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A formulation of the integral representations of the dual mn partial-wave amplitudes is presented. One
of the many advantages of these representations is that one can extract the threshold coefficients
without difficulty. This is demonstrated in a calculation of the scattering lengths and effective ranges
for the s, p, d, and f waves.

I. INTRODUCTION

Subsequent to Veneziano's original paper, ' a dual
m~ scattering amplitude which meets the require-
ments of Regge asymptotic behavior and crossing
symmetry and which exhibits zero-width resonance
poles was proposed by Lovelace' and Shapiro. '
The partial-wave structure of this amplitude and,
in particular, its asymptotic behavior have been
studied in the complex angular momentum plane

and in the complex energy-squared plane by many
authors, ' "partly in connection with the K-matrix
unitarization scheme, and partly in connection with
dispersion-theoretic studies, among other consid-
erations.

In contrast to the partial-fraction expansion of
partial waves which has been used by most authors,
we present a unified treatment of the correspond-
ing integral representations, which turn out to be
more useful in many respects. In this paper, we
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study, in some detail, the projection of the partial
waves in the complex energy-squared plane and
their threshold behavior; in a sequel, we will ex-
amine their asymptotic behavior and cut structure.

In Sec. II, we perform a partial-wave projection
in the s-channel physical region, and, in Sec. III,
we carry out the analytic continuation into the en-
tire complex energy-squared plane. We exhibit,
in Sec. IV, the normal threshold behavior, with

coefficients which can be easily calculated. Here
we see, for the first time, the advantage of our
partial-wave formulation. By way of application,
we calculate the scattering lengths and effective
ranges for the s, p, d, and f waves in Sec. V. An

appendix is devoted to questions of kinematics and

notation.

II. PARTIAL-WAVE PROJECTION IN THE
s-CHANNEL PHYSICAL REGION

A'(s, t, u) = ,' gF-(t, u) ——,'g[F(s, t)+F(s, u)],

A'(s, t, u) =g [F(s, u) —F(s, i)],
A'(s, t, u} = gF-(t, u),

(2.2)

where g is the over-all coupling constant. In our
discussion, we take the simplest form of F (x, y),
neglecting the secondary terms, and assume that
a&0 and 0&b &1 (inasmuch as b &1 violates Frois-
sart's bound, "and 6 =1 corresponds to the Pom-
eranchuk trajectory).

The amplitudes given by E(1. (2.2) are analytic
functions of complex s, t, and u, having only sim-
ple poles on the real axis. In the s-channel physi-
cal region, s, t, and u are real; also, s =4v+4m, 2

& 4m, ', t = -2v(1 —cos8} & 0, and u = -2v(1 +cos8}
&0, where v=—q2 and q is the c.m. momentum. We
therefore find, in view of the identity I'(z)I'(1- z)
= v/sinzz,

The dual model for the elastic mm scattering am-
plitude was introduced2' by identifying the isospin-
two amplitude A'(s, t, u) of E(1. (AS) with F(i, u),
where

F(s, t) = . sin(v[a(s)+a(t)])a{s)
sinva s

1

du un (s) + a (t) -1 1
—a (t)

0

0
(2.3)

r(1-a(x))r(1-a(y))F(x, y}=
(1 ( } ( })

+secondary terms,

(2.1)

and a(x) =ax+b represents a linear Regge trajec-
tory with a and b real.

The other amplitudes are then determined by
E(ls. (A2)-(A4), being given by

Changing the variable u to x such that u = 1/(1
+e *), and substituting the expansion"

e" ' = P (2l+I)i'j, (z)P, (cos8),
l=p

where j, (z) is the spherical Bessel function [j,(z)
=(sinz)/z, j,(z}=(sinz)/z'-(cosz)/z, etc. ], we
obtain, from (2.3),

Qo -x (2av -b + 1}

F(s, t}=—,, Q( 2l +1)i' P(c os8) e""""""'" dx 1, (,)„j,(z)
2E sin7TQ(s J t =0 (1+e *

ao -x (2av -b +1)-i ff tf)((s) -2av+b] e—e x)a (s) + &-j) (w)j1+e (2.4)

where z = i2av(i7(+x) a-nd w = i2av( in+-x). In-a
similar fashion, we can proceed to find a corre-
sponding expansion for F(s, u); the result is that
one has simply to substitute -z and -w for z and
w in E(1. (2.4).

We define the partial waves V", (s) by

F(s& t) +F(s, u) =Q (2l+ 1)V(' (s)P, (cos8), (2.5)
1=0

c&o -x (2av -b +1)

(1+e "

Qo -x(2av -b+1)-if' [a(s) -2av+ b] e—e dx .. .
) (,)„j,(w).jl+e

(2.7)

Similarly, we define the partial waves V, (s) by

and, using j,(-z) =e'"'j, (+z), we see easily that F(t, u) = Z (2l+1)V, (s)P, (cos8),
L=P

(2.8)

V(&)( ) (1 &i&i) ( &- b( )sinza(s) '
where

(2 6) and obtain

V, (s) =(1+e'"),'i'(4av —2b—+1)g((v), (2.9)
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where
0() -x (2av -b + i)

g, (v) = dx, )4,„2},„j,(i2avx) . (2.10)(] + e-x 4av -2 +2

Equations (2.6) and (2.9) show the signature fac-
tors explicitly.

III. ANALYTIC CONTINUATION

physical value), the integrands of h, (v} are bound-
ed by

M(l, v) Isiv+x I' exp(-(1 -b) Rex) as Rex-+~,
and by

N(l, v) I
+iv+x I' exp(+(4am, '+2b) Rex)

as Rex- -~,
Up to now, we have restricted ourselves to the

physical region. Even in this region, we observe
that the integrands of h, (v} and g, (v), as functions
of complex x, have essential singularities only
along the imaginary axis and are analytic else-
where. Therefore, as long as we can neglect the
contribution from the far-distant arc, we can
shift the path of integration to any ray in the first
and third or the fourth and second quadrants in the
complex x plane.

When v is real and positive (i.e., it assumes a

where M(l, v) and N(l, v) are functions of l and v

only. Here we have used the inequality

«p+1)ld„(z}l- I2zl"e "' for p, ---,'.
This shows that the contribution from the far-dis-
tant arc indeed vanishes. We see also that the in-
tegrand of g, (v) is bounded by fx I' exp(-(1
—5) I

Rex
I ) as

I
Rex I- ~, which shows again that

the contribution from the far-distant arc vanishes.
We therefore shift the path of integration so that

we have, for v real and positive,

QO e -xe~ (2av -b +1)

h, ( }= '""' "''"j d* ' j }*}

Oo -xe1~(2av -b +])-i' [a(s) -2av+ b]
I ~ -xe&~) a(s}+s f}(

where z =-i2av(iv+xe") and w = i2av( -iv+xe-' ); similarly,
-xe4 ~(2av -b + 1)e

g, (v) = dxe' „;q „,„„j,(i2av xe' ).-xe' ea}} 2}}+2-

(3.1)

(3 2)

In both cases we have
I
5 I& —,'v.

Now we remove the restriction that v is real and positive, and extend v into its complex plane. We see
that as long as the phase 8 of v=

I
v le' is such that the integrands of h, (v) and g, (v) are bounded at fx

I
=~,

so as to give the integrals validity, h, (v) and g, (v) are analytic functions in this domain. Since the inte-
grands of h, (v) of (3.1) are bounded by

M(v, l)lsiv+xe" I' exp[-x[2al vlcos(8+5)+(1 —5) cos5]+2al vlxlcos(8+5)l)
as x +oay and by

N(v, I) I+iv+xe' f' exp[+x[2a Iv Icos(8+5)+(4am, '+2b)cos5] —2a Iv fx Icos(8+5}f)
as x- -~, we find that the integrals defining h, (v) exist if and only if

2a
I
v Icos(8+5)+(1 —5) cos5 —2a

I
v I Icos(8+5) l&0

and

2a lv Icos(8+5)+(4am, '+2b) cos5 —2a
I vl Icos(8+5) l&0.

From these conditions, we deduce that so long as

I
8+5

I
- l v a d 151& lv, (3.3)

h, (v) [Eq. (3.1}]is analytic in the complex v plane. We note also that even if 8= v, h, (v) is well defined
provided I

v
I

is less than the smaller of (1 —b)/4a and ( a 4,m' +)2/b4a Similarl. y, the integral defining
g, (v) [Eq. (3.2)] exists for complex v if (3.3) holds, because the integrand of g, (v) is bounded by

lxl' exp{ -2a
I vx Icos(8+5) —lxl(1-5) cos5+2a

I vxcos(8+5) I)
as lxl-~. We see also from this bound that the integral still exists for 8 = w provided I vl&(l -b)/4a.

We conclude therefore that h, (v}, given by (3.1), and g, (v), given by (3.2), are analytic functions in the



3724 B. K. CHUNG AND DAVID FELDMAN

entire complex v plane except along the negative real axis starting at -v~ [where v~ is the lesser of
(I -b)/4a and (4am, '+2b)/4a for h, (v), and (I —b)/4a for g, (v)]. They are free of singularities, except
possibly at infinity.

From E(I. (3.1), we observe that
-xe-~ ~(2av * -b+ i)

[h (V)]S e-i x(n (s*) -2av*+b) dX e-s b j (Z S}
QO

+e-xe sb e(s*)+i t

e-xe I ~(2av+ -b+ 1)+iff[a(s*) -2av*+bj d -i 6
I ~ -xe ib )u(sa)+i jl( )s

where zs=+i2avs(-iw+xe '
) andM*=+!2avs(+is+xe ' }. We know that the factor e' in h, (v) must ap-

pear as e ' in h, (v ) in virtue of the constraints (3.3). By making use of j,(-z)=e'" j,(+z), we find

[ i ' 'h, (v)]*= i ' 'h)(vs},

which in turn gives

[ V',"(s)]*=V", (s*).
Similarly, we see from E(I. (3.2) that

[i 'g, ( )v]*=i'g, (v ),
which yields

[ V, (s)]*=V, (s*).

(3.4)

(3.5)

IV. THRESHOLD BEHAVIOR

Even though the integrals defining h, (v) and g, (v) in E(ls. (3.1) and (3.2) look very complicated, they are
very useful and powerful representations of the partial waves. In this section, we show how simply they
yield the threshold coefficients.

We substitute the power-series expansion of j, (z),
(1Z)i+2m

I (z}='~v ~ '-'m) r' m+i+-
m=0

into (3.1) and (3.2), obtaining the normal threshold behavior of the partial waves:

h, (v) = v'0, (v), g, (v) = v'G, (v),

where

( )2m -xe' (2av -b + i)
H (v) & ~v( la) ~ ere! a(s) - v2+ab) d ib

(
i

)
b+ )2m

m! r(m+ I+ ,') —„(I+e-*"
ao -xe' ~(2av - b + y)-i I! [n(s) -2av b] d ( ib))+2m ]

(1+exe, ib ( ) -$7f+xe
J

x.e.,

(4 I)

(a V}2m d +2m

H, (v) =2i-,' v w (-ia)' Q ( r( I,)

oo -xe& ~(2av -b + y-y )—
sin(x[a(s) —2av+b +y]) dxe' -xe' )a(s)+i

Gi(v} =
2 ~)l ( la) 2

(av)2m -
d i+2m m e-xe&b(2av -b + I+a)

dx8, m! I'(m+ l + 2) dy -xe )aav -2b+2

The integrals in (4.2) yield" simply beta functions, thus giving

Ms(-ia)' ~ (a v)' d ' " I'(2a v —b + I —y)
2r((2(s)+I} ~ m! I (m+I+2) dy r(1 —4am„' —2b —2av —y)

(aV)2m v d ) +2m

G, (v}= ,' Ms(-ia)' -Q
, m! I'(m+I+ —', ) dy

B(2av —b + I +y, 2av —b + I —y)

(4.2)

(4.3)
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If we expandH, (v} and G, (v) around v =0, i.e.,

H, (v) =C, + D, v+O(v'), G, (v) =E, +F,v+O(v'),

we find that

(4.4)

C, =

D, =

v w(-ia}'
2I'(l + —')
Mw(-ia)(
2r(l +-,')

v w(-ia)'
2r(l +-,')

)t w ( ia}-'

2I'(l +-', }

2 wi d ' r(1-b —y}
r(1+X+b) dy r(1 —X-2b -y) '

4wai d ' I'(1 —b —y) [ $(1 —b —y)+(l)(1 —X —2b —y) —2$(1+X+b)],r(1+~+b) dy r(1- ~-2b - y)

(
d

B(1—b+y 1 —b —y)y

67
1

2a —B(1—b +y, 1 —b —y)[ $(1 —b +y) +(l)(1 —b —y) —2$(2 —2b)],

(4 5)

where y =0, X=4am, ', and (l)(z) =dlnl (z)/dz.

V. SCATTERING LENGTHS AND EFFECTIVE RANGES

As a simple application of our partial-wave for-
mulation, we compute the scattering lengths and
effective ranges for the s, P, d, and f waves.

Since we have only the real part of the amplitude
in the dual model, we identify the real part of the
right-hand side of Eq. (A10) with its left-hand
side, where A'(s, 8} is given by (2.2). That is to
say, we have

[(a [) '+-,' r,'v+O(v')]'+ v""
1

=
2 ~ J

d(cos8) A'(s, 8}P,(cos 8) .
2 s

(5.1)

If we define x', and y', such that

d(cos8) A'(s, 8)P, (cos8) = v'[ x', + vy ', +O(v')],

(5.2)

then we can express a, and r', in terms of x', and
y', as follows:

x'a'=

I 2 Iao&io+ 2m„a, 2m„~a, i

(5.3)

y,' = -g(1- e'")i''-'(~C(+o D) ),
x', =-g(1+e'")i'(1 —2b)E, ,

y, =-g(1+e'")i '[4aE, +(1 —2b)F, ],
where

o sinw(X+b) = A. +b,

$ sinw(l). +b) =4a[ 1 —w(A. +b) cotw(A. +b)] .

(5 4)

Substituting (5.4) and (4.5) into (5.3), we can cal-
culate the scattering lengths and effective ranges.
For example, the scattering lengths for the s, P,
d, and f waves are

On the other hand, we find from Eqs. (2.2)-(2.9),
(4.1), (4.4), and (5.2) that

x', =-,'g(1+e'"}i'[(1—2b) E, +SicC)],

y
0 = —', g(1 +e™)i ' [ 4aE) + (1 —2b )F) + Si )C ) + 3io D(] )

x,'=-g(1 —e'")i' 'cC, ,

g I'(1 —b)I'(1 —b) I'(1 —b)I'(1 —l). —b)4m„r(1 —2b) r(1 —Z-2b)

g r(1-b)r(1 b)-
2m, I'(1 —2b)

(5.5)

(5.6)

(5.7)

r(1- b)
120m r( b) I (1 2b) ~ (

sr(1 —z —b)((((1—) ) —(() —& —25))' ~ ('((-() —('(( —X —2b))), (5.8)
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g x'r(1- b)r(1 b-),
60m, ' r(1- 2b)

g x r(1 —b)I'(1 —A. —b}
840m, ' I'(1 —X —2b }

x ( [ $(1 —b) —$(1 —X —2b)] + 3[ g(1 —b) —g(1 —X —2b)][ g'(I —b) —g'(I —A —2b )]

+ |It
"(1—b) —P "(1—A. —2b)j.

(5.9)

(5.10)

Now, from Egs. (5.5}and (5.6), we get, for b v-2,

a~o 1
1

r(1- X b)-r(1 —2b)
a', 2 r(1-b)r(1 —X 2b-)

from which we infer:
(i) for X-=4am, ' =0, b w-,',

a'~ =+0'a,

(5.11)

(5.12}

(ii} for X and b such that 0 & X « I and b = -,
' —t a

(i.e., b satisfies Lovelace's condition' am, '+b =-,'),
a'
a
—' =- f -6~1n2+O(~').

0
(5.13}

The first term, —~, is Weinberg's ratio. " To ob-
tain (5.13), we have used $(1)—g(p) = 2 ln2.

Similarly, from (5.5)-(5.7), we deduce

2a o
—5a 0

= 18m, ia', n(X, b),
where

x[ $(1 b) —P(1 ——x —2b)] n(x, b)

(5.14)

r(1 —b)I'(1 —x —2b)
I'(1 —2b }I"(1—X —b }

a(x, b) =1+hZ+0(x'), (5.16)

where

2[(C(I -b) —(C(I —2b)] r = [&(I —b) —g(1 —2b)]'

—0'(I -b) —0'(I —2b)

(5.17}

Lovelace's value' b =0.483, for example, gives
Z =-1.502 and

2a, —5ao = 18m„'a', [ 1 —1.502K+0()P)] . (5.18)

To obtain numerical values for the sca'.tering
lengths and effective ranges, we take the experi-
mental pion mass (0.139 GeV) and p-meson mass
(0.765 GeV), and adjust the parameters a and b
such that

(5.15)

If X«1, we can expand b (x, b) in powers of A., viz. ,

am~ +b =1 and am, '+b = —,'.
The second condition was taken by Lovelace' so
that the dual model will satisfy Adler's self-con-
sistency condition. " We adjust the over-all cou-
pling constant g so that the P-wave resonance cor-
responds to the experimental p-meson resonance
width (0.125 GeV). We then find g=1.208, a =0.883,
and b =0.483. The resulting scattering lengths and
effective ranges are listed below:

a, =+0.230m„', r 0 = -6.43m„',
a', = -0.062m„', r 0 +44 7m,

a,' =+0.047m, ', r,' =+17.1m, ,

a, =+0.12 x10 'm„', r,' =+8.69 x10 m„',

a =-0 43x10 m„, r2 =+5 99x10 m

a3=+0.21x10 m, , r3 =+6.00x10 m, .

VI. CONCLUDING REMARKS

We would like to emphasize that the integral rep-
resentations we have formulated for the partial
waves of the dual ~n scattering amplitudes are
very useful and powerful in many respects. As
we have seen, one of the advantages of this for-
malism is that we can extract the threshold coef-
ficients in a straightforward way.

To exploit this advantage, we have calculated
the scattering lengths and effective ranges for the
s, P, d, and f waves. We can of course extend
this procedure to the higher angular momentum
waves as well, and may use them in the effective-
range-approximation approach to unitarize the du-
al partial-wave amplitudes in the low-energy re-
gion.

The merits of these integral representations
will probably be more manifest when we study the
asymptotic behavior of the partial waves in the
complex energy-squared plane. This subject will
be investigated in a subsequent paper.
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APPENDIX: KINEMATICS AND NOTATION and the unitarity condition SS =S S =1 gives

We consider the elastic mm scattering amplitude
for the process a+b- c+d. We follow closely the
notation used in Ref. 3, defining the S matrix by

S = I + i(2v)45'(gP) T(s, t, u),

with

M""(s, ~, u) = T4'"(s, t, u}/16v.

The quantities a, b, c, and d are Cartesian-basis
vectors for the isospins of the particles, and

s, t, u are the usual Mandelstam variables (p, +p,}',
(P, +P, }', and (p, +p4)', respectively, all P's being
physical energy-momentum vectors. The most
general amplitude satisfying Bose statistics, iso-
spin conservation, and crossing symmetry" is

M ' '(s, t, u) = A(s, t, u) ,554,4+ B(s, t, u)6„544

+C(s, t, u)5,454, , (A1)

where

ImA'(s, 8) = ~ dn'A'(s, 8")[A4(s, 8')]"

for s below the inelastic threshold. Here, q is the
c.m. momentum, cos8" =cos8cos8'+sin8sin8'
cosQ', and 8 is the scattering angle in the c.m.
system.

We define the partial waves AI(s) by

A'(s, 8) = Q 2(2f +1)A', (s)P, (cos8),
l=o

where the extra factor 2 is due to Bose statistics.
Elastic unitarity, E41. (A5), gives

ImA', (s) = ~ l
A', (s) l'.

The phase shift 5 f(s) is defined by

A(s, t, u) = A(s, u, t) =B(t, s, u) =C(u, t, s) . (A2) A, (s) =
2

e' &" sin5', (s),1 ~S j s I(s) ~

(A8)
The total-isospin s-channel amplitudes are then
given by

A (s, t, u) = 3A + B +C,
A'(s, t, u) =B —C,
A4(s, t, u) =B +C .

(A3)

We observe, in particular, that if A'(s, t, u} is
known throughout the Mandelstam diagram, then
the entire amplitude is determined by

A(s, t, u) = ——,'A'(s, t, u) + 2A'(u, s, t) +4A (t, u, s) .
(A4)

We define the volume element of the one-particle
contribution to Lorentz-invariant phase space to
be (2v) 4d'p/2E. The Lorentz-invariant normal-
ization of states is then

&p'lp) =(»)'2&5'(p' —p).
In terms of M(s, t, u) and A(s, 8), we have

(dc /dn)„= (4/s) lM

= (4/s)l A'(s, 8)l',

so that it satisfies (A7) in the elastic region.
The "scattering lengths" a,' and the "effective

ranges" r', are defined by

q""cot6,'(s) = ~ + ,' r, q'+0(q'). - (A9)

It follows from Eqs. (A6), (A8), and (A9) that

(A10)

Near a resonance, we obtain the Breit-Wigner re-
lation

e' &~' sin5, (s) =Msi', /(Ms —s —iM„I', ),
(A11)

where M„and 1', are the mass and the width of the
resonance, respectively.

d(c os 8) A'(s, 8)P, (cos 8)
2 s

q21

(a', )
' ,' +'gq4* -O(+q') iq""-'

*This work was supported in part by the U. S. Atomic
Energy Commission.
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The integral representations, developed for the partial waves of the dual n'm' amplitudes, are used to
show that all the partial waves can be expressed as sums involving s waves only, and to prove that

the isospin-zero and -two partial waves are bounded by powers in the right half-plane of the

energy-squared variable and diverge exponentially along any ray in the left half-plane, thus confirming the

behavior conjectured by Tryon. For the isospin-one waves, the derived bounds agree with those of Park
and Desai. It is also proved that the discontinuities of the isospin-zero and -two partial waves diverge

exponentially along the left-hand cuts and those for the isospin-one case are bounded by a power.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as I,
we presented a formulation of the integral repre-
sentations of the partial waves of the dual mm scat-
tering amplitude of Lovelace' and Shapiro' and
studied the threshold behavior in detail. In the
present paper, we explore further the representa-
tions of I in an investigation of the asymptotic be-
havior of the partial waves. This subject has al-
ready been considered by many authors, 4 "partly
in connection with the K-matrix unitarization
scheme and partly in connection with dispersion-
theoretic studies.

It has been suggested by Drago and Matsuda'
and Sivers and Yellin' " that, in this model, par-
tial-wave dispersion relations cannot be used.
However, Park and Desai' have shown that for the
amplitude with isospin one, the partial waves are
bounded in the complex energy-squared plane, as
is the discontinuity along the cut, so that partial-
wave dispersion relations can be obtained for this
case.

For the amplitudes with isospin zero and two,
Tryon' has recently conjectured that the partial
waves grow faster than any power along any ray
extending into the left half-plane of the energy-
squared variable, in which case no dispersion
relations can be written down.

We will show in this paper that the integral rep-
resentations of I furnish a unified treatment of

the partial waves for all isospin states and yield,
among other results, the explicit exponential di-
vergence of the isospin-zero and -two partial
waves in the left half-plane of the energy-squared
variable.

In Sec. II, we summarize some of the results
obtained in I. We deduce in Sec. III functional
relations among the partial waves, which show
that all partial waves are essentially finite sums
of s waves. In Sec. IV, we study the asymptotic
behavior of the partial waves, obtaining the same
bounds for the I=1 case as found by Park and
Desai, ' and an exponential divergence for the I=0
and 2 partial waves in the left half-plane of the
energy-squared variable, which confirms Tryon's
conjecture"; some mathematical details which
enter in the proof of this divergence are given in
the Appendix. The asymptotic behavior of the
discontinuities along the left-hand cut is examined
in Sec. V, where it is shown that for I=1 the dis-
continuities of the partial waves are bounded by a
power, and for I=0 and 2 they are exponentially
divergent. Finally, in Sec. VI, we summarize
our results, including a comment on the related
unitarization problem.

II. PARTIAL-WAVE PROJECTION

The mm scattering amplitudes in the dual reso-
nance model' ' are


