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The electromagnetic potential of a point charge in arbitrary motion in a weak gravitational
field of a mass M is found by a Green s-function approach. This solution is then applied to
the study of the geometrical effects on the generation and propagation of electromagnetic
waves to first order in the Riemann tensor. The electromagnetic field is considered as a
small perturbation in the sense that its gravitational fieM is negligible. Generally the re-
ceived radiation is generated by the charge at two retarded times: that for the direct path
of a null ray and that representing geometrical scattering off of the central mass. Explicit
expressions for the power radiated are found in the small- cur ' and large- ~x' limits, wherer' is the distance of the charge from the central mass, for both nonrelativistic and relativ-
istic motion. The analysis shows under what conditions one may suitably make an approxi-
mation based on ray optics or photon emission. In the small-ur' limit the power radiated
by the charge is found to be smaller than calculated by a red-shift argument, and the total
power depends on the orientation of the accelerating system to the mass l'vI. For the case of
nonrelativistic free-fall acceleration of the charge, geometrical corrections to the power
radiated are of order v2/c smaller than the dominant contributions calculated from flat-
space electromagnetism. Although the concept of constrained uniform motion is not precise-
ly defined in a gravitational field, any reasonable definition gives electromagnetic radiation
for a uniformly moving charge of a calculable amount in a gravitational field, in contrast to
the nonexistence of such radiation in empty flat space. In the extreme relativistic limit
(v= c) the radiation from a uniformly moving charge is orders of magnitude larger than that
from a freely falling charge; in either case large amounts of radiation are received by the
observer at a time such that the charge, at the retarded time, is far from the mass and un-
ambiguously moving uniformly. The geometrical origin and implications of this radiation
are discussed, and related to the corresponding situation in gravitational radiation.

I. INTRODUCTION

The properties of electromagnetic radiation
emitted by accelerated charges in flat space-time
are well known. ' One solves Maxwell's equations,
or equivalently solves the electromagnetic wave
equations, to find the rate at which energy is lost
from the system. Because of the linearity of the
field equations, it suffices to describe the radia-
tion potentials of a single charge, so that one can
obtain any general solution by superposition of so-
lutions for each charge comprising the system.
One can also approach the radiation problem by
considering the radiation-reaction forces on the
charges; however, this gives information about the
energy outflow from the system only over a time
average. '

It has been long recognized that the presence of
gravitational fields modifies the character of elec-
tromagnetic radiation. The most striking examples
of such effects are the deflection of light by the
sun, the gravitational red shift, and the time de-
lay of signals passing the sun. ' However, deriva-
tions of these effects do not start from Maxwell's
equations, but rather use ray optics applied to
curved space, the equivalence principle, and prop-

erties of null geodesics. It is of interest to study
solutions of the curved-space electromagnetic
equations in order to place limits on the applicabil-
ity of ray optics. In addition such a study may
lead to effects not anticipated from the ray-optics
picture.

A general formal solution of the electromagnetic
field equations in curved space has been developed
by DeWitt and Brehme, ' following earlier studies
of wave equations by Hadamard. ' The formal solu-
tion exhibits scattering of the electromagnetic
signals off of the Riemann tensor, which effects
are lumped together in the so-called "tail func-
tion. " DeWitt and Brehme' then give a method of
solution for the tail function in a power series in
the square of the proper-time interval. Such a
series is inappropriate for the study of questions
such as electromagnetic radiation, however. A
method of solution for the radiation reaction for
freely falbng charges in almost flat space was
given later by DeWitt and DeWitt. ' Here an ex-
pansion was made about the flat-space metric q„„,
and first-order effects in the gravitational poten-
tial were calculated, This method was recently
applied by Roe, ' who showed that electromagnetic
radiation from a pulsed source in the vicinity of
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a massive body should be received, to first order,
as two distinct pulses, one arriving along the
direct route and the other effectively being scat-
tered off of the central body. Such a double-pulse
effect has also been shown to occur for gravita-
tional radiation from sources in the vicinity of a
massive body. '

An alternative approach to electromagnetic ra-
diation in the Schwarzschild metric has been de-
veloped along the lines of the Regge-Wheeler treat-
ment of metric perturbations. " This involves the
use of an expansion into generalized spherical
harmonics and is most useful when the radiation
arises from a given multipole moment of the
source. For a point charge such a technique in-
volves an infinite sum, although some advantage
is gained in that the solution obtained in this man-
ner is valid for the strong-field region of the
Schwarzschild geometry. Recent applications of
this approach ' to the problem of synchrotron
radiation from particles in relativistic circular
orbits have given rise to some unexpected exam-
ples of the breakdown of ray optics due to scatter-
ing off the Riemann tensor, or equivalently, off the
gravitational field.

In this paper we consider the solution, to first
order in GM/rc', of the electromagnetic field
equations for a point charge in the vicinity of a
mass M via a Green's-function technique. Our
choice of gauge, which differs somewhat from the
covariant I orentz gauge, allows relatively simple
explicit solutions for the potentials to be gener-
ated. The potential solutions then allow one to
compute the flux of electromagnetic waves for a
number of significant cases. Although many of
the expected effects are generated in this manner,
some require reexamination and reinterpretation.
Moreover, we have found effects, such as elec-
tromagnetic radiation from uniformly moving
charges, which had not been anticipated.

In Sec. II we consider the curved-space elec-
tromagnetic field equations expanded to first order
in the gravitational potential, and give the solu-
tion for the radiation fields in terms of a previous-
ly defined coordinate-dependent Green's function.
This solution is then reduced to simpler expres-
sions in the small-~x' and large-~~' limits. An

alternate semicovariant form of the solution is
also given, which is particularly useful in the
large-~x' limit. In Sec. III we consider a number
of applications of the coordinate-dependent solu-
tion to problem of the generation of electromagnet-
ic radiation by charges in gravitational fields. In
the small-cue' limit we consider examples in which
nongravitational forces dominate, in which the
charge is freely falling, and in which the motion
is, in some sense, uniform. In the large-(dr'

limit, we consider examples of extreme relativis-
tic motion (v = c). In particular "uniform" motion
and free fall (in an extreme hypberbolic orbit) are
examined in detail. In Sec. IV we consider appli-
cations of the semicovariant solution to similar
problems, all in the large-ue' limit. In the non-
relativistic limit we consider radiation from both
the direct, dominant part of the solution and from
the part representing scattering off the Riemann
tensor. In the relativistic limit we consider again
the problems of "uniform" motion and of free-fall
motion. Section V contains a discussion of the
results and their implications. An outline of the
derivation of the coordinate-dependent solution is
given in Appendix A, and an outline of the deriva-
tion of the semicovariant solution is given in
Appendix B. The relation between these two solu-
tions is given in Appendix C.

II. GREEN'S-FUNCTION SOLUTIONS

A. Electromagnetic Field Equations

The covariant electromagnetic field equations"

(2.l)

g~„=Ap „—A, p (2.2)

are linear and therefore admit solutions in terms
of a Green's function. It suffices to consider, in
any given geometry, the solution for a point charge in
arbitrary motion, the solution for more complex
systems being obtained by superposition. In this
calculation we assume that a charge q is moving
in the vicinity of a massive body M, and we inves-
tigate the dominant effect of the curved space-time
on the electromagnetic fields produced by such a
charge. We assume that the mass m of the charge
q is small compared to M, that the mass M is
static and spherically symmetric, and that the
gravitational potential of M is sufficiently weak
that the metric can be expanded in powers of the
potential, with the dominant geometrical influence
being given by terms linear in the potential. The
mass M is assumed to be electromagnetically in-
ert for simplicity, i.e., its effect on electromag-
netism is entirely through its gravitational in-
fluence. One could take into account electromag-
netically active central masses by fending the con-
tribution to the electromagnetic field from all the
charges in the central body, using the Green's-
function approach. Within the limits of the above
approximations, we cannot, of course, treat the
case of charges in the strong-field regions of



P. C. PETERS

gravitationally collapsed bodies or black holes.
Throughout our discussion the electromagnetic
field is considered as a small perturbation in the
sense that its gravitational field is negligible.

The geometry of the exterior of the massive
body is described by the Schwarzschild metric.
Since we are interested in the dominant geometri-
cal effects on electromagnetic fields, it suffices
to approximate the true Schwarzschild metric in
isotropic coordinates by its weak-field form

where Q =-GM/r is the gravitational potential of
the central mass. Because this approximation
neglects terms of order Q', our electromagnetic
field equations will be strictly valid only to order

Higher-order terms could, if desired, be
taken into account by iteration using the Green's
function derived here. To order Q, the contra-
variant form of the metric is

g"=(1—2P), g" =0, g"=-5,,(1+2'),
(2.4)

and v-g, with g-=detg„„ is given by

Substituting (2.3)-(2.5) into (2.1) and (2.2) yields
the electromagnetic field equations, to fiI'st oI'deI'
in

A, +2/ ~(A, ~
—A») f,=4mJ'-

A,. —4$(A, ~„—A. ..)

-2Q ~(A,. ~ -A„,.)-f,. =-4m'',

(2.7)

where f is defined to be

f =AD 0-A~ ~

and is determined by the choice of gauge.
Two methods of solution of the electromagnetic

field equations will be used in this paper. The
first, which we call a coordi. nate-dependent meth-
od, is based on a Green's function which has been
used previously in the analogous study of gravita-
tional perturbations in weak-field regions of the
Schwarzschild metric. " The basic starting point in
this approach is the electromagnetic field equa-
tions in the coordinate-dependent form, (2.6) and
(2.7). A suitable gauge is chosen that allows the
Green's function to be applied to this problem, and
explicit solutions are then given in the coordinate
system in which the metric has the form (2.3).
Although valid for near fields as well as radia-
tion fields, we will be concerned here only with
the latter. The main disadvantage of this formal-
ism is that it involves an expansion in the param

«er
~

~'Q~, which limits its applicability in the
large-(dr ' limit.

An alternate approach, which we call a semi-
covariant method, starts directly from the covar-
iant equations (2.1). Basically the flat-space solu-
tion of (2.1) is first written in a covariant form,
and used as a zeroth-order (in the Riemann tensor)
approximation to the solution of the curved-space
equations (2.1). Since the zeroth-order solution
is not an exact solution of (2.1), one must intro-
duce a first-order correction whose effective
source is known explicitly in terms of the zeroth-
order solution. Thus this method generates a co-
variant solution to first order in the Riemann ten-
sor. Applied to radiation potentials this solution
assumes a semicovaIiant form. In applications
this form is most useful for cases in which ~r' is
large, since in many cases the zeroth-order solu-
tion will contain the dominant geometrical effects.

In the following tmo sections we mill give the
results for the radiation potentials and fields by
these two methods. We will also give the reductions
of these potentials and fields in various limits, which
give rise to simpler expressions and which are
also useful for later applications. The derivations
of these potentials and fields are somewhat in-
volved, and thus we will defer to Appendix A the
derivation using the coordinate-dependent method,
and to Appendix 8 the derivation using the semi-
covariant method. In Appendix C we show the
equivalence of these tmo methods in regions in
which they are both valid.

B. Coordinate-Dependent Solution

In order to find the electromagnetic radiation
generated by the charge q, it suffices to know only
the time derivative of the spatial component of the
potential A„ for large r, where r is the distance
from the mass M to the point at which the field is
observed. In addition we can ignore any terms in
the potential proportional to the unit vector n,
where n =r/x, since only transverse components
give rise to an energy flux. In Appendix A the
radiation fields are found to be propagated from
the charge q to the observer at r along two different
null paths, with the result that the field at r is
generated by the charge q at r' at two different
retarded times, t,' and t2, where

(2.8)

The time t,' represents the time retarded by the
time it takes a signal to propagate with the speed
of light directly from the source to the field point.
The time t,' represents the time retarded by the
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time it takes a signal to propagate from the source
to the mass M and then from M to the field point.
In a sense the second signal can be thought of as
having been scattered off the central body, al-
though this scattering is purely geometrical, since

we have assumed that the central body was elec-
tromagnetically inert.

The time derivative of the spatial component of
A,. in the radiation zone is then found to be (see
Appendix A)

where

-q, , 2GM I G'(t') G'(t')
(1-n v)', . (1+r' v/r')'

H'(t') a'(t') ac*(t')

1 '2 '2-
(2.9)

(r' v/r'+n v)' (r' ~ v)'
(t ) I( I c)(1 ) 1 I/ i + t2 v +(1 n v)

rf ~]x r v n r2+ --- +n 'vr'(r'+n r')' r' ~I

and

1
2r'(r'+n ') I

2+ ----;— +n v

1 ~", r' ~ v ' r' v, (r' v/r'+n v)'(r'+r' v)+—,, v + +n'v, +v +
2 (r'+n r')(r'+r' v)' x'+n r'

and where v' is the velocity of the charge q; v' is its acceleration; and the terms in (2.9) are to be eval-
uated at one or the other of the retarded times (2.8). The above expressions are rather complex, and one
can obtain analytic expressions for the power radiated using them only in the case of extreme limits. Thus
in general one must resort to numerical integration to find the power radiated.

The expression (2.9) greatly simplifies in the small-an" limit, which limit implies that the motion is non-
relativistic and that the distance r' of q from M is much smaller than one wavelergth of the radiation.
This simplification arises because the two retarded-time contributions coalesce to form, to lowest order
in &ur', a single retarded-time contribution. As shown in Appendix A, this reduces (2.9) in the small-(dr'
limit to

-q 3, QM )
x"

v' — v' — (r' v) ~r'«1
y St r' (2.10)

where ret means all terms are evaluated at the time I,
" = t -r. Note that this is the same form as the time

derivative of the radiation potential in the absence of the gravitational field, if we replace the velocity v'

by an effective velocity v,'«, given by

GM ] x"
Veff = V ~I v- 2r v (2.11)

The expression (2.9) also simplifies in the large-&ur limit, though not to the extent that it simplified in
the small-~r' limit. However, one cannot take an arbitrarily large (dr' since we must keep

~
uw'Q~ small.

Also, in deriving (2.9) we neglected terms in G', H', and K' that contained acceleration. Effectively this
means that this limit is one of extreme relativistic motion, but of small acceleration, i.e., unbound tra-
jectories. More specifically, our assumptions are that y» 1 where y =(1 —v ) '", and v is such that
yv, r'«1 and y'v~~r'«1, where v and v„are respectively the components of the acceleration perpendic-
ular and parallel to the velocity. Since these imply extreme hyperbolic motion, the restriction also implies
that the deflection angle of the charge, 48, must satisfy yt(, 8 «1. In particular, if the force on the charge
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is electric or magnetic, then the approximation holds if qEr'/m«1 or qBr'm «1. If the acceleration is
due to the gravitational attraction of M, then y'GM/r'«1.

In the extreme relativistic limit the dominant contributions to the potentials arise from the first-re-
tarded-time contributions, as those exhibit the same kind of peaking in the forward direction as is found
in flat-space electromagnetism. To find an approximation to the potential (2.9) which is valid for large y,
it is useful to define a quantity &,

e =(r' v —n ~ r')/r', (2.12)

which is seen to be smaQ (of order y ') in the forward peak in the extreme relativistic limit. As shown in
Appendix A, the expression (2.9) becomes, for large y, the sum of the direct contribution to A, , from the
&' terms and the geometrical contribution to A,. 0 from only the G' and H' terms. The +' terms can be
evaluated for any given acceleration, and the final form would, of course, depend on the particular accel-
eration used. Explicitly the geometrical contribution becomes, in extreme relativistic limit,

2GMq v' " 2r' v n r' n v-v e (2+n r'/r')
r (1 —n v)' r" r" r'(r'+n r') (r'+n r')'

x" e(2+n r'/r')
r "(1—n v)' (1+n ~ r'/r')'

1

In deriving (2.13) we have kept only the leading terms that will be needed later.

(2.13)

C. Semicovariant Solution

The structure of the solution of the electromag-
netic field equations in a curved space-time has
been examined by DeWitt and Brehme. ' The gen-
eral solution includes a direct propagation of elec-
tromagnetic signals along the light cone, as is
the case in flat space-time, together with a "tail, "
which represents a propagation or smearing out of
the signal inside the light cone. This latter con-
tribution can also be interpreted as a scattering of
the signal off the Riemann tensor. The solution
(2.9) contains both a direct retarded-time contri-
bution, propagated directly from the source to
the observer along a null path, as well as a scat-
tered retarded-time contribution, which contrib-
utes to the "tail" part of the solution. Although
our general solution (see Appendix A) has this
latter contribution being indeed smeared out in-
side the light cone, the specific restriction of
radiation fields implies, to first order in the
Riemann tensor, that the field will be propagated
sharply from the source to the observer. The re-
tarded time for this contribution is indicative of a
signal which propagates along a null path directly
from the source at r' to the mass M, and then
propagates along a null path directly from the
mass M to the observer at r.

We can now see why, from a physical point of
view, the expression (2.9) has a limited range of
validity. It should be noted that the propagation of
signals in (2.9) is assumed to be along straight
coordinate lines, which are null only in terms of
the particular coordinate system used. One would

expect physical signals to be propagated along null
geodesics, which experience deflection when ex-
pressed in our coordinate system, and which do
not have zero coordinate interval. Since these
two paths are the same in flat space-time, differ-
ences in the paths are expected to occur to first
order in the gravitational potential. Although
some of these differences can be rectified by ad-
ditional terms of order Q (see Appendix C), the
effect of the proper time difference between the
two paths cannot be rectified for all ~ by addition
of terms of order Q. The reason for this is that
the important quantity to evaluate in the latter
case is the phase difference between the paths,
which depends on frequency and will be small only
if

~

un" Q~«1. This qualitative picture of the limi-
tation on (2.9) is made more quantitative in Appen-
dix C.

In Appendix B a solution of the field equations is
given, to first order in the Riemann tensor, in a
covariant form. This derivation explicitly uses the
fact that direct signals from the source to ob-
server propagate along true null geodesies. Of
course we also find scattered contributions in the
formalism as well. In the wave zone the direct
contribution to the radiation field (see Appendix B
for derivation) is given in semicovariant form as

gp(y V

r Bt n"g, v~'
p8' ret

(2.14)

where n" = (1, n), g„„ is the parallel propagator de-
fined by Synge" and DeWitt and Brehme, ' v is the
velocity (1,v), and all quantities are to be eval-
uated at the true retarded time along the direct
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k . ~l)
& a'=g p'=+, a'

g', =5', , (1 —P)+n'y, , —n'q, ,

where r»r', &f&'=Q(r'), and

(2.15)

null geodesic. The potential in (2.14) reduces to
the Libnard-Wiechert potential in the limit of flat
space-time. It should be remembered that the
complete potential, to order Q, also contains the
terms with the second-retarded-time contribution,
which represent scattering off the Riemann tensor.

In order to evaluate (2.14}explicitly to order Q
for our calculations, we list the components of the
parallel propagator, to order Q, for the metric
(2.3):

D. Electromagnetic Radiation

We now turn to the method of evaluation of elec-
tromagnetic radiation of a point charge moving in
the vicinity of the mass M. The energy radiated
by electromagnetic waves can be found by inte-
grating the Poynting flux over a sphere surround-
ing the system. Although normally expressed in
terms of the electric and magnetic fields, an al-
ternate expression for the power radiated into
solid angle dQ, useful for our purposes, is given
by

r2 r2
[A 0 o] 4 [+) OA, O (nA~ o) ]

g =-GMln[(r'+n r')/2r] . (2.18)
(2.19)

The latter form illustrates the fact that only the
spacelike transverse part of A.„p contributes to the
radiation. The total power radiated is the integral
over solid angle of (2.19)

Note that n'g ~, = Q' and n"g„„,v = 1 —n v+ 2g.
The true retarded time, to order Q, is given by
the expression

t'=f —r+n r' —2g. (2.17)

GMq v'(r'-n r')+x"(n v —r' v/r')
y r'(r'+n r')

ue'»1, v«c (2.18)

where quantities are to be evaluated at the second
retarded time t,', given in (2.8).

The solution (2.14) is not complete without the
scattered contributions. We can, however, con-
sider the direct and scattered contributions as
independent because the A„defined in (2.14) satis-
fies the Lorentz gauge n"A.„p =&pp &, , 0. Since
the full potential satisfies the Lorentz gauge for
large r, this implies that the scattered contribu-
tions also satisfy the Lorentz gauge. Further, the
scattered contributions are found to be of order
[~(r'+n r')] ' times the direct contributions.
For all angles except a narrow cone centered on
n r'/r' = -1, this will be of order (&ur') ', and
the scattered terms can be neglected in the large-

limit. Since we will be applying the semico-
variant formalism only in the large-ou'' limit, we
can often ignore the scattered contributions. How-
ever, since scattered contributions have a retarded
time that is different than that of the direct con-
tribution, they may still produce observable effects,
even though small compared with the direct con-
tribution to A, p Further, we will need the scat-
tered contributions only in the nonrelativistic lim-
it, as they are found to be orders of magnitude in
(1 —v') smaller than the direct contributions in the
relativistic limit. From Appendix B, Eq. (B10),
we have the scattered contribution

dE dP—=P= —dQ.
dt dA

(2.20)

For relativistic problems it is often desirable to
evaluate dE/dt' =P', where f.' is the retarded time,

(2.21)

and where dt/dt' depends on angle. ' The interpre-
tation is that P' represents the radiation emitted
in time dt' along the particle's path. However, for
the potentials we derived in the previous sections,
we found that signals from the source are received
at two different retarded times. Thus, unless one
can ignore interference between these two, one
cannot characterize the energy received as having
been emitted by the charge at any unique time on
its path.

III. RADIATION DERIVED FROM THE COORDINATE-
DEPENDENT SOLUTION

In this section we will study applications of the
coordinate-dependent formalism to the problem of
the generation of electromagnetic waves by the
charge q in the vicinity of the mass M. In effect
the problem is already solved since the potentials
are known explicitly from (2.9) and the power
radiated can then be found from (2.20}. However,
the relatively complicated form of (2.9) involving
two different retarded times makes it difficult to
visualize what physical effects one might expect
to find as a result of the gravitational field of M.
Thus we will restrict ourselves in this section only
to applications of the two limiting cases, cur'«1
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A. Small mr', Nongravitational Forces Dominant

As a first example of the use of (2.10), consider
the case in which f't » v'/r' (still keeping 6«v/r',
as is required from the assumption of small &ur')

This could occur for a charge moving in a circle
of radius a, where a«x', or a harmonically os-
cillating charge of amplitude a, where a again is

In particular for periodic or bounded motion
this also implies that the acceleration is much
larger than the acceleration of gravity due to the
mass M, because if the acceleration were com-
parable to that of gravity, the virial theorem
would imply that ~ = v'/r', which violates our as-
sumption. Also, the restriction of small ~' im-
plies that the motion is nonrelativistic and that the
mass M is in the near zone of the electromagnetic
field of q. Our assumption ft»ft'/r' implies that
the time derivative on the right-hand side of (2.10)
acts only on the velocity v' and not the distance x',
giving

(3.1)

GM, x"
v,gf =v — —v — r 'v

0 &t &r2 (3.2)

Since the effective acceleration (3.2) does not
involve the unit vector n', the power radiated has
the same form as in nonrelativistic electrodynam-
ics; i.e. , from (2.19),

N 9 ' 2 ~ 2—= —v sxn L9

dn 4m
(3.3)

Lfor which (2.10) appliesl and ~&' ~ Lt

Ifor which (2.13}applies]. Since these limits do
not uniquely specify the system, we will find it
useful to consider subcases of each limit. More
specifically, for the limit of ~'«1, which implies
both nonrelativistic motion as well as the distance
x' of q from M being smaller than a wavelength of
the radiation, we will consider the three subcases
in which the acceleration of q is dominated by non-
gravitational forces, the acceleration is dominated
by the gravitational force of M, and the accelera-
tion is constrained to vanish, i.e., "uniform" mo-
tion. For the limit of un"'» 1, I

~'QI«1, which
implies both extreme relativistic motion (v = c)
and only a small deflection of q in an unbound tra-
jectory past M, we will consider the two subcases
of constrained "uniform" motion and of accelera-
tion dominated by the free-fall acceleration of q
towards M in its trajectory past M.

where 6 is the angle between the direction of v,ff

and the observation direction n. The total power
radiated is then found from (2.20) as

2 2 ~P —3 g v„f'f (3.4)

with 5 ff given by (3.2). Note that if the accelera-
tion v IIr' then the effective acceleration is just the
acceleration v, but if v& F' then the effective ac-
celeration is the acceleration v multiplied by the
factor (1 —GM/l"). In other words the power ra-
diated by an accelerating charge in this limit de-
pends on the orientation of the accelerating charge
to the central body. In general, if we let g be the
angle between r' and v, then the power radiated
is, to first order in GM/r',

2GMp=-,'e'e' i —,sin'e) . (3.5)

(3.6)

giving the power radiated in terms of the proper
acceleration V, to first order in G18/r', as

P = —', q'V 1—,(I+ & sin ()y'' (3 7)

One might have predicted a different result from
an analysis based on a photon picture of radiation,
in which one argues that the power radiated from
the system immersed in the gravitational potential
should be lowered by two red-shift factors
(1 —GM/l"), one factor from the fact that the
photons are received with a lower energy, and the
other factor from the fact that the number of pho-
tons per second received is less than the number
per second emitted. Of course, such an argument
assumes that the mass M is in the radiation zone
of the electromagnetic field of q, which violates
one of the assumptions made in deriving (3.7}.
Our analysis confirms the fact that in the small-~' limit such an argument does not work, and
shows that one generally receives somewhat less
radiation than would be given by the photon argu-
ment. In fact one finds a power radiated which
depends on the orientation of the emitting system
to the central mass M.

One should be somewhat careful in applying
(3.5), however, as v is the coordinate acceleration
and not the proper acceleration that could be mea-
sured locally in terms of proper rulers and clocks.
One advantage of using the isotropic form of the
coordinate is that the relation between the proper
acceleration V and v is only one of scale in the
case examined here, and does not depend on the

e

orientation of v to r'. In particular, V is seen to
be related to v by
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B. Small ur', Gravitational Force Dominant

G2~2 2 r, v 2

(3.9)

We see that the effect of the extra terms added by
geometrical considerations is to modify the accel-
eration and power by terms which are of order
v'/c' smaller. These terms disappear when r' ~~v,

and are largest when r'& v. Of course, the ex-
pression (3.14) does not contain all of the v'/c'
corrections to the power radiated, as there are
also the v'/c' terms arising from special-relativ-
istic corrections to the dominant, flat- space, part
of the potentials, which were ignored due to the
assumption ~'«1, as well as general-relativis-
tic corrections to the acceleration of a body in a
gravitational field. The extra terms found are,
of course, small in the nonrelativistic limit, and

our expressions are not valid as v - c; however,
the fact that the correction terms approach the
dominant terms as v- c leads one to suspect that
the geometrical effect may become important for
the free-fall case in the relativistic limit.

C. Small mr', Constrained "Uniform" Motion

A second example of interest in the small-~'
limit is that of a charge q freely falling, in a
bound or unbound orbit, in the gravitational field
of the mass M. Here small ~' means simply non-
relativistic motion, since the restriction on the
acceleration is already taken into account by the
assumption of small potential &f& N.ow the radia-
tion fields are given by (3.1) but with the effective
acceleration

t ~ 2
I

r 'v
v ff 3

x" 1+3 -e -2v'r' vcff &r3 r'

(3.8)

so that the power radiated is

An examination of the time rate of change of the
effective velocity (2.11) leads one to the conclusion
that even though v' = 0, v,'ff + 0 because of the ~' de-
pendence of the last term in (2.11). Explicitly, for
the "uniform"-motion ca,se,

2 G2M'q2
2

r' v

(3.11)

It should be noted that since v=0, there are no
relativistic corrections that would contribute in
the same order as (3.10) and (3.11). The power in
(3.11) is seen to vanish only when r'~~V.

The meaning of the expressions (3.10) and (3.11)
is not clear at this point, however, because the
concept of uniform motion in a curved space-time
is not well defined. In fact we have assumed uni-
form coordinate velocity in the isotropic system
of coordinates. In another system of coordinates
that motion may not be uniform. We therefore ask
if there is a path, slightly deviating from uniform
coordinate velocity, such that the total radiation
vanishes to this order. This path would have v' e0
in order that v,'ff=0, but v' would clearly be sma]. l
compared to free-fall accelerations. Setting v', ff

=0 implies that

d v' x(r' v)n'=GM-
N 'v 'Y

=GM— (3.12)

This implies that if we let the path defined by
(3.12) be called r "(t'), where r "(t') = r'(t')+ Fj(t')
and r'(t ') is the path defined by ii' = 0, then the
effective acceleration vanishes if g is given by

2v'r' v+ ' '--( ) (3 lo)
y

and the power radiated is then

The last exa,mple in the small-~' limit is that
of the case of vanishing a,cceleration, i.e., i ' = 0.
Although perhaps somewhat artificial, the exam-
ple has considerable interest, as the result is not

zero, and the analysis which follows helps one to
understand the relativistic case better. It should
be noted that v' = 0 means that the charge is con-
strained to follow a straight-line path at uniform
velocity by the application of forces which them-
selves do not contribute to the radiation potentials.
Unlike the analogous case of gravitational ra,dia-
tion, where this is not possible, there are many
conceivable physical mechanisms by which this
can be accomplished for electromagnetic radiation.

(3.13)

Since this path does not depend on velocity or time
explicitly, it defines a, unique path of no effective
acceleration, and no radiation to the order calcu-
lated, which one ma, y choose to designate as the
path of uniform motion. This designation, how-
ever, ha, s numerous difficulties.

If we change coordinates from the system in
which the metric is (2.3) to a system in which the
path defined in (3.13) is one of uniform coordinate
velocity in the new system, we find that the metric
in the new (barred) coordinate system becomes
(to order P)
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&00 =(1+2&» &oa = o
(3.14)

This transformation, to first order in Q, takes us
to the standard Schwarzschild coordinate system
(with i being an area coordinate) reexpressed in
rectangular coordinates by the standard polar
transformation. We should note the fact that the
path (3.13) is not the path of a light ray, since a
light ra7 undergoes a net coordinate deflection in
passing the mass M, where the path we have
found undergoes no net coordinate deflection in
passing the mass M. One may also object to the
path in (3.13) being defined as uniform motion,
since that does not correspond to uniform motion
as measured by local rulers and clocks. Specifi-
cally, we can imagine a clock moving nonrelativis-
tically along the path defined in (3.13), each tick
marking out spatial intervals which one would ex-
pect to be at constant separation as measured by
physical rulers, if the motion is truly uniform.
However, one can calculate the measured space
intervals along such a path with the result that the
proper length n.l is related to the proper time
hT and asymptotic velocity v, by

which does not define constant spatial intervals.
Further objections to the path (3.13) being defined
as uniform motion are found when the motion along
the path is relativistic, as will be seen next.

D. Relativistic, Constrained "Uniform" Motion

arising from the F' term of (2.9), is

(a~~o GMqv'(r' v/r")
r(1 —n v)' (3.i6)

The geometrical contribution to the radiation field
is given by (2.13), and the leading contribution in
the extreme relativistic limit (y» 1) gives

2GMq v'(r' v/r")
(3.16)

The energy radiated in one transit is the time in-
tegral of (3.1V), i.e.,

mG APq
3(l -v')'b' ' (3.i6)

where b is the impact parameter of the path.
In the nonrelativistic limit it was possible to

eliminate the dominant term in the radiation by
assuming the charge was moving along the path r'
+q, where 7i was given in (3.13). We can assume
the same path for the relativistic case to see if we
eliminate the radiation (3.18) at least to that order
of magnitude. This introduces the acceleration-
dependent terms with a mell-defined acceleration.
The result is that the dominant contribution of the
radiation field for this motion is given by

The total radiation field is the sum of (3.15) and
(3.16). Because there is only one retarded time
we can compute the power radiated in the form
(2.21), which then gives an analytic expression
for the power radiated from the uniformly moving
charge, by integrals which are familiar from stan-
dard electromagnetism:

dE 8 G'M'q' r' v '
dt' 3 (1-v')' r"

We now consider cases in which cue'» 3.,
~~r' $1 «1, for which the expression (2.13) serves
as the dominant geometrical contribution to the
radiation field (in the forward beam). These re-
strictions imply that the motion is relativistic
(v = c}and that the trajectory undergoes only a
small deflection. One example of such a situation
is the artificial one of a charge being constrained
to move uniformly at relativistic velocities, where
uniform may be taken to be uniform coordinate
velocity with respect to either of our two coordi-
nate systems, which both imply no net deflection
in the transit past M. Of course, the requirement
that Q be small implies that GM/bc' is small,
where b is the impact parameter of the trajectory.
Thus we cannot consider the case in which the
particle is aimed directly a,t M.

Consider first the case in which e' = 0 in the co-
ordinate system in which the metric is (2.3). Then
the direct contribution to the radiation fields,

3GMqv'(r' v/x') r' v
r(1 —n v)' r'

which, when compared with (3.16), gives radia-
tion fields of the same order of magnitude. Thus
it appears that a uniformly moving charge in a
gravitational field radiates electromagnetic waves.

E. Relativistic Free-Fall Motion; Large Impact Parameter

The other case to which we wish to apply the
relativistic limit is the case of free fall in the
gravitational field M. Because of the limitation
of small Q, the impact parameter b must be large
enough so that GM/bc «1. Since the deflection
angle for a relativistic particle passing M is
4GM/bc', this implies that we also only consider
trajectories which undergo small deflection in
passing M.

Before applying our formalism to this problem,
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it is interesting to see what radiation one would
expect using flat-space electromagnetic formulas
together with the acceleration of a body in the
gravitational field of M (the geodesic equation to
order Q). With v' given by

Q~g ", 2, 4GMv'r ' v
~I3 ~ I3 (3.19)

the expected radiation can be calculated using the
standa d formulas. ' This gives an expression, in

the large velocity limit, which is identical with
(3.1'l). As we will see, this is not a coincidence,
as the free-fall acceleration terms and uniform-
motion terms are of the same order of magnitude,
and consideration of both leads to a cancellation,
giving power radiated which is orders of magnitud(
in y ' smaller than (3.17) in the extreme relativis-
tic limit.

With the free-fall acceleration (3.19) the direct
contribution to &, , is (to order GM/r')

-x" v (3.20)

The sum of (2.13) and (3.20) then gives, to the dominant order in the radiation fields [(1—U2)'/2 «1],

r(1 —n v)' (2'+n ~ r')' r' ] r' (3.21)

It should be noted that the radiation fields are of
order (1 —v2) smaller than that found in (3.16),
showing the effect of the cancellation of the direct
and geometrical terms in the free-fall case.
Because of the complex nature of the expression
(3.21), analytic expressions for the power radi-
ated, analogous to (3.1 t), cannot be found for all
times.

However, an explicit expression for the power
radiated can be obtained at the position of closest
approach, and an order-of-magnitude estimate
can be given to the power radiated at other times.
The position of closest approach occurs when
r' v = 0, which we define to occur at the time t'
=0. At this time n r' is small over the forward
peak. The power radiated is then found to be
given by

dE 64mG'M' q'
dt' b (1 —v) (3.22)

which is seen to be of order (1-v')2 smaller than
the typical power radiated from (3.17), taking into
account the fact that the maximum power from
(3.1V) occurs for t'e0. To estimate the total
power radiated over one transit we first note that
for t'& 0, n r'/2'-+1 for large t' and the radia-
tion drops off for times t' a few times b. However,
for t'&0, n. r'/r'--1 for large negative times,
and the factors of (1+n r'/2') ' cause the radia-
tion to keep the same order of magnitude as (3.22)
for much larger times. Specifically, the power
radiated keeps the same order of magnitude for
negative times t' out to approximately t'= b/-
(1 —v2)'/2. The net power radiated over one tran-
sit for free fall is then found to be of order of
magnitude

64 G2M2'q 2

b3(1 ~2)3/2 (3.23)

For negative times much larger than b/(1- v2)"2,
the power using (3.21) becomes unimportant; in
addition, because the mass M is now in the for-
ward peak of the radiation pattern, the second-
retarded-time contributions are equaQy impor-
tant, and the radiation cannot then be ascribed to
having been emitted at a unique retarded time.

The long duration of the radiation is not a con-
sequence of the direct, acceleration-dependent
term, but rather results from the geometrical
terms in the potential. Thus in the extreme rela-
tivistic limit most of the radiation is received, in
the free-fall case with large impact parameter,
at times at which the charge at the retarded time
is moving uniformly an appreciable distance away
from the mass M. In fact there is no ambiguity
about the motion being uniform in that region, as
the gravitational potential is small [of order
(GM/b)(1 —e')"'] in that region. The physical
origin of the radiation will be clearer when the
problem is reexamined from the point of view of
Eci. (2.14).

IV. RADIATION DERIVED FROM THE
SEMICOVARIANT SOLUTION

In this section we will consider applications of
the semieovariant solution in the large-~ limit.
This limit allows us to reproduce effects expected
on a ray-optics picture as well as to reconsider the
radiation for uniform motion or free-fall motion
in the extreme relativistic limits. In the large-
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~r' limit the expression (2.14) serves as the ini-
tial approximation, with the scattered contributions
(2.18) considered as corrections. Writing

gator (2.15) and the acceleration. Keeping terms
only to order Q, this results in the power radiated
per unit solid angle, from (2.19),

OiQ~: gp ~i8

1 —n .v+ 2j = n"g„„,v = n" u„=-s,

(4.1) 2

[v'(I —2g)+4q v'n v. -(n v)'(I+2&)].
dQ 4m j l

(4 5)

we obtain the radiation fields from (2.14) in the
for m

To reduce the expression (4.5) we define the unit
vector

n' = n(1+ 2P) —2v(. (4.6)

u& Q„s
2 g 3 (4.3)

where the derivative mith respect to t has been
reexpressed in terms of the derivative with re-
spect to f'. The fields (4.3) are the same as are
found from the Lidnard-Wiechert potentials in flat-
space electromagnetism with the replacement of
the velocity n" by the parallel propagated or ap-
parent velocity u". Unlike the flat-space case,
however, the time rate of change of the apparent ve-
locity is not directly proportional to the accelera-
ti.on, since

8 ~p 8 n' 0
)~P — (g P,v ~

) ——(g P, ) v ~ +g P
Q, @t (X' O. '

(4 4)

The last term on the right-hand side of (4.4), rep-
resenting the parallel propagated acceleration, is
what one might have expected as a generalization
of the flat-space situation. The first term on the
right-hand side does not involve the acceleration
e" „but only the velocity v; it represents the
apparent acceleration caused by the fact that the
geodesic, along which the parallel propagation
takes place, is moving if the charge or mass is
moving. In fact one can easily imagine cases in
which the acceleration i" =0, as in uniform mo-
tion, but where 0"0:0. For such cases one would
obtain radiation fields, and thus radiation, even
though the charge is moving uniformly.

A, Large wr', Nonrelativi". tic Motion (Dominant Terms)

We examine first the case of large ~' and non-
relativistic velocities, which implies that the
acceleration term v dominates (4.4). This limit
means that the mass M is in the radiation zone of
the charge q. This also implies that the accelera-
tion is much Larger than the free-fall acceleration
of q towards M„ for periodic or bounded motion.
The spatial components of (4.3) can then be ex-
plicitly evaluated in terms of the parallel propa-

It can be recognized from (4.6) that the component
of 2Vtt perpendicular to n is just the angle of de-
flection of the null geodesic from the point r' to the
point r. Thus n' represents the unit vector at r'
that is deflected to n at r. Using (4.6) to eliminate
the unit vector n from (4.5) and expressing the co-
ordinate components of acceleration in terms of
the physical components [as in (3.7)], we find the
power radiated per unit solid angle to be given by

dP q', , 4CM—= —V'sin'6' 1—
dQ 4m r' (4.7)

where 0' is the angle between n' andv. We seethat
the observed radiation pattern is deflected from
the emitted pattern and that the power radiated
per unit solid angle is (1 —4GM/r') = (1 —GM/r')
smaller than that emitted. Two factors of 1 GM/r '-
can be understood on the basis that photons are ob-
served red-shifted by a factor of I+z =1+GM/r'
and that the rate at which photons are emitted is
also "red-shifted" by the same factor. The re-
mainder can be understood in terms of the trans-
formation of a given solid angle dQ' at the source
into the solid angle dQ at the observer's point,
because of the deflection of light rays defining the
boundaries of the solid angle. A geometrical cal-
culation then shows that, to order Q, the solid
angle dQ at r that is formed by null geodesics
having a solid angle dQ' at r'' is related to dQ' by

dQ =dQ'(I+2GM/r'), (4.8)

which accounts for the other factors of (1 —GM/r')
in (4.7)

The total power radiated is presumably the in-
tegral over solid angle of (4.7); however, this in-
tegral requires some thought. Because of the de-
flection of null geodesics, a total angle of 4m at r
corresponds only to a solid angle of 4w(1 —2GM/r')
at the distance r'. The remaining solid angle at

8vGM/r', represents radiation that is beamed
directly at the mass M by the charge q. Assuming
that the radius of the mass M is small enough, any
null geodesics emitted within this solid angle mill
be found at the same angular position at r as some
other null geodesic emitted outside this solid angle.
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q2 P'2 (4.9)

in agreement with the red-shift argument. As we
have seen, this power is radiated in a pattern that
gives a flux proportional to 1 —4GM/r' at other
than backward angles, and an enhanced flux within
an angle from the backward direction of order
(GM/r ')'~

If there are a number of charges radiating co-
herently, it is possible to produce high-order
multipole radiation patterns, e.g., patterns for
which the radiation is emitted in one or more
lobes. For a lobe not aimed at the mass M, we
can give a description of the flux and radiation
pattern at the point ~. First, the lobe will be
centered at the deflected angle for a null geodesic
emitted at that angle. Second, the energy flux

This feature arises in any system which allows
multiple null geodesics between two points. Gen-
erally the times for signals to travel on each of
the null geodesics will be different. If the optical
pathlengths of the null geodesics differ by many
wavelengths, the contributions from the multiple
paths will be incoherent. However, for the radia-
tion at exactly the backward angle, there are an
infinite number of null geodesics that contribute
in phase. This gives rise to bright-spot effects
which have been studied extensively within the geo-
metrical optics approximation. "" It should also
be noted that null geodesics which are deflected
by a finite angle are those whose impact param-
eters are close to the Schwarzschild radius, to
which the present analysis does not apply.

Our solution for the direct contribution, (2.14},
is only a first approximation to these geometrical
features. In particular (2.14) assumes that the
signal propagates only along the principal null
geodesic. This deficiency is not as severe as one
might first guess, since the scattered contributions
(2.18) are chosen in such a way that the sum of
(2.14) and (2.18) yields a solution of the electro-
magnetic field equations. For example, if we were
to include in (2.14) a sum over multiple null geo-
desics, then the scattered contributions would no
longer be given by (2.18), but would rather involve
sums over multiple null geodesics. In our formal-
ism effects due to expected multiple null geodesics
at backward angles will be found in an examination
of the scattered contribution (2.18). Although one
might expect such effects to invalidate (4.7) at
backward angles, and prevent an angular integra-
tion from being performed, one finds under the
assumption of no energy losses associated with
M that the integrated energy flux can be found by
integrating over dQ', using the transformation
(4.8). Specifically this gives the power radiated

will be decreased by 1 —4GM/x' from that emitted.
Third, the angular size of the lobewillbe stretched
by the factor

2GM
r'+n ~ r'

in the plane of r' and r, and the factor

2GMn r'
r'(r'+n ~ r')

perpendicular to the plane of r' and r. This gives
a solid angle enhancement of (I +2GM/r') as in
(4.8). Fourth, the total power radiated into this
lobe will be the product of the energy flux and sol-
id-angle size, or a factor of 1 —2GM/x' smaller
than emitted, again in agreement with red-shift
calculations.

B. Large mr', Nonrelativistic Motion (Scattered Terms)

We now examine the scattered signal, given by
(2.18), in the large-uw', small-velocity limit.
Under the assumption that the acceleration terms
dominate, we find radiation fields which are of the
same order as the gravitational corrections to
the dominant terms of (4.3). However, these will
generally be incoherent, as the pathlengths differ
by many wavelengths. Thus we can, with suitable
averaging, compute the flux of radiation from the
scattered terms independent of the direct flux
(4.5). This yields

gp($} Q2~~ 2 y / n ~ r I 2 ~ r ~ P 2

gg 4m " r'+n r'

(4.10)

We note that the power radiated in (4.10) is, for
most angles, of second order in the gravitational
potential, and thus gives an energy flux which is
negligible compared to the first-order corrections
in (4.7). One may of viewing (4.10}is to write
dP'"/dQ as the product of

GM r'- n r'
r'+n ~ r'

and dP/dQ, ~~, where d&/dQ~„ is the power radi-
ated per unit solid angle at the position of the mass
M, as evaluated from (4.7). Although small for
most angles, the expression (4.10) is not small
when n r' is too close to -x'. In particular, when
the angle between n and -r' is of order (GM/r')"',
the contribution of (4.10) becomes as large as
that of (4.7). Note that this angle is the typical
angle at which one would expect significant radi-
ation from null geodesics which pass M on the
side opposite the path of the direct null geodesic.
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The scattered contribution gives us this radia-
tion, but with a different physical interpretation.
It might be thought that (4.10) gives an infinite
flux at n r' = —~'; however, it should be remem-
bered that the potentials A,. and A. ~~' are incoher-
ent c..ly so long as &(&'+n r')»1. When the
angle between n and -r' is of order I/4~r' they
become coherent, and the expression (4.10) no
longer applies.

One other consideration that should be made in
the interpretation of (4.'7) and (4.10) is that of the
radius of the mass M. Clearly this should be ap-
preciably larger than the Schwarzschild radius in
order that the weak-field approximation be valid.
On the other hand if the radius is sufficiently
large, the null geodesics from r' to r will pass
through the mass M, and the formulas derived for
a I/r potential will no longer be valid. This is
not a serious matter, however, because of the
fact that the gravitational potential is linear to
this order and obeys the principle of superposi-
tion. Therefore we can break up the mass M into
a number of mass elements, calculate the gravita-
tional correction to the electromagnetic field from
each element, and sum over all such contribu-
tions. In general there will be one direct contribu-
tion from the charge to the observer, deflected by
an angle that depends on all the contributions of the
mass elements, plus a sum of scattered terms
from each mass element. If ~R»1, where R is
the radius of M, then different paths of the scat-
tered signals will have different optical lengths,
and one will have destructive interference between
paths that differ by a half wavelength. In effect
this implies that the power radiated by the scat-
tered contributions will be reduced to (& A) ' of
that given by (4.10) because of random interference
effects.

C. Relativistic Motion, Acceleration-Dominated Fields

We next consider the case of acceleration-domi-
nated fields in the extreme relativistic limit
(v = c). It is convenient to define

I' ' = —(I + 2$) dQ P'+
4m S

(1 —P')(n' 8)'
2S

Because of the directional dependence of g on n,
n' jf will in general be a complicated function of
the angles involved. However, we can use the
solid-angle transformation (4.9) to convert (4.14)
into an integration over dQ', which allows us to
carry out the integration explicitly. This results
in the power radiated

(4.11)

r 2 2 2GM V)) V~

(] p~)3
+

(] p2)2

(4.12)

D. Relativistic, "Uniform" Motion

where V~~ and V, are the components of V parallel
and perpendicular to the velocity P, and V
=v(1 —3p) =p(1 —Q) is the physical acceleration as
defined in (3.6). We see that (4.12) represents the
power radiated by a relativistic charge in flat
space decreased by two red-shift factors, as
would be expected on a photon picture.

In the extreme relativistic limit the radiation,
from (4.12), is found to be peaked about the for-
ward direction (n' ~g), which at x is peaked about
the direction of the deflected f The s.ize in solid
angle of the radiation cone, which is the standard
special-relativistic value near ~', is increased by
the factor (1+2GM/r') at r, with the same aniso-
tropic shape change that was found for the high
multipole radiation pattern in the nonrelativistic
limit. If the forward cone of the radiation does
not include the mass M, then the scattered contri~
butions, analogous to (4.10), will be significantly
smaller than (4.12), both because of the depen-
dence on (GM/r')' as well as because of the fact
that the scattered term 6 function does not exhibit
the peaking and enhancement found for the direct
terms. Hence, the scattered power will be orders
of magnitude smaller in (1 —P') than (4.12) in
general.

P' =v'(1 -24)
so that I3-1 in the extreme relativistic limit. Then
in terms of n', defined by (4.6), the parameter s
in (4.2) becomes, to order Q,

s =1 —n' P.
The direct contribution (4.3) can then be evaluated
and the power can be calculated using (2.19), as-
suming the acceleration terms dominate the veloc-
ity terms in (4.4). This yields

For the case of relativistic uniform motion only
the first term on the right-hand side of (4.4) con-
tributes to the radiation. As in Sec. IG, uniform
motion is taken to be uniform with respect to the
coordinate system defined by (2.3). Only the direct
part of the radiation field (4.3) is significant, the
scattered terms being orders of magnitude in
(1 —P') smaller. The radiation field in (4.3) is
seen to depend on the effective acceleration u„,
which from (4.4) depends only on the time deriva-
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tive of the parallel propagator (2.15). For the uni-
form-motion case, the effective acceleration is
found to have the components

u, = j+$,v',

u,. =$,(1+n v)+n'(, v" +v'p,

with s in (4.3) given by
~ ~s=u0+n u&.

(4.13a)

(4.13b}

In order to interpret (4.13}it is useful to write
P,. in the form

P, = Qn'+ —,'8, , (4.14)

2qv'n vQ
f 0= rS3 (4.15)

which reproduces, to the dominant order in y,
(3.17). Similar results are obtained if the second
path of uniform acceleration is used to compute
the radiation. In either case, however, one re-
ceives some radiation, through the L9,. terms, even
when the charge is far removed from the mass IVX

and moving uniformly in an unambiguous manner.
Although negligible in terms of the total power ra-
diated in the uniform-motion case, those terms
will play a dominant role in the case of a path of
small-deflection free fall in the gravitational field
of M.

E. Relativistic, Small-Deflection Free-Fall Motion

We now assume that the charge is moving with
an extreme relativistic velocity on a path with an
impact parameter b which is large enough so the
deflection angle is small. This will be the case
if the potential Q along the path is small. Now
both terms on the right-hand side of (4.4) are im-
portant in computing the effective acceleration.
The components of the acceleration of free fall are

where Q is the gravitational potential and 8, is the
angular deflection (perpendicular to n') of the null
geodesic from r' to r. We see that the effective
acceleration in (4.13}arises from two effects: the
changing potential Q, which contributes only when
the charge is near M, and the changing deflection
angle g„which can be appreciable even when the
charge is far from M, as viewed along a null geo-
desic which passes close to M. For the uniform-
motion case the P terms give rise to radiation
fields which are orders of magnitude larger in y
chan the terms containing 8, Thus we expect most
of the radiation to be emitted when the charge, at
the retarded time, is near the mass M. Specifical-
ly for ~' comparable with b, where b is the impact
parameter of the uniform motion path, the radia-
tion field becomes

(4.17)

In general 8,. varies greatly over the forward ra-
diation cone. If r'«b'/GM, 8,. reduces to the
relatively simple form

(4.16)

where b' is the impact parameter of the null geo-
desic from the source to the observer and v« is
the component of velocity perpendicular to n. Now
if r'«b'/GM, then 5' does not vary significantly
over the forward radiation cone, and we can inte-
grate (4.17) over angles, giving

16 GMq
»'(I-P') ' (4.19)

in agreement with the order-of-magnitude estimate
made in Sec. III. Note that (4.19) is independent of
~', i.e., the power radiated is constant over the
allowed range of r', b«r'«5'/GM However, .
there is one other restriction on the applicability
of (4.19). If the forward radiation cone includes
the mass M, i.e. , if (1 —P')'" ~ b/r', then one
must include the scattered contributions as well,
which will tend to cancel the direct contributions.
Thus (4.19) is valid only for r' smaller than
-b(l —P') "'. In Sec. III we had made a further
assumption that GM/b(l —v')'"«1, so that (4.19)

known from (3.19), and the effective acceleration
u„can be calculated. The result is the same as
that of uniform motion for u„ i.e. (4.13a), but the
spatial components u, are now given by

u, =-g, (1+n v) —3/v'+n'p, v'+ p,.(1+v').

(4.16)

Substituting (4.16) in (4.3) and taking the dominant
terms in the extreme relativistic limit then yields
a field which contributes to the radiation in order
(1 —P') smaller than (4.15), in agreement with the
discussion leading to (3.21). Thus in the relativis-
tic limit the apparent acceleration for the free-fall
case is significantly smaller than the apparent
acceleration for the uniform-motion case, at least
in the region x' near b.

We now examine the power radiated when ~'» b

(and n. r'= r') so-that @=0. This corresponds to
the charge being far behind M, as seen at ~. For
this limit we do not need to distinguish between
constrained uniform motion and free-fall motion,
since these are the same, i.e., unambiguous uni-.

form motion. Using either (4.13) or (4.16) in (4.3)
and keeping only the 8,. terms yields the power ra-
diated per unit solid angle

dI" 2

, [s'8'(1+n v)' —4(1 —v')(8,.v')'J .
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mould in that case be valid for x' out to
- b(1 —U') '", giving a total energy radiated in
agreement with (3.23). In the formulation we have
developed in this section, this restriction may be
dropped, as the same assumption was not made in
deriving (4.19).

We next ask what happens if ~'z b'/GM. First,
the expression for 8,. is changed from (4.18) to

9,. =— v„-/r'

for x'» b'/GM, so that the radiation will be cut
off at that typical distance. Second, the null geo-
desics subtend an angle ~ (GM/r')'" to the central
mass, which implies that the impact parameter is
close to the Schwarzschild radius or the radius of
M, which will bring in either higher-order geo-
metrical effects or potential corrections that ef-
fectively cut off the radiation. Third, the scat-
tered contribution, or the contribution from multi-
ple null geodesics, becomes important at this an-
gle. What this implies is that if (1 —P')"'«GM/b,
then the power radiated (4.19) will continue to be
emitted out to a distance r' - b'/GM, giving a total
energy radiated of order

(4.20)

The striking feature of the expression (4.20) is the
linear dependence of 4E on the mass M, whereas
up to this point the dependence has been quadratic.
Note that the radiation (4.20) comes entirely from
the region in which the charge is moving uniform-
ly. Thus the free-fall radiation would be expected
to be of order (4.20) if (1 —P')" «GM/b, since
(4.19) is of the same order of magnitude as the
power expected near M, the enhancement coming
from the fact that the radiation is emitted over a
much longer time interval.

U. DISCUSSION OF THE RESULTS

%e have seen that many of the traditional views
of classical electromagnetism must be modified
in curved space. Specifically, for a "point" mass
as a source of the gravitational field, electromag-
netic signals, to first order in Q, can scatter geo-
metrically off the mass even though the mass is
electromagnetically inert. This gives rise to in-
terference effects that are not found in flat space.
For a complicated system, which is the superposi-
tion of many mass elements, one receives signals
to first order in the Biemann tensor both along the
principal null geodesic (deflected by each mass
element) as well as scattered signals due to each
mass element. For this situation one has a dou-
ble kind of superposition —the electromagnetic

fields for a complicated system of charges can be
obtained by superimposing the fields due to each
charge in the system, and the gravitational effect
on the field of each charge can be obtained by
superimposing the effects due to each point mass
in the system. Thus the most general first-order
problem is solved by assuming a single arbitrarily
moving charge in the gravitational field of a "point"
mass, where "point" mass implies the body is
spherically symmetric with radius small, but still
not so small as to be close to the Schwarzschild
radius, where the strong field effects would be-
come important.

The solution of the electromagnetic field equa-
tions to second or higher order in the Riemann
tensor are, in principle, obtainable by iteration
using the lowest-order Green's function. For ex-
ample, if we were solving a problem in which
there were sufficient deviations from a 1/r po-
tential due to strong field effects to make a second-
order solution desirable, we would need to write
the electromagnetic fi.eld equations to second or-
der in the gravitational potential. The second-or-
der terms would then be considered as a perturba-
tion in the source, and that part of the solution
arising from these terms could be found using the
first-order solution as a Green's function. Such
an iteration procedure implies that to second or
higher order, the electromagnetic signals will be
multiply scattered off of the Riemann tensor.
Further, the remarkable feature of the first-order
radiation fields that signals are sharply propagated
only along two different null paths will not be found
in the second- or higher-order solutions. This
arises because of the multiple scattering as well
as because the effective source, from the second-
or higher-order terms, is smeared throughout
the region in which the potential deviates from
I/r, and cannot be considered a point source.

Throughout our calculations there was a natural
breakup into three cases of particular interest:
dominance of nongravitational acceleration, dom-
inance of gravitational free-fall acceleration,
and constrained uniform motion, by whatever def-
inition one wishes to impose concerning uniform
motion. For the case of dominance of nongravita-
tional acceleration, there were three limits:
small-&ur', large-ae' (nonrelativistic), and large-
sn" (relativistic). In the small-ex' limit we found
that the two signals, direct and scattered, co
alesced to form an effective single signal. This
gave rise to a dependence of the total energy ra-
diated on the orientation of the accelerating charge
and the central mass. This result, averaged over
angles, gave a smaller power radiated than would
have been predicted by red-shift arguments. The
large-~' limit, in both the nonrelativistic and
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relativistic limits, allowed comparison of the wave
results with expected results from ray optics and
the photon picture of light. The deflection of elec-
tromagnetic waves was explicitly seen in both the
nonrelativistic and relativistic cases. The red
shift of signals was implicitly contained in the
results as a relation between proper time intervals
at the source and observer point. However, the
distortion of the signals gave a lower energy flux
generally than would be attributed to a simple
photon model. The wave picture also produced an
enhancemen'; (or bright spot) within a small angular
cone on the opposite side of the mass from the
charge, which had been found using the ray-optics
picture. The scattering off the central mass would
not, of course, have been anticipated in either the
photon or ray-optics picture. The time delay of
signals in gravitational fields was also seen in
the form of the direct retarded time in the large-
ue' limit, in agreement with the photon derivation
of the same effect.

The case of constrained uniform motion was
treated in both the nonrelativistic and relativistic
limits, or, equivalently, in the small-cur' and
large-~' limits. At first uniform motion was
taken to be uniform coordinate velocity, which
gave rise to nonvanishing electromagnetic radia-
tion in the nonrelativistic limit. A consideration
of other paths which deviated only slightly (to
order Q) from this path showed that there was a
unique path which gave no electromagnetic radia-
tion to the order in v/c that was considered. How-

ever, in the extreme relativistic limit, we showed
that large amounts of electromagnetic radiation
would be found from either of these two paths, and
in fact from any path that is, in effect, one of al-
most uniform motion. This result is, of course,
in contrast to what one would expect from a con-
sideration of standard flat-space electromagne-
tism. However, it has been argued that one might
well expect that there should be no "radiationless"
trajectory for near uniform motion if the motion
is through a region of nonvanishing gravitational
fields. Consider the case of charge which "falls"
into a Schwarzschild black hole in a yet unspecified
trajectory. Israel" has shown that the resultant
black hole must asymptotically approach the
Reissner-Nordstrom solution. This implies that
the electric dipole moment (with respect to the
center of the black hole) must be radiated away,
no matter how the charge falls into the black hole.
Looking at the problem far away from the charge,
we would necessarily see the fields (at infinity)
change in a nontrivial (i.e., physical, not coordi-
nate) way if the charge moves in any manner with
respect to the gravitating body. This follows from
the fact that the Newman-Penrose constants"

change with a change in the static dipole moment.
This would suggest that radiationless motion in a
gravitational field is impossible.

The case of free fall in the gravitational field of
the mass M was examined in both the nonrelativis-
tic (small-~r') limit and the relativistic (large-
uvr') limit. In the nonrelativistic limit the geo-
metrical effects were seen to produce v'/c' cor-
rections to the dominant radiation, which were of
the same order as relativistic corrections but were
of somewhat different form. This suggested that
the geometrical effects would be most important
in the relativistic limit. In the relativistic limit,
free-fall acceleration implied an extreme hyper-
bolic trajectory with large impact parameter,
since the potential &f& was assumed to be small.
One of the striking features about the relativistic
free-fall case was the fact that the energy radiated
was significantly smaller than that radiated in the
uniform-motion case, for the same initial veloc-
ity. Another feature was the fact that most of the
energy is radiated during the time at which the
charge, at the retarded time, is far removed from
the mass M, and thus not directly interacting with
its gravitational field. This effect was seen to be
due to the apparent acceleration at the observation
point being nonzero, as a result of the time rate of
change of the null geodesics connecting the charge
and the observer's point. The requirement of rel-
ativistic motion was necessary to obtain this re-.
sult, so that only the direct signal was important.
In the nonrelativistic limit the scattered and direct
signals were seen to cancel for the charge being
far from M. The power radiated, when the charge
is far from M, is the same for the free-fall rel-
ativistic case as for the uniform-motion relativis-
tic case. In both cases the charge at the retarded
time is undergoing unambiguous uniform motion.
The reason that the uniform-motion ease gives
more total energy radiated in one transit of the
trajectory is because there is a much larger power
radiated when the charge is near the mass M, and
that power dominates the total energy radiated.

Although the calculations described here are
specifically for the case of electromagnetic radia-
tion, there are some analogies to previous calcu-
lations of the generation of gravitational radiation.
Consider the situation of a small mass m moving
in a relativistic trajectory past M with large im-
pact parameter. For the case of gravitational ra-
diation we cannot postulate uniform motion without
also considering the role of the stresses that con-
strain the particle to move uniformly. Thus we
assume that the trajectory is one of free fall,
which also implies that the net deflection past M is
small. The gravitational radiation expected from
such a system has been calculated' using a first-
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order solution to the perturbed gravitational field
equations. ' This solution is quite similar to the
coordinate-dependent solution described in this
paper. In particular, gravitational signals are
propagated, to first order in Q, along the same
two null paths found here. In the extreme relati-
vistic limit only the contribution propagated di-
rectly from the source to the observer is impor-
tant, and that gives rise to a gravitational power
radiated which is significant even when the mass
m is far behind M as seen by the observer. ' In
fact, although the power radiated is of the same
order as that emitted when the mass m is near
M, the fact that the mass m spends more time
away from M than near it [out to a distance of or-
der b/(1 —v')'~'] implies that. most of the energy
is radiated when the mass m is far from M and
essentially moving uniformly.

It may appear that this result is in contradiction
with other calculations of gravitational radiation,
specificaBy for particles which fall radially into a
Schwarzschild black hole, "in which case most
of the energy is radiated when the mass m is in
the strong field region of M, and thus near M. Our
calculation differs from the radial free-fall calcu-
lation in two respects. First, the statement that
most of the energy is radiated when the mass m is
far from M is valid only in the extreme relativis-
tic limit. In the nonrelativistic limit most of the
energy is in fact radiated when the mass m is near
M. The calculations for radially falling particle
assumed a nonrelativistic initial velocity, and
those results are thus consistent with our results.
Second, it is important that the impact parameter
be large in order to derive our results, since we
have assumed a small potential over the trajectory.
If the impact parameter were small (or zero as in
the case of radial motion) then throughout the
motion the central mass would be in the forward
beam of the particle, and both retarded times
would contribute. As in the nonrelativistic case,
this leads to a cancellation as a result of the fact
that the geometrical contribution to the potentials
depends on differences in the same quantity eval-
uated at two different retarded times. If the for-
ward cone is not beamed at M, which implies both

relativistic motion and large impact parameter,
then only one retarded-time contribution is impor-
tant and our results follow. Thus our conclusion
is that for free-fall motion of a charge q or a mass
rn in the gravitational field of M, most of the en-
ergy radiated, whether electromagnetic or gravi-
tational, is received by the observer at a time
such that the charge or mass, at the retarded
time, is far from M, provided that the motion is
one of extreme relativistic motion and that the
impact parameter is large.

The results obtained here have a wide range of
applicability in that most regions of space are in
fact suitably weak field regions (perhaps even too
weak). Near a condensed body, such as a neutron
star, the potential is -~~0, and dominant effects
should be obtainable via this formalism. However,
there are two points that should be repeated here.
First, it may not be suitable to consider an ex-
tended body as a single point mass —one may have
to imagine it broken up into its various mass ele-
ments, and then superimpose the geometrical
effects from each element. Second, physical
bodies are not generally electromagnetically inert,
but are composed of charged particles. Thus a
polarization may result from the influence of an
external charge. Since the technique described
here uses a Green's function, one can find the po-
larization contribution to the radiation by integrat-
ing over the induced charge and current density
in the body and superimposing that on the geomet-
rical solution for the external charge. Some of
the results obtained here, e.g. , radiation from
uniformly moving charges, are of more academic
interest, however, since the charge must be con-
strained by a force which opposes the gravitational
force. The importance of such examples is that
they illustrate the manner in which the geometry
of space-time influences the generation of electro-
magnetic radiation. As we have seen, if the grav-
itational field is expected to play some role in a
process of generation of electromagnetic waves,
then we cannot anticipate its effect based on flat-
space electromagnetism. If the gravitational field
is sufficiently weak, we can determine its effects
by the method given here.

APPENDIX A: DERIVATION OF THE COORDINATE-DEPENDENT SOLUTION

Our starting point in the derivation is the electromagnetic field equations written in coordinate-dependent
form, (2.6) and (2.7). In order to apply the Green's-function technique previously developed'" to this prob-
lem, it is convenient to rewrite (2.6) and (2.7) in a form in which there are no spatial derivatives acting on
A„ in the mixed QA terms. This can be accomp. ished if we choose the gauge

(A1)
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where f is defined below (2.7). Note that this gauge is the Lorentz gauge to zeroth order in p, but is nei-
ther the flat-space Lorentz gauge nor the curved-space Lorentz gauge to first order in (](). With this choice
of gauge, and some rearrangement, (2.6) and (2.7) become, to order Q,

(1 —(I))Ao =4wJ (1 —Q) +4/A o Do+4/ «A«0+ P ««Ao,

(1+Q)A,. =-4zd'(I —3$)+4/A, oo+4Q, Aqo+2Q „A,—Q ««A,

(A2)

(A3)

The solutions to Eqs. (A2) and (A3) are most easily obtained if we first Fourier-decompose A„ into its
frequency components, i.e.,

A„(r, t)= A„(r, &u)e
' dq(2, ) (A4)

with a similar decomposition for J„(r, t). With this substitution the field equations assume the same form
as (A2) and (A3), except that time derivatives are replaced by -i&a, and is replaced by -(&u'+V'). In
the (t)A terms on the right-hand sides of (A2) and (A3) we can use the zeroth-order solution for A„

(A5)

(A6)

since errors made by this substitution will be of order Q'. 8 is the distance ~r —r'~. For a point charge
q in arbitrary motion,

Jr (r, tr) Jq'="—'dr (r, t )dt' (A7)

where to order (I)

d" (r, t')=qfdt r"(t')(1+'2(t(q(t'))]ll'Cr —2(t')), (A8)

where v" =dz" /dt' = (c, v), z' = t', z" (t') is the equation of the path of the charge in space-time.
The solution of the pair of equations (A2) and (A3) is then obtained using the function G(r, r', cu), defined

previously, "~ which satisfies

(A9)

This results in the general first-order expressions for A„(r, t)

A, (r, t) =q(1+ 2)fdt', [1+ qt(t)]', 5(t'- t+It (t'))

+ — d~e '"' dt' dr'e'~' 5' r' —z t' -4uP+4i~V„v" t' +V' G r, r', ~, (A10)

~, ) ( ), ,(,) 5 (t' —t R+(t'))[1 —Q(t')]
R t'

+—due ' ' dt' dr'e' ' 5' r'-z t' 4v v' t' —4i+V,. —2v t' V V +v' t' V G r r', m,

(A11)

with

V, = ', + ', , &(t') =~r-z(t')(, P(t')=0(z( ')), v'(t') =
d,ex' ax'' '

We will be interested in the time derivatives of the potentials for x»r, as these will be the ones which
enter into a discussion of electromagnetic radiation. For large r, the time derivatives of (A10) and (A11)
become, explicitly,
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d (r, t) —=—fdl'Z(t' —t+r —n z(t ))'[1+t)(t )]'

82
+ dt' d r'5'(r' —z(t')) ———V v'(t')+-,'V'.

x 5(t' —t +r —n r') In((r'+n r')/2r)+ 5(t' —t+r —n. r'+u) —,(A12)
r'+ Il r' Q

d, ,(r, t)= — fdt n'(t )l('t —'ttr '—n z(t'))[1 d(t )]-'
82

d

2r
x 5(t' —t+x nr'-) In((r'+n r')/2r)+ 6(t' —t+r —n. T'+u) —. (A13)

r'+ n r' 8

Here n is the radial unit vector r/~.
For applications to radiation problems we need

only be concerned with the time derivative of the
spatial potential, (A13). In further reducing (A13)
we must also recognize that the Green's-function
approach used here involves an expansion in
powers of ~(dr'Q~, where we have kept terms lin-
ear in Q. Higher-order terms in Q will then be
negligible only if

~

&ur 'Q~«1. In Appendix B we
derive an alternate expression. for the radiation
fields, in semicovariant form, that will allow us
to consider the large-~r' limit with no such re-
striction on &ux'(I). One implicationof small ~(dr'Q]

in (A13) is that the velocity in the second, long
term on the right-hand side of (A13) can be as-
sumed to be a constant; i.e., terms in the re-
duced form of (A13) which involve acceleration are
neglected The re. duction of (A13) to a form suit-
able for numerical or analytic calculations then
parallels the reduction that was outlined for the
analogous case of gravitational potentials. '

In the first term on the right-hand side of (A13)
we convert the derivative with respect to t, which
acts only on the 5 function, to a derivative with
respect to t' acting only on the 6 function:

—5(t -t+r-n z(t'))
Bt

—,6(t' —t +r —n z(t')) .

(A14)

We then integrate by parts with respect to t',
leaving the 6 function undifferentiated. This allows
the integral over t' to be performed, giving for a
general integrand f (t')

dt f(l )Z(t' —'t+r '—tt z(t ))=',
)

f (t')
1 —n vt')

1

(A15)

where t,' is the first retarded time in (2.8), with
r' = z(t'). In the second term on the right-hand
side of (A13) we first reduce the expressions by
performing the differentiations indicated by the
V,. operators. Simplification arises because any
terms proportional to n' can be ignored, as those
would not contribute to the power radiated. Also,
terms which give rise to fields which fall off fas-
ter than 1/r are ignored, as those also do not con-
tribute to the power radiated. Because the V,. op-
erators involve symmetrized gradients with re-
spect to x' and x', they do not affect the 6 func-
tion with argument 5(t' —t+r —n r'+u), and thus
they act only on the limits of integration on the
second-retarded-time term, giving rise to terms
which no longer involve integration. Thus such
terms produce 6 functions with argument
5(t' —t+r+r') coming from differentiating the
lower limit on the integral. The derivatives with
respect to t are then carried out, giving deriva-
tives of the 5 functions with respect to their argu-
ments. The integration over r' is then performed,
with the result that all positions r' are now func-
tions of t'. The derivative of the 5 functions with
respect to their arguments can then be converted
into derivatives with respect to t', and then inte-
grated by parts with respect to t' so that the 6
functions are no longer differentiated. In doing
this one makes use of the assumption that no ac-
celeration terms are produced. The net result of
this reduction is to produce some terms with a
5-function argument as in (A15), for which the in-
tegration over t' can then be performed as in
(A15). The remainder of the terms have a dif-
ferent argument of the 5 function, i.e.,
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6(t' —t+r+r'), where r'=iz(t')i, for which the
integral over time t' gives, for a general inte-
grand f (t'),

d t 'f (t '
)d (i ' —d +r +r ')=,)

f (t')
1+r v r'

(A16)

where t,' is the second retarded time in (2.8).
The radiation fields are thus seen to be sharply
propagated with two different retarded times, the
first representing direct propagation from r' to r,
and the second representing scattering off the
mass M. The net result of these operations is to
produce the general, rather complicated expres-. .

sion for the radiation fields (2.9).
The expression (2.9) is cast into a form which

would be suitable for numerical calculations of the
power radiated, but not for analytical results. The

primary difficulty is in the fact that the fields de-
pend on properties of the source at two different
retarded times, generally giving rise to i:iterfer-
ence effects. However, in two limits the expres-
sion (2.9) simplifies enough so that some analytic
expressions can be derived. In particular there
are the limits of small (dr' and of large cur'. We
first examine the small-~' limit, starting with
the radiation fields in the form of (A12) and (A13).

In the small (or'-limit the potentials (A12) and
(A13) greatly simplify, since the two retarded-
time 5 functions coalesce to form, to lowest or-
der in cur', a single retarded-time 5 function.
Also, the time derivative operators can be ig-
nored compared to the spatial derivative operators
S/Bt«V„, in the small-(or' limit. The V~ acting
on the last bracket in (A12) or (A13) gives, dis-
carding all terms which fall off faster than 1/r,

2r
V„6(t' —t+r —n r') ln((r'+n r')/2r)+ 6(t' —t+r —n r'+u)—

r'+ n ~ r' Q

x'" r'+n'
= [6(t' —t+r —n r') —6(t' —t+r+r')], , (A17)r'+n. r' '

In the small-(dr' limit retardation effects across
the size of the system are small. In effect this
means that each of the 5 functions can be expanded
about the argument t'- t+r, i.e.,

6(t' —t+r —n r') = 6(t' —t+r) —n ~ r'6'(t' —t+r),

(A18}
6(t' —t+r+r') =6(t' —t+r)+r'6'(t' —t+r),

V,[ ] —= —[6(t' —t+r)(x"/r'+ n')]. (A19)

The second gradient of the above bracket gives,
to lowest order,

ij
v,v, [ ]=—„6(t' t+r) ", —-„.(A20)

Since &/M=-v'V, in the nonrelativistie limit, we
then evaluate the potential (A13) in the small-(or'
limit as

-q ( 6
q

x (, )et r' r" - ret

(A21)

where 6' indicates differentiation with respect to
the argument. That such an expansion is reason-
able is most easily seen if one first Fourier-trans-
forms (A17) with respect to time, and then expands
terms in powers of (or'. Using (A18) in (A17) then
results in the reduced expression for (A17)

where ret means all terms are evaluated at the
time t'=t -r. This produces the reduced expres-
sion given by (2.10), valid in the limit (or'«1.

Although (A21) is sufficient to calculate the
power radiated, it is somewhat instructive to
evaluate A, , and show that gauge invariance still
holds. To evaluate A, , to the desired order it is
necessary, in addition to the above steps, to ex-
pand the first 6 function in (A12) to first order in
r' as in (A18). Grouping terms all of the same
order then gives

q ~ GM
A = ——n v — (n v —n r'r "v/r')r at

so that the gauge condition for large r,
Ap p Ay p Ap p+n A~ p

=0

is still satisfied for large r.
Inthe large-&or', small-i(or'Pi limit, applied

to extreme relativistic motion [(1—v')"'«1],
the solution (2.9}also simplifies. This results
from the fact that only the first-retarded-time
terms give rise to the enhancement and peaking in
the forward direction that is characteristic of the
coxresponding flat-space electromagnetic result
in the relativistic limit. This arises because of
the 1-n v factors in the denominator of the terms
in(2. 9) which are evaluated at the time t,'. The cor-
responding factors in the t,' terms are 1+r' v/r',
which will in general not give such an enhance-
ment. In fact the t,' terms will become important
only if 1+r' ~ v/r' becomes small, which implies
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that the mass M is in the forward beam [of width
(1 —v')'"] of the charge. If that is the case, there
will tend to be cancellation between the t,' terms
and t,' terms, reducing the power radiated below
what would be expected on the basis of the t,' terms
alone. As is seen in Sec. III, the t,' terms fall off
at a distance such that the mass M is the forward
beam, so the only effect of this cancellation is to
cut off the radiation at large distances faster than
expected. Thus in the large-&or', extreme relati-
vistic, limit we keep only the first-retarded-time
terms, and also keep only terms which are im-
portant over the forward beam of the charge.
Since the fields are to be used in computing the
radiated power through (2.21) we can estimate the
dependence in (1 —v')'~' of the various terms in
(2.9), considering only the angular dependence of
each term over the forward beam. This allows us
to group terms according to their importance, in
the extreme relativistic limit, so far as a calcula-
tion of the power is concerned. To this end we
define the parameter e by (2.12), which, in the
power radiated, gives rise to terms of order
(1 —v2)'~'. Similarly 1-n v gives rise to terms
of order (1 —v').

In computing the leading terms in (2.9) one must
also take into account whether the term is propor-
tional to v' or to x". A term proportional to v' is,
in the forward beam, almost entirely longitudinal.
Its transverse components, which are the only
ones that contribute to the power radiated, are of
order (1 —v')'" smaller than its longitudinal com-
ponent. For a term proportiona1 to x" the trans-
verse and longitudinal components are of the same
order of magnitude (unless x' is very large).
Thus, to group terms to find the dominant contri-
bution, those terms proportional to v' will have to
be (1 —v')"~ larger than those proportional to x"
in order to contribute to the power radiated in the
same order in (1 —v2)'".

In reducing (2.9) we have two kind of terms to
treat. The +' terms, which in part depend on the
acceleration, must be considered separately from
the rest of the terms, since an order-of-magnitude
estimate to the power radiated cannot be given un-
til the acceleration is specified. The O', H', and
K' terms contain no acceleration and can be ap-
proximated directly. Applying the arguments given
to these terms gives the dominant geometrical
contribution to the power radiated indicated in
(2.13). Actually in deriving (2.13) we have kept
terms of one extra power in (1 —v ) than would
appear necessary at first glance. This is done
because in the case of the acceleration being that
of the gravitational acceleration of the charge
towards M, the E' terms cancel out the dominant
contribution of (2.13). Thus in order to find the

leading contribution to the total field in the case of
free-fall acceleration, it is necessary to keep
terms of order (1-v') smaller than the dominant
terms in (2.13).

APPENDIX B: DERIVATION OF THE
SEMICOVARIANT SOLUTION

Qur starting point for this derivation is the gen-
erally covariant field equations for the potential
A „, obtained by substitution of (2.2) in (2.1):

(Bi)
In flat space-time the solution to (B1) can be writ-
ten in generally covariant form as

A „(x)= f d'x'4-(, g„„.lt (0)J"'(x'), (B2)

where g„, is the parallel propagator" between the
two space-time points x and x', Q is 2 the square
of the proper time along the geodesic between x
and x', called the world function by Synge, "and 5„
indicates a 5 function which gives a contribution
only when signals are propagated along the forward
null cone centered on x'. The expression (B2) re-
duces to the standard Lienard-Wiechert potentials
in a system of rectangular coordinates. Further,
the potential defined in (B2) satisfies the covariant
Lorentz gauge 4„'"=0 in flat space-time.

In a curved space-time the covariant potential
(B2) is not an exact solution of (Bi). Further, the
potential (B2) is not precisely defined, since there
will, in general, be more than one geodesic be-
tween the two points x and x'. However, since we
will be considering the case of an "almost flat"
space-time, i.e., the linearized Schwarzschild
geometry, (B2) taken along the principal null geo-
desic between x and x' should be a suitable first
approximation, with corrections which are at least
of first order in the Riemann tensor (since there
are no corrections in flat space-time). Thus we
take (B2) to the zeroth-order solution A~„'& to the
field equations (Bl), and since we are interested
here in the solution of the field equations only to
first order in p (and thus first order in the Rie-
mann tensor), we need only find the first-order
correction A&„'& such that A&~&+ A&'& satisfies (B1)
to second order in the Riemann tensor. It should
be remarked that (B2) is not a unique zeroth-order
solution —other trial solutions which differ from
(B2) by terms of order the Riemann tensor would
be equally valid. However, since we will be con-
sidering the solution only to first order in the Rie-
mann tensor, differences will be accounted for by
our first-order correction.

If we substitute A~~&, given by (B2), into 'the

curved space-time equation (B1), we find that A„"
satisfies the differential equation
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A~„'.&„"-A,".&:"=4vs„+ ~l
d'x'v'-Z &" (x')(&s(&)Lg„, ." -fl„g. ]+~s'(fl)IS„(&;.'" -4)]-[5s(&)g~ '"J,,)

(B3)

where we have used the facts that"

0'"g„., =0, n..n "=2~,
5„"(a)n= 25-„'(n), g,n "=-g „

together with current conservation J" . , =0, to re-
duce the rather complicated expression that re-
sults from substitution into (Bl). The derivatives
of the parallel propagator and of the world func-
tion can be in principle evaluated to any order in
the Riemann tensor. Synge" explicitly gives these
derivatives to first order in the Riemann tensor,
which are all that will be needed here.

Since the second, long term on the right-hand
side of (B3) vanishes in flat space-time, it must be
at least of first order in the Riemann tensor. De-
fine the second, long term to be 4'&„'&, an apparent
"induced" current density. Of course, there is no
actual current density points where J~„'~w0, but
for mathematical purpo- .s we can treat it as a
perturbed current density and solve for the per-
turbed potential A~„'~ using the zeroth-order Green's
function (B2). Since we want A~„" to be such that
substitution of A&„'&+ A&&'& into (B1) cancels out 4'&'&,
we choose the first-order solution A~'~ to be given
by

A"'(4)=- f 4'x"4-4 4; 4 (Q)Z"'""(x"). (B4)

Thus A~„'&+ A~„'& is a solution of (B1) to first order in
the Riemann tensor. We see from (B2) that A&„'& is
sharply propagated from the source to the observ-
er along a light cone. On the other hand A~„'~ from
(B4) and (B3) is propagated from x' to an inter-
mediate point x" along a light cone, and then prop-
agated from x" to x along another light cone. The
term A&„'~ thus represents the scattering off the
Riemann tensor (or smearing of the signal inside
the light cone centered on x').

At this point one may raise a question about our
choice of gauge. The field equations (Bl) are un-
changed if we replace A.„by A.„+y.„. Usually one
uses this degree of freedom to impose the Lorentz
gauge A„:~=0. In our solution the gauge is deter-
mined by our choice of the zeroth-order solution.
In particular if we evaluate A~'&:~, we find

gauge. Similarly one can compute A~'&: ~. However,
since J&'& from (B3) is also conserved, and also of
the order of the Riemann tensor, A~&'~:~ will be of
second order in the Riemann tensor. Thus the tot-
al field A„ to first order in the Riemann tensor
satisfies the gauge condition (B5).

The contribution of A.~&'~ to the radiation field is
easily expressed in semicovariant form by evaluat-
ing 6s(Q) for the linearized Schwarzschild metric
and taking the field coordinate r large. This yields
the direct contribution to the radiation field

goal

(0) g graf&f (Be)

for a point charge q. This is the same as (2.14),
with the same definitions that follow (2.14).

We next focus our attention on the scattered con-
tribution A~&'&, with particular attention to the form
of the geometrical quantities in (B3) that need to
be evaluated to first order in the Riemann tensor.
These involve second derivatives of the world func-
tion and first and second derivatives of the parallel
propagator; they are explicitly evaluated to first
order by Synge. " Because of the contractions on
indices in (B3) these are found to depend only on
the contracted Riemann tensor, i.e., the Ricci ten-
sor, which vanishes everywhere except at the posi-
tion of the mass M. Further simplifications can
also be made if we wish to evaluate the scattered
contributions, A~'~, only in the large-ur' limit.

In the second, long term on the right-hand side
of (B3), there are three brackets whose evaluation
must be considered. The last one involves a pure
gradient with respect to x"-when that term is
substituted into (B4) it will give rise to fields which
are only spacelike and longitudinal. Therefore
fields arising from that term will not contribute to
the radiation, and that term can therefore be ig-
nored (or removed by a gauge transformation).
The middle term, which involves the derivative of
the 5 function, can be evaluated, following Synge, '
to first order in the Riemann tensor, using

1
Q.„'"—4 = (u —u, )'R„8U"U8du +O(R'),

2 1 &gy

(B7)

A~„~'" = d x'4-g g '"5& 0 J x', (B5)

using current conservation again. The right-hand
side of (B5) is of the order of the Riemann tensor,
and so we have not used the curved-space Lorentz

where u is a special parameter on the geodesic
from x' to x, with end values u, at x' and u2 at x.
U" is the tangent vector dx "/du. ft„8 is the Ricci
tensor. The geometrical relation (B7) would be
the only one needed if we were considering the
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solution to a scalar wave equation. ' In fact since
(87} is already of first order in the Riemann ten-
sor, all other geometrical quantities which appear
as coefficients in (83) can be evaluated as in flat
space. This means that we can use the solution to
the scalar wave equation'~ to write down the radia-
tion fields arising from the middle bracket in the
second term on the right-hand side of (83):

A.&",= ~ dt' dr'5' r'-z t' g„,zP'
/~0

8 dQ6(t' —t+ r —n ~ r'+ u) —.
r'+n r' ' N

(88)

We now consider the first bracket of the second
term on the right-hand side of (83), which involves
the undifferentiated 5 function. The g„' term is
easy to evaluate since the Ricci tensor vanishes ex-
cept at the position of the mass M. The more
complicated term involves the second derivatives
of the parallel propagator. Following Synge" we
find that

1,P

(u -u )'
Q2

x (u —u, ) [Ra„.~ RBq „,]U-sdu, .
Qg

(89)

where components in the integral in (89) are re-
ferred to a standard rectangular coordinate sys-
tem, the integrand already being of first order in
the Riemann tensor. Also, the covariant deriva-
tives may be replaced by ordinary derivatives for
the same reason. Since we already know the solu-
tion for a term like (87), we would like to cast
(89} in a similar form, in which there are noderiv-
atives of the Ricci tensor. We can do this if we
first define the symmetric gradient as

8 8
k ~ k 8 k'~

giving, for example,

r Q2 Q2

(u —u, )'RB «Usdu = -V, (u —u, ) Rs Usdu .
JQ1

Next we make use of the fact that the Ricci tensor
has only equal diagonal components Rpp Qyy Rgp
=R33 and depends only on position, not time.
Further, we consider the time derivative of the
perturbed potential (84), for large r, which deriva-
tive can then be integrated by parts so that the co-
efficient of (89) then involves the derivative of a 6
function. In this form the solution that was used in

deriving (88) can also be applied to the terms in
(89). The net effect of these operations is to pro-
duce a rather complicated final expression. This
'expression, analogous to the second-retarded-time
contribution in (A13), simplifies greatly in the
large-~, nonrelativistic limit, where the domi-
nant terms arise from derivatives acting only on
the 5 functions. This results in the collapse of the
contributions from the second term on the right-
hand side of (84) to the simple form

&» GMq v'(~'-n r')+x"(n v -r' v/~')
i,p r'(r'+n ~ r')

APPENDIX C: RELATION BETWEEN SOLUTIONS

We have outlined in Appendix A and Appendix 8
two methods of obtaining a solution to the electro-
magnetic field equations to first order in the poten-
tial p, or etluivalently, to first order in the Rie-
mann tensor. Both solutions exhibit propagation
along two null lines -a direct path which is a null
geodesic from the source to observer, and a scat-
tered path which is a null geodesic from the source
to M and another null geodesic from M to the ob-
server. The two solutions appear quite different in
form. For example, the direct term of the semico-
variant solution, (86), bears little resemblance to
the first-retarded-time terms of the coordinate-
dependent solution (A13) and (A14). In this appen-
dix we show that the direct contribution to (A13)
and (A14) follows from (86) if we make the ap-
proximation of small

~
aw'Q[.

Starting from (86}we explicitly write out the
components of g„ from (2.15). For g„,d" we ob-
tain the components

g,„v"'=(1+y')+y,

g, .v '=-6'(1 —p')+ n'g —g, ,(1+n v),
where g = g „,v and P' = P(r'). We next add to (86)
a pure gauge term

(C1)

A&&~&0(r, t) = ——
J

dt'6(t' —t+ r -n ~ r'+2/)n&g,

(C2)

with n" = (1, n), in order to bring the choice of gauge
in agreement with that made in (A13) and (A14).
Substituting (C1) into (86) and adding (C2) gives the
radiation fields, to order p,

(810)

with quantities to be evaluated at the retarded time
t' = t —x —r'. It should also be noted that (810)
could also be obtained from the second-retarded-
time term in (A13) by assuming large aw', small v.



E LE C TROMAGNE TIC RADIA TION FROM CHARGE S. . . 391

d (r, t)= ——f dt 2('t -'t rv-n r'vdtt)(1vt2'+2t)), (C3)

(r, t) ———I— dt 2(t '—t+' r —n r'+22)[v'(2 —2')+2,.(( vn ~ v)]. (C4)

We note that the argument of the 5 functions in (C3) and (C4) involves the correct retarded time, to order
p, as given by (2.17}. If ) (2) x'p ) is small we can "expand" the 6 function to first order in p, giving

5(t' —t+r -n ~ r'+2/) = b(t' —t+ r -n ~ r') —2g —5(t' —I+ r -n ~ r') .et (C5)

Such an expansion, of course, is best done in terms of the Fourier transform of the 5 functions, but the net
effect is as given in (C5). We then substitute (C5) into (C3) and (C4) and keep terms up to first order in P.
This gives

2GMd (r, t)= ——Jdt il(t —t'+r' nr')(t-rd' v2 2) v di'b(t'-t+r-n r') )n(r'+2 r'), (CB)

(r t) =——'—I dt 2(t -. t+ r '—n'2')[v (1-tt') vd t(1 vn v)]

2GMq 8 dt'5(t' —t+ v —n ~ r')v In(x'+n ~ r'),
'V

(C7)

where we have used the definition of g, (2.16).
Comparing (C6) and (C7) to (A12) and (A13}, re-
spectively, shows that we have reproduced the
direct geometrical terms on the right-hand sides of
(A12) and (A13) which involve second time deriva-
tives.

The next step in the reduction of (C6) and (C7)
involves the g dependence in the first terms on the
right-hand side of (C6) and (C7}. Explicitly, in

(C6) we write

2(=2/ «v =-«2GMv' Vln»(r' n +~ r), (C8)

where V» is defined below (All). In (C8) the time
dependence is still assumed to be in the r'(t')
terms. However, we can put the time dependence
into E(t') as in (A12), and commute the V» operator
with the 5 function. This then reproduces the
second direct geometrical term on the right-hand
side of (A12); i.e., (C6) reproduces the direct
terms of (A12) up to the last term, which involves
the V' operator. It can be seen that this operator
does not contribute to the direct propagation sig-
nal, since V' gives 0 everywhere except along the
line z'+n ~ r' =0. Such a term would contribute only
if the source were directly behind the mass I, as
seen by the observer, and in that case the second-
retarded-time 5 function would have the same ar-
gument as the first one and there would be no
separation of the direct and scattered signals.
Thus we see that (C6} reproduces the direct terms
of (A12).

Similarly in (C7) we can write

g;(I+n ~ v) =2(; -$,(1 —n v) . (C9)

The first term on the right-hand side of (C9) can
be written as

2g, = -2GMV, In(r'+n r') (C10)

and treated as above to reproduce the second oper-
ator in the direct geometrical contribution of (A13).
The third operator can be reproduced if we com-
bine the derivative in (C7) together with the 5 func-
tion and the last term in (C9) to give

—5(t'-t+ r-n ~ r')g (1-n v)et , i

—5(t' —t+ r - n ~ r') GM V In(r'+n ~ r') .Bt'

(C11)

Integrating by parts with respect to I' in (C7) then
gives 8/8t' acting only on a function of r(f'), which
implies that 8/8t' can be written as v»V». As be-
fore, this gives rise to the third operator in the
direct geometrical contribution of (A13). The same
argument applies to the V operator in (A13}as
applied in (A12}. Thus we see that (86), with a
change of gauge and an expansion of the 5 function,
reproduces the direct contribution to the radiation
fields (A12) and (A13).
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