
THIRD SERiKs, Vol.. 7, NO. I2 15 June 1973

Quantized Longitudinal and Transverse Shifts Associated with Total Internal Reflection

O. Costa de Beauregard
Institut Henri Poincare, Universite de Paris VI, Paris, France

C. Imbert
Institut d'Optique, Universite de Paris Sud, 91-0rsay, France

(Received 21 August 1972)

In additional measurements following their experimental demonstration of the now well-known

longitudinal shift of a light beam undergoing total reflection, Goos and Hanchen have observed that an

incident beam of natural light is separated into two beams with polarizations normal and parallel to
the incidence plane. Although an explanation of this filtering effect of orthogonal modes is easy in

terms of either the Artmann or the Renard formulas of the Goos-Hanchen shift, which are deduced
from a stationary phase and an energy-conservation argument, respectively, it seems that this

explanation has not yet been produced. We describe here associated theoretical and experimental work
showing that both the longitudinal Goos-H'anchen shift and the new transverse shift are quantized,
each having two eigenvalues and two eigenfunctions, which are the principal linear polarization states in

the first case and the circularly polarized states in the second case. Thus the longitudinal and the
transverse shifts should not be simultaneously observable. This can be justified in terms of the so-called
tangential and sagittal focal lines produced by total reflection from a point source. Our theoretical
reasoning is based on formal properties of Poynting's energy-flux vector. Our experiments consist of (1)
a confirmation, with photographic recording, of the Goos-Hanchen "polarization effect, " (2) a similar
demonstration of the filtering of the two circular polarization modes by observation of the transverse
shift. In the latter case our apparatus is similar to the one we have used for demonstrating the
transverse shift, but with the circular polarization analyzer placed after rather than before the totally
reflecting prism. Our new measurements also comprise an improved evaluation of the transverse shift.

I. INTRODUCTION

Let us recall that the now well-known Goos-
Hanchen' longitudinal shift in total reflection had
been qualitatively predicted. ' However, the first
closed and rigorously deduced formula, based on
a stationary phase argument, was given later, by
Artmann. ' Still later a slightly different formula,
based on an energy-flux conservation argument
and presenting (as we will explain) excellent the-
oretical properties, was produced by Renard. 4

Both the Artmann and the Renard formulas are
polarization-dependent, and predict that the shift
is minimum or maximum for linear polarization

perpendicular or parallel to the incidence plane,
respectively. It is quite clear that a little more
thinking using either of these formulas' would have
shown that the above statement refers to the mean
value of the longitudinal displacement, which is in
fact quantized, with its minimum and maximum
values as eigenvalues, and the transverse electric
and magnetic modes as corresponding eigenfunc-
tions. Such a reasoning is part of the present
paper.

The so-called "polarization effect" was indeed
observed by Goos and Hanchen' and later photo-
graphed by one of us and co-workers. ' These ex-
periments show that observation of the longitudinal

3555

Copyright 1973 by The American Physical Society.



3556 O. COSTA DE BEAURE GARD AND C. IMBERT

Goos-Hanchen shift acts as a filter of polarization
states, very much like ordinary double refraction
does: It separates from an incident beam of ar-
bitrary (coherent or incoherent) polarization two
reflected beams that are linearly polarized, one
normal and one parallel to the incidence plane. In
quantum-mechanical terminology, observation of
the longitudinal Goos-Hhnchen shift throws the in-
coming photons into either of the two principal
linear-polarization states that form a complete
orthogonal set for describing the general polariza-
tion state. In other words, the longitudinal shift
is quantized with two different eigenvalues, the
corresponding eigenfunctions being the transverse
electric and the transverse magnetic modes.

The new transverse shift in total reflection, cal-
culated' and measured' by one of us, had also been
qualitatively predicted. ' Apart from the fine
structure that will be discussed in this paper, the
transverse shift is also found, both theoretically
and experimentally, " to be polarization-dependent,
with a sign corresponding to that of the elliptic
polarization inside the evanescent wave. It reach-
es its maximum (given the incidence angle) when
the evanescent wave is circularly polarized, and
is zero for linear polarization either perpendicular
or parallel to the incidence plane.

Now we come to the fine structure of the trans-
verse shift. After our experimental confirmation'
of the observation by Goos and Hanchen' of the
eigenvalues and eigenfunctions of the longitudinal
shift, it was remarked" that our formula for the
transverse shift can also be brought into the
canonical form of a quantum-mechanical mean
value, displaying two symmetric eigenvalues, with
the two circular polarization modes inside the
evanescent wave as the corresponding eigenfunc-
tions. Then an experimental proof that the trans-
verse shift is quantized, with the two circular
polarization modes as eigenfunctions, was ob-
tained. " To this end our transverse shift apparat-
us" was modified, with the circular polarization
analyzer placed after (rather than before) the
totally reflecting prism.

Now, if both the longitudinal and the transverse
shift turn out to be quantized, it is obvious that
they cannot be simultaneously observable, as the
corresponding eigenfunctions belong to two differ-
ent representations of the general polarization
state. Therefore we must discuss the fundamentals
for measuring shifts of the beam.

Let us recall that, in geometrical optics, " the
light rays form a normal congruence orthogonal to
the wave fronts, which in homogeneous media is a
rectilinea~ normal congruence. When diverging
from, or converging to, a point, such a congru-
ence is called homocentric, the wave fronts then

being spheres. In the general case where the wave
fronts are not spheres, their common evolute is
a two-sheet surface, the caustic surface. The
reason for this is that two adjacent light rays will
intersect to first order if, and only if, they eman-
ate from one of the two principal curvature lines of
a wave front, which are orthogonal to each other.
Therefore each ray contains tggo foci, which are
the principal centers of curvature of the wave
fronts, and the generating points of the two-sheet
caustic surface. Thus a thin Pencil of rays (Fig.
I) contains two orthogonal focal lines (which merge
together and into a point when the wave fronts are
spheres). All this remains approximately true in
the domain of wave optics, with, of course, dif-
fraction patterns replacing the two focal lines.

In order to observe and measure a shift of a
light beam, we must obviously have it "marked"
or "focalized. " If we can use a homocentric beam,
then we can measure its shift in any direction.
But this is definitely not our case: By hypothesis
we are working near the limiting case of total
reflection, that is, with a pencil of rays making a
wide angle with the axis of revolution of our opti-
cal system (the plane interface). Therefore our
beam is necessarily marked by two orthogonal
focal lines; this means that tzvo, and only tuo
(orthogonal) shifts of our beam will be observable
and measurable. If the beam emanates (Fig. 2)
from a point source 5, the focal lines of the re-
flected beam are known as the sagittal focal line
E lying along the axis of revolution, that is, in our
case, the normal to the reflecting plane drawn
from S (first sheet of the caustic surface); and the
tangential focal line T, which is orthogonal to the
incidence plane, and generates the second sheet of
the caustic surface. Therefore there are taboo and
only tzoo shifts of the beam that we can measure
with some precision: the longitudinal, or Goos-
Hanchen one, which we can measure by bringing
the tangential focal line into focus, and the trans-
verse shift, which we can measure by bringing the
sagittal focal line into focus. All other positions
of a (real or virtual) receiving screen will only
yield a blurred section of the beam, allowing no
position measurement.

F

C

FIG. 1. Nonspherical wave front, curvilinear square
made of principal curvature lines, and thin pencil of
rays with the two orthogonal focal lines.
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Qf course, the two principal linear polarization
modes and the two circular polarization modes
are not the only orthogonal modes allowing a rep-
resentation of the general polarization state; any
two elliptic polarization modes termed "opposite"
by Fresnel and Arago" are indeed orthogonal to
each other and provide a possible representation
of the general polarization state. However, as ex-
plained above, they are not the eigenfunctions of a
physical magnitude that would be an "oblique shift"
of the beam.

Keeping these remarks in mind, we recall in
Sec. II that Renard's formula for the Goos-Hanchen
shift and our formula for the transverse shift have
the form of a diagonalized canonical mean value,
with eigenvalues and eigenfunctions displayed,
these being the principal linear polarization modes
in the first case and the circular polarization
modes in the second one. However, due to the
simplifying assumptions used in the derivation of
these two formulas, a general demonstration that
the two shifts are quantized, with their two eigen-
functions as previously described, is still lacking.

This demonstration is given in Sec. III. Postu-
lating that the significant magnitude for calculating
the image of a point source is Poynting's energy-
flux vector, we give closed formulas for the solu-
tions of Maxwell's equations in the vacuum of the
evanescent wave in the two cases previously selec-
ted as significant: t -harmonic and z-independent
solution with (possibly) a focal line at x = const and

y =const; t -harmonic and y-dependent solution
through exp[(n'n' —1)'"~y] with (possibly) a focal
line at x=const and z =const.

We show that in the first case the $„and$, com-
ponents of the Poynting vector S are diagonal in
the transverse electric and transverse magnetic
modes, and that in the second case the $„and$,
components of S are diagonal in the two circular
polarization modes (of the evanescent wave).

Sections IV and V contain descriptions of our ex-
perimental arrangements for displaying the quan-
tization of the longitudinal and the transverse
shifts. Section VI presents an improved measure-
ment of the transverse shift, as allowed by an
improved optical quality.

II. QUANTUM-MECHANICAL INTERPRETATION
OF THE LONGITUDINAL AND THE
TRANSVERSE SHIFT FORMULAS

FIG. 2, The caustic surface of a point source S in
total reflection: T(tangential) and F (sagittal) focal
lines.

C, = czz/(2za[(nzaz —1)(1 —zzz)] «z)

and the normalization condition

(2)

c denotes the velocity of light in vacuo, n the index
of the refracting medium above the plane interface
y =0 separating it from the vacuum where the
evanescent wave propagates, & =2nv the angular
frequency of the plane incident wave, zz & 1/n the
sine of the incidence angle, and 7 and T„Fres-
nel's transmission coefficients.

Formula (1) together with (2) and (3) displays
(X) as a continuous function of the ratio E~~~Ez/
E*E . However, based as it is on classical,
macroscopic reasoning, what it basically express-
es is the mean value (X) of a possibly quantized
displacement X. If so, the two eigenfunctions are
clearly displayed in (1) as the transverse electric
and the transverse magnetic modes of the polariza-
tion state function, the corresponding eigenvalues
being

XE CJ 7J Tg

X~ =Ci7

Our' "formula for the transverse shift Z, also
based on energy flux conservation, is

Renard's~' formula, based on an energy-flux
conservation argument, for the longitudinal Goos-
Hanchen shift X is

with

(Z) = z Cz(z j z'
z E~E„—z z Tj E ~~E~),

(6)
(X) =C,(z,*T,E,*E~+T*

I~ zzp E)Ez
with

Denoting by e, and e~~ the phase factors in 7, and

7~~, the substitution
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&2L = e&E~+ i e»E»,

&2R =e~Ej —ie»E» &

or conversely

&2e~E~ = L+R,
i~2 e»E» =L R,-

confers on (5) the form'6

(8)

and formally conserves the scalar product

E,*~E2~ +E, t)E2 ]]
= L,*L2+R~Rp

and the norm

(10}

EjEj +EitE]] = L*L+R*R=1.
However, there is an orthogonality condition for
the L and R modes:

R*L=o~ e E~ =sic)]E]t . (12)

z„=+C, I Y,*~„I
(14}

as the two eigenvalues.
It should be kept in mind, however, that although

the Renard formula (1}, and our formula (5) or
(9), turn out to be experimentally quite good, and
although each of them has the theoretically attrac-
tive features we have just explained, neither of
them has been derived in a truly rigorous fashion.
This is true also with Artmann's' formula deduced
from a stationary-phase argument. Up to now
there are, strictly speaking, no completely rigor-
ous calculations of the X or the Z shift. It is even
doubtful that one can be given without the use of a
computer; that is, that any rigorously deduced
closed formula can exist for a realistic situation.

This being said, it is of course a routine matter
to write down the unitary transformation between
the

I &l&
-='}

and the

Then (as will be more obvious later) L and R are
the left and right circularly polarized modes
(positive and negative helicity states) inside the
evanescent wave. Conversely, starting from (8)
and (12), the orthogonality condition for the E~
and Eg modes is

E]] =o~R*R = L*L

Formula (9), together with (6) and (11), displays
the transverse shift (Z) in the form of the mean
value of a quantized displacement Z, with L and
R as the two eigenfunctions, and

I
& &=(

pictures. And, since we know the matrix repre-
sentations of X and Z in their diagonalized forms,
it is a straightforward matter to find their com-
mutator and to write down the corresponding un-

certainty relation. However, our motivation for
beginning along these lines will become stronger
when we have a more definite idea of what to look
for afterwards.

So, for the present, we will satisfy ourselves
by showing which are the mechanical magnitudes
that are quantized by formulas (4) and (14) [to-
gether with (2} and (6)]. Multiplying (4) and (14}
by m=—c '+5, where m denotes the photon's kine-
matical mass, we see that the longitudinal and
transverse quantities that are quantized as multi-
ples of c 'A, are the "boosts" mX and mZ associ-
ated with the photon's tunneling inside the evanes-
cent wave. That the eigenvalues of these quan-
tities are expressed in terms of not only h and c
but also n and a (as 7., and v» are expressible in

terms of n and a) is somewhat reminiscent of the
fact that the hydrogen-atom energy eigenvalues
are expressed in terms of h, c, e, and m.

III. DEDUCTION OF THE QUANTIZATION OF THE

LONGITUDINAL AND TRANSVERSE SHIFTS

We take as our basic assumption that the physi-
cally significant quantity for calculating the il-
lumination of a plane where either the tangential
or the sagittal focal line of Fig. 1 is brought into
focus is the Poynting vector S. For studying the
tangential focal line 7.

' and its images one should
obviously work with Fourier expansions on the Q„
and j'p„components of the propagation vector k,
while for studying the sagittal focal line I: and its
images one should work with Fourier expansions
on the k„and 0, components of k. Or, more ef-
ficiently in an abstract deduction, one should work
in the first case with the general g-independent
evanescent wave in vacuo satisfying the Helmholtz
equation

(a,'+a„'+~'))g(x, y)) =0, (15)

and in the second case with the general evanescent
wave having a given damping factor
exp[(n'n' —1)'"~y], that is, obeying the Helmholtz
equation

(a,'+a,'+ n'n'(u')( 8 (x, z)) =0; (16)

for simplicity we now use units such that c =1; as
before, n denotes the index of the refracting medi-
um, a the sine of the incidence angle, and ( 2) the
linear and ) 6) the circular polarization mode
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representation of the evanescent wave.
In the first case the general solution

~
2) of

Maxwell's equations in vacuo is a superposition of
the transverse electric (TE) mode

E,(x, y) = E(x, y),

H~ = 1(d

H, = -iu '&„E

and of the transverse magnetic (TH} mode

H, (x, y) = H(x, y-},

E„=-iso'~~H,

E)f = &(d d„H ~

(17)

(18)

Inserting these expressions into the Poynting vec-
tor formula

S = -(E*xH+ E x H~)

yields

S,=(i/4&v}(E*[8,]E+H ~[8, ]H},

S,=(i /4u)( E*[ 8]E+H*[8„]H),

(19)

(20)

L,(x, x) -=L,

L, = P(qs, +8,)L,
L,=P(q8, -8,)L

and the right circular mode

R,(x, y) =-R,

R, = P(q8, -8.}R,

R.= P(qs. +8*)R i

(21)

(22)

with i[8] denoting the well-known Schrodinger or
Gordon current operator.

In the second case the general solution
~
e) of

Maxwell's equations in vacuo is a superposition of
the left circular mode

yields .

S, = 4iP[L*[8,] L+R2[8, ]R

q(-L"[8,] L -R*[8,]R)],
S,= ,'ip—[L*[8,] L+R~[8, ]R

+ q(L*[8, ] L -R*[8„]R)).

(27)

Thus the vector (S„O,S,) appears as the sum of a
longitudinal and a transverse Schrodinger-like
current, the latter (with a minus sign inserted)
explaining the transverse shift effect.

The essential point, from which our conclusion
follows, is that S, and S„in (20} are diagonal in
the two eigensolutions (17) and (18) of (15), while
S, and S, in (27) are diagonal in the two eigensolu-
tions (21) and (22) of (16). We thus conclude that
the tangential and the sagittal focal lines produced
by total reflection from a source with arbitrary
polarization both consist of a doublet, the cor-
responding eigenfunctions being the principal lin-
ear polarization states for the former and the
circular polarization states for the latter.

IV. OTHER CLOSED FORMULAS FOR THE
TWO PRECEDING CASES

S, =(1/4&v')(8, E*8,H —8,H*8„E)+c.c. (28)

The transverse S, component in the preceding
"first case" and the vertical S„component in the
"second case" have not yet been written down.
Compact closed formulas exist for them which
might be useful in computer calculations of the
longitudinal and transverse shifts in more realis-
tic cases than those highly symbolic cases which
have been treated up to now."' Thus we will
write down these formulas.

The S, component of the Poynting vector (19) cal-
culated from (17) and (18) reads

where

p (n2 2 )-1

q
—(s2 2 I)l/2 .

L and 8 are defined as"
v2 L=E+iH,
v2 R=E —iH,

or, reciprocally, through

~2E =L+R,
i vTH =L —R.

(23)

(24)

(25) H (x, y} =a E(x, y), (30)

It is in general nonzero, though the Q, component
of the photon's momentum is identically zero in
the ~g) solutions of (15), and it depends critically
on the relative phase between E and H From (20}.
one deduces

8,S, 8,S.=(i/2w)(8-, E*8„E+8,H*8,H)+c.c.
(29)

Thus, if the boundary conditions allow the condi-
tion

Inserting these expressions into the Poynting vec-
tor formula

with a denoting a real constant (and this is the case
with Fresnel's evanescent wave), then

S = 4i(R*xR -L*xL) (26)
i H~E —E*H

&9 &es-eS
2(g E~E +H *H ' ' (31)
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FIG. 3. Our version of the Goos-Hanchen-type device for amplifying the longitudinal shift in total reflection.

or, in integral form,

S,dxdy = — S,dx+S„dy;

+ C.C.

Thus, imposing the condition

R =aL,

(34)

(35)

with a denoting a complex constant, we see that

L*L-a*R
&(aS-eS

L I.+R*R ' *'*

or, in integral form,

(36)

S,dxdz = —— S,dx+S, dz

(32)

a =+1 correspond to pure positive and negative
helicity states.

The latter expression of the transverse energy
flux may facilitate a general calculation of the
transverse shift.

Similarly, the S, component of the Poynting vec-
tor (26) calculated from (21) and (22) reads

S„=(i/4n a2'a')( SL*S,L —S,Re'8 R)+C.C.

(33)

From (27) one deduces

s,S, —s,S,=-(i/2n'n'~)(s, L*s,L+a,R*s,R)

perceptible near the critical value of the incidence
angle, and the transverse magnetic mode is then
the more shifted one. However, Goos and Hanchen
did not publish a photographic record of their ob-
servation.

Mazet, Imbert, and Huard' have demonstrated
anew this filtering effect by using (as Goos and
Hanchen had) a parallel-face plate for producing
total reflection very near the critical angle and
adding the longitudinal shifts (Fig. 3). Our paral-
lel-face plate had an index n =1.8, and we have
used 31 reflections. The light source was an un-
polarized laser, and the beam was marked by a
rectilinear object (a thread) AB normal to the
plane of incidence. A lens 0 projected the image
A'B' of AB on a plane screen. Figure 4 is a
photographic reproduction of this image, which is
seen to be a doublet. By interposing a linear po-
larization analyzer between the lens and the
screen we have observed that the components of
the doublet are polarized, the more displaced one
parallel and the less displaced one perpendicular
to the incidence plane.

We have also verified that the same final con-
figuration is obtained when the incident light is
either linearly polarized at 45' or circularly po-
larized.

Thus, in full accord with Goos and Hanchen, ' we
have observed the filtering effect of the longitudi-
nal shift, that is, its quantization, with its two

(37)

The latter expression of the energy flux through the
reflecting plane may help in calculating both the
longitudinal and the transverse shifts in realistic
cases.

V. EXPERIMENTAL PROOF OF QUANTIZATION
OF THE LONGITUDINAL SHIFT

~e

~ . I
i'

)~Lneee", ,',::.ee', i~':4,eel. "et+ietyg 4fee::e.p4 "e e

+'~~'-' ""--'- "'~eee:m~iL'ill'2 Ii"e

Goos and Hanchen' have explained how they have
observed that the longitudinal shift they previously
discovered' separates an incident beam of arbi-
trary polarization into two beams that are linearly
polarized, one perpendicular and the other paral-
lel to the incidence plane. This separation is only

FIG. 4. Photographic record of the twin tangential focaj,
lines in total reflection, displaying the two eigenvalues
and the two eigenfunctions ginear polarization states)
of the longitudinal shift.
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eigenvalues and its two eigenfunctions.
%'e have not attempted to duplicate the very pre-

cise measurements by Goos and Hanchene of the
two shifts as functions of the incidence angle.

A

A"

VI. EXPERIMENTAL PROOF OF QUANTIZATION
OF THE TRANSVERSE SHIFT

The difficulty with the transverse shift is that it
is so much smaller than the longitudinal one.
Therefore we could not hope to obtain, as a result
of adding many transverse shifts, two nonover-
lapping images of a rectilinear object with opposite
circular polarizations. For this reason we have
used the same trick as in our previous'" mea-
surements of the transverse shift.

Let us suppose for a moment (Fig. 5) that we ob-
tain as a final image of a rectilinear object two

nonoverlapping straight lines, with opposite cir-
cular polarizations [Fig. 5(a)]. Then, by inter-
posing a half-wave plate covering half of the beam,
we can exchange the circular polarizations on half
of the two images [Fig. 5(b)]. And then by inter-
posing afterwards a circular polarization analyzer
suppressing, say, the left circular polarization,
we will obtain a broken image of the rectilinear
object [Fig. 5(c)]. Of course we can invert the
broken figure by suppressing the other circular
polarization state, and this is conveniently done
by rotating the quarter-wave plate of the circular
polarization analyzer.

Figure 6 displays the whole experimental ar-
rangement. It is very much the same as in our
previous measurements of the transverse shift, "
except that now the half-wave plate covering half
of the beam and the circular polarization analyzer

(b)

A

(c)

FIG. 5. The "trick" for unraveling the two overlapping
circularly polarized eigenfunctions (a) of the transverse
shift: (b) a half-wave plate covering half of the beam
reverses the circular polarizations; then (c) a circular
polarization analyzer suppresses one of the two states.

o 4

Mz

FIG. 6. The over-all experimental arrangement: unpolarized laser, rectilinear object, multiplying prism where
the beam undergoes 28 near-to-limit total reflections, half-wave plate covering half of the beam, circular polarization
analyzer (quarter-wave plate and linear polarizer), amplifying lenses, and screen receiving the image of the rectilinear
object.
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are placed after rather than before the prism P
where the beam undergoes 28 near-to-limit total
reflections. The beam is marked by a rectilinear
object ACB parallel to the cross-section planes of
the prism. The light source is an unpolarized
laser (with of course the possibility of interposing
before the object any sort of polarizer).

Figure 7 is a photographic record of the final
image of the object ACB on the screen E with
either left [Fig. 7(a)] or right [Fig. 7(b)] circular
polarization suppressed.

The very same aspect is obtained when the inci-
dent light is linearly polarized either perpendicu-
lar or parallel to the first incidence plane inside
the prism. It should be remembered that due to
the helical path of the light inside our prism of
index 1.8, the incidence plane is rotated at each
successive reflection. It thus turns out that any
linear polarization state is separated, by total
reflection, into two opposite circular polarization
states which (as shown by Fresnel's formulas) are
conserved by near-limit total reflection, and are
transversely shifted, one up and the other down,
at each consecutive reflection. "

We have verified that the same final configura-
tions are obtained when the laser beam is linearly
polarized in a direction that is oblique on the first
incidence plane; however, in this case, due to in-
teraction between the initial polarizer and the final
analyzer, the two halves of the beam have unequal
luminosities.

Finally we conclude that quantization of the
transverse shift, with its two eigenvalues and its
two eigenfunctions as theoretically predicted, "has
been observed.

VII. NEW MEASUREMENT OF THE
TRANSVERSE SHIFT

The improved quality of our images has allowed
us a more precise measurement of the new trans-
verse shift.

We have recorded on a photographic plate (1) the
broken image of the rectilinear object CAB (Fig.
7), and (2) the image of a micrometer placed in the
same plane.

Taking into account the angle 0 between the in-
cidence planes and the cross section plane of the
prism, "which is such that cosg =0.865+0.005, we
obtain for the calculated value of the transverse
shift in one reflection

&Z &, =0.244+0.004 p,

Experimentally we have found

&Z~~p 0 24 + 0 02

This confirms our previous verification of our
calculations. "

FIG. 7. The two symmetric broken images of the
rectilinear object displaying the boo eigenvalues and the
two eigenfunctions (circular polarization states) of the
transverse shift. (a) left circular polarization sup-
pressed; (b) right circular polarization suppressed.

VIII. CONCLUSIONS

There is a complete consistency between our
calculations and measurements as reported in the
present paper.

Both the longitudinal and the transverse shifts
associated with total internal reflection are quan-
tized. We have calculated and measured the two
eigenvalues and the two eigenfunctions of each of
them (the latter being also eigenvalues of the po-
larization state).

Finally we come back to the impossibility of
simultaneously measuring the longitudinal and the
transverse shifts. It could be objected that, by
using a cylindrical lens, one could bring simulta-
neously into focus the tangential and the sagittal
focal lines.

The point is that it is impossible to amplify (for
observing and measuring them) both the longitudi-
nal and the transverse shifts. An apparatus ampli-
fying the longitudinal shift will filter and conserve
the principal linear polarization states, while an
apparatus amplifying the transverse shift will
filter and conserve the circular polarization
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states.
There is thus no polarization state that can go

through a longitudinal and then a transverse shift
amplifier (or the contrary). In other words, as
these two shifts have no common eigenfunctions,
their eigenvalues cannot be simultaneously dis-
played.
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Note added in proof. Of course, when using our
equilateral multiplying prism where the light follows a
helical polygonal path, there is a component of the Goos-
Hanchen shift parallel to the edges. As previously ex-
plained (Ref. 11) and due to the rotation of the incidence
plane at each consecutive reflexion, this shift is common
to the two circular polarization modes and is not re-
corded by our apparatus.
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A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any

theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The
foundation consists of (i) a glossary of fundamental concepts, (ii) a theorem that delineates the overlap
between Lagrangian-based theories and metric theories; (iii) a conjecture (due to Schiff) that the weak

equivalence principle implies the Einstein equivalence principle; and (iv) a plausibility argument

supporting this conjecture for tne special case of relativistic, Lagrangian-based theories.

I. INTRODUCTION

Several years ago our group initiated' a project
of constructing theoretical foundations for experi-
mental tests of gravitation theories. The results
of that project to date (largely due to Will and ¹)
and the results of a similar project being carried

out by the group of Nordtvedt at Montana State
University are summarized in several recent re-
view articles. ' ' Those results have focused al-
most entirely on "metric theories of gravity" (rel-
ativistic theories that embody the Einstein equiva-
lence principle; see Sec. III below).

By January 1972, metric theories were suffi-






