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A theory in which gravity is produced by a massless vector Geld in addition to the usual
metric field is presented and found to be compatible with present solar-system experi-
ments and cosmological expansion. A special case predicts the same first post-Newtonian
gravitational experimental results as general relativity.

I. INTRODUCTION

In 1961, Brans and Dicke' proposed a theory in
which gravitation was produced by two fields —a
tensor metric field and an auxiliary scalar field.
The field equations were derived from the Lagran-
gian action'

where L =L (g„„,matter variables} is the matter
Lagrangian, Q is the scalar field, and co is a di-
mensionless parameter. Variation of the matter
variables (position, velocity, etc. ) will produce
equations of motion involving only g„„not tt}.
Matter "sees" only the metric field and free test
bodies follow geodesics. Theories where matter
exhibits this behavior are termed "metric theo-
ries. "

If L contains additional gravitational scalar,
vector, or tensor fields, matter will not in gener-
al follow geodesics. An analysis by Dicke' has
shown that the high-precision null experiments-
Eotvos experiments, Hughs-Drevor experiment,
etc.—rule out the existence of vector or additional
second-rank-tensor fields coupling directly to
matter. As pointed out by Will and Nordtvedt, '
however, such vector and tensor fields may exist
along with the metric field as long as the addition-
al fields do not couple directly to matter (i.e., do
not enter I. ). While the additional fields in these
metric theories do not affect the null experiments
they will, in general, produce observable effects
in light deflection and retardation experiments,
planetary perihelion advance, orbiting gyroscope
precession, nonsecular terms in planetary and
satellite orbits, and geophysical phenomena. Will

and Nordtvedt' have summarized these observa-
tional effects and their relationship to metric the-
ories of gravity, showing that such effects are
simply calculable from a parametrized post-New-
tonian (PPN) metric, which exists for all metric
theories.

In particular, it has been found that some metric
theories predict observable effects due to the mo-
tion of the solar system relative to a preferred
frame (such as the mean rest frame of the uni-
verse} These ."preferred frame" or "ether" ef-
fects can occur in Lagrangian-based theories con-
taining vector or higher-rank-tensor fields (the
Brans-Dicke scalar theory exhibits no such ef-
fects). In this paper we present a metric theory
of gravity containing a massless vector field in
addition to the metric field. Committed to the
spirit as well as to the law of general covariance
in physics, we introduce no a Priori fields or
frames into the theory. We require a Lagrangian
subject to the following conditions:

(I) The Lagrangian density is a four-scalar den-
sity.

(2} It generates positive-definite free-field ener-
gies for both the metric and the vector fields.

(3) It produces a "metric theory. "
(4) It generates field equations containing no

higher than second derivatives of the fields.

Such a Lagrangian is

A = -g ' 16mQOI +R -F~„F"

+(uKqK"ft+))}K"K"Rq„)d x, (I)

where L =L (g„„matter variables), I"„„=K&)„
-K,

~ „ in analogy with electrodynamics, ~ and g
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are dimensionless parameters, and G, is an a
priori or "bare" gravitational constant.

In Sec. II, we obtain the PPN metric for this
theory and find a renormalized effective gravita-
tional constant dependent on the cosmological
strength of the vector field. Consequently, there
is a time dependence of G coupled to the evolution
of the universe. The PPN parameters will have
weak "preferred frame" terms compatible with

observational limits, or, for a special case, will
reproduce exactly the PPN parameters of general
relativity.

This last point is of particular importance, since
it means that no solar-system experiment present-
ly envisioned can differentiate between this theory
and general relativity. Another theory in this cat-
egory is a "prior geometry" theory due to ¹i,'
which uses an a priori preferred inertial frame.
It is evident that experiments which are able to
choose between these theories must involve post-
post-Newtonian levels, such as occur in (i) gravi-

tational radiation, (ii) cosmology, or (iii) extreme-
ly precise solar-system experiments. It is not
clear which type of experiment offers the best pos-
sibility, but theories such as these should stand as
a challenge to the gravitational experimenter to de-
vise new and better ways to measure the extremely
small effects of post-Newtonian gravity. In prep-
aration for such experiments we have calculated
here the post-post-Newtonian static term in g„,
and in Sec. III we have generated cosmological so-
lutions of the field equations. Both results differ
from the results predicted by general relativity.
The important question of gravitational radiation
will be analyzed in a future paper.

II. THE PPN METRIC PARAMETERS

Will and Nordtvedt' have arrived at a general
form for the first post-Newtonian metric valid in

any inertial coordinate frame:

5 5

5 f~j jf

GMj - GMj 2 GM;+a, g, (W ~ r, )'+(a, —a, —a, ) g ' W'+(a, —2a, ) P ' W v, ,f j

goy =2(4y+3+a, -a2+&,)g™v,. + —,'(1 +a, —&,)g 3' (v, ~ r;)x',
5

+(aa, —a2)g ' W +a, P 3' (W r, )x', ,t j
5

g,.=-ii, „1+2yg GMj
Kj

5

where x'j are Cartesian components of the ith-
source-to-field-point vector, v'j are Cartesian
velocity components of the ith source (v' =-dx'/
dt), W' are Cartesian components of the velocity
of the inertial coordinate system relative to the
universe rest frame,

—1/2

3 I /2

Q (x', —x,')'

M, is the gravitational mass of the ith body, and
G is the effective gravitational constant. It should
be appreciated that this form is based on very few
assumptions (see Nordtvedt'). The parameters

py /5 Q $ 5 @25 Q 35 ($y f2 in the metric are theory -de-
pendent and may depend on cosmological factors
through the influence of cosmological fields. In
general relativity the PPN parameters have the
value

y=P=1,

+i =O'2 =O'3=&i =&2 =05

and in the Brans-Dicke scalar-metric theory

1+m
2 +(d

~i =~2 =&3 = &I =
&2 =0 ~

Inspection of the PPN metric shows that one can
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obtain all the PPN parameters by calculating in

the universe rest frame (W' =0}, and that one can
obtain all but &, by considering a single source.
For most of our work we therefore use

M G'M'
g =1 —2G —+2P00 r2

where it is noted that a post-post-Newtonian term
is added to g, .

In addition to PPN metric expansion, we will
need a similar expansion for K„:

GM G M GM
K =($0)"2 I+a, +b 2 +a, v~r' ' r

GM ~ GM—(2y+I+a, +f, ) v'+g, , (r v)',r ' r'
GM

go k 2 (4Y + 3 + Q1 Q2 + I 1) v

+-,'(I+o., —g,), (r v)x',r'
GM G2M~

=-5,~ 1+2y +25

(2) K, =(P,)"' d v'+d', (r v}x'r r'
The field equations are calculated by requiring

that the action [Eq. (1)]be stationary under inde-
pendent variation of the fields. Variation of g„,
gives the equation

R~p ~2gguR +td(Kp KpR +/Reap
—

2 gyp QR + Q( gp gput j P) +'gK K (gp~Rv8 +gv8R g~ —
2 gpvRa g)

—~q[gq„(K K )( 8+Cl (KqK„) —(KqK"}~„—(KpK }~„]+2Fq~F ~+~ gq„F~sF =-SnGOTq„, '

(4)

where Q-=K K,
&'()=()i.sg '

The contraction of Eq. (4} is

and

(Case I) cu = —,'@+I,

(Case II} e =0.

R +(S~ + 27))Cl p + 7/(K K )[ 8
= SvGOT .

Variation of K„ in Eq. (1) gives

~RK~+qa""K, +2m~" „=0. (6)

The details of the solution of these equations are
given in the Appendix. The linearized equations
are first solved for a static source, giving for y.

Case I
y=1

a, =-1

Case II

y=1
1

ag —2'g

and the gravitational constant in each case is re-
normalized:

Proceeding with the solutions for each case, it is
found that

240 —g- 2
~' 1 —&uP, (4&v —1)

' Case I Case II

Light deflection and retardation experiments'
show that y=1, so we specialize to that case.
There are three ways this condition can be real-
ized. First,

ft) «1.

This weak-cosmological-field condition reduces
all results arbitrarily close to general relativity.
For that reason, it is the least interesting. There
are two other conditions which give y=1. These
are

Go
1+aq40

GoG= 1 2I+qpo+4q $0
'

This means that G, the effective gravitational con-
stant which enters the metric and determines the
strength of gravitational behavior in the solar sys-
tem, depends on the strength of K„ far from the
solar system. In Sec. III, it is seen from cosmo-
logical considerations that this produces a time
development of G, coupled to the evolution of the
universe; and that the extreme weakness of G in
the solar system can be viewed as being due to a
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renormalization of G, (-1) by a large cosmological

The parameters P and 5 come from the static so-
lution of the field equations to second order. For
the two cases we get

(Case I) P =1,

n, &0.1,
o., &0.1 (see Ref. 9).

There are two possibilities in Case I:

g~ 34,

q~ 0.1. (13)

which agrees with the value calculated in general
relativity, and

1 -4(u
2Q, ' + 2u(1 —4&v)

' (9)

which does not agree, general relativity having
5 =1. Unfortunately, this parameter does not af-
fect existing experiments to any measurable de-
gree. In the other case,

(C, ~) 6 1 ~n(v+2)(@+4)ko
4 + /f0(lj+ 4)

(10)
(1+3)— v~4, ( )+74)

4+ n4 (v+4)

(Case I) &, = a, = 0,

—,n, =n, =
4po '+4+6q+q2 '

The experimental result P =1 requires q=0, -2,
or -4 and the unobservability of 5 effects in pres-
ent solar-system experiments imposes the limits
q=-4, or Qo-i.

Solving the total dynamic linearized field equa-
tions gives the additional PPN parameters:

Of special interest is the case where q =0 (v = 1)
in Eq. (11); then a, and n, are strictly zero. In
this case, renormalization of Go is lost and the
total set of PPN parameters is identical to those
of general relativity. However, as can be seen by
setting e =1 in Eq. (9), 5 still differs:

34o
2 3y, -1 '

In Case II, the n restrictions give

&4o" ~o

Case II already had co =0, so this additional re-
striction on the magnitude of gQo shows this case
to approach general relativity as a limiting form
of the theory.

III. COSMOLOGY

To investigate cosmological solutions of the the-
ory, we use a homogeneous dust model for matter
and a Robertson-Walker cosmological metric:

(Case II) g,=a, =0,

2nbo(3+ n)
1 +gfo+ vj fo

3qlo(g+ 2)
2 2+4qy +~~P

(12)
$(t)'

(1 p'g~2)2 '

from which we can calculate

R„=3S/S,

An examination of the configuration of a point
source inside a massive spherical shell yields the
second-order two-mass PPN parameter

g, =0

for both cases.
The f parameters measure 4-momentum non-

conservation and are expected to be zero in theo-
ries derived from Lagrangian action principles. '
The a parameters measure the existence of "pre-
ferred frame" or "ether" effects in gravitation.
Except for the case q =0, both cases predict such
preferred frame effects. Nordtvedt and Will' have
analyzed various geophysical and planetary orbital
effects to arrive at upper limits on the e parame-
ters. The restriction is

R = —2(SS+S~+K),

(K K ) )~g =Q+3$S/S+6QN /$2+6$S/S,

O'P =P+3$S/S,
~ ~

4'ioo =4'

0 (K0K0) =Q+3$$/S —6$$ /S

(K Ko) (0„-—&ji+3$$/S —3$S'/$

(14)

where Q
—=K„K"=K,K', and the dot denotes time

differentiation. Substituting these into Eq. (6)
gives

(2m +@) —+2+, =0,S 8+K
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and in Eq. (4) there results

$'+v $' $
(1 —&u1P) 2 +@@—,—(20/+1})1P—

+ (20/ + 7J) 2 1P
—= $WG0T00 .

with solution

(1 Kx 2) 1/2 tax 2/12 x0/2
dx

(00 +-'1})x"'+ ' (1 —Kx 2)"'

(1 —Kx')"'
+ ~ a/2+1x (19}

Using (15) to eliminate second derivatives of S
yields

$2+K $ 8(I+~4) 2 +1}eS2 +(2~+8)24 —= vt/GOT00

(16)

S +tc= (17)

The K, and g„equations vanish identically, and
the g;, equation is consistent.

Equation (15) integrates to give

where A. is a constant of integration.
The special case q =0, ~ =1 is of particular in-

terest. First, it is the case which exactly repro-
duces the PPN parameters of general relativity,
and it will be shown to have a cosmological solu-
tion different from the cosmology of general rela-
tivity. Second, this case represents an approxi-
mate solution for one of the possibilities allowed
by Eq. (13), namely, 1}&0.1, &u= 1. Choosing the
~ =1 of a closed cosmology, and noting p = 2, q = 0,
we integrate Eq. (18) and obtain

where $0~ is a constant of integration,

2(d
P ~+lq

and for future use we define

S =
I t(2S0 —t)]'/

and Eq. (19) yields

(1 —x')"'
1+/ = ——A.

x x

(20)

7l

(d +2/

Equation (17) integrates again, yielding

$ "d$
(S 2 Ks )12/2

The time development of S depends only on the
scale constant S, and on the parameters ~ and g;
it is independent of T„„.

Equation (16}is made first order in d1P/ds as
follows: Using Eq. (17) to eliminate S, and divid-
ing by 0/+ —,'q, Eq. (16) becomes

(21)

Assuming $0»$, these become

S = (2S 0 t}'/

G0M$
$2

0

(22)

(23)

The relationship between Hubble time (T„)and
the present age of the universe t„ is

If we demand Q —0 as t- 0 (the initial cosmologi-
cal singularity; see Dicke'), then for 1P»1 (equiv-
alent to G, »G),

d(t) 1 —Kx, 1-zx
2 +(~2P+q)/P S2 2 + 2 O'P S2

1 1
l 3 0 00 $2xP~mG T&+.0

1 $
T =- —.=2tg ~H $ Q

Writing

M= 0vpS2= 'vp(S T )"'

(24)

where we have defined x=—S/S, . Multiplying by S,'
and defining

and substituting gives 1P/G0 in terms of observ-
ables:

1 zx

-2G0M 8n G(}T00S

—=4 T2
H

0

Using this in Eq. (8) gives

1 2—= T2vp2tT//2 -10 (cgs units), (25)
produces the first-order equation

dY Y —,'P 1 p 1—+ —1+q+dx x 1 —Kx Qp +—'g x x2

based on p =10 "g/cm' and T„=2XIO" years.
The actual value of 1/G is about 10', but there is
substantial uncertainty in the total energy density
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(p) of the universe. From Eq. (22) the early-time
behavior of the universe is

S-t'",
as compared with the relationship from general
relativity,

t 2/S

A second limiting cosmology, compatible with
the second case allowed by Eq. (13}, is ld =21)»1.
Then P=q=1, and for ~=1 we find

S
g —=0

having the solution

S =vt,

where v is a constant. Equation (16}becomes

S2+x
+ 14 So+~2 lA = k«GOTOO~

which has the solution

—= sin '(x)'" —(x —x')"',
So

(p —1)(1—«)'"
1' (1 —x)'"

sin '(x)'"
(x)1/2

(26)

(27)

2X 2 4G()M y V +K

gv 'gV 'gv

and is singular at the origin.

IV. CONCLUSION

where we have again assumed s- 0, ltl- 0 as I- 0.
The early-time behavior is

t= 'S x'/27 0

or S-t'", and

&MS

Go 15qS02

(28)

From Eq. (28), the age of the universe is related
toH by

S 20= —=
S St„'

also,

M= gwPS0T~,

therefore

32mpT 2 T

Finally, using this in Eq. (8) gives

1 T 2/S
—104a

0

if T„/S0-0.1.
A final choice of parameters, compatible with

Case II, is ca =0. In this case, Eq. (15) reduces to

We have presented a theory of gravity in which
gravity is produced by a vector field in addition to
the usual metric field. It has been found that such
a theory is compatible with present solar-system
experiments and contains a reasonable cosmology.
Future papers will examine gravitational radiation
in this theory, and examine the possibility of iden-
tifying the vector field (K„}with the Maxwell field
of electrodynamics (A „).

One of the authors (RH) would like to thank Cliff
Will, Robert Dicke, and Bill. Kinnersley for help-
ful discussions.

APPENDIX

The calculation of the PPN metric parameters
consists of three parts. First, the solution of the
dynamic (moving sources) linearized equations is
made to get all potentials first order in M. Sec-
ond, the static field equations are solved to sec-
ond order inM, giving p and 5. Third, a method
is devised to get the two-source metric potential
with PPN coefficient involving g2.

Using the PPN metric for a single source [Eq.
(2}], and the expansion of K„[Eq. (3)], one can
calculate the following derivatives to linear order
in M:

K,K, l =P, 2 (1+a,) 3, —v'+r a
GM (r v)'' r' ' r'

GM rv
OKolok K0Kolko 40 2 (I+a1)r r'

KOKolkk =$0 2 ($, -2ao) 3 2
—V2 —2/0 2 fr ~ a —2WQOGM5(r)[2a, +2a2V +2+V (2y+I+ak+g, )],

GM (r v) 2 GM
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GM r.v
KOK&]oo = 40 3 3 2 ~ —v

KGKK)p))=pp p (f3+d'-d) 3 p
—v +go p

(d' —d)r a —2vfoGM5(r}[2+v'(2y +1+ (xp+t'))] 3' r'

KGKK(op=to p (d'-d+p&)-&K+1+&, —y) 3, -v'+r a,' r'
P

K K, —K K, , = —4 (d'+d) 3 3 —v ) —4 GMG 3(v)d

Components of R„„areGM, (r v)', GM
, (y —1+a, ——,'a, ) 3, —v' +, (y-1+o., ——,'a) —g()r a

—2vGM 5(r)[ 2 + v '(1 +2y+ u, + g))],

K = ™(1—y+ «, ) 3, *'— ') GM3( )(4y 3+«, —,+1',)vr'

We will need the 5-function part of R to static or-
der only,

R =2R«+16vGMy5(r).

Next we write the first-order approximations to
the field equations. First the g» equation, (4):

(1 — tp),()2GM y5(r )

+(2(p +)i)(a) +2)ppGM5(r) =2G,T«,

(A5)

(Roo —
p R)(1 —p) Ap)

(2a, +4(oy-2(4) —)7}QGM5(r) =0, (A6)

+(2(3) + tl)((t)()R()() '+K()K
) (() = -SvGoToo 3

(Al)

next the g equation, (5):

R+(6(3)+3)i)KGK )pp

—(6(3) + )i)Kp K
) ) )

—')i Kp( K) ) ) () +K)
) ()) ) = 8vGp T;

(A2)

(1 +(4))f)oK'+)}go)GM5(r)+(1 —(4) + ,'q)(a) +l)p—oGM5(r)

—(p)7+1)poGM5(r) =Gp(2Tp, —T).

(A7}

Using some relations valid in Minkowski space,

Too d x = p —d x

and the K, equation, (6):

(4)KpR Q+KpR o:o(2Ko)(-)K)(o)) (A3)

It is profitable to eliminate R in the above three
equations. Adding —,

' of (A2) to (Al) and subtracting
,'Kp times (A3) gi—ves

dt dr M
ds (1 v P) ~P (1 v P))~P '

dt ds s
ds dt

T d'g = p ——d'g

(AS)

Rpp(1 + (4)(t)p + K )7(f p) +KpKGI l) (1 —u& + —,
'
q)

3
+KGKG) oo(3(3) + p)})- K)iKGK() (o

-(1+Kg)KGK))o) =-SwGGT«+4vGGT.

p —(1 —v')'"d'x =M(1-v')"'dt

Eqs. (A5)-(A7) integrate (with v =0) to:

(A9}

(A4) 2y(1 —(4)(II)o) +(2(4) + g)(t)~) —2Gp/G = ~2(2(3) + ri)pp 3

Keeping only the 5-function parts of each equation
and setting v to zero, the first-order static equa-
tions can be written. Thus (Al), (A3), and (A4)
become, respectively,

2y(4(p)+4a, =2(2p) +)7),

(2 —2(o +)1)@oa)—2Gp/G = -2(1 + p)7po) .

(A10)

(Al 1)

(A12)
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These can be solved simultaneously to give

1 —&uP, (2m +q+I)
1 +u Po(1 —4&@)

Experimental evidence indicates @=1, so we pro-
ceed with the special case

which gives

2 If2=2
G (I,)ii, —(1 —v )

(1+-,'17$,)[2+v'(1+2y+n, + g, )]

(d =-'g+1, (A13)
Go

1 +-,'g(t),
(A14)

(The procedure for the alternative possibility,
&u =0, is similar and will not be given here. ) Us-
ing (A13) in (All) gives

Keeping the v' part of the 5-function terms and

using (A13), (A4) integrates to

as a renormalization of G„and the relationship

1 +2p+Q3+ f~ = 3. (A15)

Having handled the localized source terms, we
next find solutions to the total dynamic field equa-
tions outside the source. First the +00 equation,
(Al):

GM (r ~ v)' I
(2cu+ q)go 3 3 ~

—v' (2g, +3y+n, ——,n, -1 —2y —g, —2as)+r ~ a(3y+n2 —,n, ——1—2y —g, —2f) =0.

This gives two requirements,

(~ +@2 —pQ ~
—2a3 = 0 y

-/~+@2 —PQ1 —2f =0~I

where we have used @=1. Subtracting gives

g~ =a3—

Equation (A3) becomes

GM (r v)'
(2(u+q)P, , 3, —v' (n, ——,'n, )+r a(n, --,'n, —g, )

(A16)

(A17)

(A18)

+2go, 3, —v' (2a, —d+d')+r ~ a(2f —d+d') =0,GM (r ~ v)'

(A19)

giving

(2' + q)(n, ——,'n, ) = 2(d —d' —2a, ),
(2(u + q)(n ~

——,
' n, —&,) = 2 (d —d ' —2f ) .

Subtracting and using (A18) yields

(2~+q+4)g, =0.

So

(A20)

In Eq. (A16) it was assumed that 2u&+qv0. In
the special case 2&u+ q =0, Eq. (A19) gives a, =f.
Using this in (A4) results again in &, =0. There-
fore the same PPN parameters are obtained, re-
gardless of special relationships between (d and q.
Substituting g, =0 and y = 1 in Eq. (A15) gives the
additional result

@3=0.
g, =0, (A21)

a3 = (A22)

unless 2' + g+ 4 = O. This, however, combined with
e =-,'g+1, gives unique values for (d and g which,
when used in Eq. (A4), give g, =0, anyway. Equa-
tion (A18) yields the additional result

Using g, =0 and a, = f, (A17), (A20), and (A4)
become

n2 2ni=2f ~

(@+1)(n,—~n, ) =d' —d —2f,
(1+go+ 2 rlyo)(n, ——,'n', ) = (1+8)yo(d' —d) .
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Solving these simultaneously gives

2f =a~ ——,'a, =d'-d =0. (A23)

GM r v
X —Vr3 r2

or

0 « II ssm ml nc If 00

3 x' —v' [-,'qa, +2(d+d' —1)]=0.r3 r2 & 1

Equation (4) becomes

(1+(upo+ qpo)R«+(2(0+q)KOK, O,

2 OKO(Kl tmm Km[ tm)

yielding

To get the individual values of e, and a„ the K,
and g«equations are needed. Equation (6) gives

x [(1+~@ +rip )(-'a, ) ——'qy (d+d')] =0

Solving for o. , and using e = 2p+1 yields

also,

4/0 '+4+6q+g2 '

4(IF), '+4+6'
d

The only PPN parameters remaining involve
second-order static terms in the metric. The
static equations to second order are:

g00 ~

R»(1+&uP, +@go}——,'R(1 —a@0)—(2m +@)~(K,K, ) ~, g™—F«Fo g' =0; (A25)

g~

R +(6&v +p3}KK ~»+(6&u+q)z(KOK )[f~g +(6(l7+'1))K/JOK~Jog™

+2' KO] t Kfft] 0 g™+ 2gK K~ ] & g™+ & ROOK K
I

(A26)

and Ko (multiplied by Ko),

M/OR + qgoRoo+ (KoKo) i (m8' —2K«g Kot Z —2KOKii omg

Adding ~ of (A26) to (A25), and subtracting —,
' of (A27) and using (g = —'@+1 gives

Roo(1 + zrilo +4 0) + (39+3)K KO~ » (2' 2)+K& ~OK~ [o +(g + 1)K K
t

—0

(A27)

where we have also used the fact that to first or-
der the only nonzero derivative of K„ is Kt]0 To
second order,

O'M'
R = (2 —2P)

G I0KOK too=Kgb]OKt]0 =

G IK,K' „=(2P —3)
™

2 R[-1 + &up, (2+ + 17+ 1)]-F«F g'

- (2(s) + v1)KOKi
i 0~ g' "= 0,

where we have used R«=0 when P =1. Solving and
using q=2+ —2,

(4(u —1)JOG M /r
1 —u&P, (4&v —1)

Now

R = (-4P —45 + 8)G M'/r '
Using these gives the relation

(2 —2' )(1+2nd. ) = o, so

= (4 —45)G'M'/r ',

or P =1, as in general relativity. To get 5, which
only appears in R, we solve Eqs. (A25) and (A27)
for R. Multiplying (A27) by e+-', g and adding to
(A25) gives

1-4u
2$, '+2&v(1 —4&@)

'

The g2 parameter appearing in the two-mass in-
teraction term can be found by means of a conven-
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ient trick. The configuration of a point mass m

inside a spherical shell of mass M and radius R
»r is solved by two approaches, and the results
are compared. First, M is included as a source
of the metric, and we write

M m mM
g = 1 —2G ——2G —+ 4PG~

R r rR

—(2 —4P+2&~)G' +O(m, M'), (A28)
rR

M mg„=—1 —2yG ——2yG —.

Bx
1

GM=1+
g+Ot

Br GM
ar'

Applying this to (A28) gives

m 2mM
g '=1 —2G —+(8P —6 —2g, )G'

00 rR

but r =(1 —yGM/R)r', so

yn mM
goo' = 1 —2G —,+(8p —6 —2y —2&2)G'

This has the asymptotic limit (as m/r- 0 but, al-
ways, R»r):

Mg~=1-2G —,

Comparison with (A30) shows the effect of M on G:

GMG*=G 1 —(4P —3 —y- t' ) R

M
g =-1—2yG —.

(A29) However, the effect of M on G is well known from
previous analysis. Equation (A14} gave

Second, we note that the post-Newtonian limit is
valid inside the shell, so one must be able to write
to linear order

G*= Go
1+zing KoKo

=Go [ 1+2q(1+ 2M/R)$0(1 —M/R)(1 —M/R)) ',

goo =1 —2G~m/r',

g,', = -1 —2yG "m/r', (A30)

Go
1+-,'q(t) o

=G.
where it is recognized that the presence of the
mass shell may affect G, and that the coordinates
will be different to allow a Minkowskian asymptot-
ic limit. Comparison of (A29} and (A30) shows
that the coordinate transformation must be

Therefore 4P-3-y-&, =0 and, since P=y=1,
this implies

g, =0.
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