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Goldstone bosons. This symmetry can be further broken
either in the boundary conditions or by the additional
vector fields.

19N, Christ, B. Hasslacher, and A. H. Mueller, Phys.
Rev. D 6, 3543 (1972).
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The trajectory function a(t) for small ¢t is studied in the ¢* multiperipheral model as the coupling
constant becomes very large. Special emphasis is paid to the analogy of the ¢* model to a
one-dimensional gas system. We discuss the upper and lower bounds for a(t) when 2,3,... up to
N-body potentials in the gas model are taken into account. The power dependence of a on the
coupling constant as well as its dependence on N is determined by our bounds. This power dependence
changes as N approaches infinity; it also changes as the mass ratio of the produced final particles to
the exchanged particles varies. We show that the equal-spacing approximation suggested by T. D. Lee
gives the correct power dependence of a on the coupling constant with a coefficient in error by only a

few percent.

I. INTRODUCTION

One of the important problems in hadron physics
is to understand the regularities and the general
features in the production processes. Feynman!
and Wilson? suggested that the distribution prop-
erties of the final particles in the high-energy
scattering process should be analogous to the
behavior of a real gas contained in a finite volume,
This can be understood qualitatively by studying
the distribution properties in a multiperipheral
model. Mueller?® demonstrated further that many
of the inclusive properties suggested by the gas
model can be derived from the assumption of a
factorizable leading Regge pole, and thus put the
gas model on a rather sound theoretical footing.

Based on the properties of ¢® ladder model, one
may also postulate a factorization property of the
exclusive amplitude for the process?* A + B—-A
+ B +nm, This exclusive factorization property
enables one to analyze the exclusive data in terms
of a cluster decomposition and to relate the in-
clusive and the exclusive spectra in an energy-
independent way.

Recently, Lee® has demonstrated that the ¢3
ladder model is in fact equivalent to a particular
one-dimensional gas with only repulsive forces,
which can be decomposed into multibody forces
in a cyclic way.

In the gas model the trajectory function o cor-

responds to the pressure, and the coupling con-
stant g® is proportional to the fugacity.*® An
interesting and important question is: “What is
the pressure in the high-density limit?” In other
words, how does a depend on g? as g2—~«? This
is the question we will study in this paper from
the statistical-mechanical point of view.

This question has been studied before by differ-
ent approaches.’~!! In the special case of mass-
less final particles (m2=0 as defined in Sec. II),
the solution is known analytically and given by
Wick, Cutkosky, and Nakanishi.®'® Tiktopoulos
and Treiman’ have given upper and lower bounds
in this case which both approach the exact result
as g®~. In the more general case m?#0, the
upper bound obtained by Tiktopoulos and Treiman’
is not optimal since their bound is proportional
to g? while the exact result should be proportional
to (g2)"/*. The correct power dependence on g2
is obtained by Rosner,® by Wyld,'° and by Cheng
and Wu'! through numerically solving the Bethe-
Salpeter equation.

The method presented in this paper for obtaining
bounds is very elementary and emphasizes the
analogy to the gas model. Special attention is
paid to the change of power dependence of o on g?
as the mass ratio of the final particles to the
exchanged particles varies and as all multiparticle
potentials are included. Our method also treats
the nonforward case when the momentum transfer



is small,

In Sec. II we briefly review the ¢* ladder model.
In Sec. III we examine the nearest-neighbor ap-
proximation by keeping only two-particle poten-
tials. The trajectory functions can be obtained
analytically in the strong coupling limit.

In Sec. IV we extend the two-particle potential
amplitude to amplitudes including N-particle
forces. The basic technique of constructing upper
and lower bounds is introduced in this section., In
Sec. V this technique is applied to the full ladder
amplitudes.

In the strong-coupling limit, the ladder ampli-
tude alone violates the Froissart bound. In Sec.
VI we discuss two mechanisms by which our ladder
calculations can nonetheless remain relevant in
this limit. In the first mechanism, we restore
the s-channel unitarity by summing over all multi-
ladder exchanges in the s channel.!? The trajec-
tory function in the strong-coupling limit then
determines the input Regge ampliiude in the uni-
tarized Regge model, In the second mechanism,
we associate the ladder amplitude with the parti-
tion function introduced by Bander.!® Since the
s-channel unitarity is not required on the partition
function, the strong-coupling limit of the ladder
amplitude may give a satisfactory description
here.

In Appendix A we study the bounds on « of the
one-dimensional ladder mode. In Appendix B we
examine the validity of the equal-spacing approx-
imation,'*

II. THE MODEL
A. ¢3 Ladder Amplitudes
The scattering amplitude which we shall study
is the ¢{-channel ladder amplitude in a ¢® model
shown in Figs. 1(a) and 1(b). This is the simplest

multiperipheral amplitude describing the produc-
tion process

a+b—a+b+n additional particles, (2.1)
where n =0 to <. The final particles, represented

-
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FIG. 1. (a) The forward ¢ -channel ladder amplitude in
a ¢3 model. This amplitude describes the simplest
multiperipheral production process. (b) The nonforward
¢ -channel ladder amplitude in a ¢ model.

by the rungs of the ladder, carry momentum g,
and mass m. The exchanged particles, repre-
sented by the sides of the ladder, carry momentum
k, and mass u. (In general, u#m.)

The ladder amplitudes, properly normalized by
the elastic amplitude, have been expressed in a
form suitable for our application in Refs. 15 and
16. We shall refer the readers to these two refer-
ences for notation as well as details, In the fol-
lowing, we write down only the results relevant
to our discussion. The properly normalized am-
plitudes for » additional particles produced in the
pionization region (¢?<<vVs =c.m. energy) are
given by (g%4m2)"b™, where g is the coupling
constant appearing in £, =+ g 9%

For t=-k?#0, b is given by [Fig. 1(b)]

B Xy 6y = X5) X5 (05 = )t ** (- = %, )X,

[(El +%E)z H"z] - I:(El - 2kR +p? ]'1

Xy

X[&L-Ez)mmz . (1€L+%E)=+u2]-l[aa-iz)2+m2

Xy = Xy X3 X =X, Xy
T = > > > - > -,
x-..l:(kl—kz)z"'mz . (k, —k.)* +m? peeen (k,_, =k, )? +m? . (kn+§k)2+u2]"
X=Xy Xp = X3 Xp-1 =Xy X,
> - - - - - N
X{(kl_k2)2+m2 + (kz_k3)2+m2 4 o0 4 (l(n—l-kn)2+m2 (kn-%k)z“'“'z }_1
1% X2 = X3 Xpa1 = %n Xn ’
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where k = (k', k%) is the momentum transfer, &

= (k{,ﬁi) is the momentum carried by the ith ex-
changed particle, and x, =k;/p; is the fractional
longitudinal momentum. In this expression, we
assume that the incident particles are moving
along the z direction and hence k; =k{ +k} is the
longitudinal momentum. The variables x; are
ordered according to!s+®

12x, 25,202 2x,>—, (2.3)

B. Factorization Properties and the
Introduction of Potentials

As is demonstrated in Refs, 15 and 16, the nor-
malized ladder amplitude b satisfies an impor-
tant factorization property. Whenever (x,,...,x,)
>> (X ey s e o0 5 X,), W€ have

b (kl,..-,kﬂ)=b%’")(k]_’""k’")
XL M By eensky) (24)

Thus, when sets of the scaled momentum vari-
ables x, differ greatly in magnitude and hence are
widely separated in x space, the ladder amplitude
breaks into independent amplitudes involving only
those x; which remain “close” to each other. This
is a remarkable analogy to the “cluster-decompo-
sition property” of the W function in statistical

4
f‘"’(l,Z,...,n): Xpoalt

mechanics.!” Following the analogy, one can
introduce a set of potentials® U™ through

b™(@1,2,...,n)=exp[-U"™(1,2,...,n)], (2.5)

where (1,2,...,n) stands for the momenta
(ky,...,k,). The factorization relation (2.4) im-
plies that whenever (x,,...,%,)>> (Cpsyyee.,X,),
we have

U(")(ly 2) see ;n)= U(M)(ly 2, eeey m)
+ U ™(m+1,...,n). (2.6)
Thus, the potential becomes the direct sum for
widely separated systems.

For later application, it is convenient to intro-
duce an effective potential E™(1,2,...,n) through

E™@1,2,...,n)=U"™Q1,2,...,n)
-U"V(,2,...,n=1). (2.7)

E™ has the physical interpretation as the addi-
tional energy required to add the nth particle in
the presence of the first (n — 1) particles, From
(2.7) we obtain

exp(—E""):b‘"’/b‘"‘” = f(”)(l, 2, e ,n)’ (2.8)

with

’:(l;—f{.z)z +m?
n-l—xn)xnz Xy =X

>

4o 4

k,_, —E")Z +m?

k,_, —k,)? +m? +1k)? 4+ 2 ]'1

oo 4

-
< l:(k1 -k, +m? .
Xy =X

Since f™ is positive and, for u =m, less than
1, E™ is always real and, for u=m, positive,

It is important to see that f ™ is invariant under
the scale transformation x, - ¢x;. This indicates
that f‘ depends only on the » —1 independent
ratios x,/x;,,, 1si<sn -1, Interms of the rapid-
ity variables

y‘.=—ln xi, (2.10)

we find that scale invariance implies translational
invariance in the rapidity space.!®

In the special case when E™ is “two-body sepa-
rable” —that is, as a combination of two-body
nearest-neighbor potentials,

E™@1,2,...,n)=uln-1,n)+0(n=2,n=1)+*",

(2.11)

Xp-1=%Xp

. (2.9)

we have

n
U(")(I:Z’ e sn)E EE(Z)(ly2a° . '9l)
1=1

=§‘J[u(l-1,l)+v(l—1’l)+-..]
1=1

(v =-1,n)++"). (2.12)

The correction term, (v(r-1,n)+++-), is a
boundary contribution and will drop out if one
imposes periodic boundary conditions. In the
language of the gas model, this boundary term
corresponds to the surface energy and certainly
does not lead to any observable effect in the cen-
tral region. Hence, it can be ignored. Thus, we
can express U as the sum of an effective two-
body potential E({ -1, ) through
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vmQ,2,...,n)=2,E(l-1,1), (2.13)
1
with
E(l-1,D)=ul=-1,)+v(l=1,L)+<-- . (2.14

Since U™ determines the s dependence and all
the distribution properties in the central (pion-
ization) region, it is obvious that we can replace
E™(1,2,...,n) by the effective two-body potential
E(m-1,n). This replacement is crucial in our
technique because with a two-body potential the
problem becomes explicitly solvable.

In the following sections, we shall bound the
actual E™(1,2,...,n) of the ladder model by
certain two-body separable potentials. Since the
latter potentials are solvable, we obtain bounds
on various physical quantities, including the tra-
jectory functions and the number distributions.

III. THE NEAREST-NEIGHBOR APPROXIMATION

To illustrate the method, we start with a solv-
able two-body potential. We construct a nearest-
neighbor potential E{" (z -1, ) by keeping only
the x,_, and x, dependences in E™(1,2,...,n).

In other words, E{™(n -1,n) is the two-body po-
tential between x, _, and x, obtained from
E™(1,2,...,n) when the remaining » — 2 particles
(1,2,...,n-2) are far away from (x,_,,x,), i.e.,
when (v ,...,x,_,)>>(x,_,,x,). Using the factor-
ization property (2.6) we find

EM®, o1, %)=E®(x,_,,x,) = E,(x

n-].)

(3.1)

A. Forward Amplitude, t=0

For simplicity, we concentrate on forward
direction, t=-k2=0. Then, the two-body nearest-
neighbor potential is

exp[-E,(n-1,n)]=f{"(n-1,n)
- xn-lu‘q [(En—l—ﬁj)2+m2 + E12+“2 ]-2
- (xn-!. -xn)xn2 Xn Xn
“4._ '*z 2 [ T2 € -2
=g K el — K em ]m' , (3.2)

where z,=Inx, _,~Inx, is the rapidity difference
of the two nearest-neighbor particles.

For arbitrary values of u? and m?, the trajec-
tory function a that follows from (3.2) cannot be
expressed in a simple form. However, we can
study « in various limits. In particular, we shall
study the limit of o at large g2.

Since our potential does not have a hard core,
we can show that a large coupling constant always
leads to a large density in the rapidity space.
Hence, the average rapidity difference (z,) tends
to zero as g -, Thus, in the strong coupling
limit, we need consider only the small-z, behavior
of (3.2). We then have

e E2= f(z, E's)

pt § - 1. - . -2
== k2 +p? +;—-[(k"_1-k,,)2+m2]} .
\ n

n

(3.3)

For m+#0, the average k 2 +u? is bounded and
[(k,, -1 -k )"+m 1/z, tends to © as z,-0, Thus,
we can 1gnore k% + 12 in comparison with
(k,., -k )+m2]/z in the small-z, region. For
m =0, p? is the only remaining mass scale and
certainly cannot be ignored. However, we can

always ignore k,? in comparison with (k,_,~k,)%z,
as z,~0. This can be seen more transparently
after a scale transformation

k ’lk’,l’ (3 4)
K, _1=2,_Knp_y,

which leads to
1 - -
Z’ (kn-l _kn)2 -

and (3.5)
K,2=z,k’? -0,

To anticipate all relevant possibilities, we write

- 4 ~2 m2 \=2
Al =t (e s S22 (3.6)
with
a =En-1 -En' (3-7)

Note that in the high-density limit f, depends only
on the rapidity difference z and the transverse
momentum difference q.

Given f,(z,q), we can obtain the trajectory
function a as a function of the coupling constant
A =g%/4rpu* and, consequently, obtain all the multi-
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plicity distributions. The explicit form of a can
be determined either by the Mellin transform
technique'® or by the statistical-mechanical meth-
od,’ giving

1 had dzq =) -2
vl e Jay se e, e

where

_ £
4rpt
and «(0) stands for a(¢) at t=0. Combining (3.6)
and (3.8) and carrying out the ¢ integration, we
obtain
1__ 1
X 4ra) 1+m2a(0)/n

A

; C(m?a(0)/p?), (3.9)
where
C(x)=(1 +x)[1 —xe*E, (x)] (3.10)
is a slowly varying function satisfying the properties
:<Cl)<1,

0< x<wo, (3.11)
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1
and
C(0)=C(e)=1.
Thus, as a(0)-«©, we obtain
1__ e 1 (3.12)
X 4ra(0) 1+mPa(0)/u? °
This equation demonstrates a change of power
dependence in a(0) as m/u -0: For m#0, we
obtain from (3.12) that, as a(0) -,
__& 1
a(0)= 5 . (3.13)
For m =0, on the other hand, we have
g
= —=— 14
a(o) 16“’2#2 . (3 )

This change of power dependences as m/u -0 is
independent of the nearest-neighbor approximation
and also appears when all the multiparticle forces
are included. This point will be discussed in

Sec. V when we treat the “full” ladder amplitude.

B. Nonforward Amplitude, t # 0

The nonforward nearest-neighbor amplitude is

foln =1, m, 1) = — 21" [&H-I-E,)%mz L G 3k +p }-1
z ’, n-l—xn)x" Xpo1=%Xp X,

k K 2 o _1-’2 2 -1

Xp-1 =Xp Xn

where ¢ =—k? is the momentum transfer. The main
purpose of this section is to study the qualitative
feature of the ¢ dependence in a(¢) near =0, In
particular, we wish to make sure that the asymp-
totic s dependence of the ladder amplitude changes
smoothly from £=0 to ¢#0. Thus, it is sufficient
to study a(¢) for a finite region of ¢, say, 0< —¢
<O(u?). For —t=k?<4p? we have particularly
simple inequalities, valid for any A >0,

[A +K,2 +p2 +k2/4]"2<[A + (&, + 3K)? 4 p?]
X[A + (&, - 4k)? +p2] 2
<[A+p?+k¥4]™2,  (3.16
which imply an upper and a lower bound for f,.

In the high-density limit,

zn=3£n;;c;)£n_<<1, (3.17)

n

we can always ignore k&, in the lower bound in

r

comparison with A =[(, ., =k, +m?]/z, in the
computation of the trajectory function. Then,
the upper and the lower bounds on f, become the
same. Hence, we conclude, at large g2, that

a(t, n?)=a(0, p? +k%/4) for —t=k? <4u2,
(3.18)

Since we know the bounds on a(0), we establish
easily bounds on a(t¢) in this region of .
Equation (3.18) leads to some rather surprising
results. For m#0, we learn from (3.13) that
@(0) is independent of p2 at large g%. Hence,
(3.18) implies that, for m#0 and at large g,

a(t)= 21% [1 +o(;—>] , —t<4p?

is also independent of ¢, i.e., all the ¢ dependence
in a(¢) appears in the nonleading terms at large
g. For m=0, on the other hand, there is explicit
t dependence in a(¢); we find

(3.19)
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2
g 2
= —t=k?<4u2, .20
a(t) Tor (o159 M (3.20)
As we shall see, Eq. (3.18) and the absence of the
t dependence in a(¢) for m# 0 are also valid for
the “full” ladder amplitude in the high-density

limit,
IV. N-BODY POTENTIAL

We shall generalize our considerations to include
up to N-body potentials, N fixed. In general, the
problem is no longer solvable analytically even
in the large-g limit. However, we can find upper
and lower bounds on the amplitudes which reduce
to solvable potentials in the strong-coupling limit.

The forward (¢ =0) N-body amplitude in the high-
density limit (1 >>z,) is given by

4 - 2 2
fN<1,2,...,N)=zi—<uz+_qaﬂ+...

N 22
- 5 2\ -2
+gu1n_> , @.1)
Y
where
Z; =1ﬂ(x‘-1/x|‘)’ (4 2)

ai =Ei-l -k;.

We first consider the case m# 0 so that the p?
term in (4.1) can be ignored.

(a) Upper bounds on fy and ay(0), m+0. Using
the fact that the arithmetical mean is larger than
the geometrical mean, we obtain an upper bound

Y=exp(-EY) as

}14 z; 2/(N-1)
fysry= Zy(N-1) ll <a.2+m2> (4.3)
i=2 i

and

4

- <—=FEU = Y
Ey<-Ef=In_— 5
PR ST 7 4.4)
N-1 ; na‘z+m2 : *

The potential EY is obviously two-body separable.
Hence, we can replace EY, and consequently fY,
by an equivalent two-body EY and fY, giving

2

4
TF 2nErE, (46)

“EV(z. &)= Lad
EN(Z,q) an(N—

“U - l-L4Z

fN(ZaCI)— (N_1)2(62+m2)2 . (4.6)
This latter potential is solvable. Then, the upper
bound on the asymptotic trajectory function o is
given by

$* MULTIPERIPHERAL MODEL... 3703

1 - d*q Bz -zl
L f %) @rF W-tr@ e ¢
4.7)
and consequently
1
WO =TT o “.8)

(b) Lowey bounds on fy and ay(0), m#0, We
can obtain a useful lower bound on f, by using
the inequality

Ze”",  u>0, (4.9)

u?zjie
Then we find
62“4a2

>fL o ———
w2 I%= Tz (N =1

a/m* & q.2 +m?
Xexp[-N_l TL:; Z; J’
which is also two-body separable. Hence, we can
replace f% by an equivalent two-body amplitude

(4.10)

2,42 F2 2
Lo =\ €uia _a d%+m
Sy, d)= Amz(N 17 exP[ z oo :\-

(4.11)
The parameter a appearing in (4.10) and (4.11) is

arbitrary and will be chosen to optimize the tra-
jectory function a%. From (4.11) we obtain

_];_= fmdzf dzq 62“4‘12
X o (2m)? 4m*z(N-1)?

T2 2
q

o[- £ 22 g

N R

ezp_4a a 1/2
- Gty (o) K2y,
N
4.12)
and, hence,

1 g

Lo)=1 3 /2 A
ay(0)=ze[26°K, (2b)] N-1 4mm

, (4.13)
with
b®=aak, (4.14)

The best lower bound on a} is determined by the
maximum value of 3K, (2b), which corresponds to

b=1.193,

and (4.15)

0.730
N-1 4mm

a%(0)=

Putting the upper and lower bounds together, we
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have
0.730 g g 4.16
N-1 4mm <a”(0)<N—1 4rm (4.16)

J

Then, we can apply the same technique of finding
the bounds on fy by factorizing the individual
terms, §;%z, +p¥(N-1). The two-particle am-
plitudes derived from the upper and lower bounds
are

. e g2 pt \-2
fg(Z,Q)=W<—z—+ N1 > (4.18)
and
—_ >y ezaz a—i “'2
I, )= o1y e"p[‘ R (z N1 ﬂ’
(4.19)

respectively. The upper and lower bounds on a,,
obtained from (4.18) and (4.19), are

1 g°
2(N-1) 16n2u?

1 g2
<anO) {7 Terzr -

(4.20)

The change of g? power dependence in a, as m -0
is evident from (4,16) and (4.20).

The result presented here can be generalized
easily to nonforward amplitudes. In particular,
we find that Eq. (3.18) is also satisfied in the
N-body potential approximation, and so are the
special features of a for finite ¢.

Based on the results we have obtained, we can
make an estimate on the g% and N dependence in
ay when N is comparable with g2,

Consider first the case m #0. Under the N-body
potential approximation, we learn that the trajec-
tory function behaves at large coupling constant as

2 1/2
aﬂm-ﬁl_—l-<ﬁm—2> . (4.21)
For any fixed N, (4.21) implies that o, increases
linearly with g at large coupling strength. How-
ever, in the full ladder amplitude, we must under-
stand the limit N— <, The question then is: “What
is the effective N above which the many-body
potential can be ignored?” We can make a quick
estimate from (2.9) that the N-body potentials
remain important if

For m =0, we find that we can no longer ignore
the p? term in fy. For comparison, we rewrite
fvas

= 2 2 -2
R U 2 ) j‘ 4.17
+ +( PR Vo . (4.17)
N
Xy/%, =€xp (—Zz,)
1
=0(), (4.22a)
and can be ignored if
N
Xy/%, =€xp (—Z}z‘) <<1, (4.22b)
1

In other words, the effective N is given by 1/(z),
where (z) stands for the average distance between
two adjacent particles in the rapidity space,

N=~1/z). (4.23)
From (3.8), we find that the important z integra-
tion region is determined by

za=1, (4.24)
Thus, we obtain
N=~a, (4.25)
and, when combined with (4.21),
2 1/4
Q< ("4,%,?) . (4.26)

Therefore, we anticipate that the trajectory func-
tion of the full ladder amplitude behaves like ( g/m )2
for m#0. Similar arguments show that o behaves
like g/u for m =0. In the next section, we shall
establish rigorously the upper and lower bounds
for the trajectory functions which confirm the
estimated g dependence given here.

V. BOUNDS ON THE FULL LADDER AMPLITUDE

In computing the trajectory functions from the
full ladder amplitude, we assume that the energy
is high enough so that the average number of final
particles [7~(g?da/dg?) Ins] greatly exceeds the
effective order N [~O(g)] above which the many-
body potentials may be ignored. For notational
simplicity, we reverse our labeling on z such
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that X, __en
. ~ Xpor =%, 1=-e%1 "’
z,=Inlx,_,/%,), 4,=k,_, -k, - (2, +23)
X, _e (5.2)
-~ = > Xpog=Xpg_y 1-e™%2 7
zy=lnlx, _,/x,_,), d,=k,_,-k,_,, (5.1)
In this notation the high-density limit of the for-

Equation (5.1) implies that ward ladder amplitude takes the form

.

e %1 e~ (a1t %) e”(F1tEtt tegoy)

(3112+m2)+z— @2 +m?) 420+
2

- wt - -2
™, &)= [u“ (q,.-f+m2)} ,
1

(5.3)

n-=1

where we have ignored Elz in comparison with '(ilz/zl .

For n>>(z)"', the dependence of ™ onn and z,, i 2n, will be washed out by the damping factor
exp(-2,7:'z;). Hence, extending the summation in the square brackets of (5.3) from » to « will introduce
only negligible error. This fact is important in establishing the lower bound.

(a) Upper bounds on ™ and a. To obtain an upper bound, we cut off the sum in f™ after (N—1)
terms, with N<n. This leads to

4 > 2 2 2 = 2 2 2
- _<L[ - (9;:_"!__ n ) -<z+.><gz_+m_ n >
F" zy,q,) Pl G sl s ) A s o o B

g 2 2 2 -2
+e-(gl+..-+zN_1)<qN;1 wm? N“—I >] ' (5.4)
N-1

Now we can construct a two-body separable potential as an upper bound. The equivalent two-particle am-
plitude derived from this upper bound is

4_ Nz ~2 2 2 -2
ol ey Hle (q +m M )
Fi(z,8)= (N=1)%z z TN-1 ’ (5.5)
which leads to an upper bound aY(0) on the trajectory function through
1 4mpt
g
o d%qg - _
[ [ Tz e
I «© -(a”-mz<m*2 T )-1
" an(N-1F fo dze z "N-1) ¢ (5.6)
The optimum choice of N is determined by N-1=3;a", giving
1 _4mp*
A 82
_ u2 (aU)ZmZ (aU)ZmZ . ((aU)ZmZ
- [1 - e e T () ] (5.7)
Using the inequality
11 <e*E,(x), x>0 (5.8)
we can replace (5.6) by a much simpler, but slightly worse, constraint,
2,.,2 4 2
2(1 am ) < 8 .
(1< + 4‘-142 167TZIJ-Z (5-9)

() Lower bounds on ‘™ and a. To obtain a lower bound on the amplitude, we put in a lower cutoff in
z; by hand,
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e~ (2, *25)

q,2+m?)+

e N

4
f(")(z( ,54)32— [“2"‘
1

2

©

(dzz+m2)+"'] II 6(z, -2z,), (5.10)

i=1

where we have extended the sum in the square brackets to ©. The cutoff z,>0 will be determined later
to give a maximum lower bound af. With the presence of the cutoff, we have

e %

e
G2+ m?) +

4
f(")(zi ,ﬁ¢)>‘:— [I—‘-z"‘
1

1

e%a? ex _g_[ 2, e~ %o
= 421 P U'z K

0 (622 +m2)+...]

@2 +m?) + <

2 o
IT o(z, -z,)
1=1

-2z

- (622+m2) +"'j|} ‘f:Ile(zi—zo)’ (5.11)

where a is another parameter to be determined. The last expression in (5.11) is clearly two-body factor-
izable. Thus, we obtain an effective two-body amplitude as a lower bound:

2,2 52 2
FH(z,q)= 34—:— exp [- i% (uz +q—+m—> ]9(3 - zp),

where a and z, are parameters chosen to maxi-
mize the lower bound. From (5.12), we find a
lower bound a’ on the trajectory function through

1 _4mp?
gt
d? - -
2,,2 @
= 186:012 abe""f due®-°'", (5.13)
b
where

b=z,0,

(5.14)
c=am?a?/bu’.
To give a reasonable lower bound for all m, we
choose

2,2\~1
a=<1+—%> , b=2, (5.15)

and obtain

4mpt N n?

g2 8med®(l +mPa?/4u?) °
Combining (5.9) and (5.16), we have

o2

(5.16)

2
a0 [1 .
1 g2

>-2—é— 16m2u2 ° (5.17)

In particular, we have for m/u #0

g /2 g 1/2
2<m) > 0(0)>0.9262 <—4-1_T7> (5.18)

and, for m =0,

2<4fu>>a(0)>0.4289<zf—u). (5.19)

(5.12)

Let us compare our upper and lower bounds with
the results of Rosner,® Wyld,'° and Cheng and Wu,
who obtained their results by solving integral
equations. Rosner obtained the upper and lower
bounds on «, for m#0,

a(0)
(gT(‘n’n'z)l—lz— <1.47 (5.20)
which is slightly better than ours. Wyld, Cheng,
and Wu obtained for m # 0 the following numerical
answer!®:

1.23<lim

1/
@(0)=1.4669 (—ﬁf:m—z) L, o). (5.21)

For m =0, the trajectory function is known analyt-
ically.®*® The trajectory function in the forward
direction is given by

2 1/2
0(0)=%<1 +Eg“T> -3

gz /2
=<W> Lo(). (5.22)
Of course, both (5.21) and (5.22) agree with our
bounds on «a(0).

The advantage of our method lies in the ability
of relating the known properties of the real gases
to the calculation of the ladder amplitude. For
instance, from the property of the “potential,”
we can anticipate the behavior of the trajectory
function which is the analog of the “pressure.”

We can also understand intuitively how the g-power
dependence in the trajectory function may change
as the mass ratio m/u varies. Furthermore, our
method has the virtue of being conceptually very
simple.

It is important to point out that our analysis can
be applied to nonforward direction as weii. Using
the method outlined in Sec. III B, we find that
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for -t =k2<4p?

a(t,p?)=al0,u? +3%?), (5.23)

as given in (3.18). Thus, we conclude from the
discussion in Sec. III B that for m #0 and large

g, a(t,u?)is asymptotically independent of both
wand ¢. However, for m =0 and —t=k2<4p2,
a(t, p?) picks up an explicit ¢ dependence through

g2 2
a(t,u2)=[m] (5.24)

as g -,

VI. DISCUSSION

Although the main content of this paper is the
study of asymptotic bounds on ladder amplitudes
at very large coupling constants, we do not pre-
tend that the ladder amplitude alone is necessarily
relevant at very large coupling strength. On the
contrary, more complicated exchanges may play
important roles in this limit. In the following,
we wish to mention two possible mechanisms by
which our ladder calculations may remain rele-
vant in the strong coupling limit.

In the first case, we consider the strong-cou-
pling limit of a unitarized Regge model. The tra-
jectory function appearing in our calculation is
interpreted as the input trajectory function which
controls the s dependence of the eikonal function.
After imposing the s-channel unitarity, we obtain
the full amplitude as the eikonal iteration of the
original ladder amplitude.'? The final-particle
distributions can be computed once the distribu-
tion in a single ladder is given.

In the second case, we follow Bander!? by con-
structing directly from the observed exclusive
cross section o, a partition function

Q(, 8)=272"0,(s).

For multiperipheral processes, we have
QM 8)~s*®

for all ». Now, we can study the behavior of

Q@(, s) and a(r) at large A. Physically, a large

A implies that the coupling describing the emission
of final particles is artificially enhanced, but the
coupling associated with virtual processes, such
as the absorptive corrections, remains unchanged.
Because these two couplings are different, the
amplitude Q (A, s) does not have to satisfy s-channel
unitarity and, consequently, a(\) can be larger
than one. In particular, if the physical cross
section o, can be described by the ladder ampli-
tude at A =1, then at large A, Q(s,\) and a())
behave as the ladder amplitude at the strong-

coupling limit. Hence, it is interesting to compare
results obtained from @ (\, s) with those predicted
by the ladder amplitude.

Recently, Bander made a numerical calculation
of a(\) from the p-p data.'’®* According to his
analysis, a()\) appears to increase as VA «g at
large A. It is interesting to note that a linear
g dependence emerges naturally in the ¢3 model
by keeping only the nearest-neighbor or any fixed
N-body potential. Analyses using better and high-
er-energy data to determine phenomenologically
the nature of the potentials in the gas model are
certainly desirable.

To give an estimate of the effect of multiparticle
potentials, we note from our calculation that N-
body potential becomes important only if the den-
sity in the rapidity space is of the same order
of or larger than N. Let us assume that this is
a general feature also applicable to the high-ener-
gy scattering. The present experimental data
seem to support a logarithmic increase of the
multiplicity at high energy, 7 «lns. This implies
a constant density, 7/lns ~2, in the rapidity space
at high energy. Hence, one might hope that only
two- or three-body potentials are important in
the actual high-energy hadron-production pro-
‘cesses,

In Appendix B we show that if one replaces the
full ladder amplitude by an effective two-body
potential amplitude through equal-spacing approx-
imation,' the derived trajectory function agrees
amazingly well with the exact calculation at high
density. This indicates that the effect of all mul-
tiparticle potentials in our model calculation can
be approximated by an effective two-particle
potential, in the spirit of the well-known mean-
field approximation. The existence of an effective
two-body potential may be a general feature of
the gas model. We may anticipate that an effec-
tive two-body potential can be used to describe
phenomenologically the trajectory function and
the final-particle distribution.

Added Note: One of us (S.-J.C.) and J. Rosner?®
recently have derived the exact asymptotic result
(5.21), (5.22) as well as the O(1) corrections by
studying the Bethe-Salpeter equation in coordinate
space. A relation is found between the asymptotic
Regge trajectory functions and the size of classi-
cal orbits described by the coordinate-space wave
function.
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APPENDIX A: ONE-DIMENSIONAL LADDER AMPLITUDE

In this appendix we will study the bounds on the trajectory function as the coupling constant approaches
infinity for the ladder amplitude in one space dimension. Since the energy dependence of the ladder am-
plitude is entirely due to longitudinal degrees of freedom, the one-dimensional model possesses all the
essential features of the three-dimensional model without the complications of transverse motion.

In the one-dimensional ladder model, the properly normalized amplitude for » additional particles pro-
duced in the pionization region is, according to Ref. 15,

m o N A i
b (xl,xz,...,x,,)=x(x —x,)%,(x, —x,) " (x —x,)x,2 <x2> (x -X +x
1%y = X5) %p( Xy = %5 n=1""n’"n 1 v 2

2 2 2\ -2 2 2 2 2 \-2

m m m m m

X< + +“—) < + +"'+—+“—> , (A1)
Xy =Xy Xp=X3 X Xy =Xy Xp=Xg Xpa1=Xp Xy

where the same notations as in the text are used. The scaled longitudinal momenta x; are ordered as in
(2.3), and the amplitude b‘™ also satisfies the factorization property (2.4). The function f(1,2,...,n)
introduced in Sec. I for this model is

x, _ut m? me m2 e \"2
f(n)(l 2 ...,n)= n-=1 < + 4oeee g + . A2)
Y (xn-l_xn)xnz Xy =X, Xy =X Xp-1=Xp Xn (
]

Using the method developed in the text, we can 0.823 g2 \v2 < 1 g2 \V2
obtain bounds on the amplitude f‘ as well as on N—1 \dnm?* A y-1 \ammt ) - (48)
the trajectory function a. Since the calculation . . . . )
is straightforward, we shall not reproduce it Th(? c<.)eff1c1ent 0.823 is obtained by choosing a to
here. In the following, we list the essential re- optimize the lower bound. o
sults in the one-dimensional theory for-m #0 and R ’If‘hel sspec1al case N =2 is given explicitly in

e
g - 00 . ° °

. 2. Full Ladder Amplitude
1. N-Body Potential

The full amplitude at the high-density limit i
The one-dimensional N-body amplitude at the P 6 NSty Hmit 18

. . . sy s 41 -2z =(2zytz,)
high-density limit is f(n)(z‘)=<_&> 1 [e Lol
m/ z, L z, z,
4 -2
gy (1 1, L) Gepre e ve, ) -2
(=) 2z ym® <Zz + 2, + + Zy , (A3) +e_’*"~l:| , (A7)
Zp-1
where z; =1n(x;_,/x;) measures the rapidity differ- where the labels on z; are reversed as in (5.4).
ence as before. For the upper bound, we cut off the sum in f™
The equivalent two-body amplitudes derived after (N-1) terms, with N<u. This leads to an
from the upper and lower bounds are equivalent two-particle amplitude
4 4

FU() o M2 FU( Vo K2 Ne

Si(z) mA(N=1) (A4) fr(z)= mi(N=-1) ¢ (A8)
and which differs only slightly from (A4). The best

_ etpig? ) upper bound is obtained from (A8) by choosing N

fE(z)= Tz (N1 eV, (A5) to minimize Y, giving

2 1/4

respectively, where a is a parameter to be chosen aV=2 <4 g ry ) . (A9)
to give the best lower bound. These two-body mm
amplitudes lead to an upper and lower bound on To obtain a lower bound on the amplitude, we

ay as put in a lower cutoff II,6(z, -2,) by hand and
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extend the sum in the square brackets of (A7) to

«, Following the procedure developed in Sec. V,
we obtain an effective two-body amplitude as a

lower bound,
e?uia?
4miz

fi(2)= exp (- < )9(2 -z,), (A10)
2,2

where a and z, are two parameters to be deter-

mined later. With properly chosen a and z,, we

obtain from (A10) a lower bound

ok =1 13( 8" )”4 (A11)
o 4rm? )
Combining (A9) and (A11), we have
g2 1/4 < gz >l/4
1.13 <———4m,,) <a<2(Eo) . (A12)

Note that both the upper and lower bounds on a
have the same power dependence in g2, Only the
coefficients in the front are different. Just as in
the three-dimensional case, the g? power depen-
dence in a changes from g to Vg as all the multi-
particle potentials are included.

APPENDIX B: EQUAL-SPACING
APPROXIMATION

Because of the repulsive nature of the potentials,
Lee!* suggested that it would be a good approxi-
mation at high density to assume that the final
particles are equally spaced in the rapidity space.
Hopefully, we can take the equal spacing as the
zeroth approximation, and develop a new approxi-
mation scheme by taking various correlations
into account. In this appendix we shall study this
zero-order approximation and compare our re-
sults with the known solutions numerically.

1. One Space Dimension
We substitute
zl=zz="'=z (Bl)

into (A7), and obtain, at n—-« and z -0,
() s
f(z)—(m)z . (B2)

The asymptotic trajectory function is then given

by

4mpt

g
4 e

= <i> J- dz z%™**
m 0

(),

which leads to

[

1
X
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g2 1/4
a=1.5651<4nm4 ) ) (B4)

Now, let us compare (B4) with the exact result.
Using the method of Ref. 20, we find that the exact

asymptotic expression for « is

a =(5.8828)"¢ —gz—->1/4
: 4drm?*

2 1/4
=1.5574( g )

4rm?

where the coefficient 5.8828 is the maximal value
of 2z°K,(z). Indeed, (B4) gives rise to an a not
only with the correct g power dependence, but
with a numerical coefficient to within the accuracy
of 0.5%. Thus, the correction on a due to the
fluctuation is less than one percent.

2. Three Space Dimensions

For the forward three-dimensional ladder am-
plitude (5.3), we set

Z,=2,=*""=2 (B5)
and
-&12=622=” '=az- (B6)
Then we obtain
- 4 "z+m2 -2
f(z,q)=*;—(u2+q7) , (B7)

which leads to an equation on the trajectory func-
tion,

4

Lum

1.
==

g2
w dz dzq '&2 +m2 -2
=14 == 2 -za
=U J; 2 (2‘”)2 (u. + 2 e
4

4

K ©  zdz -z
:ZTT L —H2+m'2/z'_2 e %%, (B8)

From (B8) we obtain for m#0

3192 1/4 2 1/4
a= <161r§m2 > =1.5651 <161§2m2 ) ’ (B9)
and for m =0
gz

a= _I-B—TIZF (B10)

Note that a|,,., obtained in (B9) differs from the
numerical result (5.17),

_ gz 1/4
a—1.47<———16"2m2 ) R

by only 7%, while a|,-, obtained in (B10) agrees
exactly with the analytic calculation. This indi-
cates that the equal-spacing approximation is in-
deed a very good approximation at high density.

(5.17)
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It is shown that the magnetic dipole and the electric quadrupole moments of the W* meson must be
equal to e/m and —e/m?, respectively, if we demand either that the Drell-Hearn sum rule is
satisfied up to order a’ or that the helicity of W* is conserved in the scattering from an arbitrary
electromagnetic field at high energies and at small but finite scattering angles.

I. INTRODUCTION

W* vector bosons, which are supposed to medi-
ate the weak interactions,! have (in addition to the
charge) a magnetic dipole moment and an electric
quadrupole moment.>*® We assume that the elec-
tromagnetic interaction of the W* bosons is in-
variant under the time-reversal and parity opera-
tions, hence the electric dipole moment* is zero.
The values of these moments greatly affect the
total production cross sections, the energy-angle
distributions, and the decay correlations in the
processes such ase*e™ - W*W~,% yZ - W*'W~
+anything,® v, Z - uW +anything,” etc. Therefore
if W* bosons are discovered it is relatively easy
to find these moments. It is interesting to specu-
late what these moments should be. W* bosons

are assumed to have no strong interactions,® hence
the observable moments are expected to be not
greatly affected by the radiative corrections, in
analogy to the magnetic moment of an electron
which ® is given by

e o a2
“e"z“m—,<1 *or T 0.328479+--.)

=_€_
“4m, e -

As is well known, this is the consequence of the
quantum electrodynamics of a spin-; particle as-
suming no anomalous magnetic moment (Pauli
term) in the Lagrangian. The absence of the Pauli
term in the Lagrangian is commonly believed to
be due to the fact that its presence would render



