[(m+2)!] '. Hence
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(a (&)P 1e" " '" '"""'~ ' '
n "&K~" V] m "' '

(—')(I+2v) '(K "~) "
1)vc

gpss f b

31
=2 —(1+2v,) 'H(v„v„v, ).2n

From (5.23), (5.24), and (5.25), we obtain the final result:

(5.25)

f 7f(- Vf3+ VC+ Vg+2)/2 ' s-"[K('] ~ V] m-"~-" ' K""
gf VC tnt

-v,' —v, (1+v, + v,)+2(v, —v.)'-2v. v.
(v, + v, + v,)(1 —v, +v, + v, )(1+v, —v, + v, )

n 'H(v„v„v, ) (a ) V (b) .

(5.26)

We notice that the result is symmetric in v, and v„as it should be for duality.
As another illustration of the method of calculation, we shall find the vertex function where the state vec-

tors correspond to the lowest term of (3.9), but where the vertex operator itself corresponds to a higher
term; in particular, we shall work with the vertex (5.10), V, being defined by (5.9). It is not strictly
necessary to perform such a calculation, since duality enables us to obtain the result simply by inter-
changing v, and v, in (5.26). However, we shall give the calculation, first to provide a further verification
of duality, and second to illustrate the method of working with more complicated vertices.

The principles of the calculation will be similar to those of the calculation leading to (5.26). In deriving
(5.20) the only property of the vertex V which we used was (5.12) with n = sl, and we attempt to find a ver-
tex resembling (5.10) with a similar property. Now, the vertex

Um= V~ —2(l+2v, ) '[K,[K, V]] —2v, (l —v,)(1+2v,) 'V

satisfies the commutation relation

[K"'-K'",U, ] =(v, +2)U, .
Hence,

(5 27)

(5.28)

~ 7f ( Vg+ VC+ Vy +2 )f2 =n 'H(v„v, +2, v, ) (a ~U, [b) . (5.29)

The matrix element on the right-hand side of (5.29} may be calculated directly from (5.27) and (5.9):

(a (U2)b) = [2(v, + v]]) —2(v, —v]]) (1+2v) '- 2v, (1 —v )(1+2v) '](a ( V )b). (5.30)

To obtain the re(iulred result, we must subtract matrix elements involving the last two terms of (5.27)
from (5,29). Now

[K(" ~ [K"',[K('], V]]] „,=[K('] . V] „,c
so that

fz (1)lani(1r( u++tl+ v~++ / 2]+2a (+ I n-U+[ $(1 +2v ) 1][K(0],, [K(0] [K'(0] V]]] I-uy
Nl

0 ~

= —,'(1+2v, ) 'n 'H(v„v„v, )(a [ V ~b) .

(5.31)
Examining the third term of (5.27), we notice that the operator [K(" ~ ~ ~ V] „,involves two negative
powers of k(" —k(", in addition to those contained in [K('] ~ ~ V] „.Hence, since we are interested in
large values of 0,"-0,'), we may write

"'[K '
V] " 5)=Q.f -vc 2 m7$

Combining (5.27}, (5.29}, (5.30}, (5.31), and (5.32), we may write

(5.32}
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& II(-vg+ vc+vf, +2)]2 ) P [ff(P) V ] IIP X )
f 2 vc 2 m!

—v, ' —v,(1+v, + v.) +2(v, —v,}'—2v, v,

(v, + v, + vp}(1 —v, + v, + vp}(1+v, + v, —vp}

( 5.33)

We have also calculated the matrix element of the vertex [K"' ~ ~ ~ V] „between two states correspond-
ing to the second term of (3.9). The calculation is similar to that leading to (5.26}; though the algebra is
somewhat more complicated, no new principles are involved. We quote the result:

(zr(&)h& (+(i)tom«-,-'[«f). . . y] -«- ' ' «f'««)
nf c m!

= [4v, —2v, (3v, +3vp+10)+ v, [4(v, —vp} +9v, vp+11(v, +vp) —4+ &y]

+ v, [2(v, —vp) + 18v, vp+28(v, + vp) + 20+y]

+[-(v, —vp)P + 1][2(v, —vp) + 9v, vp+ 11(v, + vp) + &y] }
x[(v, + v, + vp)(2+ v, + v, + vp)(1 —v, + vp+ vp)(I + v, + v, —vp}(1+ v, —v, + vp}

x(3+ v, —v, + v, )] 's 'H(v„v„v, )(a [ V ~b) . (5.34)

By proceeding in a similar way, one can calculate vertex functions involving any term in (3.9), » any
vertex corresponding to such a term. The calculation becomes unwieldy when expressed as an algebraic
function of v„v„and v„. if we were interested in calculating higher terms, it would probably be easier to
do so for the particular v's in question. One can calculate the coefficients c in (3.9) by the methods of
Sec. III, and the vertex functions involving three real states can thereby be calculated. They wi11 always
be in the form of the vertex (a ~

V [b) between basic states, multiplied by a factor which depends only on
the g algebra.

VI. CONCLUDING REMARKS APPENDIX A: LOCALITY PROPERTIES
OF THE VERTICES

While the work of the preceding sections shows
that calculations with nonadditive models are
probably feasible, it leaves several questions un-
answered. As we do not possess analytic expres-
sions for scattering amplitudes, we have no proof
that the models are mathematically consistent or
physically acceptable. We have no guarantee, for
instance, that there are only a finite number of
resonances below any given energy. Most im-
portant, we do not know whether ghosts can be
eliminated. We are now able to determine whether
any particular state is a ghost or a particle, but
to prove that all real states are particles is anoth-
er matter.

In the following paper we shall examine a partic-
ular model without internal symmetry. The model
question only exists in ten or more dimensions
and, in ten dimensions, we shall show that we do
have a consistent, ghost-free set of amplitudes.
The model has certain simplifying features which
are not present in the general nonadditive model,
and it is not at present clear whether the results
obtained are consequences of these particular fea-
tures or whether they represent general properties
of nonadditive models.

In this appendix we shall give arguments to sup-
port the fact that the vertex (5.7) is local. As we
mentioned in the main text, the arguments will be
based on the fact that only those elements of (5.5)
with large values of k~( ' - k2(" are important.

We first notice that the function x " may be ap-
proximated by a function with the following proper-
ties:

(i) For sufficiently large real x, it approaches
x ".

(ii) It is an entire function.
(iii) When expanded in powers of x, the coef-

ficient of the ath term is bounded by M "/n!,
where I can be made arbitrarily large. To prove
that this can be done, we begin by replacing the
function x " by (x+ iN'} ". We can move all singu-
larities arbitrarily far from the real axes by mak-
ing N sufficiently large but, if x is sufficiently
large (e.g., larger than N') we do not appreciably
change the value of the function. Next we show
that a function whose singularities are sufficiently
far from the real axis (of order MP) may be ap-
proximated by a function with the above properties.
It is sufficient to carry out the proof for a function
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whose only singularity is a pole, since the the-
orem may easily be generalized by integration if
the singularity is a cut. In fact, the function

where

c„&M ". (A3b)

(z+ iM') '

may be approximated by the function

(z+iM') '[I —exp[i M '(z+ iM')]], (A1)

which has all of the above properties, as may
easily be verified.

We now approximate the function (kIO' —k2!") "
in (5.5) in the above manner. Our vertex has
thereby been replaced by a new vertex whose ma-
trix elements between states diagonal in K ' are

The vertex (A3} is to be commuted with another
vertex where V is replaced by V(z). If the vertices
are expanded as in (A3a), the resulting terms in
the commutator may be evaluated as in the paper
of Bardakci and Halpern, ' Appendix B. Each term
will be local in z, but will contain derivatives of
the 6 function whose order is, at most, equal to
the number of commutations of K~' . We therefore
obtain sums of the form

F(k —k ) (k,"'
I V 1 k,"'), (A2)

where I' has the second and third of the properties
enumerated above. Expanding I', and remember-
ing that a power (k[" -k~!'&)" in the matrix element
simply gives the n-tuple commutator, we obtain
for our vertex

(A3a)

and the commutator is zero for lz l&2/M. Since M
can be made arbitrarily large without altering the
matrix elements of the vertex function for large
values of k,"'—k,", the nonlocality can be made as
small as we please. The vertex operators would
therefore be expected to provide us with a dual
model.

APPENDIX 8: FORMULAS INVOLVING HYPERGEOMETRIC FUNCTIONS

We shall prove some of the formulas quoted in Sec. V. We begin by proving (5.18) by induction. Let us
assume it to be true for any m and a given n; we then prove it for n+1.

Applying our induction assumption to (5.16), we find that

(m —1)!I'(2v, +n) I'(m —n —1 —v, +v, + v, )
(m —n —I)!I'(2 v, ) I'(-v, + v, + v )

x [(n-m+ v, + v, —v,)(m-n —1 —v, + v, + v,)m(m-n) '

x ~F2( v, + v, —v„ 1 + v, —v, —v&„-n; 2 v„m —n + 1; 1)

+ m(m —1 + 2 v~),F2(v, + v, —v~, 1 + v, —v, —v&„-n; 2 v„m —n; 1)](a l V l b) . (Bl)

If we combine the two terms on the right-hand side using the recursion formula

(a —e+1)(e —b}(e—1} 'F(a, b, c; d, e; 1) + (-a —b —c+d+ e -1}F(a,b, c; d, e —1; 1)

= (d —c)F(a, b, c —1; d, e —1; 1),
we obtain precisely the expression on the right-hand side of (5.1'l), with n replaced by n+1. According to
(5.14), our induction assumption is correct for n =0, so that (5.18) is proved.

Next we carry out the integration in (5.20). Let us tiefine

nx-
n —m

The first integral is then

5 1r(~UtI~?&&y+V )/2C 0

dx( x)"~ '(1 —-x) F(v, + v, —v„1+v, —v, —v„2v„x) . (B2)

The integral is a generalized hypergeometric function, so that (B2) is equal to
~ w!-v~-u~+ y& z I ( }I( )

(B3)

With the particular combination of parameters which occurs in the hypergeometric function of (B3), it is
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possible to express the function in terms of I' functions according to the formula'

r(-.')r(-.'+c)r(-.'(I+a+b})I'(2(1 -a-b+2c)}
I (-,'(I+a))1 (-,'(1+b))1 (-,'(I -a+2c))N-,'(I -b+2c))

Equation (84) is inserted into (82), and the result is simplified slightly using the formulas

I'(v, )1"(v,+ w) =2' "«m"'r(2v, ),
I'(-v, + v, + v ) =2 ' " '" '«w "'r(-.'(-v. + v, +v, )}r(—'(1 —v, + v, + v)),
I"(v,)1'(I —v, ) = m/sinw v„
I'( w(- v, + v, + v,})I'(w(2 + v, —v, —v )) = w/sin [ 2 w(- v, + v, + v, )] .

The expression is then equal to

2' "o "« "«m I'(-,')sin[wm(-v + v«+ v«)]e"& "' ««'"»"
nsinmv, I'(~(v, + v, + v«)}I'(w(1 —v, + v, + v«))I'(~(I+ v, —v, + v&})1'(~(1+v, + v«- v }) '

The second integral in (5.9) will be similar to (84), except that

(i} v, and v, are interchanged in all factors except the phase factor.
(ii} The phase factor is e'«~-"«+"«+«»™.

Upon adding the two terms, we obtain (5.20).

(84)

(85)
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