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The analytic properties of Feynman graphs are used to suggest the singularity structure of the

Reggeon-Reggeon-particle vertex.

The proof by Brower and Weis! that the vanish-
ing® of the Pomeranchukon-Reggeon-particle ver-
tex at /5, =0 and arbitrary #;<0 implies the asymp-
totic vanishing of the total cross section dealt a
severe blow to the hope that the dominant Regge
singularity might be a factorizable pole with inter-
cept at 1.

Fundamental to the result of Brower and Weis is
the expression they take for the Pomeranchukon-
Reggeon-particle vertex. With the invariants de-
fined as in Fig. 1, their expression for the vertex
is

R=(7p+e ' TP) (15 + ™ " RYV(tp, tp, K +i€)

+ TpTrV(tp, tg, K = i€) , (1)

where K =s,,s,,/s. Enforcing the Steinmann rela-
tion allows them to write

V=(=K)=®PV(tp, tg, K)+ (=K) " “RV(tp, tr, K) ,
(2)

with V; free of cuts in K. Finally, requiring the
poles at ap=dJp Or ag=Jy to have residues which
are polynomials in overlapping invariants of de-
gree Jp or Jy, respectively, leads Brower and
Weis to the expression

Voltpy try K)= 25 T(=ap+i)T(ap— ag-1)
i=o

X vlap—-1i, tp, tg)K/i1)  (3)

and similarly for Vj.

A crucial feature of the expression (3) for Vpis
the absence of K™ (n>0) terms. It is the general-
ity of the absence of K™ terms which we will dis-
cuss in this work.

First, let us note that a K™ term in Vp and V,
does not violate the Steinmann relation, because
it does not produce a nonvanishing double discon-
tinuity in the overlapping invariants s,, and s,; in
the physical region for the 2-to-3 process, which
is what the Steinmann relation forbids.

Second, notice that a K" term cannot be ruled
out directly by some asymptotic upper bound on
the 2-to-3 amplitude, because in the kinematical
region which we are now discussing (the double-

Regge limit) K is not an asymptotic variable. In
fact it is clearly bounded for fixed ¢, and ¢z, as
can be seen from

- Mip, tr,m?)
(tptp)/?cosw—tp— tp+m

K 5+0(s;; ™) . (4)

Third, one may think of ruling out a K™ term
in (3) by continuing V to one of its ¢, or #; poles
and requiring that the residue of the pole be a poly-
nomial in overlapping invariants, hence in K.
This type of reasoning does not prevent K" terms
from appearing in V, or Vg; it only shows that if
they do, then they cannot appear multiplied by
functions which lead to poles of V in ¢, or tz.
There is no a priori motive to bar the possibility
of terms in V which do not contain poles in ¢, or
tg.

Thus, to the author’s knowledge, there is no
hard “axiomatic” evidence against K=" terms in
Ve and Vp.

As usual in such cases, one goes back to see
what certain models have to say. Computations
have been done with Feynman diagrams,® using
Reggeon calculus,® and with the dual model.’ All
computations give results in which no K" terms
are present.®

We will bring further evidence in support of the
absence of K™ terms by analyzing the analytic
properties of Feynman diagrams. The argument
goes as follows: A K™" term in V, while not im-
plying really that the 2-to-3 amplitude has poles
at s;,=0 and s,;=0, must certainly be the asymp-
totic representation of some singularity in the am-
plitude involving both s;, and s,,. Moreover, a
K™ term would indicate that there must exist
some point in the Res,,-Res,; plane where the 2-
to-3 amplitude is singular for any sign Ims,, or
Ims,; might take. However, we show that Feyn-
man diagrams are likely to have no point on the
(Ims,,)(Ims,;) >0 side of the Res,,-Res,, plane
where there is a singularity produced by both s,,
and s,;. Thus we conclude that no K" term can
appear in Vp or V.

We stress that the argument does not give any
preferential treatment to diagrams which are ex-
pected to contribute in the double-Regge limit.
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FIG. 1. The double-Regge limit of the a+b—~1+2+3
process.

We show explicitly that the box diagram (Fig. 3)
has the property stated above. Then we comment
on the generality of that result for an arbitrary
diagram, hence also for those diagrams with non-
vanishing asymptotic contribution.

Consider the s;,-s,; plane. The physical region
for the 2-3 process,

a+b-1+2+3, (5)

is a subregion of the physical region for the 1-to-
3 process

c-1+2+3, (6)

where ¢ is a particle of mass Vs. We assume s
is asymptotic and show in Fig. 2 the physical re-
gion for the process (6). For the process (5), de-
pending upon ¢p and £, the physical regions for
single-Regge (1R), double-Regge (2R), and fixed
angle (FA) limits are also shown in Fig. 2.

Let us determine the double discontinuity in s,,
and s,; of the Feynman diagram shown in Fig. 3.
We note immediately that the problem is to find
the double spectral region for a box diagram hav-
ing three external legs of fixed mass m and the
fourth leg of a very large mass Vs.

An easy way to proceed is to start with all four
legs of the same mass m and gradually increase
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FIG. 2. The physical region for the process ¢ —+1+2
+3, where m,=Vs>>m.
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FIG. 3. Box diagram.

the mass of one leg up to the desired value Vs

(our analysis is inspired by the classic book by

Eden, Landshoff, Olive, and Polkinghorne”).
Introducing the variables

__9i°q
Yij mym, ’ (7)

we see that the leading Landau surface for the box
diagram is given by (see Eq. 2.4.10 of Ref. 7)

1 Y12 =Vi3 —Yi4,

=Y12 1 =933 —Y2a
=0 . (8)
=Yz =Ya3 1  —Ys

~Via —Yaa —Yas 1

Notice that in the present case we have

Y125Y23= V34 =2

_Sp3—2m?
Y13 = 2me ’

(9)

_S;;—2m?
Y2a =7 97 s

_s=2m?
Y1a = 2me

Substituting these values into (8), we obtain the
equation giving the leading Landau surface for the
box diagram:

S12°Sas" = 4M?$15854(8 15 + Spq)
+2(s+5m?) s ,5,,m% - 3m* (s -m3P=0 .
(10)

Let I be the intersection of the leading Landau
surface with the Res,;,-Res,; plane. Then I is tan-
gent to the lines =}, =7, £, and T representing
the intersection of triangle singularity surfaces
with the Resy,-Res,; plane. Also, I' has asymp-
totes, the lines =}, and Z},, representing the nor-
mal and pseudonormal thresholds in this plane.

Since singular and nonsingular arcs of I" are
separated from each other by lower-order singu-
larities, we shall first say a few words about the
latter. The normal and pseudonormal singularities
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FIG. 4. Triangle singularity in the Res-Res,; plane.

are given by
Thi Sp=(m xm)?

and (11)
Di: Sp=(mtm).

Only =1; and =7, are singular. We represent sin-
gular arcs of Landau curves by full lines, and non-
singular ones by dashed lines.

The triangle singularities =,, Z,, Z,, and Z,
correspond to @, =0, a,=0, a;=0, and a,=0, re-
spectively. Thus Z, and X, are independent of
Vs, while the position and nature of =, and =,
vary with it. For example T, is given by

Vit +Vist +Vsst = 2Y14 Vi Vaa— 150 . (12)

In the Res-Res,, plane the corresponding Landau
curve is shown in Fig. 4. It is well known’ that
for Res <3m?, Z, is not singular. For 3m? <Res
<4m?, the arc AB is singular when approached
from any direction, while the arc BC is nonsingu-
lar. We take s=Res+ie with €>0. Increasing
Res past 4m? we go on to the complex parts of =,.
The movement of =, in the s,; complex plane as a
function of s is shown in Fig. 5. One can note at a
glance that similar things happen to =, as a func-
tion of s,,.

Now we are ready to investigate the leading sin-
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FIG. 5. Movement of the triangle singularity in the
Sy3-plane function of s=Res+i¢€, €>0.
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FIG. 6. Box-diagram Landau curve for s=2m?2.

gularity of the box diagram. We skip s=m? and
start with s=2m?. The situation in the Res;,-
Res,; plane is shown in Fig. 6. The singularity
curve I was determined with (10).

We will not repeat the argument of Ref. 7 show-
ing that only the arc I'; is singular and only when
approached from (Ims,,)(Ims,;)>0, but remind
the reader of the two crucial facts needed to ob-
tain that:

(a) For s<4m? the region where Res,, - —« and
Res,;~ - is “safe” (Eq. 2.4.16 of Ref. 7).

(b) None of the triangle singularities have come
up on the physical sheet for s <3m?2,

As we increase Res past 3m?, triangle singular-
ities £; and =} come up to the physical sheet. In
Fig. 7 we show the situation for Res=4m? - € with
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FIG. 7. Box-diagram Landau curve for s = 4m?—¢, €>0.
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€>0. There still exists the safe region, from
which we can continue without problems until we
cross both =} and Z;, which are now singular on
the physical sheet. Thus again only I'; could be
singular. In fact only the arc AB is singular, and
only when approached from (Ims,,)(Ims,;) >0, as
can be seen if we recall that being in a safe region
means convergence of the Feynman integral with
an undistorted a hypercontour. Thus only that
piece of I'; corresponding to a,, @,, a;, and o,
positive will be singular when approached from
(Ims,;)(Ims,;)>0. Remembering that Z;, =7 and
Z1s, 24, correspond to one and two contractions,
respectively, the above conclusion follows.

As Res is increased, at Res=4m?, T, forms a
crunode exactly at the point of tangency to the tri-
angle singularities =, and I, (see Fig. 8). This
signals the appearance of complex singularities.
Indeed, for Res=4m?+ € with €>0, the situation
is as in Fig. 9. There does not exist a safe re-
gion. However, I';, T'y, and I'; and the complex
surfaces attached to them are not singular since
they have not gone through any cuts. So are the
arcs A« and «B of I';. The complex surface at-
tached to AB is singular, and so AB is singular
when approached from (Ims,,)(Ims,;) <0, but not
when approached from (Ims,,)(Ims,,) >0.

Increasing Res to its final asymptotic value, the
singularity property of the different arcs of I" does
not change. In Fig. 10 we show the Res,,-Res,,
plane for some value of s> m?2. We also show the
physical region for the process (6). Notice that
although I', touches the physical region for the
process (6), this does not mean that the Steinmann
relation is violated. Indeed this relation asserts
only that the double discontinuity in overlapping
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FIG. 8. Box-diagram Landau curve for s= 4m?.
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FIG. 9. Box-diagram Landau curve for s=4m®+¢€, €>0.

invariants vanishes in the physical region, but
does not preclude the existence of points in the
physical region where the amplitude has a singu-
larity produced by two overlapping invariants.
That the latter might be the case without violating

‘the Steinmann relation was emphasized by Polking-

horne® and Stapp® in connection with the interpreta-
tion of the inclusive cross section as an elementa-
ry discontinuity formula.

Thus we have proved our claim that the box dia-
gram does not possess any point on the (Ims,,)
(Ims,;) >0 side of the Res,,-Res,, plane where
there is a singularity produced by both s, and s,,.
The question is whether this property belongs to
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FIG. 10. Box-diagram Landau curve for s>>m?. The
physical region for ¢ —~1+2+3 is also shown.
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any Feynman diagram or not.

We believe that the answer is yes and will sketch
a rough argument indicating so. Our argumenta-
tion is based on induction, and it has the same
flaw as the proof given by Eden, Landshoff, Polk-
inghorne, and Taylor'® had for the absence of com-
plex singularities.

For a given Feynman diagram, suppose that it
has already been shown that all its lower-order
singularities are nonsingular in s,, and s,; on the
(Ims,,)(Ims,,;)>0 side of the Res,,-Res,, plane.
Then the leading Landau curve must also be non-
singular on the (Ims,,)(Ims,,;) >0 side of this plane.
Indeed, usually singular parts are divided from
nonsingular parts only by cuts attached to the low-
er singularities. If the latter had been shown to
be harmless, then the entire leading Landau curve
would have the same singularity property. But at
the point of tangency with the lower-order singu-
larity surface we have already shown that there is
no (lower-order) singularity.

This completes the proof. The flaw is that there
exists another mechanism for division of a surface
into singular and nonsingular parts (see Eq. 2.1.13
of Ref. 7). The acnode graph shown in Fig. 11 has
this property. It is this fact which prevented
Eden, Landshoff, Polkinghorne, and Taylor from
indeed proving the Mandelstam representation;
however, we still believe the Mandelstam repre-
sentation to be correct. This motivates our hope
that although the argument given above is not
entirely correct, the conclusion is true—no K"
terms exist and hence no new singularities in the
complex helicity plane are needed.!!

In closing we will comment on some questions
raised by our discussion of the analytic properties
of Feynman graphs. We have seen that the box
diagram (Fig. 3) has an anomalous singularity in
the 2R region of the 2-to-3 process. Indeed, for
s=, from (10) we have

(K- m?)(K+3m?)=0. (13)

But even though the singularity occurs for values
of s,, and s,; in the asymptotic region, does it oc-
cur in a piece of the amplitude which contributes
to the asymptotic expression or in a nonleading
term which can be neglected altogether ? And if it
occurs in a term which survives in the asymptotic

region, can the Regge expression for the ampli-
tude accommodate such singularities?

These questions are unrelated to the main topic
of this work, and so we will refrain from analyz-
ing them here. It suffices to say that by looking
at the sum of all box diagrams with an z-rung lad-
der insertion (Fig. 12), we conclude that it is pos-
sible to have asymptotic anomalous thresholds and
that they can be accounted for in Regge expres-
sions by the use of Regge cuts. (Being planar, the
diagram in Fig. 12 gives a vanishing asymptotic
contribution. However, if one separates the func-
tion into terms containing the different normal and
anomalous singularities of this diagram, some of
them can be asymptotically nonvanishing. Indeed
satisfying no positivity condition, the sum of such
asymptotically nonvanishing terms can be, and for
planar diagrams is, asymptotically vanishing.)

That there may be some connection between
anomalous singularities and Regge cuts is not sur-
prising, since traditionally both have been obtained
from the unitarity equations by iteration. The fol-
lowing observations might be new and relevant to
future developments:

(1) Anomalous thresholds can be essentially dif-
ferent from normal thresholds in that they are
moving singularities. As shown by (13), we can
go into the double-Regge asymptotic region “rid-
ing” on top of an anomalous branch point. Thus,
whereas normal thresholds in s;, and s,, are
smeared out asymptotically, producing cuts such
as those of s,,**1) and s,,*(*2), respectively, an
anomalous singularity such as the one discussed
above will have to be represented per se (if it oc-
curs in a leading term).

(2) The commonly accepted assumption that
asymptotically the behavior of amplitudes above
and below the cut is the same, could be violated
by the type of anomalous singularities discussed
above. Indeed, in the physical region, the Landau
curve will not be singular when approached from
Ims,, and Ims,; >0, but it can be singular when ap-
proached from (Ims ,,)(Ims,;) >0 (as in the case

Pp
Hn > Ps
H! —>— P
:I
N -
pO

FIG. 12. Box diagram with ladder insertion.
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discussed in the text).

(3) We know that there are anomalous singular-
ities in the missing mass in the physical region
for the inclusive cross section. If any of them
survives in the asymptotic limit, could we detect
its presence as some obvious nonanalyticity in
the inclusive cross section represented as a func-

tion of the missing mass?

The possibility of having K™" terms in the vertex
arose in discussions with R. E. Brower and J. H.
Weis regarding their powerful theorem. Helpful
conversations with C. E. DeTar are gratefully
acknowledged.
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We reexamine the weak interaction mediated by the intermediate vector bosons which are assumed to
couple to other (probably unknown) particles (or to themselves) more strongly than to the weak
currents in order to see whether the theory of this type is potentially free from the divergence
difficulty. Sum rules and high- and low-energy limits of the cross sections are obtained for various

weak-interaction processes.

I. INTRODUCTION

Recent extensive investigations of possible syn-
thesis of weak and electromagnetic interactions!
associated with the Higgs mechanism? of gauge
fields indicate a rosy future for the renormaliz-
able theory of weak interactions.® Because of
a variety of models with different symmetry
schemes, these ideas do not seem to contradict
any presently available experimental data. It is,
however, also true that there is no evidence for
any one of the propose models at present. It will
probably take several years to reach energies
high enough to produce the weak intermediate
bosons, if any, whose masses are supposed to be
around 40 GeV or even higher and to check wheth-

er this attractive idea is realized in nature. While
we are waiting for some progress in increasing
available energy, it is worthwhile to search for
other theoretical possibilities which may have an
equally good chance to be physically realized. In
this paper we reexamine one of such alternative
pictures of weak interactions, which is formed
with the following three assumptions: (1) The
weak interactions of known particles (leptons and
hadrons) are mediated by weak intermediate vec-
tor bosons, * (2) these vector bosons couple to
other (probably unkown) particles X (or to them-
selves) more strongly than to the weak currents
of leptons and hadrons, 5~° and (3) the above un-
known coupling will suppress violent behaviors

of the amplitude at high energies or at large mo-



