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The integral representations, developed for the partial waves of the dual n'm' amplitudes, are used to
show that all the partial waves can be expressed as sums involving s waves only, and to prove that

the isospin-zero and -two partial waves are bounded by powers in the right half-plane of the

energy-squared variable and diverge exponentially along any ray in the left half-plane, thus confirming the

behavior conjectured by Tryon. For the isospin-one waves, the derived bounds agree with those of Park
and Desai. It is also proved that the discontinuities of the isospin-zero and -two partial waves diverge

exponentially along the left-hand cuts and those for the isospin-one case are bounded by a power.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as I,
we presented a formulation of the integral repre-
sentations of the partial waves of the dual mm scat-
tering amplitude of Lovelace' and Shapiro' and
studied the threshold behavior in detail. In the
present paper, we explore further the representa-
tions of I in an investigation of the asymptotic be-
havior of the partial waves. This subject has al-
ready been considered by many authors, 4 "partly
in connection with the K-matrix unitarization
scheme and partly in connection with dispersion-
theoretic studies.

It has been suggested by Drago and Matsuda'
and Sivers and Yellin' " that, in this model, par-
tial-wave dispersion relations cannot be used.
However, Park and Desai' have shown that for the
amplitude with isospin one, the partial waves are
bounded in the complex energy-squared plane, as
is the discontinuity along the cut, so that partial-
wave dispersion relations can be obtained for this
case.

For the amplitudes with isospin zero and two,
Tryon' has recently conjectured that the partial
waves grow faster than any power along any ray
extending into the left half-plane of the energy-
squared variable, in which case no dispersion
relations can be written down.

We will show in this paper that the integral rep-
resentations of I furnish a unified treatment of

the partial waves for all isospin states and yield,
among other results, the explicit exponential di-
vergence of the isospin-zero and -two partial
waves in the left half-plane of the energy-squared
variable.

In Sec. II, we summarize some of the results
obtained in I. We deduce in Sec. III functional
relations among the partial waves, which show
that all partial waves are essentially finite sums
of s waves. In Sec. IV, we study the asymptotic
behavior of the partial waves, obtaining the same
bounds for the I=1 case as found by Park and
Desai, ' and an exponential divergence for the I=0
and 2 partial waves in the left half-plane of the
energy-squared variable, which confirms Tryon's
conjecture"; some mathematical details which
enter in the proof of this divergence are given in
the Appendix. The asymptotic behavior of the
discontinuities along the left-hand cut is examined
in Sec. V, where it is shown that for I=1 the dis-
continuities of the partial waves are bounded by a
power, and for I=0 and 2 they are exponentially
divergent. Finally, in Sec. VI, we summarize
our results, including a comment on the related
unitarization problem.

II. PARTIAL-WAVE PROJECTION

The mm scattering amplitudes in the dual reso-
nance model' ' are
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A'(s, t, u) = ,' gF—(t,u) —,' g[—F(s,t) + F(s, u)],
A'(s, t, u) = g [F(s, u) —F(s, t)],
A'(s, t, u} = -gF(t, u),

(2.1)

where g is the over-all coupling constant, s, t, u
are the usual Mandelstam variables, and

F(x, y) = F(1 —a(x))F(1 —a(y))
I'(1 —a(x) —a(y))

In I, we have shown that the partial waves
V I "(s)

and V, (s), defined by

F(s, t}+ F(s, u} = g (2l + 1)V, ' (s)P, (cos 8},
(2.3)

F(t, u) =Q(2l+1) V, (s)P, (cos 8),
1=0

are given by

+ secondary terms, (2.2)
V", (s) =(lee'") . ,'i '—'h,(v),sinwn(s) '

with the linear Regge trajectory n(x) = ax+ b. We
shall take the simplest form of (2.2), neglecting
the secondary terms, and assume that a &0,
0(5&1.'

V, (s) = (1+e' ")z i'(4av —2b+ 1)g,(v),
(2.4)

where v is the square of the c.m. momentum, s
=4(v+m, '), and

h (v) =e" " ' """~H,(v; 2av —b+1, a(s)+I}—e ""' """~H(v; 2av —b+1, a(s}+1),
g, (v) =G, (v; 2av —b+1, 4av —2b+2) .

Here, the functions H, (v; p, p), H, (v; p, p), and G, (v; p, p) are defined by
w oo e -xeibjt

dxe' „,;q ~ j,( i2av-(iw+xe")),1+e "" )'
ib

~ OO xe

dxe' „,,q p j,( i2av( -iw+xe-s)),1+e "")P
-xeib jt30 e

G, (v; u, p) = dxe', „,,s)p j, (i2avxe' ),(1+e "'

H)(v; tt, p}=

Ht(v; p, p) =

where the j,(z) are the spherical Bessel functions, and 8 (the phase of v) and 5 are constrained by

~8+5~

(2.5)

(2.6)

(2.7)

The analyticity domains of h, (v) and g, (v) in the complex v plane are subject to the above constraints,
where we may include also that portion of the real negative axis between v=0 and v= -vz [v~ is less than
the smaller of (1 —b)/4a and (4am, '+ 2b)/4a for h, (v), and less than (1 —b)/4a for g, (v)] .

III. FUNCTIONAL RELATIONS

From the integral representations of the partial waves as set forth in the preceding section, we can de-
duce some useful functional relations. After an integration by parts (or by differentiating with respect to
5), we find, for example, that

(-i2av) (1+e "") ' (-i2av)
OO e-xeib jt

dxe', „;zp zj', (z),(1+e "'

-xeib{u»e
dxe' „~s,, zj, (z)1+e "'

(3.1)

e-xeib~
dxe'

( „u)pjj(z)1+e "'

where z = i2av(iw+xe-' ), and we have used

e -xeib jt e-xeib{ jt+»
we~&. p j (z)+p -i

dxe',
1 „(s)p„j((z) t2av-(1+e "' (1+e-xe )P+& (3.2)

(the latter expression can also be readily established by an integration by parts).
Substituting the identities

zj,'(z) = -(l+ 1)j,(z) + zj, ,(z),

zj, (z) = Q (-)"(2l -4n —1)j, ,„,(z}+(-)™'lzj, ,„,(z),
n=0
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we obtain, from (3.1),

/H, (v; /i, p) = . Q (-)"(2l 4n-—1)K, ,„,(v;p, , p}
(-/ )

(-i2av

+ . Q (-)"(2l -4n —1)H, ~,(v; p+ 1, p+ 1)+ Q(-)"(2l —4n —3)H, ,„,(v; p, p)
(+p)

(-i2av}„,
+(-} ''( . , dxe', „(e)ozj. . .(z)

)
w e -xe«( p+ z) p oo e-~e&~p

+(-) '' (, ,
dxe', „e,„,z](»(z)+(-}"

~

«e', „e)ozj(-2 -3(z) .-i2avj,
„ (1 +e x8 )P+ I m j1+e "'

(3.3)

We see therefore that H, (v; p, , p} can be expressed in terms of lower l values. Eventually, it reduces to
a finite sum of functions of the type H, . To clarify the nature of this reduction, let us suppose that l is
even, in which case choose m such that m= —,'(l —2). Then the last three terms of (3.3) add up to zero. This
can be shown easily by noting that zj,(z) =sinz and zj, (z) =cosz and integrating by parts Sim. ilarly, sup-
pose now that l is odd. If we set m= —,(l —3) and substitute jo(z) =(sin z)/z and j,(z) =(sinz)/z —(cosz)/z,
the last three terms in (3.3) become a sum of five terms, three of which add up to zero again, and the re-
maining part is simply

(-)(' ')/' . Ho(v; p, , p)+(-)(' ' /' . H, (v; g+ I, p+1) .
( i2av} ' ' '

( i2av)

We find, therefore, from (3.3) that for l even

( )
(i -2)/2

/H, (v; )e, p) = . P (-)"(2l-4n —1)H, ,„,(v; p, , p)

and for 1 odd

(+ )
((-o)/2 (~ -a) /2

+ . Q (-)"(2/ —4n-l)H, ,„,(v; p, +1,p+ 1)+ Q (-}"(2/—4n —3)H, ,„,(v; /e, p),-i av n=o n=o

(3.4)

(i -e)/o
lH, (v; /i, p} = .

} Q (-)"(2l—4n —l)H, ,„,(v; /i, p)

(~ )
(i-3)/2 (& -»/2

+ . Q (-)"(2l-4n-l)H, ,„,(v; /(+ I, p+1)+ Q (-)"(2/ —4n-3)H, ,„,(v; p, , p)
o=o fl Q

+(-)(' ')/' . H, (v; /e, p)+(-)(' ')/' '. H, (v; /e+ I, p+1).(-i2av} ' ' ' (-i2av) (3.5)

It is obvious that we will obtain similar relations for H, (v; p, p) and G, (v; p, , p). In summary, we conclude
that H, (v; p, , p), H, (v; p, p}, and G, (v; p, p) can be expressed as finite sums, with respect to k, of
H, (v; p+k, p+k), H, (v; p+k, p+k), and G, (v; p+k, p+k), respectively. In other words, all partial waves
are determined by essentially one function, viz. , the s wave.

IV. ASYMPTOTIC BEHAVIOR

A. Asymptotic Behavior of the I=1 Partial Waves

As we have seen in the preceding section, it is sufficient to study the functions H, (v; p, p), H, (v; /e, p),
and G,(v; )e, p), or their combinations, in examining the asymptotic behavior of the partial waves. For the
isospin-one partial waves we therefore introduce the function IV(v; k),

(ei wIn(s)-2 ao+ e]H (v ~ +k p+ k) e i wIa(s)-2 au+ e]H (v. +k +k)j
a(s)

i sin((a(s) 0 &r'P+ yP+ (4.1)

where p=2av —5+I, p= a4v+)(+A+land X=4am„'. The isospin-one partial waves V, (s) are then finite
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sums of W(v; k) over k.
Using the relation

j.(z}=

and the formula"
00 /I X

,t y), =y exp[p()), —v/y)]B(yy, , v —yt)),
v' ~ao

with Re(v(y) &Rep, &0 and ~imP~& vRey, we find

W(v; k) = (-)"n(s)F(-a(s) —k) dt F(2av(1+ t) —b+ 1+k)
" -1

(4.2)

(4.3)

Equation (4.3) corresponds to the partial waves as analytically continued by Drago and Matsuda~ and
taken over by Park and Desai in their study of the asymptotic behavior of the I = 1 amplitude. To deter-
mine the bound of W(v;k), we employ the technique used by Park and Desai. We then find that as ~v~ —~,
for Imv&0 and y &0,

v' ' &W(v k)-0 ifI™-~
In v

v "' )' W(v;k)-0 .
~

Imv~,+~ & ('
}

if
~ ~

-0 and Imve0.

For Imv&0, we obtain the same bounds in view of the relation [V, (s)] = V( (s*).'
Since V( )(s) is a finite sum of W(v; k) over k, we deduce, for y &0,

) V( )( ) 0 f [Ims
ln s

s" )'V, (s)-0 if -0 and ~ims~e0,( ) . [Imsf
in[s[

(4.4)

(4.5)

where )( is the lesser of X+2b and 1 —b Equatio. n (4.5) is exactly what Park and Desai' have obtained.

B. Asymptotic Behavior of the I= 2 Partia1 Waves

To investigate the asymptotic behavior of the isospin-two partial waves V, (s), we need only study

G,(v; k) = G,(v; 2av —b+ 1+k, 4av —2b+ 2+ k),
since V, (s) is a finite sum of G, (v; k) over k. Once again we use j,(z) = ,' f, dt e—'"and the formula (4.2) to
find

G,(v;k)= —,
'

'~ dt f(t, v), (4.6)

where

f(t, v) = B(2av(1+ t) —b+ 1+k, 2av(1 —t) —b+ 1) .

Following Park and Desai again, we divide the range of integration into three parts such that
I+ ~lj 1-@ ]

G,(v;k) =-', ' +, + dt f(t, v),"-1 v] 8 ~y- Ivt 8 (4.7)

with 0&I3&1.
Consider the integral of f(t, v) from t= -1 to t= -1+ ~v~ . Regardless of the magnitude of v, there is

always a region near t = -1 for which v(1+t) is small or zero. The asymptotic behavior of f(t, v} as
~

v~ —~
is then given by

In~ f ~

- —[1 —b+ k+ 2a(1+ t) Rev] In ~2av~ —2a(Rev)[2 ln2 —(1 —t) ln(1 —t)]+const, if
~
v(1+ t)

~
is bounded;

In)f )---,'In(v) —2a(Rev)[2ln2 —(1+t) ln(1+t) —(1 —t)ln(1 —t}]+( b+ z+k) ln(1+t)-+const, if )v(I+t))-~.
If we restrict ourselves to the region Rev~ -N, where N is an arbitrary, finite, positive number, we see
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from the above asymptotic behavior that

r. -1+ I V I
-8

dt f(t, v) &constx[lvl " '+'+s'+lvl ' ' '"' '"&]

&constx lvl
~' "'~'~,

(4.8}

where y = 1 —js &0. We therefore find that as lvl- ~, for y &0,
~-y+ I v I

-p
p2- b+0 y dt f(t, v)-0 if Rev~~ —~.

«-1

For values of t in the range [-1+lvl, 1 —lvl ], l(1s t)vl- ~ as lvl- ~ and the asymptotic behavior of
f (t, v) is given by

lnl f I

——2 lnl vl —2a(Rev) [21n2 —(1+t) ln(1+ t ) —(1 —t) ln(1 —t)]

+ ( b+ z+ k-) ln(1+ t) + (-b+ —,') ln(1 —t) + const.

Since

2 ln2 —(1+t}ln(1+ t) —(1 —t} ln(1 —t) & t}l vl inl vl,

we see, as lvl-~, that

„
I- I v I

Ivl " d' IRevl~+~
s dt f(t, v) & constx

I+ I v,
lvl

' 'exp[-2ap(Rev)lvl lnlvl] if Rev-~,
which in turn gives, as

I vl —~, for y &0,
~1- 'V I if 1«vl~~ ",v' ' ~
~ s dt f(t, v)-0

exponentially if Rev- ~.
(4.9)

As t varies from 1 —lvl to 1, we observe again that there is a region of t in which lv(1 —t)l remains
bounded as lvl -&. The asymptotic behavior of f(t, v) is therefore given by

lnl f I

——[1 —b+ 2a(1 —t) Rev] lnl2avl —2a(Rev)[2ln2 —(1+t) ln(1+ t)]+const, if
I
v(1 —t) I

is bounded;

lnl fl ———,
'

lnlvl —2a(Rev)[21n2 —(1+t) ln(1+ t) —(1 —t) ln(1 —t)]+(-b+,'-) ln(1 —t)+const, if lv(1 —t)
I

—~.
We therefore deduce that, as

I
vl- ~,

1

dt f(t, v} &constx[lvl ' ~ s+lvl ' ' s ' ' ~ ],-g- Iv I-~

which yields, for y&0,
«1

v' & I dt f(t, v)- 0 if Revs+-~.
+ I, —iv I

Combining Eqs. (4.7)-(4.10) and (2.4), we conclude finally that, as lsl- &,

s' ' &V,(s)-0 if Res-~;
s 't ' ~ V, (s) -0 if IResl+~ ~,

(4.10)

(4.11)

where y & 0.
If we use the integral form (2.6) of G,(v;k) to determine the bounds, we may proceed as follows: Con-

sider the region where --,'v & 8=—argv & -,'v. Then we can always choose 5 =0 [see (2.7)]; this extra degree
of freedom which we have at our disposal in selecting 5 is very useful, as we will see later. Then, using
lj,(z) I

& explImz I
and the formula (4.2), we find

IG, (v; k)l &
-x(2 a I v I cos 9 —b+ 1+ 4)

e2al v Ixcos8
/1 x)4al v IcosO 2b+ 2+it

& B(1 —b+ k, 4al vl cos 8 —b+ 1) .
As lvl- ~, this yields the bounds
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)G,(v; k)) &
const x ]v) ' ""' if [8[&-,'v.

We see therefore that the former method gives better bounds than the latter. However, we cannot use the
former method in most of the region of the left half-plane, or when Rev- -~; nor can we find a contour as
useful as the one employed for the I= 1 partial waves (see Appendix C of Ref. 8).

Let us observe, however, that if &m& 8&m, we can always choose 6 in our integral representations such
that 8+ 5 = —,'m. Then,

e *k' ~k '~''''& sin(2a~v~x)G,(v;k) =e'
i dx

(1 + e reik)-kku-2k+ 2+k 2a[v~x
(4.12)

Now we use f e'"dy=2s5(k} to derive the formal identity

sin(2a[v)x} = v5(x) — dy cosxy .x "I2tIVI

Substituting'4 (4.13) into (4.12) and making use of (4.2}, we obtain, for kt &k8&n,

mi 1 '" ""+I 1

(4.13)

(4.14)

where

g(v; k) =
w oo

dt[B(1 —5+ k - te', 4av —I&+ 1+ te' ) + B(4av —I&+ 1+k+ te', 1 —5 —te' )] . (4.15)

In the Appendix it is established that

~g(v;k))&constx(v)' 'e "'" ''e. (4.16)

It follows from (4, 14) and (4.16) that vexp(4avln2)G, (v;k)-const, as ~v~-~. We have therefore deduced
that, for 2m& 6}&m,

e" 'V, (s)-const, as ~s~-~. (4.17)

The same relation holds for -w& 8& ~kbecause [V,(s)]*=V, (s").' This exponential divergence of the I =2
partial waves along any ray into the left half s plane confirms the behavior conjectured by Tryon. "

C. Asymptotic Behavior of the I=0 Partial Waves

Since the isospin-zero partial waves —,V, (s}——,'V '(s} are finite sums, over k, of the IV(v; k) [Eq. (4.1)]
and G,(v; k) [Eq. (4.6)], it follows from (4.5), (4.11), and (4.17}that as

~
s~ —~,

e"'" [kV, (s) —kV, ' (s)]- const if Res- -~;
s 't' &[-,V, (s) ——,'V", (s)]-0 if ~Res~~&~;

s' &[kV, (s) —kVI'&(s)]-0 if Res- ~ and
ln s

s" "[kV, (s') ——,V, ' (s)]-0 if Res- ~, -0, and ~lms~e0,
[Imsf
ln s

(4.18)

where y&0 and X is the lesser of 1 —b and A. +2b.

V. ASYMPTOTIC BEHAVIOR OF THE DISCONTINUITIES

The analyticity domains of k, (v) and g, (v) include only a small part of the negative real axis, as we have
seen in Sec. II (see also I). To show that the partial waves have cuts along the rest of the negative real
axis in the energy-squared plane, we use an integral representation of the spherical Bessel function,

(5.1)

where Q, (t} is the Legendre polynomial of the second kind and the closed contour C contains the real axis
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between -1 and +1. Equation (5.1), which is a special case of the Whittaker loop integral, "can be easily
proved.

Substituting (5.1) into (2.6), taking the closed contour C to be infinitesimally close to the real axis be-
tween -1 and +1, and using the formula (4.2}, we find

H, (v; p, , p) =, ,„,dte'"""Q)(t)B(p. —2avt, p —p, + 2avt), (5 2)

where, in general, g=2av —6+1+0, p=4av+A. +5+1+0, and A. =4am, '. Since

Q, (t )I'(p —2avt)1'(p —p+ 2avt)-M(v)t)' ' '/sin)t(p —2avt) as ~t
~

- ~,

where M(v) is some function of v, we can open up the contour C and use the residue theorem to obtain

( )
1 ~ 1( + k) ,. „„()~ , „(kk )1)

+ k —k

)2avt' ~ n! I'(p) ' 2av ' 2av
n=O

(5 2)

if Re(p —l —2) & -1. Similarly, for Re(p —I —2) & -1, we have

It therefore follows from (2.4), (2.5) and (5.3),(5.4) that

(5.4)

(5.5);„}a(s) ~ I'(n+a(s)+I) n- b+1
2av ~ n! I'(a(s)+I) ' 2av

for Rea(s} & l. This is the representation used by most authors in their studies of the partial waves; it
shows manifestly that we have cuts along the negative real axis in the complex s plane, starting at s
= -(1 —b) a '+ 4m, ', if X + 2b & 1+ l.

In this section, we are primarily interested in the asymptotic behavior of the discontinuities. Even
though the power bound of disc V,"(s) has already been derived by Park and Desai, ' we show here how

simply we can get the same result by making use of the functional relations of Sec. III. Since VI'!(s) is a
finite sum over k of W(v; k), where from (4.1) and (5.1)

)
„()~ F(tk( )+1~ k+ ) k —k+1+k)

2av ~ n! I'(a(s}+I+I) ' 2av

for Ren(s) & I —k, we study the discontinuity A„defined by

1'( ( )+)kk+ ) —k+1+k)
Ag = disc o 1+n!I'(a(s)+ 1+k) ' 2av

n=O

I'(o(s) + 1 + k +n)
n! I'(o(s)+ 1+k) '

n=O

where the integer n, is equal to ~4a v~ + b —e, with 0 & e & 1.
Since

I'(n+a}„,n! I'(o)

for Reo &0, we have

2
} „

I'(n, + n(s)+ I} ~ I'(n+n, + a(s)+I)

If we define the integer N such that N ~ X+ 2b, then

I'(n+n, + a(s)+1) 1
(n+n, —k)! +(n+ n, —k)(n+n, —k —1)~ ~ (n+N+1) ~

'

where the right-hand summation can be carried out, "with the result

I'(n+n, + a(s)+ 1) 1 I'(N+ 2)
(n+n, -k}! (n, —k)! n, —k —N-1

n= 1

(5.6}

(5.7)

(5.8)

(5.9)
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Therefore, we see from (5.6) and (5.9) that

I'(no+ n(s) + 1)
F(n —k+ 1)F(a(s) + 1+k)

-
» sinn[a(s)+ k]F(k+ 2b+1 —e)(4ai vi)

which in turn leads to

isi" »»discVI "(s)-0 as s- -~. (5.10)

So the discontinuities of the I= 1 partial waves are bounded by at least i si "as s- -~.
In a similar way, by using (5.1), (4.2), and the residue theorem, we have

4 —2b ~ 2 ~ „

I'( ~ 4 —25 ~ 2) —b ~ I) (5.11}

for Res& 4m, '+(I+2b —l)a '. Thus we see that V (s) has cuts starting at s =4m ' —(1 —b)a '. To deter-
mine the asymptotic form of discV, (s), it is more convenient to note that V, (s) is a finite sum, over k, of

G,(v; k) [Eq. (4.6)], where

1 ~ (
„F(2!»+k+n) n+p, +k i»+n

2avi'~ nlF(2p, +k} 0 2av 0 2av
n=O

and p, =2av —b+1. That is to say, we study the discontinuity Z~ defined by

rY» = disc2avf'Go(v; k)

(5.12)

(
)„F(2)»+n+ k)

n! F(2y. +k) ' (5.13}

which can be rewritten, in view of the identity

(5.14)

Substituting n, =4ai vi+b —e and i» =-2ai vi -b+1, we see that the second sum in (5.14), for example, has
a modulus l.ess than

I n-b+»+k-~ 4ai vi
4alvl+2»-3/&-k

const x g I'(n + k+ 2 —b —e)e"
4a vi +n 4a/ v/ +n

n=0

as v- -~. Since x!= I'(1+x) = (2x)"'x*'"'exp(-x+ 8/12x) for 0& 8& 1 and x) 0, we find

I'(n+ k+ 2 —b - e) =
I'(1+n+ 0+ 2 —b —&) &constx(n+k+2 —b- e)"'""' ' 'e ".

n+A+2 —b —e

It follows therefore that, as v--~,

Q (-)",
2

&constx(4ai vi)"'.„F(2p.+ k+n)

n= nO

(5.15)

ceding argument.
From (5.14}and (5.15) we conclude that

~k - const x (-,')""

and
The same bound for the first sum in (5.14) can be
obtained by simply replacing e by &+A in the pre- e"~ disc V,(s)- const (5.16)
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as s--. In other words, the discontinuities of
the isospin-zero and -two partial waves' diverge
exponentially as s --.

VI. SUMMARY

Within the framework of the integral representa-
tions of I for the dual mm partial waves, we have
shown how we may reduce all partial waves to fi-
nite sums of s waves. We have also seen that we
can easily reproduce the power bounds of Park
and Desai for the I=1 partial waves in the entire
s plane (where s is the c.m. energy squared) and
for the discontinuities along the left-hand cut by
using the reduction to s-wave sums and by apply-
ing their technique to our s-wave representation.

Insofar as new results are concerned, we would
like to emphasize that the aforementioned reduc-
tion, together with the freedom in the choice of
contour appearing in the integral representations,
is essential to establish the asymptotic exponen-
tial divergence of the I=0 and 2 partial waves in
the left half s plane. We have also established the
power bounds of the I=O and 2 partial waves in the
right half s plane and the asymptotic exponential
divergence of their discontinuities along the left-
hand cut.

The outstanding problem of the present dual mod-
el is its failure to satisfy unitarity. The technique
of unitarizing the dual amplitudes by employing the
N/D method, "where the discontinuity of an am-
plitude across the left-hand cut is taken as the in-
put discontinuity, is applicable to the I= 1 ampli-
tude. This procedure cannot be used when I=0 or
2 because of the presence of exponential diver-
gences. In the latter instance, the K-matrix meth-
od would appear to be more attractive.

APPENDIX: PROOF OF EQ. (4.16}

In this appendix we establish the bound (4.16) as
given in the text. Divide g(v; k) [Eq. (4.15)] into
two parts, defining I(v; k) and I,(v; k) as follows:

g(v; k) =1(v; k)+l, (v; k),

where

(A1)

const x exp{(Re'e- 2b+ 1+k) ln(t/R)

+(Re'e- b+ B+te' ) ln(1+R/t)

——,'lnRe' +ivte' ),
we easily obtain

I, (v; k) - 0 exponentially as
~

v
~

-~ . (A3)

Next, we observe that the integrand in (A2) has
no poles in the upper half-plane of te'e. There-
fore, we deform the path of integration to the con-
tour along the imaginary axis from the origin to
ge" 'and the arc from ge" ' to ge', thus ob-
taining

I (v; k) =I,(v; k) +I,(v; k),

where

(A4)

R

I(v; k) = dt[B(1 —b+ k —te's, Re'e- b+ 1+ te's)
0

+ B(Re'e b+ 1+-k+ te'e, 1 —b —te'e)],

(A2)

and I,(v; k) is the corresponding integral from t =R
to t=~. Here, 4av=-Re'e, and ~g& 6)&n, which is
the only region of interest.

Since the asymptotic form of the integrand of
I,(v; k) is

e
I,(v;k) =ie 'e Re'~d t[B()(1—b+k-Re'~, Re'e —b+1+Re'~)+B(Re' 5+1+k—+Re'e, 1 —b Re'e)], -

fr /2

(A5)

l, (e; k) = ' ' I dy[B(1 —1 k —e'y, Re' —k ~ 1 ~ iy) B(Re —1 1 k ~ iy' , 1 —k —iy)].
0

(A6}

Let us consider (A5) first. It is easy to show that the modulus of the asymptotic form of the integrand in
(A5} is less than

const xR"'exp(R(cos8+ cos(I()) ln~ e' +ee' e~-R(sin8+ sing) arg(e'e+ e' e}+R8sin8+R(4) —v) sin(t)) . (A7)

Since

&2(2cos-,'(8 ——,'v) ( le'e+e'el (2,
and

—,'(8+ ,']t) ( arg(e-" + e'e) ( 8,

we see that (A7} is less than

constxB' 'exp{-,'R cos81n2 ——,'n'R sin8) .
So we obtain

l, (v; k) - 0 exponentially as
~

v~ —~ . (A8)
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Finally, we consider the integral in (A6). As
~
v~- ~, the modulus of the asymptotic form of the inte-

grand in (A6) is less than

itconstx
~

v~' 'exp Rcos81n 1+,e -Rgsin8 —t(8+$)J .

Here, g =-arg(1+if/Re' e) S. ince 0 & t &R and —,'w& 8& w, we have

1+ ~ 1 and --(8-—,w) &p &0.it 1

Re" 2

From (A9) and (A10), we therefore deduce

~1,(v; k)~& constx
~
vp 'e"i""@i~e

& constx ~v~' 'e 2~ oui~'e

Here, we have used the fact that --,'(6-—,'w) tan8& —,
' for —,'w& 8& w .

Combining (AS), (A8), and (All), we obtain

ig(v; k)i& constx
i
vi' 'e 21'v'co~

which completes the proof.

(A9}

(A10)

(A11)
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