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It is shown that the magnetic dipole and the electric quadrupole moments of the W+-meson must be
equal to e/m and —e/m '-, respectively, if we demand either that the Drell-Hearn sum rule is
satisfied up to order a' or that the helicity of W is conserved in the scattering from an arbitrary
electromagnetic field at high energies and at small but finite scattering angles.

I. INTRODUCTION

W' vector bosons, which are supposed to medi-
ate the weak interactions, ' have (in addition to the
charge) a magnetic dipole moment and an electric
quadrupole moment. "We assume that the elec-
tromagnetic interaction of the W' bosons is in-
variant under the time-reversal and parity opera-
tions, hence the electric dipole moment' is zero.
The values of these moments greatly affect the
total production cross sections, the energy-angle
distributions, and the decay correlations in the
processes such as e'e - 8"8', ' yZ- W+W

+anything, ' v Z- pW+anything, ' etc. Therefore
if 8" bosons are discovered it is relatively easy
to find these moments. It is interesting to specu-
late what these moments should be. 8" bosons

are assumed to have no strong interactions, ' hence
the observable moments are expected to be not
greatly affected by the radiative corrections, in
analogy to the magnetic moment of an electron
which ' is given by

e o. a'
1 +———0.328 479+ '

2m, 2m m'

e=4m'
8

As is well known, this is the consequence of the
quantum electrodynamics of a spin=,' particle as-
suming no anomalous magnetic moment (Pauli
term) in the Lagrangian. The absence of the Pauli
term in the Lagrangian is commonly believed to
be due to the fact that its presence would render
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the theory unrenormalizable. Also the concept"
of "principle of minimum interaction" was in-
vented to describe the absence of the Pauli term
in the leptons and the concept was widely applied
to the electromagnetic interaction of spin-0 and

spin-& hadrons. For charged spin-1 particles, "
the principle of minimum interactions does not
yield a unique magnetic moment, but once the
magnetic moment is given the electric quadrupole
is determined, i.e., if p =e(I+z)/(2m), then

Q = -e~/m'. Weinberg, "and many others after
him, proposed a theory to unify the electromag-
netic and weak interactions using the Higgs phe-
nomenon. In this theory, the photon-8" -boson
coupling is of the Yang-Mills type, which implies
that to the lowest order in e the magnetic moment
and the electric quadrupole moment of W' bosons
are given respectively by (n =1)

g =e jm and Q = -e/m',

where e and m are the charge and the mass, re-
spectively, of W'.

In this paper we show two additional arguments
which can be regarded as supporting the values of
p and Q given by Eq. (1.1). The first is to con-
sider the Drell-Hearn sum rule, "'4

e d(d
1TS ——— = (X (d —6 (d

8 A
0

(I 2)

se
g =—(1+a o. +a n'+ ~ ) .

m 2 (I 4)

Substituting (1.4) into the left-hand side of (1.2),
we obtain

4@2a3S
(a, + o.a + ~ ~ ~ )2,m'

where s is the spin of the particle (s =1 for W'),
o~(~) [or o„(&u)] is the total cross section for
y+W' with the spins of y and W' parallel [or anti-
parallel] to each other in the laboratory system,
and cu is the incident photon energy. Now if the
sum rule is true, it must also be true for each
order in n. The right-hand side starts with terms
of order n2 because the W is assumed to have no
strong interaction. Thus as pointed out by %'ein-
berg, "the term linear in a in the left-hand side
must vanish. This implies that to the lowest order
in e, all nonstrongly interacting particles have
magnetic moments given by

y,, = se/m.

Since the magnetic moments of a particle and an
antipa. rticle must have the same magnitude and be
opposite in sign, we must have

which does not have terms proportional to a2.
Hence terms proportional to e' in the right-hand
side must vanish. " a' terms in the right-hand
side of (1.2) are just the spin-dependent part of
the lowest-order y+ W Compton scattering cross
section, which in general depends upon p. and Q .
In Sec. II, we show that the integration in the
right-hand side of (1.2) diverges if either ii we jm
or Qw-e/m', but when p. =e/m and Q =-e/m',
the integration in the right-hand side of (1.2)
yields zero.

Another argument, which we shall present in
Sec. III, is helicity conservation. " The argument
is not very convincing but interesting. Nature
seems to like helicity conservation at high ener-
gies. We show that the helicity of 8" is conserved
in the scattering of W' from an arbitrary electro-
magnetic field at high energy and at small but fi-
nite angles, if and only if p =e/m and Q = -e/m'.
This argument gives also g =e/2m for an electron
(or muon). However for a spin=, particle, the
helicity is conserved at high energies and at all
angles if and only if p, =e/2m, whereas for a
spin-1 particle, even if p =e/m and Q = -e/m',
the helicity will not be conserved unless 0 «1.
This fact is due to the conservation of angular mo-
mentum. Therefore we cannot demand the helicity
conservation in the electromagnetic scattering of
a spin-1 particle unless 8«1.

In Appendix A, we discuss how to identify vari-
ous form factors in the manifestly covariant ver-
tex functions with the charge radius, magnetic
dipole moment, and electric quadrupole moment
commonly used in the nonrelativistic nuclear
physics.

II. DRELL-HEARN SUM RULE

In this section, we study the Drell-Hearn sum
rule (1.2) for W' bosons with arbitrary magnetic
dipole and electric quadrupole moments. We con-
sider the sum rule in the order e2, in which case
the total cross sections o~ and o„ in (1.2) come
from the lowest-order Compton scattering. We
shall show that the integral (1.2) converges if and
only if g and Q are given by (1.1), and when it
converges the integral vanishes.

The Feynman rules for the quantum electrody-
namics of 8" bosons with arbitrary p, and Q have
been given by Aronson, "and are shown in Fig. 1.
and Table I. There also exists a four-W direct
coupling term, but this is not relevant in our cal-
culation. When the W bosons represented by p and
p' in Fig. 1 are on the mass shell, the vertex func-
tion V can be written in a simpler form as fol-
lows:
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TABLE I. The values of V and U Q,
' =A, /m, K= g+ 1),

~p 8 ie[g 8(P+P'+A, 'P' qP —X'P qP')„-g „(P—I(:q+X'P' qP -P,'P' ~ Pq)8

-gBp(P'+ ~q -~'P. qP'+~'P' P q)a -~'PpP'aqB+~'P pqnPB)

=~et g 8(P+P')„-gn, (P -q)8-g8&(P'+q)n+~(gnpq8 gBpqa)~

(P"qP -p qP') -gn„(P' qpB-P'Pq8)+g»(p qpa-O'Pqa) -P„paqB+Pgnp8~

Upvn8=-Se (2gpv gn8 gapgBv gavgBp)2

I'~'{-gvv gas(q q') -(P' P) g-a„g-sv(q P'+q" P)+ gav gsp(C. P+O' P')

-gaBtqv (P' -P)] -q't (P' -P)vi+8 pvt. p8(q -q')n-Pa(q —.q')Bi

+ gBv (qap p +q ap& +qaP p q pPa) gnv (q BP p q pp 8+qBP& +q'BP' &

gps(pvqa Paqv +Pvqa +Pvqa) + gva(Pvqs Psqv +qsP' +qsPv )) .

V„s — fe((p+p') [g s(1+,' Xq'/m-') -Xm 'q qs]+(I+v+3)(g „qs -gs qJj .
p2= m2

p'2= NI2

The matrix element of a current operator g„(0) can be written as

(2.1)

(p'" l~~(0)l p") =&(&s )*& s~a, a=-sI's s (2.2)

where e'„, (or s„) is the polarization vector of p' (or p) with a helicity h' (or Is). In the Appendix, we show
that the parameters K and A. are related to the magnetic dipole moment by

p = e (1 + z + X)/(2 m)

and the electric quadrupole moment by

Q = -e(z —A.)/m'.

(2 2)

(2.4)

%e note that the expression for Q given by Aronson" contains an error. In the Appendix we also show
that the mean square charge radius of a charged vector particle having a vertex function (2.1) is given by

Rs = (z + X)/m s (2.5)

It can be shown from q„l""„,~ =0, invariance under parity and time reversal and p e „=p"c'„.=0 that I'"„„
has a tensor structure

I'vs, „=-e[G,(q')(p+p')vs'„, e„+G,(q')(s„qs„',„—s'„r qs&)+Gs(q')(p+p')„(e„'a q)(e„q)m '], (2.6)

where G, (q'), G, (q'), and G, (q') are real functions of q'. Thus Eq. (2.1) can be regarded as a particular
form of (2.6) due to a specific assumption about the form of the lagrangian. Since W's are assumed to h
have no strong interaction, the only quantity which can have the dimension of q' is m'; hence the G's are
in general functions of q'/m' and the dimensionless quantities such as X and z. For example (2.1) gives

and

G, (q') = I+-,'Zq'/m',

G2= 1+K+A.
p

Gs= -A, .

(2.7)

If one assumes other forms of »grangian, G, and G, may also be functions of q'/m' instead of being con-
stants. These considerations are important when we discuss the helicity conservation in the next section.

The terms proportional to A. in Table I can be regarded as anomalous because they cannot be derived
from the principle of the minimal interaction. As emphasized by T. D. Lee,"the terms proportional to K

should not be regarded as anomalous because the free Lagrangian Lf gc is not uniquely defined for a spin-
1 particle and one gets different values of ~ from different expressions by L„„by replacing in L„„, /Sx„—S/Sx„fed„. Sinc-e the purpose of this paper is to show that ~ =1 is more normal than other values, it
is convenient to define a new parameter
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(2.8) Element Graph Value

In terms of q and A., the magnetic moment p and the
quadrupole moment Q can be written, respectively,
as

p, = (2+g+X)e/(2m)

and

q = -(1+q -~)e/m'.

internal photon line

Internal W meson line Ct

yWW vertex

—,„/, '
q

gap papg
g

p~ —m~

V+~p= See Table I

The Feynman diagrams for the Compton scattering
are shown in Fig. 2, and the matrix elements can
be written as c e'* el'e'*"M„,B, where

(2.9)

M', I', and M' correspond to the diagrams a, b,
and c, respectively of Fig. 2 and they can be written
as follows:

Seagull U~igp= See Table I

FIG. 1. Feynman rules for the quantum electrody-
namics of W bosons.

M'„„8=—(k p) g„-+qk g„„- , g„~—[p(:(p k), --m'k~]l
1 A.

x g ~ —
2 2p'„g~8 —(p' —k')gg„8 —2ksg„+0(g~k' -g k'~)

(p +k)p(p'+k'),

—~ {gs„[x(p' -k'), -m 'k,'] + m 'g„,ks -p'„p,' k('] p',+k,' k8j, (2.10)

2y

'g, „k', g„] 'O'-P(P ~ k')k] P, k,'(P k')))

(p -k')) (p'- k).
gp() 2 2p])gas (p +k)()g}(8+2ksg'](()'+ (i(ga}(k8 g '(}](kg))-'

——,]gk [m k—y(P' k), ]
'— , 'g„kk P', kk(P' ~ k)}); (2.11)

and

x =k p =k'p'

y =k"p =k p' .
(2.12)

We have ignored the terms proportional to k„, p,
k'„and pa because they yield zero after contrac-
tions with the polarization vectors. We have also
ignored the terms proportional to k and p„be-
cause in the Drell-Hearn sum rule we are inter-
ested only in the polarization vectors of the initial
photon and the target W boson, which are orthog-
onal to k and p. We choose the coordinate system
in which the incoming photon direction is the z

I' is the seagull term U divided by ie' in Table I.
In the above equations, we have introduced the no-
tations

and

x= mes,

a P
P k+P P P P " P

(0) (b)

P P

FIG. 2. Lowest-order Feynman diagrams for Comp-
ton scattering.

axis and the scattering takes place in the xz plane:

k = (~, 0, 0, &u),

k'= ((k)', (k)'sin9, 0, ~'cos8),

p =(m, 0, 0, 0),
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y = m&u'= m&u/[1+am '(1 -cos8}] .

The helicity of the incident photon is chosen to be
+1

and

X =e„e„.(e e, -e e„,)X „, „, .g (

X is dimensionless and can be written as

(2.15)

and the spin of the target W boson is either paral-
lel or antiparallel to the incident photon direction

q& =~(-'P~2(P 1 ~, P)

The relative phases between e, c', and c do
not enter into our problem, hence we may let
c'=e and e =e*. The difference of the two differ-
ential cross sections is then (we have ignored the
difference between upper and lower indices for
simplicity)

X1yc ~ Q

X = Z Cgcg 2n
L+c+s =n m

c&0
s=o, l

where

z = fe O'J'

(2.16)

" =e„e„*.(e~e*,-e*e~ ).4m x

Ps Ps'XM Cf VB 1lI~iCfl Vt ae g8 8 t 2 ~
P m

(2.13}

We have done this calculation using the alge-
braic computer program written by Hearn. " The
results are too long to be reproduced here. How-
ever for the case g =A =0, both the calculations
and the results are fairly simple and we shall
treat this case separately. When either A, w0 or
X =0 and g w0, we need only to pick up the terms
which are the most divergent and this can be done
without using a computer. For this purpose, let
us define

M~~peM~t~spez g8ei 2 (2 14)
X " v p v m

t-„, is a constant. The condition n =l+c+s is ob-
vious from the dimensional consideration. The
conditions l ~ -4 and c ~ 0 can be seen easily from
the matrix element. s = 0, 1 can be understood in
the following way: The fourth-rank tensor X».~~
can be constructed from the metric tensor g and
available vectors p, p', k, and k', of which only
three are independent. Since p and k are orthog-
onal to e and e*, we need to consider only the
metric tensor g and the vector O'. The tensor
k„'k'„k'k'. yields zero after contraction with the
polarization vectors in (2.15). Hence only s =0
and s =1 contribute to X in (2.16).

In order to see the energy dependence of 0'~- o„,
we integrate x'y'z'/m'" with respect to the solid
angle. The results are

s=0
(&u/m)'" '/(c —1) = (&v/m)" '/(c —1) if c& 1,
(&o/m)' ln(2&@/m) = (&u/m)" ' ln(2&a/m) if c = 1,

s=1
2 ((u/m)' = 2 ((u/m)" if c =0.

(2.1'1)

r ( (u/m)"'/(c'+c) =(m/m)" '/(c2+c) if c&0,
(x'y'z/m'")d cos8 ~

) (&u/m)' 1n(2&v/m) = (&u/m)" ' ln(2&v/m) if c =0 .

In general the most divergent terms are those
with the maximum n and the minimum c. How-
ever, in the following we shall show that when
s =0 and c =0, n is necessarily small, n «0,
whereas the most divergent terms are n ~ 2 unless
A. =0 and g =0. Therefore, the case represented
by (2.1V) can be dropped from the consideration.
Now in aQ other cases the energy dependence is
either &u" ' or &u" ' 1n(2~/m}, and these two energy

dependences cannot have mutual cancellations.
Therefore, we need only to consider the terms
with the maximum n without having to worry about
the possible cancellations by terms which have a
smaller n but with a different c.

We first establish the above mentioned fact that
only terms with n «0 can have s =0 and c =0.
Qnly the matrix element M~ can give c =0. Since
we are interested only in the terms with the larg-
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est n and the smallest s, we can ignore all terms
containing m', y, k„', p„', k', and p' in the nu-
merators of M, . With this simplification, the part
of M, which we are interested in is

M'„„—-—(2 + q+ ~)[2p „k,g„„)I 0( UB 2y

+xg,„g&„(2+ g + X)] .
(2.18)

Substituting this expression into Eq. (2.14), we
note that terms contracted with g88 has n ~ 0. In
order to consider the terms contracted with p8p&/
m', we note that

p'~M', ~- ——(2+q+A. }[2p„yg „2y

d op d o -o.'A, y' x' —6x'y + 9x'y' —2~ys
dQ dQ 2m2 x~ ms

+ ~ ~ ~ (2.20}

After integrating with respect to the solid angle,
we obtain

-Q Z
&r (~) —c (~) ~ z' —+0 —, , (2.21)2m' n~ m' '

which shows that the integration (1.2) diverges
when A. w0.

Case X=O, qaO. Using (b), we see immediately
that the most divergent terms, when X =0 and

q v0, are proportional to q'jm' and the seagull
diagram does not contribute terms of this order
to y. After some simple calculation we find the
most divergent part of X and the result can be
written as

+xg, p'„(2+q+X)],

(2.19)
do~ do„-cPq' y' (x'-xy)
dQ dQ 8m g m

(2.22)

which does not contribute to the s =0, c=0 terms
in x. This proves that only terms with n ~ 0 can
have s =0 and c=0. This fact assures us that the
most divergent terms in x are those with the maxi-
rnurnn if n «2.

Our next task is then to pick up terms with the
largest n. Before doing this, we note the follow-
ing properties of the vertex function V given in
Table I.

Let

VP Q Q
A

P ~Q + gB]fat/ + APPl QP 0tg

where A„~ is independent of g and A. The follow-
ing can be easily verified:

(a) p C„8=0 and pBC„S=O. These relations
are true even when p' and p are off the mass shell.
Hence the tensor pB,pz/m' in the spin sum in
(2.14) as well as the similar terms in the W boson
propagators, (p+k)~(p'+k'), /m' in (2.10) and
(p —k') (p'-k) Jm' in (2.11), do not contribute to
the X4 terms in g.

(b) p~B~~8 & 0, ps B„~z ~0, but p~p~B„~s =0 if
q' =0. This means that in considering the most
divergent g' terms in X, we may ignore psp 8,/m'
in (2.14) but have to retain (p +k)~(p'+k') Jm' in
(2.10) and (p -k')p(p'-k), /m' in (2.11).

(c) p~Aq ~8 w 0, p8'A„~~ e 0, but p~ ps A„B= 0 if
q2 0

Case Xx0. Using (a), we see immediately that
the most divergent terms, when A. e0, are propor-
tional to A. '/m ' and the seagull diagram does not
contribute terms of this order to X. After some
simple calculation we find terms which are pro-
portional to A~ /m' in y and the result can be writ-
ten as

After integrating with respect to the solid angle,
we obtain

2

o (&u) —o„(~)~„8m2 m
(2.23)

which shows that the integration (1.2) diverges
.when q w0.

Case X=O, g=0. In this case, the matrix ele-
ments are very simple and the cross section can
be expressed as follows

do~ a' y" 2z' m' x x
m' x'[y' ' y' ' y' ' y'

da„do' e' y' ~ 4 4 8x~ + —z —--+—+6
dQ dQ m~ z2 „z y y2

d co dvz do~
dQ dQ (2.28)

We conclude that both g and A. have to be zero in
order that the Drell-Hearn sum rule is satisfied.

III. HELICITY CONSERVATION AT HIGH ENERGIES

In this section we show that in the electromag-
netic scattering of a charged spin-1 particle, the
necessary and sufficient conditions for the helicity
conservation at high energies and at smaQ but fi-
nite scattering angles are g =0 and A, =0. This
can be demonstrated by an explicit calculation for
each helicity amplitude. In this section we shall

—4 —+— + 2~ . (2.25)
X

X X

From these two equations one can show easily by
an explicit calculation that



3716 ETANG JE KIM AND YUNG-SU TSAI

use the coordinate system shown in Fig. 3, where

p, p', and q have the following components:

q = (0, 0, 0, 2p sin-,' 8),

p = (E, p cos& 8, 0, -p sin-, 8),
p'= (E, pcos-,'8, 0,p sin-,'8) .

The helicity states of the incident and outgoing 8"s
can be represented by the vectors:

lp+) =&.

1(X

FIG. 3. The coordinate system used in the discussion
of helicity conservation.

(0, sin —,8, -i, cos—,8),
&2 ra «

= (-1}"""r'-a -a . (3.3)
lp-) =&

= —(0, sino 8, i, coso 8),

lp0} =~.

P —cos-, 8 0 ——sin-, 8=m'm '' m

This can be shown in the following way: Let us
use ~h) and ~h') to represent the spin states of the
particles at rest. Then the helicity states can be
written as:

(3.4}

(3 6)

Ip +) =&+

lp'-) =&'

lp'0) =~l

(0, sin-,'8, i, -cos&8),

(0, sin-,'8, -i, -cos-,'8),

where $ =sinh '(p/m), e ' ~r& is the boost operator
in the z direction which is the axis of quantization
of the state, and e ""'""'~2 is the operator to
rotate the z axis to the direction of p for the ini-
tial state and exp[-i(v/2 —8/2) J,] is the similar
rotation operator for the final state. Under the
operation Y = 6'e "~&, where 6' is parity operator,
we have

P E ) E= ——cos&8 0 —sin&6) .mym y ym

Let us define the helicity amplitudes by

YJGY = Jo)

YJ, Y

Y$a) =q, (-1)'-"~p-a},

(3.6)

(3.V)

(3.6)

where

e'(p'I '-I &„Ipi)

=&g $ &gu boas/(~&)

=-(p+p'}„[G,e'„r e„-Am '(q ~ '„e)f(q e„)]

(3 1)

and

Yip'0') =g (-1)' "
i
p' —0'), (3.9)

where q~ = -I is the parity and s = I is the spin of
the particle. The last two equations come from
the facts that Y commutes with exp[-i (v/2 + 8/2) J,],
e '~"&, and e xp[- (iv/2 —8/2)g, ], and

g=1+K+A.

G, =1 —2''m 'sin'(&8)

and V„B is the vertex function defined by Eq.
(2.1). In our frame q, =0, hence from the current
conservation qp Jp q3 Jg we have J, = 0. Thus we
need to consider only the matrix elements of Jp
and J, =i(J, +iJ,)/(2)"2. Because of the sym-
metries, not all 2V helicity amplitudes are inde-
pendent. From the invariance under the reflec-
tion y —-y we have

(3.2)

Y(a) =q, (- )I"j I) . -- (3.10)

We note that (3.6) and (3.9) are satisfied by our
polarization vectors ~„and ~'„.. For example,
changing the sign of the y component of e, yields

The desired relations (3.2) and (3.3) follow
immediately from (3.6) through (3.9).

From the Hermiticity of the current operatorsJ„J„,and J, and the invariance under time re-
versal, we have

(3.11)
and

and ra'r = (-I} rIa (3.12}



MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE MOMENTS. . 371V

Let us derive these two relations in the following.
Under the time reversal operation, we have

side of (3.14) and using

~(jo -J i-J,)e " ~=(jo, j, , —J~), (3.16)

and

T(JQ, J i J„)T =(Jo, -J, —J„)

r(h'p'ITjp' 'lhP&r =(h'p'I j,lhp&*

hh~

(3.13)

(3.14)

we obtain

and (3.17)
where

lhpu&, =Tlhp& =e ""lhp&. (3.&5)

Substituting (3.15) and (3.13) into the left-hand

hA hh'

On the other hand the Hermiticity J~ = J„gives
the following results: If

then

"' 2J e """'"' 2e '~~~h&a'a =s
I / y (3.18)

Z if' = g &
i g g3&i (X/2 8/2)Z2+ &-i (W/2-6/2)Z2&-i gg3~P i~

I (3.19)

In (3.19) the particle with the helicity h (or h') is moving in the direction of p (or p). In the right-hand
sides of the desired relations (3.11) and (3.12), the particle with the helicity h (or h') is moving in the di-
rection of p' (or p). If we rotate the coordinate system around the z axis by 180', p' becomes p and vice
versa. Inserting e'~s'e '~&' between all adjacent factors in (3.19) and using

ig 7(/ igg '(ff/ + / ) &-'( 2- 2 y ~ J ~&iJ'37) ~&igg3 -i(ff/2+8/2)J'2 &i(fr/2-8/2)J2
py gy @~y

and

e-'" lh') =(-1)'lh'),
we obtain

po)xg ( I)h-h'Po, x

and (3.20)

Combining (3.17) with (3.20), we obtain the desired relations (3.11) and (3.12). The consequence of the
four symmetry relations given by (3.2), (3.3), (3.11), and (3.12) is that we need to consider only 10 am-
plitudes instead of 2V; the relations between various amplitudes and the expression for all amplitudes are
given below.

Helicity-conserving amplitudes (h = h'):

I'„=I' =2E G, cos'(-,'8) +,p'sin'8

I o~ =2E G, (1 —2E'm 'sin'$8)) —4AE'p'm ~sin'( —', 8)

r,', =-r- =-2'"pcos —,'8 G, cos'(—,'8)+ sin'8 —2 "gpsin8(sin-'8+1),
I 2I" =-I', ,=-2'"pcos-,' 8 G, cos'(a8)+, sin'8 -2 '"gpsin8(sin-, '8-1),

2I'+ =-I' =-2~ pcos —'8 G, 1 — sin~(—8
4yE2 2 1 21/

sin (58) —
~ sin~ 8 sin8 .

He lie ity-none onserving amplitudes (h —h' e 0):
(a) Double helicity flip lh -h'l =2:
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F, =I', =2E[G, sin'(~8) —~Ap m 2sin 8],
I", =I", = -I', = -I', =-2~~'p cos-,'8[G, sin'$8)--,'Ap'm 'sin'8]+2 "'gp sin8 sin-,'8.

(b} Single helicity flip ~h -h'
~

= 1:

=2E[G,2 '"Em 'sin8+A2'"Ep'm 'sin8sin'(-, 8)] -2 "'gp'm ' sin8,

=2' 'p cos~8[G,2 '"Em 'sin8+2'"AEp'm ~sin8 sin'$8)] -gEpm 'sin~8[1 —sin28 -2sin'(~8}],

=-2'"pcos;"8[G,2 "'Em 'sin8 +2"'AEp'm. 'sin8 sin'(~8)]+gEpm 'sin —,'8[1 +sin—,8-2sin'(~8)].

From these amplitudes we observe the following:
1. When 8 «m/E, all the helicity-nonconserving

amplitudes become negligible compared with the
helicity-conserving ones independent of values of

g and ~. Hence no conditions on g and A. can be ob-
tained under this condition.

2. If we demand that the helicity is conserved
even when 8 = m/E «1, then we obtain g =2 and
A, =0. We note that the amplitudes with double he-
licity f1ip yield only the condition A. =0, because
the terms proportional to 6, and g are small as
long as 8«1.

3. When g=2 and A, =O, the helicity is conserved
as long as 8«1 and m/E «1.

This concludes the demonstration of the fact
mentioned at the beginning of this section. We
have considered the scattering of W' by an elec-
tromagnetic field in the lowest order in o.. In the
actual scattering, an infinite number of photons
are exchanged. However in the electromagnetic
scattering of a charged particle at a finite angle,
it is most probable (because of 1/q„' for each
photon propagator and q, +q, + +q„+ =q)
that practically all the momentum transfer is
carried by a single photon, and the rest of the
photons (an infinite number of them) are soft (i.e.,
small-angle scattering). Now the small-angle
scattering does not flip helicity, as observed in 1
above. Thus we expect our result to be true even
if an infinite number of photons are exchanged.
The restriction 8«1 comes from the angular mo-
mentum conservation. In order to see this, let
us consider the extreme case 8 =n, which corre-
sponds to the brick-wall system discussed in the
Appendix. In the brick-wall system, the conserva-
tion of angular momentum in the helicity ampli-
tude F„',„(i= 0, ~1) gives i +h +h'=0. Hence in or-
der for the helicity to be conserved in the 180'
scattering, we must have i =-2h, which is im-
possible if h =+1. In the electromagnetic scatter-
ing of a charged spin--, particle, the helicity is

conserved at high energies even at 8 =180', if
i =e/2m.

IV. CONCLUDING REMARKS

We have shown that the special values of the
magnetic dipole moment and the electric quad-
rupole moment given by (1.1) for the charged W

boson have two desirable features: (1) satisfaction
of the Drell-Hearn sum rule in the orders a and
o.', and (2) helicity conservation at high energies
in the electromagnetic scattering. These two fea-
tures are also shared by the only known charged
nonstrongly-interacting particles: the electron
and the muon. However, it is quite possible that
nature is more complicated than what we think it
might be. For example, W' bosons may have an
electric dipole moment which violates both P and
T invariances, or they may interact strongly
among themselves. Indeed Salzman and Salzman'
suggested that the small CP violation in the decay
of K, may be due to the existence of the electric
dipole moment of 8" and many people ' have con-
sidered the possibility of strong interactions
among 8"'s in order to overcome the divergence
difficulties of the weak interaction. If P and T in-
variances are vio1ated, the Drell-Hearn sum rule
has to be rederived. If W's have strong interac-
tions among themselves, then the right-hand side
of Eq. (1.1) will be dominated by the terms of or-
der a, and in this case the magnetic dipole mo-
ment is no longer p =e/m. A large deviation from
this value will indicate the existence of the strong
interaction of 8'. The values of p, and Q given by
(1.1}are of course what the unified theory of weak
and electromagnetic interaction of Weinberg eI;
al."gives. The arguments given in this paper
can therefore be regarded as rendering some ex-
tra supports for such a theory.
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APPENDIX A: MAGNETIC DIPOLE AND ELECTRIC
QUADRUPOLE MOMENTS AND MEAN

SQUARE CHARGE RADIUS

In this appendix we discuss the problem of
identifying various form factors in a relativis-
tically covariant vertex function with the electric
and magnetic multipole moments defined in the
nonrelativistic nuclear physics. Fully relativis-
tic multipole expansion of an electromagnetic ver-
tex function has been treated by Durand, DeCelles,
and Marr ' (hereafter referred to as DDM) in the
helicity formalism. However it is not immediately
obvious how the multipole moments defined by
DDM are related to the multipole moments com-
monly used in the nonrelativistic nuclear physics.
Of course there is a one to one correspondence
between the two, because in both cases the mul-
tipole moments are defined by the rotational prop-
erties of various irreducible tensor operators.
Therefore in principle we need to know only the
proportionality constants between the two con-
ventions. In the nonrelativistic nuclear physics,
the electric quadrupole moment Q is defined as

Q = ss Sz'-r' p x ss d'x

B=V xA

= -&qxA .

Substituting (A7) into (A4) and (A6) into (A5) and
equating the two expressions, we obtain

=lim — Z (0, x)e '('d'x.
a-o &

Applying the signer-Eckart theorem, we have

g =—(ssi i(,,ass&

(ss i10ss&
(ss,' i

1 —1ss,)

xlim — ss,' J O, x ss, e '~'d'x. A8
a~o

Equations (Al), (A2), (A3), (A8) define the quan-
tities e, Q, R', and p, in terms of matrix elements
of nonrelativistic quantum mechanics in which the
particle is assumed to be infinitely heavy.

Our next task is to find out the relationship be-
tween these nonrelativistic matrix elements and
the relativistic vertex functions. Let us choose
the helicity amplitudes in the brick-wall system
for this comparison. The desired relation is then

=2 (ssjr'p(r)p, (cose)~ss)d'x, (A1)
e I'„'".„'/(2E ) -=( ph'

~
Z-„(0)(ph)/(2 E)

where ~ss& represents the state with spin s and
s, =s, and p(x) =- J, (0, x) is the charge density op-
erators normalized such that

where

&( e - 3 q x d 3~ (A9)

The mean square charge radius is given by

R'—= ss, r'p x ss, d x e.

(A2)

and

s =spin, s, =h, s,'= -h',

q =2py

E = (p'+ m')'"
The magnetic dipole moment p. is defined clas-
sically by its energy in the magnetic field B,

Energy = -p ~ B.
In quantum mechanics, the interaction energy be-
tween a current J„(0,x) and electromagnetic field
A„(0, x) is given by

The factor (-I)"*~comes from the fact that in the
nonrelativistic quantum mechanics, we have quan-
tized the spin states of both the initial and final
states along the direction of q, whereas in the
helicity representation the final state is quantized
along the direction opposite to q, thus

J„(0,x)A„(0,x)d'x .

and

A, =O

A = (e, —(ie„)e '~ '/W2

(A6)

where q =e,q. Then the magnetic field is

Let the electromagnetic potential A„(0,x) in (A5)
be

= (-I)'"its,') . (A10)

In this appendix we have chosen q„= (p —p')„which
is opposite to the convention used in Fig. 1, be-
cause we want to use the convention of DDM in the
definitions of the helicity amplitudes. Throughout
this appendix we shall use (I to represent ~q~.
The over-all normalization and the sign of the
left-hand side of Eq. (A9) can be checked by using
(A2). The factor 2E is put there so that when the
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form factor for a spin-0 particle is unity, we ob-
tain 8' =0. The brick-mall system was chosen be-
cause (1) in this frame q, =0 for the elastic scat-
tering, hence from the gauge invariance
(qoZo =qJ, ) we have J, =0, and (2) the selection
rule due to the conservation of the angular mo-
mentum is very simple, namely, if we write l A. „,
where A =+1, 0 we have A +h'+h = 0.

The magnetic moment p. can be calculated
readily from (A.9) and (A8). In order to calculate
Q and 8', we perform a multipole analysis of the
left-hand side in the manner of DDM, and com-
pare the results with the multipole analysis of the
right-hand side using the nonrelativistic quantum
mechanics. The helicity amplitudes F~~„' can be
obtained from the vertex function given by Eq.
(3.1) except that the sign of q is changed and the
helicity states now have the following represen-
tations:

q (zo +ro )(~) 1/2

= -4Ep'm '(G g-+»E'/m')(~) '" (A18)

The right-hand side of Eq. (AQ) can also be ex-
panded in terms of multipole moments in the fol-
lowin~ way: We first expand the exponential factor
e-tq'r by

e -$c['r &-qrcose

= Q (-i)~(2J+1)jz(qr)Pq(cos8}. (A19}
l=o

From (A19) we may write the right-hand side of
(A9) as

(-&)'"'f && .'IJ. (o, x)~ls,)e-""J'*

h Oh hOh

e, = -2 '"(0, 1,i, 0),
e =2-'"(0 1 -i 0)

e, = (p/m, 0, 0, E/m),

where

N22)(2tl+1)( i)

(s Js)

(A20)

e,'=(p/m, O, O, -E/m).

After straightforward calculations we obtain

I'o+ = -2pEg/m, (A12)

I"',, = -2E[G, +2p'm '(G, -g +2k E2/m2)], (A13)

x ss p x P~ cos8 ss j~ qr d'x.

Expanding the spherical Bessel functions up to q',
we obtain

and

F =2EG
j,(qr) =1 -q 2r2/6

and

(A22)

From (A8), (A9), and (A12), we obtain

(11(10 11) 1 e
(10' 1 -111) q 2E

j2(qr) = j22.2/15.

From (A9), (A16), (A20), (A21), and (A22), we
obtain

=eg/(2m)

=e(1+N +X)/(2m). (A15)
eQ. /(2E) =Q.""

=~3(1 -q'R'/6)e. (A24)
To obtain 8' and Q, we first decompose F'„.„into
multipole moments using Eq. (109) of DDM:

From (A9), (A16), (A20), (A21), and (A23), we
obtain

1 01 1 21
(A16) eq /(2E) —qNR

Using (A13), (A14), and (A16), we may write Qo
and Q, in terms of Foo and l,

q, =( r' +2r', )/v3

=2v3 E[G2 —2p'/(3m')(G -g+2AE2/m )],
(A17)

(g)l/2qq 2

From (A24) and (A17), we obtain

R' = (g + A.)/m2

From (A25) and (A18), we obtain

Q = -e(v —A.}/m2.

(A25)

(A26)

(A27)
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A formulation of the integral representations of the dual mn partial-wave amplitudes is presented. One
of the many advantages of these representations is that one can extract the threshold coefficients
without difficulty. This is demonstrated in a calculation of the scattering lengths and effective ranges
for the s, p, d, and f waves.

I. INTRODUCTION

Subsequent to Veneziano's original paper, ' a dual
m~ scattering amplitude which meets the require-
ments of Regge asymptotic behavior and crossing
symmetry and which exhibits zero-width resonance
poles was proposed by Lovelace' and Shapiro. '
The partial-wave structure of this amplitude and,
in particular, its asymptotic behavior have been
studied in the complex angular momentum plane

and in the complex energy-squared plane by many
authors, ' "partly in connection with the K-matrix
unitarization scheme, and partly in connection with
dispersion-theoretic studies, among other consid-
erations.

In contrast to the partial-fraction expansion of
partial waves which has been used by most authors,
we present a unified treatment of the correspond-
ing integral representations, which turn out to be
more useful in many respects. In this paper, we


