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A renormalizable quantum field theory is said to be stagnant if it is asymptotically free. We study the

renormalization group for small coupling constants. In particular the pseudoscalar-fermion theory with

an internal-symmetry group 6 and in which the coupling matrix furnishes a representation of 6 is

considered. A representation is said to be stagnant if the associated theory is stagnant. We show that
Cartan's four families A,B,C,D and the exceptional algebra G, possess no stagnant representation. On

the basis of this result we conjecture that there are no asymptotically free quantum field theories in

four dimensions. Some possible asymptotic behaviors of field theories are also described.

I. INTRODUCTION

Perhaps the most remarkable feature of renor-
malizable quantum field theory is the fact that the
asymptotic behavior of such a field theory is de-
termined by the zeros of a certain function of the
coupling constants. In recent years, this point
has been most forcefully emphasized by Wilson. '
The origin of this assertion lies in the renormal-
ization-group' equation, which for the case of a A, Q
theory reads as follows'.

9 a
)) +P—(»—-sy(» I'"'(P "P )=0 (1.1)1 n

Here I'~("-. (P, ~ P„) denotes' the leading asymp-
totic part of one-particle-irreducible renormalized
Green's functions. Following Coleman we find it
convenient to think of the hydrodynamical analog
of Eq. (1.1}. With the identification t ——,

' In(p'/s),
X—x, and p(» —6(x), Eq. (1.1) may be interpreted
as a description of a population of "bacteria" mov-
ing with a fluid along a one-dimensional pipe with
I'~(" ' =bacterial density. Now if there is a stagnant
point, namely a value xs such that u(xs) = 0 and
such that the velocity field in a neighborhood of
x~ points toward x~, then the bacteria will accu-
mulate there if one waits long enough. Hence the
asymptotic property of I'~(s' is dictated by the
zeros of P(».

Less picturesquely, the general solution4 of Eq.
(1.1) is

I'(~ ) —s(4~)) 2f (+ ) s
AS , , n —,

(i /2) in (a/i')
x exp —n dr ) ()('()(,r)),

0

(1.2)

where f(") is some function and )('()(, t) is the so-
lution of

d) '()(, f)
df

such that V()(, 0) = )(. Clearly if P()(s) = 0, then
X'()(, ~) =)(s and the asymptotic behavior of Eq.
(1.2) simplifies dramatically.

An intensive search for Xs [and its analog in
quantum electrodynamics (QED)] has been mounted
in the last couple of years, ' but so far the search
has been in vain, at least for theories in four-
dimensional space-time On .the other hand, P(0)
=0, as is obvious from the definition of P(». Thus
the origin in the coupling-constant plane is a pos-
sible stagnant point. It is known, however, that
the fluid flows away from the origin in renormal-
izable theories with one coupling constant, namely
XP~ and QED. [In other words P(o() =aa for QED
and P(» = b)(' for )(P', where a and b are positive
numerical constants whose precise values are of
no import. ] In this paper we address ourselves
to the following question: Are there renormal-
izable theories in which the origin in the coupling-
constant plane is a stagnant point? We are forced
to study theories with more than one coupling con-
stant. For each coupling constant A., there corre-
sponds a p& ()(„.. . , )(„)[which describes the flow
of a fluid in n-dimensional space with fluid ve-
locity v(x)] .

Clearly, one motivation for considering this
problem is that the neighborhood of the origin is
completely explorable by renormalized perturba-
tion theory. Thus we assume that a neighborhood
of the origin exists such that inside this neighbor-
hood P(X) is adequately given by, say, the lowest-
order term in a perturbative expansion. This
neighborhood may be rather small; indeed, if
Adler's conjecture' about QED turns out to be
correct, then the neighborhood referred to here
in the case of QED would be described by ) a~ «1+,.

While we certainly do not mean to suggest that
the present perturbative discussion may be ap-
plied to strong interactions, it is tempting to think
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that a possible explanation of deep-inelastic scal-
ing is afforded by the existence of a stagnant point
at the origin. In that case X'(X, ~) =0 and the the-
ory would be asymptotically free. Another amus-
ing possibility is the following: The origin is not

a stagnant point, but a given bacterium may flow

by close to the origin at some time. It will eventu-
ally flow away of course. However, quantum
field theory is such that v(x)- 0 as x- 0 and thus
this bacterium will spend a long time milling
around the origin. In other words, it may happen
that the scaling phenomenon we are seeing pres-
ently at SLAC would persist for a logarithmically
large energy range and then eventually disappear
at some superhigh energy.

We will now leave all idle speculations aside.
The bulk of this paper is devoted to a study of the
pseudoscalar-fermion theory i@&y,g Q, I'8 with

a given symmetry group G. We make the restric-
tive assumption that F' furnishes an irreducible
representation of G. F' is said to be stagnant if
the corresponding theory is stagnant. The prob-
lem is solved by an exercise in the theory of Lie
algebra. We find no stagnant representation for
the four Cartan families and 6,.

The group-theoretic structure of the renormal-
ization-group equations is of course independent
of space-time dimension. Hence the discussion
here may also be useful in 4 —e calculations. '
Also, the same type of group-theoretic structure
governs various "bootstrap"-like equations, ' and
so the group-theoretic analysis given here may be
helpful in other contexts.

We start by reviewing the situation in theories
with one coupling constant (Sec. II). The group
theory is discussed in Sec. IV and Appendix A. In
Appendix B we discuss some possible asymptotic
behavior of quantum field theory.

If. THEORIES WITH ONE COUPLING CONSTANT

In QED, the renormalized coupling constant a
Zy Z2 Z3 (xp Z3 cLp s inc e gauge invar ianc e im-

plies Z, = Z, . (The subscript zero will always
denote bare quantities. ) Z„being a wave-function
renormalization, satisfies the K5116n-Lehmann'
bound 0 «Z, «1, which implies that in the pertur-
bative expansion Z, =1 —ao, In(A/m )+ ~ ~ ~ with a
= positive number and so

P(o}=m,

=am .
A heuristic and more physical explanation is as
follows: Z, describes the shielding of a point
charge by pair creation. As m, increases it be-

comes more difficult to create pairs, and hence
SZ, /Sm, is positive. Gauge invariance thus under-
lies the fact that the origin is not a stagnant point
in QED. The situation for massive boson theory'
is clearly the same.

For the theory Sz = -(X/4! ) p', one easily cal-
culates P(X}=(3/32m') X'+ ~ ~ ~ . The familiar for-
mal argument of Baym" and others indicates that
A, must" be positive. Hence the fluid again flows
away from the origin.

III. THEORIES WITH MORE THAN
ONE COUPLING CONSTANT

It is clear that the origin is not stagnant for the
theory

&- a Z l('peoi } -uo 4oi j

Z 0 Aoi %of Poll Col (3.1)
4/41

since the P corresponding to A'"' is equal to g»
(8' ')'. The only known renormalizable theories
involving many massive vector bosons and a
non-Abelian group invoke the Higgs mechanism. "
We will not here attempt a discussion of the pos-
sible stagnancy of the origin for these gauge the-
ories, although such a study would be interesting.

Thus we are left with the pseudoscalar-fermion
theory to which we now turn. (The scalar-fermion
theory will be briefly mentioned later. ) The theory
has two coupling constants, viz. ,

&a=&gaia&5404o -4, 40' ~

The existence of two coupling constants compli-
cates a general discussion of the renormalization
group. (See for exmnple Ref. 13.) Fortunately,
matters simplify for our lowest-order calculations.
One finds

~g
P, =(2g,* . m, [1 o(g, i)],8 P,p

, az ax
P~= 2pp' 2+m 1+0 g A.

~ P,p

(
8 8 8 8

2p, , +m —+ p —+ pz —+''' ~As=0
p2 gm e gg ~gg

(We do not bother to write down the terms propor-
tional to y.} Now g=goZ, 'Z, Z, ' '. The wave-func-
tion renormalization factors satisfy the KKllbn-
Lehmann bound Z, «1 and Z, «1, and hence give
positive contributions to P by the argument given
in Sec. II. The author knows of no a priori argu-
rnent for the sign of the contribution of Z, ', in
contrast to QED. A straightforward computation
shows that it is positive and that
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5, 2+1+2 (3.2) P =(2s, +s, +2s,} (3.10}

The next-order terms omitted are of order g' and
Ag'. We have indicated in the second equality the
origin of the factor of 5: Z, ' and Z, ' ' contribute
2 each, while Z, contributes 1, to make up a total
of 5. This separation will be important later. The
lowest-order contributions to P), are of order A.',
g', and Xg', coming from the "bubble" diagram,
the square-box diagram, and the wave-function
renormalization Z„respectively. A simple com-
putation gives

Pz —aA. —bg +CAg (3.3)

a, b, and c are positive numerical constants whose
precise value does not concern us. That a and c
are positive follows from the foregoing discussion.
(Here the omitted terms begin with order X', P,'g',
Ag', and go.) The flow of the fluid near the origin
is then described by [according to Eq. (1.3)]

to lowest order in perturbation theory. Thus the
origin is a stagnant point if (2s, + s, +s,) & 0. Now

evidently s, &0 and s, &0. Thus the problem is re-
duced to the question of existence of representa-
tions with s, large and negative.

Let us compose two definitions:

(a) A representation is said to be dangerous if
s, &0.

(b) A representation is said to be stagnant if
2s~ + s2 + 2s3 & 0.

Clearly a stagnant representation is necessarily
dangerous, but not vice versa.

We will now show that the only dangerous rep-
resentations are of low dimensionality and may be
completely enumerated, and that there are no
stagnant representations for Cartan's four families
and the exceptional algebra 6,.

dt
—=ah. —bg +cog
dA, 2 4 (3.4)

IV. AN EXERCISE IN THE REPRESENTATION
THEORY OF LIE ALGEBRAS

=d 3

dt (3 5)

(a, b, c, d all positive). By inspection the origin is
not a stagnant point, since ~g~ always increases
for small g.

We thus have to turn to more complicated theo-
ries. Let us consider the pseudoscalar-fermion
theory with an internal-symmetry group G:

We have attempted to make this section self-
contained by reviewing some of the basic concepts
of Lie algebras. For further information the read-
er may consult for example Refs. 14-16. A Lie
algebra is characterized by [X„xo]= c,o'X, . Out
of the structure constants the all-important metric
tensor may be constructed:

2= $,s(f ya m, ) y,-s+ —,'(s„g)' ]1
gap = Cap Cpv ~ (4.1}

F'F'F'=s Fb
1

F'F'=s, 1,
rFa Fb=s gob

3

(3.V)

(3.8)

(3.9)

(repeated indices are summed over). For the the-
ory described in Eq. (3.6) we clearly have [cf. Eq.
(3.2)]

o'(Qo) +fÃosy, i('o po, Fs +at' term,

(3.6)

where F' is a Hermitian matrix. Since the theory
of representations is much better developed than
the theory of Clebsch-Gordan coefficients, we will
restrict ourselves to the case in which Q, belongs
to the adjoint representation and in which the ma-
trices F6 furnish an irreducible representation
of the Lie algebra A of G. (We consider compact
groups only. )

We will prove in Sec. IV that there exist three
purely group-theoretic numbers s„s„and s3
such that

= c,p" trX„X + trXpX„c,

and thus

[g„sc]=o,

(4.2)

(4.3)

where (e, )o' = -c,o' furnishes the adjoint repre-
sentation. It is easy to show that the adjoint rep-
resentation is irreducible for simple groups.
Hence by Schur's lemma

trXpX' =s35p (4.4)

for some numerical constant s3.
We next consider g XpX This is Casimir's

first operator, of course, and commutes with X,
for all T, as is easily shown. Applying Schur's
lemma again, one finds

gP XpX, =s, . (4.5)

We restrict ourselves to simple groups in which
case the inverse of g, p exists and is called g' .

Define the matrix Kp'-=trXpX'. The cyclicity of
the trace implies

o = tr[x„x,x']



STUDY OF THE RENORMALIZATION GROUP FOR SMALL 3633

Finally, let us show that X X~X' = S,X~ for some
constant s, . We simply compute as follows:

X~XpX = c~p X„X +XpX~X

= g c~p~[X, X ] +s+p
1 0 T V= —2 CPT Cvg X + S2XP

To evaluate s, one applies Casimir's operator
X Xz to the state with highest weight:

X&X,
~
0& =(g"H, H„+gg — E„E „) ~

L&

V
2 gp v X + S2X& =(g"'1»~.+Z~'I

» } I~& ~ (4.14)

=(s,——,')Xp .
Indeed, one obtains the relation

(4.6)
where the summation Q, is over the positive roots
only. It is conventional to define 2K =~a. Then

1
S~ S2 (4.7) s, =L ~ f+2f ~ f . (4.15)

s, and s, are obviously related as follows:

ds2 = &S3 y (4.8)

where d = dimension of the representation and
r = order of the algebra (= the number of genera-
tors). Thus a representation is dangerous if and

only if s, &-,'. A sufficient condition for the rep-
resentation to be not stagnant is s, ~ —,'.

It is convenient to use the Cartan-Weyl basis in
which the set X& is divided into two classes: H;,
i = 1, . . . , / (/ = rank) and E, such that

[a„a,]= o,
[H», E ] = o.» E„,
[E,E ] = c»' H»,

E»»] =/»' BE,»»

(4.9)

(4.10)

(4.11}

(4.12)

H, ji»»=m, . ]g& . (4.13)

A weight (or a root) is said to be positive if its
first nonvanishing component is positive (for some
definite choice of labeling the H&'s). A weight m
is higher than another weight m' if m —m' is
positive. A representation is uniquely charac-
terized by its highest weight (denoted by L).
For each algebra of rank l there exist l fundamen-
tal weights T»'i (» =1, . .. , /), such that for any rep-
resentation T, =Q, IC» D»~ with IC» non-negative
integers.

when u+ P is a nonvanishing root. The l-compo-
nent vectors a =(»».„.. . , a» }are the roots of the
algebra. The conventional normalization g
=1 has been used. Also g„=Q n» a, .

A change of basis is effected by the transform-
ation F, =S X~. It is easy to see that the values
of s„s„and s, are invariant under a change of
basis. In particular it is always possible to change
the basis to one in which g~ is the identity matrix
5z, . This is the basis used in Sec. III spanned by
Z' with r'= r, .

An /-component vector m=(m„. . . , m, ) is asso-
ciated with each state ~g& in a representation as
follows:

By applying the operator X~X,X~ to ( L& one may
readily check Eq. (4.7).

We are now ready to solve our problem. Let us
illustrate the procedure for Cartan's family B,
(/ = 2, . . . , ~) (B» corresponds to the orthogonal
group in 2/+1 dimension}. The roots are'4 +e»,
~e& +ej, I &i&j &l, where e; are l orthonormal
vectors in l-dimensional space. Hence the metric
is

i gfj
2(2/ —1)

2K=+ e, (2/+1 —2/)

=(2/ —1, 2/ —3, ~, 1).

The l fundamental weights are

p(c)
K2y 2y. ~ ~ y 2I p

L»'i =(I, o, . . . , o),
L»'» =(1, 1, 0, . . . , 0),

~ ~ ~

L» i =(1, 1, 1, . . . , 1, 0) .

Let s, ' be the value of s, for the representation
characterized by L»»~. Using Eq. (4.15) we find
s», '» = 8/(2/+1)/(2/ —1), which is dangerous for
l = 2 but not stagnant for any l. Also, s,'
=//(2/ —I) is not dangerous for any /. Further-
more, s, & s,' for j ~ 3. For any representation
L we have (since L ' ~ L» ' &0)

s, =pe,.Z, L»'» L.'»+2K +fan, L"'

s'," (any /).

Hence the family B, has no stagnant representation
and only one dangerous representation.

The analysis for the other families and G, is
given in Appendix A. The result shows that Car-
tan's four families and 6, possess no stagnant
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representation. The reader is invited to work out
the situation for the four remaining exceptional
algebras using the method outlined here.

V. DISCUSSIONS

Scalar-fermion theory also involves a trilinear
coupling constant, and so the fluid flow is in three
dimensions. By a simple application of asymptotic
y5 invariance, one sees that P» in scalar-fermion
theory is the same as P» in pseudoscalar-fermion
theory. Hence our discussion applies to scalar-
fermion theory as well.

Ne have also examined a few simple cases in
which I"8~is not a representation matrix. Just
to give some examples we mention that an SU(2)
theory with pE I=2 and HEI=1 is not stagnant.
One may also study an SU(3) theory with p and g
in octet representation. This theory has three
coupling constants in general and is clearly not
stagnant. " In the case of a Yang-Mills gauge
theory the coupling matrix does furnish repre-
sentation of Lie algebras. Our group-theoretic
analysis should be useful in this case.

On the basis of the analysis in Sec. IV, one is
tempted to conjecture that no quantum field theory
is asymptotically free. The numbers 2, 1, and 2
in Eq. (3.10} and the number —', in the stagnancy
condition (s, o -', ) are determined purely by the
structure of quantum field theory and the dimen-
sion of space-time. One would think that there is
no a pxiori reason why the Lie algebras should
"respect" these numbers. In any case it would be
interesting to attempt to prove or to disprove this
conjecture.
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APPENDIX A

Cartan's family C, (l = 2, . . . , ~) corresponds to
the symplectic groups and is characterized by the
roots" ~e& ~e, , ~2 e&, 1 + i& k &l. The metric is

L('l =(1,0, . . . , 0},
L(» =(1, 1, 0, . . ., 0},

L('l =(1, 1, . .. , 1).

One evaluates Eq. (4.15) to find

(y) 2l+ 1
4(L+1) '

which is dangerous for all l but not stagnant for
any l. Clearly, for any representation, s, ~ s,'
and there exists no stagnant representation in C,.

The family D, (l & 3) corresponds to the orthog-
onal group in 2l dimensions. The roots" are
~e&~e~, 1 &i(j(l. One finds

2R=2(l —1, l —2, . . . , 1, 0)

The l fundamental weights are

L(» =(1,0, .. . , 0),
L('l =(1, 1, 0, . . . , 0),

L('l =(1, 1, 1, . . . , 1, 0).

Evaluating Eq. (4.15) one finds

(,) l(2l -1) (»
16(L —1) 2

which is not stagnant for any l and is dangerous
only for l =3. Also

(» (2l —1}
4(l —1}

is not dangerous for any l. Since L('' ~ L(~ &0,
B, has no stagnant representations.

The family A, (l & 1) corresponds to SU(l + 1).
The root vectors" are e& —e» i, j=1, . . . , l+1.
e, are (l+ 1)orthonormal vectors in(&+ 1)-dimen-
sional space. The roots, as well as the weights,
lie in an l-dimensional subspace consisting of all
vectors orthogonal to Q(=, e, . The l fundamental
weights are

4(E+ 1)

2% = 2(l, / —1, f —2, . . . , 2, 1).
The l fundamental weights are"

L 'l = (/ -1, / -1, -2, .. . , -2),l+1
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The metric

= 2(l + 1)P(),

where u=-a/d, P= I)/-d, and y=—c/d are three posi-
tive numbers. Equation (Bl} may be recognized"
as a generalized equation of the Riccati type. " It
is convenient to use the parametrization A, = Q'+ z,
with

where P'=P is a projection operator into the
l -dimensional subspace defined above. Clearly
g;, has no inverse. However, g" may be defined
by g' g)» =P„. Thus g' /= [1/2(E +1)]P, /. We find

25=(l, l -2, l-4, . . . , -I+2, -I)

-(r-2)+ [() -2)'+4aP]"
2R

Then the exact solution is

z'=M ~ —N ~

(82)

(83}

.( ) «+2)'.' =2(f, l) &('+I-j}~

Clearly s, =s,"' ' and s, reaches a maximum
value for j = the integer(s) closest to 2 (l + 1); s2)
is smallest for j=1 or l.

where

ag
2a)+y —2 '

M =N+ zp

m= 2u(+y .
(84)

(i) I (1+2}
2(l + 1}'

is dangerous for all l but not stagnant for any l .
Since L ' L ~ &0, it follows that the family',
has no stagnant representations.

The roots and the two fundamental weights of the
exceptional algebra G, are given in Ref. (16). One
finds s,' = -,' and s,"= ~~~. The algebra G, has
no dangerous representat ions.

We note that N&0 and m&2. The initial condition
is g(t=0) =g~ and )((t=0) = +~'+z~. It is easy to
see that the parabola defined by X= Q' is a domain
line of instability in the sense that if z~ &0 then
A. -+~ as t -+~, and that if z~ &0 then X-- ~ as
t-+~. Indeed, inspection of Eq. (83) reveals
that if z~&0, then

(r 2) (() 2-) 4~-()1'*+j*
2Q

APPENDIX B as t-+~. (85}

dA. A.—=~—,—Ar+r-,
dg g g (81)

We wish to study the flow pattern in the A.-g plane
described by Eqs. (3.4) and (3.5). Since these
equations are valid only in a neighborhood around
the origin in the A.-g plane, the asymptotic behavior
they exhibit must be discounted. Nevertheless
we will now forget that these equations are ground-
ed in lowest-order perturbative calculation
and study them as a model of the type of equations
one would encounter in quantum field theories. In
other words, the asymptotic behavior exhibited by
Eqs. (3.4) and (3.5), though assuredly not quantita-
tively descriptive of pseudoscalar ferrnion theory,
may yet provide a qualitative clue to the behavior
possible in field theory. Wilson' has discussed
fixed point and limit cycle behavior. Equations
(3.4) and (3.5) exhibit another type of behavior.

As it happens these equations are exactly soluble.
Equation (3.5) gives g ' =g~ '- 2dt, where g~
=g(t=0). Eliminating t from Eq. (3.4), we find

On the other hand, if z~&0, as t-+~ then

g g —g (l)f/~ )1 /( I)) 2) (86)

and when g=g, jj,~jy p +
If d were negative in Eq. (3.5) (this is what would

have happened for stagnant representations}, then
the solution again has the form A, = $g'+z, but with

t = —[(r —2) + [(r —2)'+ 4(zP]'/')/2(z .
Now if z~&0 then ()(,g)-(0, 0) as t- ~.+If z~&0
then ()(,g)-(+~, g,„.„. )), where g„,.„.

(~/))f)I/(2-m)

The existence of g,„~ implies that under some
circumstances the asymptotic behavior of a two-
coupling-constant theory may be determined by a
theory in which one of the coupling constants is
infinite, while the other has a finite value which
may be quite small. " Equation (85) shows that
under other circumstances coupling constants may
be related at asymptotic energies. One may spec-
ulate that entirely new types of symmetry may
emerge in the deep Euclidean region. "
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