=3

W=exp(i37Y_). (12)

This restriction, combining with the assumption
of octet dominance, limits the symmetry breaking
to the (1,8), (8,1), (3,3), (3,3), (6,6), (6,6), and
(8, 8) representations.?!

Unfortunately, a W-invariant irreducible Hamil-
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tonian gives unpleasant results in the (3, 3) + (3, 3)
system (m,?=0 and 0, =0).'° However, a reduc-
ible, W-invariant Hamiltonian certainly contains
sufficient free parameters to fit all the presently
known data on meson-meson and meson-baryon
scattering.
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We examine the implications of a Nambu-Goldstone realization of chiral symmetry in the quark-gluon
model. The context of this examination is that of a renormalizable, finite theory, so eigenvalue
conditions are assumed to be satisfied. We discuss the solutions to the Schwinger-Dyson gap equation
for the fermion self-energy S(p’) that exhibit spontaneous breaking of the vacuum symmetry. In the
leading-order Bethe-Salpeter approximation the boundary conditions to the homogeneous, linear integral

equations stipulate the vacuum symmetry. It is shown how the Goldstone bosons emerge as bound
states, as suggested by Nambu and Jona-Lasinio. We also examine the Goldstone alternative in the
Bethe-Salpeter equation for fermion-fermion scattering. Explicit symmetry breaking is introduced by
additional Abelian vector gluons coupling to hypercharge and isospin besides baryon number. The
eigenvalue condition for the fine-structure constant is consequently model-dependent but takes a simple
form. We also consider the influence of explicit symmetry breaking on the ground-state mesons and
indicate how the solutions to the eigenvalue problem regulate the structure of symmetry breaking.

I. INTRODUCTION

The standard model for implementing the Nambu-
Goldstone realization of chiral symmetry has been
the renormalized £ model.*? This model has the
property that to lowest order in the coupling con-
stants and in the tree approximation one may ex-

amine the spontaneous symmetry breaking of the
ground state. In particular the mechanism of the
Goldstone theorem is explicit in this model, and
most of the consequences of chiral symmetry like
soft-pion theorems can be examined in the tree ap-
proximation.

In this article we will examine how a Nambu-
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Goldstone realization of a chiral symmetry can
occur in the quark-gluon model. If such a realiza-
tion is possible, then the ground-state mesons
must be bound states of quark-antiquark pairs.
Consequently such a realization can never be ob-
tained to any finite order in perturbation theory in
the quark-gluon coupling.

Our undertaking is very much in the spirit of the
original Nambu-Jona-Lasinio model® in which the
ground-state pion emerged as a massless bound
state. However, their model required a cutoff due
to the divergences associated with the four-fermi-
on interaction, while the quark-gluon model, after
renormalization, will be cutoff-independent.

We are motivated by the hope of incorporating
the feature of chiral symmetry, which has experi-
mental success in its own right, with the features
of the quark model into a single model of the strong
interactions. Both the £ model and the quark mod-
el have undesired features. In the ~ model one
has elementary scalar and pseudoscalar fields con-
tributing to the currents so that the Callan-Gross
sum rule,* which seems to be supported experi-
mentally, would be violated. Further, one does
not have the same light-cone algebra as abstracted
from the quark model. On the other hand, in the
quark-gluon model, as it is usually implemented
in perturbation theory, one does not have Gold-
berger-Treiman relations or soft-pion theorems.
We would like to construct a model that retains the
desirable features of both the = model and the
quark model and dispenses with the undesired fea-
tures.

In the model we will describe the ground-state
mesons would be bound states, like other hadrons,
and could lie on a Regge trajectory. In this model
the energy scale is set by the quark mass or,
equivalently, the meson decay constant f,.° Ulti-
mately one might amend a gauge model of weak
interactions to such a hadron model.

The quark-gluon model we will examine is essen-
tially quantum electrodynamics (QED) with a mas-
sive photon and zero-bare-mass fermion. We will
appeal to some of the known features of this theory
which lie outside the direct context of perturbation
theory. For reviews on the topic of finite QED,
the reader should consult the articles of Johnson
and Baker,® and Adler.”

There is, however, an important difference be-
tween the solutions to QED that are experimentally
relevant and those of the gluon model as a model
of strong interactions. While we want Goldstone
bosons in the symmetry limit for the gluon model,
we do not want this for QED. The way in which
this difference can come about is described here.
The main point is that the formal y, invariance of
the Lagrangian implies that the matrix elements

of the divergence of the axial-vector current obey
homogeneous Dyson-Schwinger equations. If we
pick the trivial solution to such homogeneous equa-
tions, then the Goldstone theorem applies and we
must have Goldstone bosons. This is the case de-
sired for the gluon model. Alternatively, if we
assume the Goldstone bosons do not couple then

we cannot have the trivial solutions to the homo-
geneous equations, and the Goldstone theorem
does not apply. This is the solution for QED.

The plan of this article is as follows. First we
will review the conditions for a finite theory. We
discuss the conditions that the Schwinger-Dyson
gap equation for the fermion propagator possess
a nontrivial solution. The fermion mass is gener-
ated purely from the interactions (as in the & mod-
el). From the axial-vector Ward identities, we
examine the conditions that Goldstone bosons exist
or do not exist. We also examine the Bethe-Sal-
peter equation for zero-mass poles in the fermion-
fermion scattering amplitude and show how the
Goldstone alternative emerges.

In Sec. III we consider explicit symmetry break-
ing by introducing additional Abelian vector me-
sons which couple to Y (=hypercharge) and I,

(= component of isospin) besides B (=baryon num-
ber). The eigenvalue conditions for a finite theo-
ry turn out to have the simple form f(g;?) =0,
where the g; (i =1, 2, 3) are linear combinations
of the coupling constants to B, ¥, and I,. A con-
sequence is that the eigenvalue condition for the
electric charge e is model-dependent. It depends
on the couplings of the additional vector-meson
species. One may still in principle compute the
fine-structure constant; however, it is no longer
the eigenvalue of the simplified eigenvalue condi-
tion for pure QED. Further, we indicate how the
solutions to the eigenvalue problem can regulate
the structure of symmetry breaking.

The model is considered in the leading-order
Bethe-Salpeter approximation. In this approxima-
tion the integral equations for the fermion self-
energy are homogeneous linear integral equations.
It is the specification of the vacuum symmetry
that establishes the boundary conditions required
to solve such equations. Some symmetry-break-
ing effects in the ground-state meson spectrum
are considered. All symmetry-breaking effects
are completely finite in this model. In particular,
radiative corrections are all finite.

II. THE QUARK - GLUON MODEL

A. Finite Quantum Electrodynamics

We will briefly review the conditions for a finite
theory®” and specify our assumptions. The La-
grangian is £=£,+£’, with
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Lo =-ig(x)y - 9q(x) - 3G, G*¥ - Fu,"W W,
-goWu‘_I(x)')’u q(x) - [aqu(x)]z/)xz ’
Gyy=3,W,-8,W,.

¢

X is the gauge parameter and £’ is a term which
breaks the formal U(3)x U(3) symmetry of £,.
This theory is renormalizable to every finite or-
der in perturbation theory.

As is well known, the divergences associated
with the unrenormalized theory can be lumped into
the vertex, wave-function, and coupling-constant
renormalizations, Z, =Z, and Z;, respectively.

By a suitable choice of the gauge parameter A,
corresponding to the generalized Landau gauge,
the gauge-dependent constants Z,=Z, are rendered
finite. We will choose this gauge to work in.

The condition that Z;, a gauge-independent con-
stant, be finite, or equivalently that the renormal-
ized gluon propagator have asymptotic behavior
no worse than free-field behavior, implies an ei-
genvalue condition on the coupling constant.® If
one sums the vacuum polarization graphs by a
“vacuum polarization insertionwise” summation,
then this condition is on the bare coupling g,, with
no implied restriction on the physical coupling
other than g,> = g. If one sums in renormalized
perturbation theory by ‘“loopwise summation” as
described by Adler,” then the condition is on the
physical coupling constant. It could turn out that
both of these summation techniques are consistent,
in which case they simply define different theo-
ries.® For definiteness we will assume that the
condition is on the physical coupling constant.

If one sums all the graphs of the “cracked-egg-
shell” variety shown in Fig. 1 to the vacuum polar-
ization in renormalized perturbation theory, then,
as Baker and Johnson showed,® they sum to at
most a single logarithm

7% ;:lmC(gz) +f(g%) In(-¢%/q,?) . (2)

Here f(g?) is the Baker-Johnson function. A nec-
essary condition for a finite Z, is the eigenvalue
condition

f(g?)=0. (3)

If the zero of this function were a simple zero,

FIG. 1. “Cracked-eggshell” contribution to vacuum
polarization.
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then the renormalized gluon propagator would ap-
proach its asymptotic value rapidly. In this in-
stance one may replace the gluon propagator with
its free-field value as far as examining asymptot-
ic behavior of other Green’s functions is con-
cerned. However, a zero of f(g?) implies that it
must be an essential zero, in which case the as-
ymptotic behavior of the gluon propagator is ap-
proached very slowly.” Then it is not clear that
one can ignore the nonasymptotic pieces in the
gluon propagator in establishing the asymptotic
behavior of other Green’s functions. We will as-
sume that we may treat the gluon as if it were a
free field if the eigenvalue condition is valid. In
particular we will consider the simplified model
which completely ignores gluon self-energy inser-
tions.?

B. The Gap Equation for the Fermion Propagator

In this model we want a formal chiral symme-
try of £ so that the bare fermion mass vanishes.*
The physical fermion mass M need not vanish.
The mechanism by which this comes about was de-
scribed first by Nambu and Jona-Lasinio,® and in
the present context by Johnson, Willey, and
Baker,® and Maris, Herscovitz, and Jacob,!?

Ignoring gluon self-energies so that p?=p 2,
80=&, we see that the Schwinger-Dyson gap equa-
tion for the fermion propagator is

iy, 382 a‘
S (p)"ﬁ+(2n)4fl2_#z

X(é’uu‘&%@)?’ys(l)_ l)ru(i’-l;l’),
4)

where £(g?), a gauge parameter, is chosen so
that the integral is finite (this defines the Landau
gauge), and S7Y(p) =C(p?)| p - =(p?)] is the fermion
propagator, and I', is the vertex function. These
are unrenormalized quantities which differ from
the renormalized amplitudes only by the multipli-
cation of finite constants Z, =Z, in the Landau
gauge.

Little is known about the solutions to the non-
linear equation (4), even in the approximation
r',=y,. Suppose that u is the only mass scale in
the problem. Then if S™%(p?, u?, g2?) is a solution
of (4) so is B71S™Y(8*p?, B*u?, g?), which, in this
instance, is identical to S7Y(p?, u?, g2). For the
self-energy one has

() =uF(p*/u?, g%, (5)

with F a dimensionless function of its arguments.
Then the fermion mass M is determined from the
gluon mass by
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M =puF(M?*/u?, g%) (6)

and is not arbitrary. QED could be a solution to
(6) corresponding to u =0, and M an arbitrary
mass. Equation (6) could also possibly have solu-
tions u/M #0 corresponding to the gluon model.
Alternatively it may not be possible to solve the
integral equations without stipulating the value of
S~!(p) at some point p,>. This introduces a new
parameter with the dimensions of mass so that

B~ Bp?, B ut, g?) is not identical to S™( p%,u?, g?).

Then the boundary condition T (M?) =M fixes g, and
the masses M and p can be arbitrary.

To leading order in the Bethe-Salpeter expan-
sion, the fermion mass M is arbitrary. To this
approximation the equation (4) for Z(p) is

-3ig? a1z(p-1)

200 =Tam)s f(l2 (p- 12 -MT
i.e., a linear homogeneous equation. So if Z(p)
is a solution, so is any constant multiple of Z( p)
with the constant specified by the boundary condi-
tion (M%) =M.

It is known from a study of the Callan-Symanzik
equations™ that the asymptotic behavior of the fer-

M

]
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mion propagator is given by

c(pz)——C (u2/M%, %),
P2 (8)

z(pz) ~ MC (#2/M2,g2)(M2/p )e(x
p2 >
with C,(u?/M?, g?) finite as u/M - 0. For the inte-
gral (4) to exist we require

e(g?>0. 9)

This is valid to the first few orders of perturba-
tion theory e(g?) =3g2/(4n)* +3g*/(4n)*+--- . We
will assume (9) is satisfied.

C. The Goldstone Alternative in the Gluon Model

That the gluon model can exhibit the Goldstone
mode has been shown elsewhere.!** Here we will
briefly review the argument. Let °[ (', p) be the
renormalized axial-vector vertex function corre-
sponding to y,y5},, and 2M “T3(p’, p) the vertex
corresponding to the divergence of the axial-vec-
tor current. The Ward identity for the axial-vec-
tor vertex then is

(p' =p), “T5(p", 0) =2M TH(p', D) +(Z 4/ Z)[Se ™ (P") vsha +XeysSe ()], (10)

where Sp"(p) =y« p - Z(p) is the renormalized fermion propagator, and Z,/Z, a ratio of renormalization
constants which is cutoff-independent. Further, it can be shown that the Schwinger-Dyson equation for
T5(p', p) is homogeneous, a consequence of the formal chiral symmetry of £,. The integral equation is

TH(p',p) = f( 1Sp(p' + 1) TH(p +L,p+1)Sp(p+ DE(P', b, 1), (11)

where K is the renormalized fermion-antifermion
scattering kernel.
If there exist Goldstone bosons, then

TS (0", )~ 275G (P)( P = p), /(P = PP

as p’ - p, where G(p) is the coupling of the Gold-
stone meson to the quarks. From (10) one has

YsXaG( D) =2M ‘T5(p, ) = (Z 4/ Z,)ysh2Z( D) .
(12)

If the Goldstone mode is absent, as is desired
for QED, then G(p) =0 and 2M °T5(p, p) =(Z 4/ Z,)
Xys2Z(p). This fixes a boundary condition on the
homogeneous integral equation (11), so we cannot
have a trivial solution in spite of the formal chiral
symmetry of £,. This is not a violation of the
Goldstone theorem because the formal chiral sym-
metry of £, is not a true symmetry and the matrix
elements of the divergence of the axial-vector cur-
rents do not vanish.

Alternatively, if we chose the trivial solution
‘T3(p’', p) =0 to the homogeneous integral equa-
tion, then we must have, from Eq. (12), G(p)
=2(Z,/Z;,)Z(p), a Goldberger-Treiman relation.
This is the solution desired for our strong-inter-
action model in the absence of explicit symmetry
breaking (which gives the mass of the Goldstone
bosons). In this instance the Goldstone theorem
applies since the matrix elements of the diver-
gence of the axial-vector current vanish.

The alternatives are the following: Either (I)
the Goldstone mode is absent and the formal sym-
metry of the Lagrangian is broken explicitly for
matrix elements, o7 (II) the formal symmetry of
the Lagrangian is valid for matrix elements of the
divergence of the axial-vector current and the
vacuum symmetry is thus spontaneously broken,
requiring massless Goldstone bosons.

There is no evident inconsistency for either (I)
or (I), but it could turn out that they cannot both
be solutions for all values of the masses and cou-



pling constants. The reason is that the integral
equations to which we assume solutions exist may
not have the required solution for all values of the
input parameters.

An interesting by-product of this discussion is
that a formal symmetry of £, corresponding to a
formally conserved current, need not be a true
symmetry of the world. This is in fact what hap-
pens for QED. Perhaps this is a way of introduc-
ing explicit symmetry breaking without explicit
symmetry breaking on the formal level, while pre-
serving the renormalizable structure of the theory.

The Ward identities for axial-vector currents
have anomalous terms coming from fermion tri-
angles. In the present case there is an anomaly
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in the Ward identity for the current corresponding
to ysv,2,. However, these anomalies do not affect
our considerations here since the Goldstone theo-
rem is a statement at zero momentum transfer
and all anomalies of the triangle type vanish at
this point.!s

D. Bethe - Salpeter Equation

It is instructive to examine the Goldstone alter-
native in the context of the Bethe-Salpeter equa-
tion (BSE) for fermion-antifermion scattering. We
will suppress the internal symmetry factors since
they do not affect the discussion.

The BSE for the fermion-antifermion amplitude
is

4
achd(P’P"k)=acha(P,P'; k)"’fﬁz aede(pv l; k)Seg(l+)bech(l’p,’ k)sh!(l-)s l*=li‘§‘k (13)

and the kinematics is illustrated in Fig. 2. Here K is the kernel, a, b, ¢, d, etc. refer to spin indices,
and S™*(1) =/-M. If there is a massless 0~ Goldstone boson of the type discussed in the last section, then

it appears as a pole in T,

Tl Dy 05 R) =iviyys g(p)kz (£') +an§a(P; PR,

cb

(14)

with T® regular as k-0, and g(p) the coupling constant of the Goldstone boson to the fermions. It is suffi

cient to consider the projection

12igF(.D, P', k) =7¢51d achd YZ» .

(15)
We will also consider the kernel only to leading order and in the Landau gauge,
’ ’ o B
, ’,k =i 2[ _(p_p )q(p-P)B] ‘Yﬂhyﬂﬂ
aKea( Dy D', k) = =ig? | g4g (p-p P (P -pP -2’ (16)

which has the projection

12i 2 5 5
(7 —pyP =i Yu aKca¥ep -

FIG. 2. Bethe-Salpeter-equation kinematics.
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Next we write

+FR(p,p', k), )

F(p,p, ) =S80

where G(p) =2g(p)/3g and FF(p,p’, k) is regular as k-~ 0. With the definitions (13)-(17), substituting in
(13), one obtains

G(p) , G(1) ,
l:G(P )+3lg f(z )4 (P 2_ “2](12_M2):| +FR(I’,P :k)

_ 1 G(1) R(12,1 B, k)
-2 s‘gc"”fm)‘(p z)z-;f[ X }

3~ 2 dql FR(I’)l,k)(lz—mz-k2/4)+MR(p,l,k)
-otg -{W [(p'—l)a—uz](l+2—M3)(lz _Mz) ’

(18)

where

=3R2(12 - M%) - 1B+ (1 R)?

R(lzy l- k: kz) =(l z _MZ)(Z_Z_M )(12 _MB)

so that

R(1%,1- B, k%) -312+3M°
kz - (lz_Mz)s

and is nonsingular, and

as k-0

12ig°MR(p, L, B) =3 o T D, L R) YL 3(VE = BY) - MK ),

vanishes as k- 0.
It follows from (18) that if we take the k- 0 limit and observe, since all the terms but the first are non-
singular, then we have the condition

G(1) _
G(P)[G(P)+31g J‘(Z Y (p =172 - a](lz_Mz)]"O. (19)

The two solutions to this equation correspond to the Goldstone alternative. If G(p)=0, then the Goldstone
mode does not couple. Then the integral equation for the amplitude is from (18) as £~ 0

F¥(p,1,0)
FR(P;P 0)= (P - p)z 37'8' f(Z ye [([) — 17 - q(lz_Mz)- (20)

This equation is the integral equation considered by Willey,' who showed that regular solutions existed.
Alternatively, if the Goldstone mode couples, then G(p)#0 and hence from (19) we require

G(1)
G(p)-—3tg J‘(Z ) (P —17 - z](lz_Mz)- (21)
The solution to this is given by the gap equation (7):

G(p) =AZ(p).

This is the Goldberger-Treiman formula where the constant A is specified in terms of the meson decay

constant. If we use this Goldstone solution, then the integral equation for the regular part of the ampli-
tude is as -0

3i G(1)(3 M? - 21%) FR(p, 1)
FR(p,p') = W—_z 4 G(P)f(zﬂ).; (5 =17-

w2 l(1? - M2y - 3ig” I(Zn)‘ [(p - 1) = u2l(12 - M%)

(22)
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This equation with G(p)#0 is completely distinct
from the one considered by Willey, Eq. (20), and
hence the existence of solutions to his equation in
no way prejudices the existence or nonexistence
of solutions to (22). Whether or not solutions ex-
ist to (22) with G(p)#0 is not known; however, an
iterative solution in a power series in g? can be
constructed with convergent coefficients.

It is of interest to note that the coupling con-
stant G(p) of the Goldstone boson, to the leading-
order BS approximation, is independent of the
value of the gluon coupling constant g. It is, of
course, related to the fermion mass M by the
Goldberger-Treiman formula, but M is an input
parameter to this same approximation. Conse-
quently the coupling constant for the Goldstone
bosons can be large and serve to regulate the
strength of the strong interactions, while the glu-
on coupling is relatively much weaker.

The coupling of the Goldstone bosons may be the
dominant strong-interaction force. Other bound
states, like massive mesons and baryons, could
be due to the larger coupling of the Goldstone par-
ticles and not the gluon, whose influence on real
physics could be negligible, except to trigger the
Goldstone mode.

III. SYMMETRY BREAKING

Symmetry breaking can also be introduced into
the model. So far we have discussed only a single
vector boson W, coupling to the total baryon num-
ber B. For this model we have a solution for
which the quark triplet has a common mass M and
there exists an octet of massless Nambu-Gold-
stone bound-state bosons. By coupling additional
vector bosons to the hypercharge A,/v3 and iso-
spin A;, we explicitly break the symmetry and the
Goldstone bosons get a mass. However, since the
currents to which the additional vector mesons
couple are absolutely conserved, the model is
still renormalizable.

Instead of coupling these fields to Ay, Ag, Ay We
can diagonalize the problem by coupling to the
charges

Q1 =(3)Y o +(3)V g = 2],
Q2 =)o + (VA + 321, (23)
Qs = (%)1/2(X0 - ﬁ)\s) ’

with the orthonormal property

@Q;=0,@Q; . (24)

If g, are the coupling constants to the charges @,,
and e, b,y are the couplings to Ay +13/V3, Ay, Ag/
V3, respectively, then
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e=3g-3(g +&),
b=5g+&:+ &), (25)
y=3(8+8 - 28).

The Lagrangian is
£=8 +8,+8;,
£, =-ig(x)¥q(x) - miq()Qq(x) , (26)
Lo==a Wy, Wy, =z [Wawy + @, Wi/ 7],

£, =g9WQ,q,

from which one obtains the equations of motion
(7 +g,W,Q)a(x)=m7Q,q(x) ,
0,9(x)y,~ g, IO W, Q =-mq(x)Q; ,
@+ AW =gV i), @7)
Vi) =7(x),Q,q(x) ,
@ +x;%0,W}; =0,

For the divergences of the vector and axial-vector
currents Aj =Gy, ¥s32°q, V§ =@r,z)A"q, one has

8,A% =Tiysm{[Q,, 22 ],q+ g Tivs W, [Q;, 32%] ¢,
(28)
&, Vﬁ =im?q[Q, ’ %Aa]-q_ ig?7W¢ [Q( ’ %Aa]-q .

We have retained the bare masses m|.

A. Eigenvalue Conditions

For such a model to be finite we require that the
Baker-Johnson function vanish. As a consequence
of the orthonormality (24), it is clear that only a
single coupling constant g; enters the vacuum po-
larization 7*(g?) of the gluon W} . Hence the three
eigenvalue conditions are the same in this basis,

fg,®)=0. (29)

This equation is the same function that appears in
pure QED, but the condition is on different cou-
pling constants. Only if we set 5=y =0 in (25) do
we recover the condition in pure QED, f(e?)=0.
Consequently the solution to the eigenvalue prob-
lem in pure QED may have nothing to do with the
physical fine-structure constant. However, the
solutions to (29) in conjunction with (25) can, in
principle, determine the fine-structure constant.
The physical fine-structure constant is a small
number. In principle, g,%, which are solutions to
the eigenvalue problem, could be large since the
eigenvalue condition is nonperturbative. It is easy
to see that if there is only one nontrivial solution
to the eigenvalue problem and this eigenvalue is
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large, then the fine-structure constant must either
vanish or itself be large. However, if there are
two nontrivial solutions to (29), both of which are
large, then one can accommodate a small value

for e as a difference between large eigenvalues.
What we wish to suggest is that a small value of
the fine-structure constant could emerge in spite
of the nonperturbative nature of the eigenvalue con-
dition, which seems to suggest that only large so-
lutions may be possible. However, perturbation
theory may be completely deceptive in this applica-
tion.

B. Symmetry Breaking in the Hadrons

In order to study symmetry breaking in this
model we will make some simplifying assump-
tions. First we will set the three gluon masses
equal, which has as a particular consequence the
vanishing of the photon mass j,*= 212 = 3(2 + pg?)
=0. Second we will examine the fermion masses
in the leading-order Bethe-Salpeter approxima-
tion. Writing for the self-energy

A= 55 (0 (30)

the gap equation (7) reads

_=3 d't z((p-1%g°
Z(P ;g4 (2:1.%I flz 2 (i;(fl)z)_glz) .

(31)

To specify the solution to this equation'” we must
impose a boundary condition

Zt(Mi2,g£2)= M, , (32)

where we are completely free to pick M,. Specify-
ing the M, amounts to stipulating the vacuum sym-
metry in this model. M, #0 corresponds to a bro-
ken vacuum symmetry. A. remarked previously,
whether or not this leads to Goldstone bosons de-
pends on whether or not the symmetry is broken
explicitly or only in the vacuum.

In the Z model one is not completely free to
pick the vacuum symmetry. The solutions for the
vacuum expectation values of the scalar field
arise from minimizing a nonlinear potential func-
tion, and the minimum depends on coupling con-
stants, etc. As remarked earlier, for the gluon
model in the full nonlinear version one may per-
haps not be able to pick the M, arbitrarily.

To proceed we will make the assumption that
if g;2=0, then Z;(p?, 0)=M independent of i. Al-
though we are not free to vary the coupling con-
stants g; because of the eigenvalue conditions, it
is helpful to think in such terms. Alternatively
we could have also chosen Z;( 2, g;2) =M ( p?, b?)
if y=e=0, but we will not pursue this here. The

point is that we want an SU(3)-symmetric vacuum
in the absence of explicit symmetry breaking so
that there will be an octet of Goldstone bosons.'®
The SU(3) xSU(3) can be accommodated [rather
than U(3) xU(3)] if we chose a nontrivial boundary
condition for the divergence transforming like
¥s), consistent with the Ward identity (12) with
G(p)=0. Then the eight Goldstone bosons acquire
mass when we turn on the explicit breaking.

With this assumption about the nature of the
symmetry breaking, we write

Zt(pzyga) =M+gi2A(p2’gl'2)) (33)

where g;2A(p?, g;%) vanishes as g;?~ 0 by assump-
tion. Then we have for the quark masses

M; =M +g2A(M;? g?). (34)

To estimate the shift in the pseudoscalar me-
sons due to explicit breaking, we will calculate
only that due to the quark mass shift. This is
effectively only the tadpole part. Setting A(M;?, g;?)
=~ A(M?2,0), we obtain from
u2,cc Tr(A%[ A%, = -MI],],, where u2, is the
pseudoscalar mass matrix,

Cud, =(g? +&° +gsz)§ as
+[% (glz +g22) - ﬁgszl dgys

+ (glz _gzz)% dys, (35)

with C a constant.
The solutions to eigenvalue problem

f(&?=0 (36)

serve to regulate the structure of explicit sym-
metry breaking. If we choose the trivial solution
(the only known solution) to (36) for g®=g,2=0

and assume g,>#0, then (35) implies a vanishing
pion mass. This corresponds to SU(2)xXSU(2)
residual symmetry. With other assumptions about
the solutions of (36) one can accommodate other
symmetry-breaking schemes. Without further
knowledge of solutions to the eigenvalue problem,
however, one can say nothing.

All symmetry-breaking effects in this model
are finite. In particular, radiative corrections
are finite so that one can obtain finite results
for electromagnetic mass shifts, etc. However,
at the level of approximation that we are examin-
ing, the boundary conditions on the homogeneous
Dyson-Schwinger equations are arbitrary inputs
like the quark masses M;. So one cannot calcu-
late except in terms of the M; which are not known
a priori. To examine how, if at all, the M; are
determined takes one into the full nonlinear prob-
lem of the solutions to the Schwinger-Dyson equa-
tions. This we do not undertake here.



7 GOLDSTONE BOSONS AS
IV. CONCLUDING REMARKS

We have shown how it is possible to have Nambu-
Goldstone bosons as bound states in the quark
model. Then the quark model, properly interpret-
ed, can incorporate the successful features of
chiral current algebra. We have suggested that
the solution to the gap equation for the fermion
self-energy = (p?) is the analog to the problem of
minimizing the potential for the ~ model. How -
ever, in the leading-order Bethe-Salpeter approx-
imation, the vacuum symmetry is an arbitrary in-
put into the model in the form of a boundary con-
dition. To go beyond this takes us into confronting
the nonlinear structure of the theory. For ex-
ample, if we approximate in the gap equation (4)
T, =v, and Si(p)=§ - Z(p?), then we have the equa-
tion (£ =+1)

2\ _ d*l =(12%)
=(p?) = (21r)4f (l_p)z_uz 1Z-32(1%) °

It is possible that the solutions to this equation
can serve to specify the quark mass M =3 (M?) in
terms of g2 and u.

We have assumed that eigenvalue conditions on
the coupling constants are satisfied. If this is so
then the theory is finite. It could turn out that no
solution exists to the eigenvalue problem. Some
of the simple features we have described will be
lost in that case; however, the Goldstone alterna-
tive will not be changed.

Even in the simplified model which ignores gluon
self-energy insertions, the electroproduction
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structure functions measured at SLAC, W, ,(¢?, v),
will not exhibit the scaling behavior.’® This seems
to be a rather general property of interacting field
theories in which one does not invoke a cutoff. If,
however, the gluon coupling is small, then we can
have approximate scaling consistent with the ex-
periments. One of the interesting features of the
present model is that the gluon coupling could be
small but the coupling of bound states to the quarks
large. The strong interactions could proceed pre-
dominantly via the bound states. In fact all of the
observed hadrons would be bound states in this
model since one does not need elementary scalar
and pseudoscalar fields to implement the chiral
symmetry.

One can amend a gauge model of the weak inter-
action to this hadron model or a suitable general-
ization. An intriguing question that the present
work raises in the context of gauge models is
whether or not one can dispense with elementary
Higgs scalars. Can the Higgs scalars be bound
states of the leptons? This is a more difficult
question to answer than the one examined in this
article. We have made use of the renormalizabil-
ity of the Green’s functions in the gluon model to
establish the Goldstone alternative. In gauge mod-
els, in the U gauge, only the S matrix is finite,
not the Green’s functions. Consequently it is dif-
ficult to see how one can discuss bound states in
gauge models. This is not to preclude the pos-
sibility of bound-state Higgs mesons, but only to
point out that the theoretical techniques usually
used to study this question may not apply.
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The trajectory function a(t) for small ¢t is studied in the ¢* multiperipheral model as the coupling
constant becomes very large. Special emphasis is paid to the analogy of the ¢* model to a
one-dimensional gas system. We discuss the upper and lower bounds for a(t) when 2,3,... up to
N-body potentials in the gas model are taken into account. The power dependence of a on the
coupling constant as well as its dependence on N is determined by our bounds. This power dependence
changes as N approaches infinity; it also changes as the mass ratio of the produced final particles to
the exchanged particles varies. We show that the equal-spacing approximation suggested by T. D. Lee
gives the correct power dependence of a on the coupling constant with a coefficient in error by only a

few percent.

I. INTRODUCTION

One of the important problems in hadron physics
is to understand the regularities and the general
features in the production processes. Feynman!
and Wilson? suggested that the distribution prop-
erties of the final particles in the high-energy
scattering process should be analogous to the
behavior of a real gas contained in a finite volume,
This can be understood qualitatively by studying
the distribution properties in a multiperipheral
model. Mueller?® demonstrated further that many
of the inclusive properties suggested by the gas
model can be derived from the assumption of a
factorizable leading Regge pole, and thus put the
gas model on a rather sound theoretical footing.

Based on the properties of ¢® ladder model, one
may also postulate a factorization property of the
exclusive amplitude for the process?* A + B—-A
+ B +nm, This exclusive factorization property
enables one to analyze the exclusive data in terms
of a cluster decomposition and to relate the in-
clusive and the exclusive spectra in an energy-
independent way.

Recently, Lee® has demonstrated that the ¢3
ladder model is in fact equivalent to a particular
one-dimensional gas with only repulsive forces,
which can be decomposed into multibody forces
in a cyclic way.

In the gas model the trajectory function o cor-

responds to the pressure, and the coupling con-
stant g® is proportional to the fugacity.*® An
interesting and important question is: “What is
the pressure in the high-density limit?” In other
words, how does a depend on g? as g2—~«? This
is the question we will study in this paper from
the statistical-mechanical point of view.

This question has been studied before by differ-
ent approaches.’~!! In the special case of mass-
less final particles (m2=0 as defined in Sec. II),
the solution is known analytically and given by
Wick, Cutkosky, and Nakanishi.®'® Tiktopoulos
and Treiman’ have given upper and lower bounds
in this case which both approach the exact result
as g®~. In the more general case m?#0, the
upper bound obtained by Tiktopoulos and Treiman’
is not optimal since their bound is proportional
to g? while the exact result should be proportional
to (g2)"/*. The correct power dependence on g2
is obtained by Rosner,® by Wyld,'° and by Cheng
and Wu'! through numerically solving the Bethe-
Salpeter equation.

The method presented in this paper for obtaining
bounds is very elementary and emphasizes the
analogy to the gas model. Special attention is
paid to the change of power dependence of o on g?
as the mass ratio of the final particles to the
exchanged particles varies and as all multiparticle
potentials are included. Our method also treats
the nonforward case when the momentum transfer



