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The usual interpretative rules of quantum mechanics are presented and are shown to be too weak.
The reason is that they do not include the intuitive requirement of randomness of the outcome
sequence obtained from an infinite repetition of measuring an observable on a state. A strengthening of
the rules is proposed which includes, in essence, a precise definition of randomness. The resultant rule
is seen to be intuitively more satisfying than the usual rules and to include the expectation value rule
and to include essentially all of the spectrum rule of the usual rules. It also suggests that the
relationship between the foundations of mathematics and quantum mechanics may be quite deep and

complex.

I. INTRODUCTION

The purpose of this paper is to suggest a
strengthening of the interpretative rules of quan-
tum mechanics which is more precise and intui-
tively satisfying than the usual rules. The
strengthening suggests that the relationship be-
tween the foundations of mathematics and quantum
mechanics may be quite deep and complex. The
reason for this is that the proposed strengthened
rules involve mathematical logical concepts in an
essential way.

The standard rules are given and criticized in
Sec. II. It is seen that the expectation value rule
is too weak in that there are many other tests the
outcome sequence must satisfy besides a compari-
son between the limit mean and expectation value.
In essence, the intuitive requirement that the out-
come sequence must be random is not included.

It is proposed that the rules be strengthened by
including, in essence, a precise definition of
randomness. After a brief review of such defini-
tions, a strengthened rule, rule (3),, is proposed
in Sec. Il as a replacement for both the usual ex-
pectation value rule and the spectrum rule. It is
then proved that rule (3), includes the expectation
value rule and includes essentially all of the spec-
trum rule.

In Sec. IV the rule is discussed further. It is
seen that the strengthened rule implies that the
outcome sequence of the infinite repetition of the
measurement of an observable on a system in
some state is 7-random. The possible relation-
ship between mathematical logic and quantum me-
chanics which arises through the use of mathe -
matical logical concepts in rule (3), is then dis-
cussed. It is also seen that rule (3), can be ap-
plied to generalizations of quantum mechanics.
Finally a possibly unsatisfactory aspect of rule
(3), is discussed and possible ways to remove this
feature are noted.

I3

Il. THE INTERPRETATIVE RULES
OF QUANTUM MECHANICS

Let © and 8§ denote the respective collections of
observation procedures and state preparation pro-
cedures. Let @ be a von Neumann subalgebra of
B(3C), the set of all bounded linear operators over
some Hilbert space 3C. Let S(@) be the set of all
states over @ which are implementable as normal-
ized density operators over 3C.

A standard version of the usual interpretative
rules of nonrelativistic quantum mechanics is as
follows:

(1) Each state preparation procedure s in 8 cor-
responds to a density operator p, in S(@).

(2) Each observation procedure « in © corre-
sponds to a self-adjoint operator A, in @.

(3) For each observation procedure o, the set
S® of possible outcomes satisfies S* =0(4,), where
0(A,) is the spectrum of A,,.

(4) For each s and a, the limit mean My, of
the outcome sequence ¥,, obtained from an infinite
repetition of measuring A, on p, must satisfy

My, =Trp,A, .

These rules are stated in a way which allows for
the possibility that not every state has a corre-
sponding preparation procedure and not every self-
adjoint operator in @ has a corresponding mea-
surement procedure.!

In these rules an infinite repetition of measure-
ments of A, on p, means an infinite repetition of
the following operations: Prepare system in p,,
measure A,, observe and record outcome, and
discard system. By rule (3), ¥,, is an element of
R“, the set of all countably infinite sequences of
real numbers.

It might be objected that we have stated rule (4)
in terms of infinite repetitions of measurements
whereas the most one ever carries out are finite
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sequences of measurements. Since this has been
discussed in more detail elsewhere® the arguments
will not be repeated here. Suffice it to say that re-
placing “infinite repetition” by “finite repetition”
in rule (4) would make it much more imprecise and
difficult to interpret. One would have to state ex-
actly how many repetitions is a finite number and
replace equality by some probabilistic statement
which includes the requirement of convergence.
The interpretation of this statement is either in
terms of infinite repetitions, which brings one back
to the original rules, or in terms of subjective
probabilities whose meaning is quite imprecise.

Rule (3) is stated in terms of the spectrum rath-
er than the eigenvalues to allow for the possibility
that operators such as the momentum and position
[truncated so as to make them elements of B(3C)]
are measurable. Also it can be shown® that the
spectrum rule as stated cannot be correct in gen-
eral. However, the differences between rule (3)
and a corrected version® are small and for our
purposes one obtains the same conclusion for both
versions. Thus we shall work with rule (3) as
stated.

The main criticism is with rule (4). The main
problem is that rule (4) is incomplete. There are
many other intuitive requirements on ¥, which
are not expressed. For example, every experi-
menter, in carrying out an infinite repetition of a
measurement of A, on p;, would discard the mea-
surement sequence as being invalid if he found
that the mean My, of the first n elements of the
outcome sequence continually decreased as » in-
creased. Why? Rule (4) says nothing about dis-
carding such a sequence as such a sequence can
still give My, =Trp,A,. As another example,
let a be such that P, is a projection operator and
s be such that Trp P, =3. If §, consisted of an
infinite alternating sequence of 0’s and 1’s,
010101..., the experimenter would discard the
sequence of measurements as being incorrect
even though the outcome sequence, i,,, satisfied
rule (4) in that My,, = 3=Trp,P,.

These intuitive requirements can all be collected
together into the one requirement that y,, be a
random sequence. Now it is clear that the rule (4)
says almost nothing about this. That is, one would
like to be able to prove that the outcome sequence
¥so obtained from an infinite repetition of doing s
and ¢ is random. Yet it is clear that such a proof
is not forthcoming from rule (4).

The reason one cannot give such a proof is that
an essential connection between probability mea-
sures and outcome sequences is missing. That is,
rule (4) says almost nothing about what it means
for a probability measure to be “correct” for an
outcome sequence. The requirement that an in-

finite sequence of measurements be an infinite
rvepetition of measurements of an A, on some p,
implies that the probability measure assigned to
the sample space of the infinite measurement
sequence is a product measure generated from p,
and A,. It says nothing about properties of ¥,
and does not provide this connection. Rule (4)
gives only one small part of the connection, i.e.,
that My,, =Trp,A,, but leaves out all the others.

These arguments suggest that one strengthen
the interpretative rules by putting a precise defi-
nition of randomness for sequences in R“ into the
rules, and this is in essence what will be done.
However, before doing so it is worthwhile to re -
view briefly the history of definitions of random-
ness.

The history of attempts to define random se-
quences can be characterized as a sequence of
giving a definition, then later having it found in-
valid, and then replacingit with another definition.
Either the definitions were too restrictive (such
as that of Von Mises®) in that no sequences existed
which satisfied the definition or the definitions
were too weak (such as that of Church’) in that
sequences which were random according to the
definition had properties which, intuitively, a
random sequence should not have. These and oth-
er definitions are discussed in more detail else-
where.? At present one has a definition which is
neither too restrictive nor too weak in the above
sense.

The present definition of randomness as 7-
randomness is an extension to sequences in R of
definitions given®'® for natural number sequences.
These definitions, which say in essence that a
sequence ¥ is T-random if there exists a product
probability measure which is 7-correct for ¥,
make essential use of the mathematical logical
concept of 7-definability, or definability relative to
a mathematical theory 7.

A mathematical theory 7 consists of a set of
formulas, terms, variables, constants, and rela-
tion and function symbols (the language of 7) to-
gether with a designated set of sentences (formu-
las with no free variables) as the axioms of the
theory, and logical deduction rules. The formulas
are built up inductively by means of the logical
connectives from the atomic formulas which are
formed from the terms and relation symbols.
Similarly the terms are built up inductively from
the variables, constants, and function symbols.

A structure® for 7 consists of a universe U of
elements and sets R and O of relations and opera-
tions on U such that (U, R, O) is an interpretation
of 7. A model for 7 is any structure for 7 in which
the axioms are true. A subset E of U is 7-de-
finable from an element « of U if there is a formu-
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la Q(¢,a)in 7 (a is the name of o added to the
language of T) with one free variable ¢ such that
E=[¢|Q(¢, @) true in U]. In particular, for our
case, a subset E of R¥ is 7-definable from a
probability measure P if there is a formula Q(¢p, P)
(P is the name of P added to the language of 7)
with one free R variable such that E =[¢|Q(¢, P)
true with o R¥].1!

III. THE STRENGTHENED INTERPRETATIVE RULES

It is proposed here to strengthen the usual in-
terpretative rules of quantum mechanics by the re-
placement of both rule (4) and rule (3) by the fol-
lowing rule:

(3), For each s in 8 and @ in O the outcome se-
quence Y, obtained from an infinite repetition of
carrying out s and @ must satisfy the following:
Each property of elements of R (the set of all
infinite sequences of real numbers) which is 7-
definable from P, , and which is true B, , al-
most everywhere on R“ must be true for ¥,,.

P, 4, is the product probability measure on B(R“)
(the set of all Borel subsets of R“) which satisfies

Py 4 Er;=Trp,84(F)=P, , (F) 1)

for each j=0,1,... and each FE®(R). E;
=[¢l@(j)E F] and 84« is the spectral measure of
A,.

In rule (3), the right-hand equality of Eq. (1)
merely defines the measure P, 4, Which is used
later on. Each property p corresponds to a set
E, consisting of all and only those elements of R¥
which have property p. To say that p is true
P Ao almost everywhere means that Pp 4 E,— 1
[and E,e ®(RY)].

There are two general requirements on 7. One
of them is that 7 be restricted to be a theory with
at most countably infinitely many formulas.!? In
this case one can prove that rule (3), is not empty.
That is, one can prove that for any P the set of
all sequences which possesses every property
which is 7-definable from P and true P almost
everywhere is a set of P measure 1. The other
requirement is that 7 be strong enough to include
probability theory on R“. Clearly this is neces-
sary if rule (3), is to have any strength.

Here we choose 7 to be Zermelo-Frankel set
theory. This choice, which satisfies both the re-
quirements and is sufficiently strong to include
essentially all mathematics, will be discussed
more later on.

We show now that rule (4) of the usual inter-
pretative rules is included in (3),. To carry this
out it must be shown that for each s and o, M(p)
=Trp,A, is 7-definable from P, , and is true

P, 4, almost everywhere on R“. Let f:R“~R be
the random variable defined by

f= f rdly_, | 2)

with E., ,=[¢|@(0)<r]C R” and Ig_, , the charac-
teristic function for E. ,. LetTbe the one-sided
shift operator, T:R“—~R" defined by (T¢)(j)
=p(j+1) for j=0,1..., and define 7T by

—m . 17 :
fT=lim = 25 f(T/(-))
n— o n i=0
. 1 n-1
122 n 2 erIE<T.i @)

if the limit exists.

Now, if the limit exists, f T is 7-definable from
ﬁp 4, s the relevant concepts used are 7-defin-
able from 13p A, [f and FT are equlvalence classes

of Borel functlons modulo sets of P measure
zero] and thus
F™(0)= [ v dTro, 84 (=, 7])
=Trp,A, 4

is 7-definable from Pp a- [The right-hand side is
7-definable from Pp 4, @8 it is obviously 7-defin-
able from P, sAg and T-deflnablllty from P, ,  im-
plies 'r-defmablhty from P, , .|

Since Pps Ag 18 a product measure generated by

Py a, | Eq. (1)] b Aq 1S T-invariant and the a.e.
ergodlc and mdecomposability theorems of prob-
ability theory'® give the result that f T exists
Pp 4, almost everywhere. Since f(TY¢)=¢(j) for
each jand ¢, one has f 7=/ and rule (3), then
gives that M(y,,) is well defined and M (¥,,)
=Trp,A,, which is justthe statementof rule (4).

We now examine what rule (3), says about the
spectrum rule. While it is not possible to com-
pletely derive the rule from rule (3),, one can
come very close to it. Let S denote the outcome
set of an A measurement procedure, o,(A) the
discrete spectrum of A, and 0.(A) the continuous
spectrum of A. We shall show that o,(4)c 4 (s4
contains all eigenvalues of A) and the set of all
points in S4 which are also in 0.(A) is a dense sub-
set of 0 (A).

We first show that 0,(A) S S4. To this end let
f):n=1,2,... be an enumeration of o,(4).!*
Since §4({f(n)})>0 for each n, there are states
P, lying entirely within §4({f(n)})3C for n=1, 2, .
For each n the point f(z) is 7-definable from
P, 4 as [r|Trp,84{~})=1] contains exactly one
point, namely f(n).

Let ¥ p,a denote the outcome sequence obtained
from an infinite repetition of measuring A on p,,.
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By the definition of p,, P, ,({f(r)})=1. Thus
Pp AE{f(ny,;=1 for each j and rule (3), gives the
result that §, ,(j)=f(n) for each j. Since each
outcome in ¥, , must be in S# one has that

{7} s*. ®

Since this holds for each n and U,{f(n)} =04(A) one
has

o4(A)C S4. (6)

To show that S4N (0,(A)) is dense in o, (A), let
be any point in 0 (A). Then by the definition'® of
continuous spectrum, one has §4((a, b))>0 for each
open interval (a, b) with rational end points with
a<r<b. Letp,, be a state in §4((a, b))3¢. Then
Tr[ p84((a, b))] 1 and rule (3), gives (Rngy, 4
=range set of §, > )

Rngy, ,4C (a, ) (7
for each (a, b) with a<»<b. But this means that

Rngy, ,4C SN (a,d). (8)

Since Rngwp 4 is not empty (in fact Rngzpp 418
countably m.t'mlte), and b —a can be arbltrarlly
small, one has that SN0 (4) is dense in o.(A).

It should be noted that the validity of this proof
depends on the weak condition that there be suf-
ficiently many preparation procedures in the fol-
lowing sense: For each A, if there is a procedure
for measuring A then for each eigenvalue » of A
and for each open interval (a, ) with rational end-
points which includes a point of ¢ (A) there must
exist preparable states within §4({» } }3¢ and with-
in 84(a, b)3¢. This condition can be made even
weaker at the expense of a more complicated
proof.

Thus one sees that rule (3), implies the spec-
trum rule to the extent that one can show that the
outcome set of an A measuring procedure must
contain all the eigenvalues of A and for any point »
which is in the continuous spectrum of A, and for
each pair of rationals a, b with a<» <b there are
a countable infinity of points in S whose distance
from » is less than b ~a.

It is clear from this that rule (3), comes very
close to implying the spectrum rule. Note further
that (3), does not specify which dense subset of
0.(A) must be in S4. In particular, for no real
number 7 in ¢, (A) can one show by rule (3), that
r&SA. This point will be returned to later on.

IV. DISCUSSION

There are several aspects of the suggested
strengthening of the interpretative rules of quan-
tum mechanics which are worth discussing.
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It has been shown that rule (3), implies rule (4)
of the old rules. However, nothing has been said
so far about the other conditions which an out-
come sequence ,, must satisfy. In particular one
requires that ., be random (provided that p, does
not lie entirely in one eigenspace of A,).

To see what rule (3), says about this consider
the following definition of 7-randomness:

A sequence ¢ in R“ is 7-random if there exists
a product probability measure P on B(R“) generat-
ed from a nontrivial measure P on ®(R) such that
every property of sequences in RY which is 7-
definable from P and which is true P almost every-
where is true for . P is nontrivial if for no » in
R does one have P({r})=1.

As noted earlier, this definition is a direct ex-
tension to R“ of earlier definitions given with
various 7 for sequences of natural numbers ?:°:2

It is immediately clear that rule (3), implies 7-
randomness. More precisely, one has that for all
procedures « and s, if p; does not lie entirely in
an eigenspace of A, rule (3), implies that the
outcome sequence ¥,,, obtained from an infinite
repetition of measuring A, on a system in p,, is
T-random.

The following question arises: If one uses rule
(3), as the correct interpretative rule, then Vsor
is 7-random. But is §,, random? An answer to
this question is much more difficult. On intuitive
grounds one would want to choose 7 to be suf-
ficiently strong so that any property which is in-
tuitively required of a random sequence is in-
cluded in the definition of 7-randomness. Also, 7
must be strong enough so that the proofs given be-
fore are valid proofs, i.e., all the properties of
various sets used in the proofs and which are re-
quired by the proofs to be r-definable from Pps Ag
must in fact be so.

These two requirements place a floor under the
strength of 7 in that 7 must be sufficiently strong
to satisfy them. For these reasons we have cho-
sen 7 to encompass most mathematics, i.e.,
Zermelo-Frankel set theory. This choice clearly
satisfies the second requirement and is a choice
made in other work.®

An argument based on the first requirement
and which suggests that 7 must be at least as
strong as set theory with respect to definable
singleton subsets of RY is the following: If 7 is
weaker than set theory in this respect, then there
exists some singleton subset {#} of R“ which is
not 7-definable, but is definable in set theory. It
is then possible that =3, for some s and o and
thus that ¢,, is definable in set theory. Now Vsa
is supposed to be random, and, intuitively, it
seems reasonable to require that a random se-
quence should not be definable even in set theory.
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Thus to avoid a possible contradiction, it follows
that 7 must be at least as strong as set theory with
respect to definable singleton subsets of R“.
(From a result obtained elsewhere,? if #,, is 7-
random, then ¥,, is not T-definable from P, , .)

The possibility of a deep and close relationship
between the foundations of mathematics and phys-
ics has been suggested, often indirectly, by other
authors.!® The satisfactory aspects of the
strengthened interpretative rules of quantum
mechanics proposed here also support this possi-
bility. The reason is that the concept of definabili-
ty relative to a mathematical theory enters into the
rules in an essential way. Furthermore, it ap-
pears that the mathematical theory should en-
compass most mathematics.

The possibility of this relationship can be seen
in another way as follows: The method of de-
ciding among different physical theories is to
compare the predictions of the different theories
with experiment. In particular, for statistical
theories one compares limit mean properties of
outcome sequences with the expectations computed
from the various theories and accepts the theory
which agrees with experiment and rejects the
others.

Now the concept of randomness enters here in
an essential way. The reason is that the limit
mean properties of an outcome sequence obtained
from a sequence of measurements can be quite
different for a nonrandom sequence than for a
random one. Thus the choice between different
physical theories of which ones agree with ex-
periment depends critically on the requirement of
and definition of randomness.

The definitions of randomness so far given,
which appear to be most satisfactory, are those
given in terms of the mathematical logical con-
cept of definability relative to a mathematical the-
ory 7 which must be quite strong. Thus this sug-
gests that such concepts may ultimately be close-
ly related to the choice of which physical theory
agrees with experiment. In particular, such a
relationship is especially important when one is
concerned with comprehensive physical theories
such as quantum mechanics as questions con-
cerning the nature of physical reality then may be-
come relevant.

It is important to note that an alternative way to
regard the rule (3), is as a condition on maps be-
tween empirical procedures and mathematical ob-
jects. Thus in the above, rule (3), becomes a con-
dition which the maps @ =@ and 8 —S(®@) must satis-
fy. In such an approach rule (3), becomes in es-
sence a definition of 7-validity or 7-agreement be-
tween quantum mechanics and experiment, This
approach, which has much to recommend it, was
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used elsewhere!” as a condition on the above maps
for quantum theories. There the restriction of the
definition of “7-validity,” to the standard case of
the infinite repetition of the measurement of an ob-
servable on a system in some state corresponds

to rule (3),.

Also it must be stressed that the strengthening
of the interpretative rules proposed here applies
not only to quantum mechanics but to other statis-
tical theories as well. Furthermore, it can be ap-
plied to processes which are more general than
infinite repetitions. In fact, one can regard this
paper as the specialization of the general theory?
(easily extendible to R“ from N“) to quantum
mechanics and to infinite repetitions of single
measurements.

However, it appears that this strengthening may
play a more important role in quantum mechanics
than in other theories (quantum mechanics is at
present the basic microscopic physical theory
and is essentially more statistical than classical
mechanics) and may be essentially interrelated to
quantum mechanics itself.

Rule (3), can also be applied to generalizations
of quantum mechanics. Consider for example the
work of Ekstein!® where external fields are in-
cluded in one scheme. In Ekstein’s setup one has
for each external field an expectation E and a
pair (¥z, &z) of maps where E:8XO—~R, ¥;:8
-S(@), and #;:0—~@. 8 and O are sets of state
preparation and observation procedures, @ is the
set of self-adjoint operators in a von Neumann
algebra of operators on some Hilbert space, and
S(®) is the set of states over @. For each ex-
ternal field one defines the corresponding E by
E(s, a) = My,, where ¥, is the outcome sequence
obtained from an infinite repetition of carrying
out the state preparation procedure s and the ob-
servation procedure o« in the external field.

In this case rule (3), or its equivalent as the
definition'” of 7-validity (given in Ref. 17 as 7-
validity,) is a condition which must be satisfied by
(¥ g, ®g) for each E, That is, for each s& 8 and
a= 0 and for each external field with correspond-
ing E, rule (3), applies as given with ¥(s) and
®;(a) replacing p, and A, respectively, and
¥z(s)(8 ®E@)(F)) replacing Trp,842(F) in Eq. (1).
Note that in this case a consequence of rule (3), is
that E(s, a) is well defined and

E(s, ) =¥ g(s)(®g(a)) (9)

hold for each E, s, «. On the other hand, Ekstein'®
gives Eq. (9) as the definition of ¥ and &5 and as-
sumes without proof that the defining limit of
E(s, a) exists.

Finally we want to note an unsatisfactory feature
of rule (3), and suggest possible ways to cure the
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problem. In the discussion of rule (3), and the
spectrum rule it was seen that for no real number
7 in 0(A) can one prove that rule (3), implies that
7 must be in S4, [This does not contradict rule
(3), also saying that S#No(A) must be dense in
04).]

However, there are also real numbers in o (A)
which rule (3), says must not be in S#. More pre-
cisely, let» be any real number in 0,(A) which is
7-definable from Py and let (P,, 4 be an outcome
sequence obtained from an infinite repetition of
measuring A on p. Then Trp84({r})=0 and rule
(3), says that Rngy,,C R —{r } or conversely that
r is not a possible outcome of a measurement of
A on a system in state p. Now the intersection of
all sets of real numbers 7-definable from some
probability measure P contains the set of all 7-de-
finable real numbers. Thus rule (3), gives the un-
satisfactory result that no real number in o,(A)
which is 7-definable is a possible outcome of any
measurement of A.

It is best to illustrate what this means and does
not mean by means of an example. Let A be the
position operator for the line segment [0, 10].
That is, A gives the position in [0, 10] and is zero
outside. Now rule (3), says that for no state p are
the real numbers 1, 2,3, ..., 10 possible outcomes
of a measurement of A (0 is not excluded as it is
an eigenvalue of A). Note that the real number n
=7.00: - - with an infinite number of zeros.
Furthermore, for any interval (a, b) with a, b
rational and 0<a<b <10, the set of real numbers
in (a, b) excluded by rule (3), is dense in (a, b).
(The rationals are 7-definable.) However, there
are also uncountably many real numbers in (a, b)
which are allowed as outcomes (the 7-undefinable
reals). Thus although 3.00- - - is not a possible
outcome in the example there are uncountably
many real numbers arbitrarily close to 3.00- - -
which are possible outcomes.

This selecting out of the 7-definable reals in

0.(A) as not being possible outcomes of an A-mea-
surement causes no difficulty with the probabilis-
tic aspects of the theory. However, there is no
reason why this particular (countable) subset of
reals should be selected out for such special treat-
ment. Just because a number can be “pointed at”
or defined would not seem to be a reason to ex-
clude it from o (A) as a possible outcome.

One possible way out of this difficulty is the fol-
lowing: It is clear that this problem occurs for
only those A which have a nonempty continuous
spectrum. For any such A the spectrum rule im-
plies that any A measuring procedure has an un-
countable infinity of possible outcomes.

Now it can be argued that any measurement pro-
cedure which one can carry out has at most a
countable infinity of outcomes and, as a result,
any A for which there exists a measurement pro-
cedure must be discrete. Since the problem for
rule (3), does not exist for discrete A, this ar-
gument obviously solves the difficulty.

This argument is helped by the fact that for each
self-adjoint operator A there exists a sequence
A, n=1,2,..., ofdiscrete self-adjointoperators
where'® A =uniform lim,A,. As a result one can
have measurement procedures for the operators
A, without the unsatisfactory feature imparted by
rule (3), and which are arbitrarily close to A
without having a measurement procedure for A it-
self.

Other possible ways out consist of adding further
requirements into rule (3), besides that require-
ment that~a property be 7-definable from ﬁps Ay
and true B, ,  almost everywhere. For example,
one can require that the property also be a limit
mean or average property with respect to some
noncyclic (7"# T for each n) transformation 7': RY
~RY, which is 7-definable from P, , . However,
we leave the discussion of such restrictions to
future work.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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SLet P,:n=0,1,... be a complete orthogonal family
of projections on ¥ and define A, by A,=37,7(n)P,,
where 7(n) withn =0, 1, ... is an enumeration of all the
rational numbers in the interval [0,1]. The discrete

and continuous spectra, 4(4¢) and 6,(A ), of Ajare
equal to the respective sets of rational and irrational
numbers in [0, 1]. But no point in g.(A () can possibly
be an outcome of a measurement of A, and thus $¢
=0(A,)=04(4,) Uo,(A4,) may not be correct for all «.
“One can correct rule (3) by replacing S* =0 (4,) with
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The evaluation of field-theoretical corrections to the properties of bound states can be greatly
simplified by basing it on our relativistic Lippmann-Schwinger equation rather than the Bethe-Salpeter
or Schrodinger equations. We have evaluated the fine structure to order o' for a system of two scalar
particles bound by the potential that arises from exchanging massless quanta of spin 0, 1, or 2. In each
case fine structure is clearly related to seagull and/or graviton self-interaction diagrams, while neither
the simple exchange diagram nor the box diagrams make any contribution. The simplification with
respect to earlier calculations is particularly striking in the case of gravity. Also presented here is a
calculation of the advance of the perihelion of Mercury within the framework of a recently developed
classical-relativistic mechanics of two interacting point particles. The calculation is explicitly covariant.

I. INTRODUCTION

The three calculations presented in this paper
are concerned with scalar particles that are bound
by the potential that arises from the exchange of
massless quanta with spin 0, 1, or 2. The spin-1
quanta are photons, and the calculation is thus
based on quantum electrodynamics. For spin 2 we
use the flat-space formulation of Einstein’s theory
of gravitation. No special difficulties are encoun-
tered in the order of perturbation theory consid-
ered.

To extract information from field theory we
start with the expansion of the two-body scatter-

ing matrix: T=T,+7,++++. Here T, consists of
all second-order diagrams — there is only one of
any consequence —and T, includes all fourth-order
diagrams. If K™' is a convenient Green’s function,
we can define a potential W =W, +W,+ -+ by
means of the equation

1
_—W+WE T. (1.1)

Inserting the expansions of 7' and W one finds that

W,==T,, (1.2)

1 Tl...

Wy==Ty+W, &



