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We assume that the chiral-symmetry-breaking Lagrangian is an admixture of SU{3) singlet and octet
components contained in a single representation (m, rn) + (m, m) of SU(3) X SU(3). If we restrict
ourselves to the case in which (m) is any triangular representation of SU(3), we find that, except for
the triplet, all such symmetry-breaking Lagrangians are inconsistent with present data on meson-baryon
o. terms. Thus the only irreducible representation that may be consistent is the (3,3) + (3,3).

Under fairly general conditions the present data
on ~-~ scattering lengths can be used to rule out
certain classes of representation for the chiral-
SU(3)-breaking part of the mesonic Lagrangian. '
The conditions are that the symmetry-breaking
Lagrangian consist of the SU(3) singlet and octet
components of a single representation (m, m)
+(m, m) of SU(3) xSU(3}, and the classes ruled
out are those in which m is either a self-adjoint
representation of SU(3} or a triangular one other
than the triplet (m =3}.

Here we shall extend this result to the symme-
try-breaking meson-baryon Lagrangian by show-
ing that the a terms predicted by triangular rep-
resentations larger than the triplet are not consis-
tent with the range of values obtained from experi-
ment. We work with nonlinear, effective Lagran-
gians, and we make use of the technical apparatus
developed in earlier papers. "

Let S(m, m) be a singlet in an (m, m) represen-
tation of SU(3) x SU(3). Then the two octets in this
representation are given by'

M, (m, m)=[K, , S(m, m)]

M, (m, m) =d„,[K, , [K„S(m,m)] ],

where K, (i = 1, . . . , 3) is the axial charge obeying
the Gell-Mann algebra of charges. ' The assump-
tion that the symmetry-breaking Lagrangian is
dominated by the singlet and octet contributions
means that we can write it as follows:

gs((m, m)+(m, m)) =~[Re(m, m)+gs(m, m)],
Z (m, m)=&,S(m, m)+(-')" & M,(m, m) (3)

+-', (-,')"'C,M, (m, m }.
These coefficients have been chosen so that in the
(3, 3) + (3, 3) representation,

gs ((3~ 3) + (K, 3)) = E OQO + (Ca + E 8)ua .

In the case of the meson-meson system, we have
constructed Zs for the nonlinear realizations of
SU(3) xSU(3) and have shown that up to second or-
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der in the meson field we get'

gs((m, m)+(m, m))

1
g 6o 7l j 71 j +d@y 7Ty 7ty

3m 3 (3)1/2~
2

3(2 m, +3)

(3)

lowing relationship between the meson masses and

~oy ~sy and f8:

6m, e, 3(2m, +3) e,
5m, &2e, 25 ~e,

2(m„' —mr' )
m~ +2m g

In the case of triangular representations p., =0 in
Eq. (4), the two octets M, and M, are proportional
to each other, and so we can take e, =0; thus

m, = j (i/. ,'+ p, '+ g, p, +3p, +3p, ),

m3 = v(&, —&,)[{4, 2+& )(2p, +29,,) (4)

+9(I/, , + P, +1)],

where p. , and p., can take all positive integer val-
ues.

Using Eq. (3) we can immediately write the fol-

where 7/, (i = 1, . . . , 8) represents the octet of pseu-
doscalar mesons, and m, and m, are the Casimir
eigenvalue s:

6m,
5m, ~, W

2(m, ' —mr' )
m, '+2m~'

We now turn to the meson-baryon system in tri-
angular representations. The singlet S will con-
tain three independent contributions, ' and so will
the octet M, . (M, is proportional to M, .) Expand-
ing these terms up to second order in the meson
field, we can write the symmetry-breaking La-
grangian as follows'.

-gs{(m, m)+(m, m))

1 — ' +(-)'/~ '4'(D d+E f)4'
2 w

~ (l)" &
2O

+@ ~ ( ) '%~i~ Fi/)@ 4 (w, () j5 vga
'

( 2 )
I

where q represents the octet of baryons, F, is the pion decay constant (-95 MeV), X= w;w, , and II;
dj)jf Wf 7'
The contributions from the above Lagrangian to the masses of the baryons along with the contribution

from the kinetic-energy term, which we call m„are given by

e,d= —,'M3(mr —mA); e,f =(,'-)'"(m„—m3); m, +-, = ,'(m~+mA—). (8)

Substitution of the known masses of the mesons and baryons into Eqs. (6) and (8) allows us to write the
meson-baryon Lagrangian in terms of a single parameter, m„ the "average mass" of the baryon octet.
We can now calculate the meson-baryon v terms as a function of m, .

In an effective-Lagrangian approach, the meson-baryon v terms can be defined by [f,j, a, b are SU(3)
indices and p„P„q„q, their respective four-momenta]

(9)

Substituting Ze from Eq. {7)we get the following values for the meson-baryon o terms for which experi-
mental values have been quoted. Because g~ conserves isospin, it is convenient to write v».„in terms
of the isospin I of the initial state, that is, as v„'~:
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m2 (2m, +3)
o " =c =o = 'e (1+R)+( )" (d —3f)e +0(1- m )—

(0)

m, , „, 1 rn, 2m, +3»1, 3m, 4
10 0 26R ' 8 10 6

(10)

From Eqs. (6) and (8) and the empirical masses
of mesons and baryons, we obtain

o,„=~5' p(p+3)(395 —m, )+70 MeV,

g ~+„' = +y(p +3)(1028 —mo) +100 MeV,

o ~z'~„= ~p(p, +3)(960 —m, )+ 18 MeV,

g, z = ~5' p, (p, +3)(1288 —mo) —13 MeV,

where we have set p, = p and p, =0 in Eq. (4).
Attempts to extract these o terms from experi-

mental data have led to a variety of results. Val-
ues ranging from 20 to 110 MeV have been obtained
for the pion-nucleon terms, ' "and an even wider
range of values have been claimed for the KN
terms" "and 71Z terms. " These ranges are
listed in Table I along with the predictions of Eq.
(11) for a number of different cases.

In columns III, IV, and V of this table, we list
the values of the cr terms for the three lowest tri-
angular representations under the assumption that
m, =940 MeV. As can be seen, present analysis
of the vN data already excludes the (6, 6) +(6, 6)
representation (p, =2) as a possible alternative"
to the (3, 3)+(3, 3). Because of the dependence of
the 0 terms upon the parameter jtL, matters get
worse as we go to higher representations. " So
with m, =940 MeV, the (3, 3)+(3, 3) type of break-
ing" is consistent with experimental data and fa-
vors the small value for the ~N cf commutator. "'"

In column VI we assume that the nN o commuta-
tor is small and that the symmetry breaking be-

longs to the (6, 6)+(6, 6) representation. This
means that m, = 620 MeV and that the KN 0 terms
are outside the presently quoted experimental val-
ues. As in the previous case, matters are not im-
proved in the higher representations.

Columns VII and VIO list what happens if we as-
sume that o,„is large. Again m, is far from the
nucleon mass, and the KN v terms are too large.
In the higher representations they become even
larger.

The conclusion is that the present crude experi-
mental information seems to rule out all triangular
representations of SU(3) &&SU(3) except the (3, 3)
+(3, 3) as possibilities for describing symmetry
breaking in the meson-baryon system. Of course,
a large number of nontriangular representations
have not been considered, and these have enough
free parameters to fit all the present data. Also,
reducible representations will give a satisfactory
description of these phenomena.

Nevertheless, these results, along with those on
the meson-meson scattering lengths, ' tempt one
to speculate that the higher irreducible represen-
tations are undesirable.

Interestingly, there exists a theoretical mecha-
nism for restricting the representations to which
the symmetry-breaking Hamiltonian can belong to
the low-lying ones. General arguments" have been
given to the effect that the symmetry-breaking
Hamiltonian should be invariant under the trans-
formation

TABLE I. Experimental and theoretical values for meson-baryon cr terms.

I
~, (MeV)

cr„~ (MeV)

~~«„' (Me V)

0'&(0& (Me V)

~„, (MeV)

Expt.

20-110

100-650

-100-250

-225-870

III
940

(3, 3)+(3, 3)

26

185

16

IV
940

(6, 6)+(6, 6)

-40

310

65

57

-126

480

105

115

25

1080

835

120

110

1180

1030

100

110

2090

1840

205

V VI VII VIII
940 620 -100 200

(10, 10) + (10, 10) (6, 6)+ (6, 6) (3, 3)+ (3, 3) (6, 6)+ (6, 6)
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W= exp(i3w Y ). (13)

This restriction, combining with the assumption
of octet dominance, limits the symmetry breaking
to the (1, 8), (8, 1}, (3, 3}, (3, 3), (6, 6), (6, 6}, and

(8, 8) representations. "
Unfortunately, a W-invariant irreducible Hamil-

tonian gives unpleasant results in the (3, 3) + (3, 3)
system (m, ' =0 and o„„=0}." However, a reduc-
ible, W-invariant Hamiltonian certainly contains
sufficient free parameters to fit all the presently
known data on meson-meson and meson-baryon
scattering.
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We examine the implications of a Nambu-Goldstone realization of chiral symmetry in the quark-gluon
model. The context of this examination is that of a renormalizable, finite theory, so eigenvalue
conditions are assumed to be satisfied. We discuss the solutions to the Schwinger-Dyson gap equation
for the fermion self-energy X(p -') that exhibit spontaneous breaking of the vacuum symmetry. In the
leading-order Bethe-Salpeter approximation the boundary conditions to the homogeneous, linear integral
equations stipulate the vacuum symmetry. It is shown how the Goldstone bosons emerge as bound
states, as suggested by Nambu and Jona-Lasinio. We also examine the Goldstone alternative in the
Bethe-Salpeter equation for fermion-fermion scattering. Explicit symmetry breaking is introduced by
additional Abelian vector gluons coupling to hypercharge and isospin besides baryon number. The
eigenvalue condition for the fine-structure constant is consequently model-dependent but takes a simple
form. We also consider the influence of explicit symmetry breaking on the ground-state mesons and
indicate how the solutions to the eigenvalue problem regulate the structure of symmetry breaking.

I. INTRODUCTION

The standard model for implementing the Nambu-
Goldstone realization of chiral symmetry has been
the renormalized Z model. " This model has the
property that to lowest order in the coupling con-
stants and in the tree approximation one may ex-

amine the spontaneous symmetry breaking of the
ground state. In particular the mechanism of the
Goldstone theorem is explicit in this model, and
most of the consequences of chiral symmetry like
soft-pion theorems can be examined in the tree ap-
proximation.

In this article we will examine how a Nambu-


