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Present experimental data on nucleon-antinucleon scattering allow a study of the possibility
of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be
made of the general behavior of the elastic phase shifts without resorting to theoretical de-
rivation. A phase transition which separates nucleons from antinucleons is found at about
280 MeV in the approximation of the second virial coefficient to the free energy of the gas. A
rigorous treatment of the contribution of the inelastic channels remains, however, a difficulty.

I. INTRODUCTION

Harrison! has suggested that if baryon-antibary-
on inhomogeneities existed in the early universe,
several problems of galaxy formation could be
solved. Harrison’s suggestion and the earlier con-
jecture? of a charge-symmetrical boundary condi-
tion between baryons and antibaryons has led to
the proposal® for mechanisms to separate baryons
and antibaryons at high temperature. Statistical
fluctuations in the baryon number density are not
adequate to explain the present baryon density in
the universe. Dynamical mechanisms are there-
fore required to separate baryons and antibaryons
if a symmetrical boundary condition is assumed.
Apart from the necessity of finding a separation
mechanism, symmetrical models must explain
various observational data such as the present
ratio of the number of photons to baryons and the
absence of any appreciable mixture of matter and

antimatter? in interstellar gas.

A model has been proposed by Omnés® which
gives baryon-antibaryon separation in the black-
body radiation at a temperature of 350 MeV. The
system under consideration is a gas of pions, nu-
cleons, and antinucleons at constant volume and
temperature. To obtain the equilibrium configura-
tion, the free energy is minimized with respect to
variations in the numbers of nucleons and antinu-
cleons. The free energy is expanded in powers
of the numbers of nucleons and antinucleons. It is
found in minimizing the free energy that if the
second virial coefficient has a large enough posi-
tive value (corresponding to an effective repulsion
between nucleons and antinucleons) separation is
possible.

An effective repulsion between nucleons and anti-
nucleons arises in the Omnés model from the as-
sumption of validity of Levinson’s theorem, and
considering that the corresponding bound states
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of the NN system (m, p, ...) are an independent
component of the radiation. The approximation
is made that only S waves are important with
Levinson’s theorem holding for scattering states
with the quantum numbers of the 7, 7, p, and w
mesons. The NN phase shifts therefore fall from
7 to 0 as momentum goes from 0 to «.

To understand how a falling phase shift causes
repulsion it is sufficient to look at the modification
of the number of states in a range of momentum
due to the interaction. The asymptotic wave func-
tion in spherical coordinates is proportional to

sin(pr + 6+ 3lm) .

We assume the particle is contained in a spherical
volume of radius R. The condition that the wave
function vanishes at the boundary gives

PR+ 06+ 3lr=nm.

The number of states dr in the range of momentum
dp is given by

dn R 145

dgp m mdp’
We therefore find that if dé/dp is negative, the
number of states in the range dp is reduced below

that in the absence of interactions.
We find a falling phase shift, for example, in a

system in which there is one bound state and Levin--

son’s theorem holds. In this case the phase space
which is excluded from the scattering states has
gone into the formation of the bound state, as
pointed out by Omnés. The presence of the bound
state must ordinarily be taken into account in the
calculation of the second virial coefficient for a
gas of such particles. The second virial coeffi-
cient for a gas of particles interacting through an
attractive potential is in fact negative, correspond-
ing as expected to an attraction. This coefficient
consists of two terms, one due to the bound state
and the other depending on db/dp. At high tempera-
tures the two terms approach opposite values
giving zero for the second virial coefficient.

In Omneés’s model the bound states of the nu-
cleon-antinucleon system are assumed to be the
7, 1, p, and w mesons. The phase shifts are taken
to be monotonically decreasing from 7 to 0 in a
range of momentum of the order of the w mass.
Since the m, 1, p, and w are considered to be in-
dependent components of the radiation they are not
included in the calculation of the second virial co-
efficient B. As a result a positive value of B is
obtained corresponding to an effective repulsion.
Separation is possible if there is a large enough
number of nucleons and antinucleors interacting
with momenta of a few hundred MeV. In the black-

body radiation the density of particles is a rapidly
increasing function of temperature. Increasing
the temperature eventually produces a density of
nucleons and antinucleons large enough that it be-
comes more profitable (for lowering the free en-
ergy) to have different numbers of nucleons and
antinucleons. For these statements to have any
relevance it is necessary, of course, that the sep-
aration temperature occur within the range in
which the original assumptions are valid.

It is the purpose of this paper to point out that
the present experimental data on low-energy nu-
cleon-antinucleon scattering are adequate to make
good estimates of the general behavior of the phase
shifts without resorting to theoretical derivations
such as the one made by Omnes. Every known
model of the nucleon-antinucleon interaction which
makes an attempt to fit the data contains an ab-
sorptive potential® that causes some of the real
phase shifts to attain negative values of the order
of —4r7 at 600-MeV center-of-mass momentum,
whereas the phase shifts that take positive values
are small. We take the simplest model of the nu-
cleon-antinucleon interaction which consists of a
purely absorptive potential. This simple model
gives good fits to the low-energy total inelastic
and differential cross sections. We find that the
phase shifts in this model fall fast enough that sep-
aration is again possible at 280 MeV. If we had
used any of the more sophisticated models of the
nucleon-antinucleon interaction which include spin-
dependent interactions, the answer would not be
changed in any essential way. In all these models
the phase shift falls fast enough to give a second
virial coefficient large enough to cause separation
in the blackbody radiation at around 300 MeV.

II. FORMALISM

Thermodynamic quantities are calculated for the
high-temperature radiation assuming thermal
equilibrium. The system considered is a gas of
pions, nucleons, and antinucleons at constant vol-
ume and temperature which can exchange particles
with the surroundings. The various particle densi-
ties and the configuration of this system will be
such as to minimize the free energy.

The contribution to the free energy coming from
the interaction among the various particles is ex-
panded in a power series in the densities of nu-
cleons and antinucleons N/V and N/V. Only terms
up to quadratic order are kept in this expansion.
The term linear in N and N is due to the pion-nu-
cleon interaction. The term of order NN is due to
the nucleon-antinucleon interaction. Terms of
order N? and N? are due to nucleon-nucleon inter-
actions. If the effects of Fermi statistics are
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taken in the first approximation, they provide addi-
tional terms in the free energy proportional to N2
and N2,

Bouchiat® has analyzed the modifications to the
free energy of the nucleon gas due to the presence
of pions. At temperatures around 200 MeV, the
approximation is made that the nucleon-pion inter-
action occurs only in the A state. The zero-width
limit is taken for the A resonance. With these
simplifying assumptions the baryon gas consists
of nucleons and A resonances, the A being consid-
ered as an excited state of the nucleon. The free
energy of the baryons is found to be

0
F1=—NT1n£-]I§-O —NTln%l, (1)
where
3/2
) )
M.\ T 3/2 M
+ 16(—-—2?"—) exp <— —TA'> . (2)

My and M, are the masses of the nucleon and A
resonance, respectively. V is the volume of the
gas. 7, c, and k have been placed equal to one
in this expression and throughout this paper. In
the absence of other interactions the equilibrium
state will be that with a density of nucleons equal
to N°/V. The presence of pions permits a larger
density of nucleons at equilibrium given by the
second term on the right-hand side of Eq. (2).
The contribution to the free energy due to the
nucleon-antinucleon interaction is given by

F,=2TBNN/V, (3)

where B is determined by the Beth-Uhlenbeck
formula

_ 7 3/2 En.
2= irr) Zaee(3)

(21+1)(2J +1)

p 3/2
_8<MNT > Z‘J, 167
I

o dGIJ pz .
X j; ap exp( M,.,T)dp’ (4)
p is the center-of-mass momentum of the nucleon;
E, is the binding energy of the bound state of the
system and g, is its degeneracy.
The nucleon-nucleon interaction contribution to
the free energy is

F,=TB'(N*+N?/V, (5)
where B’ is again given by an expression of the
form (4) with the sum over J and I subject to those
states allowed by the exclusion principle.

Corrections due to Fermi statistics for the nu-
cleons and antinucleons can be taken into account

=3

in first approximation by adding an appropriate
term to the virial coefficient in F,. This correc-
tion is given by’

Fy=TB"(N*+N°)/V, (6)
where
1/ 7 \¥2
"= —— . 7
B"=g ( MNT> (n

The part of the free energy of the gas which de-
pends on the density of nucleons and antinucleons
is therefore given by

eN° _ eN°® NN
F==NTIn N =NTIn i +2TB v
4 ”n 2 T2
. T(B'+B ‘)’(N +N?) ) (8)

The free energy F is minimized with respect to
the number of nucleons and antinucleons. It is
found that for ¢ positive and greater than
exp[(a+b)/(a-b)] +b the minimum of free energy
is achieved for a state with unequal numbers of
nucleons and antinucleons; where a=2BN,/V,
b=2(B’+B")N,/V. For negative @, which corre-
sponds to an effective attraction between nucleons
and antinucleons, the minimum of F is at N=N;
the same holds when a=0 or when a<exp[(a+b)/
(a=0b)]+b. In the case where all nucleon-nucleon
interactions are neglected or cancel out, the con-
dition for separation becomes simply 2 BN,/V > e.
The temperature dependence of N,/V is domi-
nated by the exponential factors in (2) at the tem-
peratures under consideration. For this reason
the critical temperature for separation is not sen-
sitive to the value of B. To achieve a separation
temperature of a few hundred MeV it is only neces-
sary for B to have a value of the order of 1 F3.

III. THE OMNES MODEL

The main assumptions in the Omnés model which
give separation are (a) that nucleon-antinucleon
interactions occur mainly in =0 states and the
corresponding bound states which have the quantum
numbers of the 7, 1, w, and p mesons are an in-
dependent component of the radiation, and (b) that
Levinson’s theorem holds for scattering in states
of the corresponding quantum numbers.

Assumption (a) allows Omnés to drop the first
term on the right-hand side of (4), which is the
contribution of the N-N bound states to the second
virial coefficient. Levinson’s theorem states that
the phase shifts fall from 7 to 0 as p goes from 0
to . If the phase shifts fall to zero in a sufficient-
ly small range of momentum, a sufficiently large
positive value of B is obtained.
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Omnés takes for the N-N phase shifts in all the
1=0 states

5={ (1 "pz/poz), P <p, (9)
0, p>po.

The value Omnés used for p, (~3M ) leads to a
violation of the Wigner bound (d6/dp >- range of
forces) provided we take the range of the forces
to be 1.4 F. This can be corrected by taking a
suitable value for p,. The smallest possible value
of p, consistent with the Wigner bound is p,=885
MeV, corresponding to (d6/dp)minimum =—1.4 F.

The results of calculations using p,=885 MeV

give a value of the critical temperature for separa-
tion of T,=378 MeV. Fermi statistics taken in

the approximation of the second virial coefficient
raise the critical temperature to 381 MeV; this
justifies the additional approximation made by
Omnes that the effect of Fermi statistics is small.

IV. ABSORPTIVE MODEL FOR THE N-N
INTERACTION

Phillips® has discussed various models of the
N-N interaction in the region of a few hundred
MeV. The simplest model which gives reasonable
fits to the data is the pure absorptive model. The
interaction is due to a pure imaginary Woods-
Saxon potential

W==iW,/(1-A4¢eP). (10)

Good fits to the differential, total, and reaction
cross sections are obtained with the parameters
A=1, D=3 F-1, and W,=3.3 GeV.

We have calculated the scattering phase shifts due
to the potential given in (10); the real parts are
shown in Table I for S, P, and D waves. The phase
shifts of all partial waves, except S waves, show
the same qualitative features. Red is small and
positive near threshold; it becomes negative at
a value of momentum which is higher for higher
partial waves. Red for S waves is always negative.
The significant result, as far as the problem of
separation is concerned, is that the S and P phase

TABLE I. Phase shifts due to the potential of Eq. (10).

E Red, Red; Red,
MeV) (deg) deg) (deg)
10 -7.2 +2.1 +0.4
20 —27.7 +0.9 +0.7
60 —49.2 —-6.0 +1.8
100 —62.5 ~12.5 +0.06
300 —93.6 -32.0 -5.8
500 -103.8 -39.9 -9.7

shifts fall through an angle of the order of 7 when
p varies from 0 to 600 MeV.

Nucleon-antinucleon separation is again possible
in this purely absorptive model of N-N interac-
tions. We get a positive value for B of the order
of 1 F® at temperatures of a few hundred MeV due
to the falling phase shifts. Numerical calculations
give a value of 280 MeV for the critical tempera-
ture for separation. Including the effect of Fermi
statistics to the approximation of the second virial
coefficient raises T, to 283 MeV.

Although we have used the simplest theoretical
model of the nucleon-nucleon interactions, it is
important to note that the feature which gives nega-
tive phase shifts is present in other more sophisti-
cated models. All models discussed by Phillips®
which make an attempt to fit the total and differen-
tial cross sections contain an absorptive core. In
particular, Bryan and Phillips® take the model of
nucleon-nucleon interactions of Bryan and Scott®
consisting of various one-boson exchanges, change
the sign of negative-G-parity exchanges, and add
an imaginary Woods-Saxon potential. They state
that due to the absorptive core negative real parts
are obtained for the low partial amplitudes; all
spin and isospin dependence is contained in the
one-boson-exchange terms. The absorptive poten-
tial gives the short-range interaction, while the
long-range interactions are mainly contributed by
the exchange terms. Another example is the mod-
el of Ball and Chew.!® Ball and Chew take the nu-
cleon-nucleon model of Signell and Marshak!?;
they adapt it to the nucleon-antinucleon system by
changing the sign of the one-pion-exchange term
and adding an absorptive core. They give a table
for their theoretical phase shifts at 140-MeV lab-
oratory energy. The same features of the absorp-
tion-only model are again noticed: Low partial
waves have sizable negative values for the real
parts of the phase shifts, high partial waves have
positive but small values for their phase shifts.

V. FROISSART PHASE SHIFTS

It is necessary to justify our use of the real
parts of the phase shifts in the Beth-Uhlenbeck
formula (4). To do this, we reexamine the validity
of the formula in the presence of inelastic chan-
nels. According to Dashen, Ma, and Bernstein,!?
the general expression for the second virial co-
efficient in an S wave is

_ 1 1 = -E/T [z -1§_ —>
ba=— 5773 477i./<; dE e™*/T (NN|s™ =-5|NW),
(11)

where S is now a matrix and
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The one-channel case gives [S = exp(2i5)]
IR
STESTY B
which leads to the Beth-Uhlenbeck formula. How-
ever, in the multichannel case

(n|S|é) =n*"exp(2i5'"),
(n| S| i)'=n'" exp(-2i6'")

n and  are real and depend on E. Putting a com-
plete set of states |x) (x| and working out the de-
rivatives, one finds

<NN s-1 > 412 }n‘"lz dé .
One recovers the Beth-Uhlenbeck formula only by
ignoring all inelastic channels and setting nelastic =1,
To proceed we follow an argument given by
Omnés.*® Define

S=2S,,

where Sy is a diagonal matrix satisfying inelastic
unitarity in each channel; it follows that T is also
unitary. Sy is

Sp=exp(2i6,),
where

Bp=0-10

a (12)
_q _Imd(v’) dv’
f WV —v—ie)’

which is defined so that Im&,=Im3, leaving 6
purely real; 6 is the physical phase shift and 65
are called the Froissart phase shifts.’* Now write

(n|Sg|i) = exp(2id,;,;) (diagonal),
(n|z|iy=n'"exp(2a,,),
and we find

dGNN-»NN

-1 -
<NN)S S INN> aB
. ¥ Aoy~
NN>n
+4i En |n ]z—&ﬂ-—"-dE .

(13)

Omnés® argues that the second term on the right-
hand side of the above equation vanishes in the
statistical model and in the Veneziano model. It
should be recognized, however, that this does not
show rigorously that annihilation does not contri-
bute to the second virial coefficient; this is only
an argument that suggests that the contribution is
small. If we can drop the second term in Eq. (13)

we recover the Beth-Uhlenbeck formula with 6 re-
placed by &g.

The results we have derived using 6 (physical)
in (4) are nevertheless not essentially changed by
using 8. This is due to the behavior of Im5b in
the region of a few hundred MeV. The principal
part of the integral in (12) gives Red,, which in
the nonrelativistic limit becomes

Im6dE’
Bl (149

Red, =
where E is the laboratory energy of the nucleon.
In the absorptive model Im§b is very closely equal
to CEY? where C is a constant. The result of this
is that all the negative contributions to the integral
(14) will cancel out in taking the principal part.
Since 6, =Red -Reb, and Reb, is nonnegative it
follows that 6, will show the same falloff with en-
ergy characteristic of Red; this is the essential
feature of our calculations as indicated in the pre-
vious section. The model cannot be used to get a
reliable numerical value for Red,, because it
would have to be pushed to excessively large en-
ergies. The negative contributions are neverthe-
less clearly canceled out because Imé does look
like CEV? in the region where we want o,; this is
where the main contributions to the integral come
from.

Lower Bound on T, Due to the Wigner Bound
on db/dp

From causality arguments it is possible to es-
tablish that db/dp >~ range of the forces. This
limit on how fast the phase shifts can fall places
a lower bound on the critical temperature for sepa-
ration. We assume the radiation is at a tempera-
ture where only S and P waves are important in
N- N scattering. If we let 6 fall linearly as fast
as possible (d6/dp =—-1.4 F) through as many mul-
tiples of 7 as we wish, we find that 7, cannot be
lower than 247 MeV. The answer justifies the as-
sumption that only S and P waves are important.

Effect of a Possible Resonance in the
Nucleon-Nucleon System

A resonance in the N-N system could provide an
attractive force among nucleons and among anti-
nucleons. This attraction would lower the critical
temperature for separation in the presence of a
mechanism which separates nucleons from anti-
nucleons. Phase-shift analyses have been per-
formed for nucleon-nucleon scattering up to ener-
gies of a few hundred MeV. No resonances have
been observed; this permits us to estimate a limit
on the effect of a possible resonance near the en-
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ergy limits of the phase-shift analyses. The
change in the critical temperature is found not to
be significant. For definiteness, if we assume a
zero-width resonance in the D, state at 450-MeV
center-of-mass momentum, the critical tempera-
ture for separation is not lowered by more than
50 MeV in either the Omneés or the absorptive
model. Resonances in states of higher angular
momentum would enter with a larger statistical
weight, but they would be expected to occur at a
higher energy, which would make their effect
small.

Pion Exchange

Pion exchange affects the scattering in high
partial waves. High-angular-momentum phase

shifts contribute with high statistical weight to the
second virial coefficient, but the individual phase
shifts are small. Numerically, it is found that
the pion-exchange phase shifts are small and con-
tribute little to B in spite of their high statistical
weights.

Note. Since this work was completed the author
has learned of a new derivation of the phase tran-
sition temperature using theoretical phase shifts
by Aldrovandi and Caser.!®

ACKNOWLEDGMENTS

The author is indebted to Professor S. C.
Frautschi and G. Steigman for valuable discus-
sions and suggestions.

*Work supported in part by the U. S. Atomic Energy
Commission. Prepared under Contract No. AT(11-1)-68
for the San Francisco Operations Office, U. S. Atomic
Energy Commission. The author has received scholar-
ship support from the Latin American Scholarship Pro-
gram of American Universities during the preparation
of this work.

!E. R. Harrison, Phys. Rev. Letters 18, 1011 (1967);
Phys. Rev. 167, 1170 (1968).

’M. Goldhaber, Science 124, 218 (1958).

R. Omnés, Phys. Rev. Letters 23, 38 (1969).

‘G. Steigman, Nature 224, 477 (1969).

SR. J. N. Phillips, Rev. Mod. Phys. 39, 681 (1967).

bc. Bouchiat, Lett. Nuovo Cimento 2, 243 (1969).

"L. Landau and E. Lifshitz, Statistical Physics (Perga-

mon, New York, 1969).
SR. A. Bryan and R. J. N. Phillips, Nucl. Phys. BS,
201 (1968).
SR. A. Bryan and B. L. Scott, Phys. Rev. 135, B434
(1964).
193, s. Ball and G. F. Chew, Phys. Rev. 109, 1385
(1958).
1p, 5. Signell and R. E. Marshak, Phys. Rev. 106, 832
(1957).
12R. Dashen, S. Ma, and H. J. Bernstein, Phys. Rev.
187, 345 (1969).
R. Omnés, Phys. Reports 3C, 1 (1972).

14M. Froissart, Nuovo Cimento 22, 19 (1961).

15R. Aldrovandi and S. Caser, Nucl. Phys. B38, 593
(1972).



